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ABSTRACT 

Graph networks are extensively used as an essential framework to 

analyse the interconnections between transactions and capture 

illicit behaviour in Bitcoin blockchain. Due to the complexity of 

Bitcoin transaction graph, the prediction of illicit transactions has 

become a challenging problem to unveil illicit services over the 

network. Graph Convolutional Network, a graph neural network 

based spectral approach, has recently emerged and gained much 

attention regarding graph-structured data. Previous research has 

highlighted the degraded performance of the latter approach to 

predict illicit transactions using, a Bitcoin transaction graph, so-

called Elliptic data derived from Bitcoin blockchain. Motivated by 

the previous work, we seek to explore graph convolutions in a novel 

way. For this purpose, we present a novel approach that is modelled 

using the existing Graph Convolutional Network intertwined with 

linear layers. Concisely, we concatenate node embeddings obtained 

from graph convolutional layers with a single hidden layer derived 

from the linear transformation of the node feature matrix and 

followed by Multi-layer Perceptron. Our approach is evaluated 

using Elliptic data, wherein efficient accuracy is yielded. The 

proposed approach outperforms the original work of same data set. 
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1. INTRODUCTION 
Blockchain, a double-edged sword technology, is a sequence of 

blocks and known as a decentralized bank of virtually digital 

currencies such as Bitcoin, in which transactions are digitally 

signed, confirmed and processed in a peer-to-peer protocol [1]. This 

emerging technology has been seen as the most secure peer-to-peer 

system to send money since the blocks are built on top of others, 

and altering a block means altering the following blocks on the 

bottom of the former one. Thus, the hierarchy of Bitcoin network 

has attracted the attention of the research community from several 

academic fields [2, 3, 4], and received prevailing popularity due to 

its anonymity and the absence of centralized authority with a high 

degree of anonymity [5]. Hence, it has incentivized criminals to 

execute illicit activities such as scams, ransomware, money 

laundering and other processes across the network. For instance, 

the shutdown market Silk Road, an online black market platform 

for selling drugs, presents moderately a popular example in this 

context [5, 6]. On the other hand, the transparency of records in 

Bitcoin network has made intelligence companies and financial 

regulators as circumspect observers of the blockchain risks, such as 

technical developments in economic issues [5]. Indeed, the looming 

of illicit patterns in a complex network has incentivised the need 

for research and crowdsourcing to develop intelligent methods. 

These methods will assist intelligence companies and law 

enforcement regulations in enhancing the safeguarding financial 

systems and boosting Anti-Money Laundering (AML) regulations.  

Meanwhile, supervised and unsupervised learning methods have 

been widely applied in Bitcoin blockchain tasks which revealed 

promising results as in [5] and [7]. For instance, these learning 

methods aim to predict fraudulent activity by clustering or reduce 

anonymity by classification. However, these methods learn directly 

from raw data without considering any structural topology. The 

graph-structured data of Bitcoin has inherently motivated the 

exploration of graph-based approaches to perform predictions. The 

work in [8] has investigated GCNs approach, a neural network 

based graph-structured, using Elliptic data set to predict illicit 

transactions, where Ellitpic data set is a graph of Bitcoin 

transactions formed of nodes as transactions and edges as payments 

flow. To a certain degree, the latter research has applied Graph 

Convolutional Networks (GCNs) following the same models that 

existed in the literature of this approach, using a stacked variety of 

graph convolutional layers. Thus, GCN has revealed a degraded 

performance when evaluated using Elliptic data. Basically, GCN is 

a neural network that operates on the local graph neighbourhoods 

involving a learnable kernel to output the node embeddings [9]. 

Then, the used model in [8] is incapable of encoding the graph data 

onto useful node embeddings that highlight the interrelations 

between the nodes, in which the embeddings are used to perform 

predictions. This issue arises the investigation of the performance 

of GCN when combined with linear layers.  Accordingly, we 

propose a novel approach, based on the combination of GCN with 

linear layers, to efficiently predict illicit transactions in Bitcoin 

blockchain. The graph-structured data of Bitcoin transaction graph 

has ardently lead to investigate graph convolutional layers, which 

relies on the structural topology of the graph input promoted by 

node features. Unlike the previous approach, the shortfall of GCN 

is resolved with the usage of the linear layers. Specifically, the 

proposed approach is based on the concatenation of two sets of 

features; the first set is the node embeddings derived from GCN, 

and the second set is obtained from the latent representation of a 

linearly transformed hidden layer from the original features. This 

concatenation forms new latent features which afterwards is 

squashed by non-linear function and followed by Multi-Layer 

Perceptron. Thus, the proposed approach is motivated by graph-

based spectral approach and leveraged with the latent 

representation of local features that represent the Euclidean 

proximity. The proposed approach will serve as an assistant 



framework to spot illicit transactions by performing node 

classification of the Bitcoin transaction graph. In our work, we seek 

to train our approach using Elliptic data set thanks to Elliptic 

Company. Our main finding is that the combination of GCN and 

linear layer features performs better in comparison to GCN models 

used in [8]. 

This paper is organised as follows: Section 2 provides an overview 

of related work of analysing suspicious behaviour in Bitcoin 

network. The proposed method is explicitly detailed in Section 3. 

Section 3 demonstrates the used data set, the existing GCN model, 

and our proposed method. The experiment and discussion are 

provided in Section 4 and 5 respectively. A conclusion is stated in 

Section 6. 

2. OVERVIEW OF RELATED WORK 
Analysing Bitcoin network is an inevitable need for AML to 

capture suspicious behaviour or other illicit activities. Bitcoin 

transaction graph, which is a graph of nodes as transactions and 

edges as payments flow, is an appropriate way to represent and 

analyse transactions. Detecting anomalies in Bitcoin graph network 

has become burdensome due to its dense structure. For instance, it 

is a tricky task to find nodes that are conducting illicit services, 

wherein illicit patterns are hidden in the plain sight with a massive 

number of interconnected nodes as the case in BlockchainVis [10]. 

The latter research has implemented a visual analytics tool to 

analyse interesting patterns such as illicit activities in Bitcoin. 

However, manual searching for such patterns requires experienced 

spectators across the network as well as prior knowledge about the 

earlier illicit transactions. Other approaches have dealt with 

learning methods such as supervised and unsupervised learning to 

predict different nodes and entities in the Bitcoin network [5, 7]. 

Indeed, supervised learning methods have admitted to providing 

promising results in [5]. The work in [11] has underpinned anomaly 

detection task using unsupervised learning on transaction and user 

graphs of Bitcoin network. Different clustering methods have been 

implemented in the latter research such as k-means and Gaussian 

mixture models. However, there is no evidence if the predicted 

anomalies are conducting illicit activities [11]. Graph-structured 

data has gained much attention with a vastly increasing interest [12, 

13, 14, 15]. This type of data has led to the exploration of GCN, 

which has received significant interest as an emergent technique 

operating on graph networks. The original work in [8] has 

investigated graph convolutional methods to predict illicit 

transactions using Elliptic data set which is a graph of Bitcoin 

transactions. This work has solely focused on GCN approaches that 

have existed in the literature to evaluate the given data set. For 

example, one of the used models is formed of double stacking of 

graph convolutional layers that extract interrelations between nodes 

up to 2-hops in the graph network. Another model, named as Skip-

GCN, is an adapted model of the former one, which is only 

differentiated by a skip-connection between the intermediate 

embeddings of convolutional layers. Consequently, the 

performance of these models was not satisfactory. Furthermore, 

previous researches have often investigated GCN focusing on the 

node embeddings derived from graph convolutional layers without 

using the latent representations derived from linear layers. In the 

light of [8], we exploit GCNs in a novel way that is based on 

concatenating latent features derived from the output each of GCN 

and linear layers to predict illicit transactions using the graph-

structured Elliptic data. This approach encourages the reuse of 

features that relies on spectral-based approach and linear layers via 

concatenation. Primarily, the idea of features concatenation in deep 

learning was first introduced in Dense Convolutional Network 

(DenseNet) [16]. DenseNet is a neural network that introduces the 

connection of each layer to every other layer in a feedforward 

manner using concatenation. To some extent, our approach uses 

inceptively the idea of DenseNet on GCN. Rather, we exploited the 

feature representation coming from a graph convolutional layer and 

a linear layer to ensure that maximum information flows between 

these two layers. 

3. METHOD 
In this section, we introduce the necessary details of the data set 

used in our experiment. Also, we provide an overview of the 

existing GCN approach that is used to fulfil our work. 

Subsequently, we demonstrate the method used in this experiment. 

3.1 Elliptic Data Set 
Our model is evaluated using Elliptic data set which is derived from 

Bitcoin blockchain. Elliptic data, a publicly available data set, 

belongs to real Bitcoin transactions and is represented as a directed 

graph network of transactions which are nodes, whereas the 

directed edges between these transactions represent payments flow 

from the source to the destination. The data set is associated with 

two distinct labelling as licit/illicit transactions. The labelling was 

performed using heuristics based reasoning process [8]. This 

process relies on the patterns formed in the graph network, where 

the licit transactions are unwittingly de-anonymised due to the 

reuse of the same addresses that can be mapped to certain entities 

in the network, while the low number of addresses are more likely 

to be illicit [17]. 

3.1.1 Nodes and Edges 
Regarding Elliptic data, the graph network is formed of 203,769 

node transactions and 234,355 edges representing the payments 

flow between nodes. Only 2% (4,545 nodes) of the data set are 

labelled as illicit, while 21% (42,019 nodes) are labelled as licit 

transactions as tabulated in Table 1. The remaining nodes are 

accompanied by the features of unknown labels. The graph network 

of Elliptic data is viewed as a sub-graph of the whole Bitcoin 

transaction graph in the blockchain. 

Table 1: Elliptic data set description. 

Transactions Licit Illicit Unknown 

Train set 26432 3462 106371 

Test set 15587 1083 50834 

Total 42019 4545 157205 

 

3.1.2 Features 
The nodes of the used transaction graph are associated with 166 

features each, where the first 94 features represent the local features 

of the Bitcoin data- including timestamps, Bitcoin fees, and volume 

and aggregated figures such as average BTC received/spent by the 

inputs/outputs. 



3.1.3 Temporal Information 
Elliptic data set is formed of 49 time-steps, where each time-step is 

associated with a single connected graph of transactions. Each 

time-step represents a collection of transactions that appeared in 

Bitcoin blockchain within less than three hours forming a single 

conneted graph network [8]. These time-steps are commonly 

spaced with an interval of two weeks each. Moreover, there is no 

edge linking the graphs of any distinct pair of time-steps. In this 

experiment, the train/test sets are split in a temporal fashion. The 

data of the first 34 time-steps represent the train set, while the 

remaining are used as a test set simply as represented in Figure 1, 

in which the labels of the nodes represent the time-steps. 

Furthermore, the validation set belongs to the last five time-steps in 

the train set. 

 

3.2 Graph Convolutional Network (GCN) 
In this section, we describe the GCNs introduced in [9]. Please refer 

to [18] for a comprehensive review of different graph neural 

network versions. GCNs are neural networks operating on graphs 

structured data, where the node features are convolved with a kernel 

to induce new features of nodes that are considered as real-valued 

embeddings. Precisely, GCN seeks to filter the graph signal with a 

trainable kernel, in which the localised kernel approximates the 

graph spectra using Chebyshev polynomials [15]. In [9], GCN has 

shown to be an efficient algorithm for node classification which is 

motivated via localised first-order approximation of spectral graph 

convolutions. The embedding matrices in GCN are considered as 

the induced features of the nodes, and they depend on the number 

of the stacked convolutional layers. Referring to [9], a neural 

network formed by GCNs is a stack of multiple graph convolutional 

layers and each layer is followed by a point-wise non-linearity, 

where the layer-wise convolution is limited to 1-hop aggregation. 

Using one convolutional layer, GCN aggregates information from 

the immediate neighbours of the node of interest. By stacking 

convolutional layers on the top of each other, this algorithm can 

capture information up to k-hops apart from the node of interest, 

where k is the number of the stacked GCN layers. More formally, 

consider the Bitcoin transaction graph as 𝒢 = (𝒩, ℰ), where 𝒩 

and ℰ are sets of nodes (Bitcoin transactions) and edges (payments 

flow) respectively, and |V|  =  n   is the number of transactions. Let 

𝒜 be the adjacency matrix of the transaction graph network, ℋ(𝑙) 

be the node embedding matrix of the 𝑙𝑡ℎ  layer as input, and 

consider 𝒲(𝑙)  as a trainable weight matrix used to update the 

embedding matrix to ℋ(𝑙+1) as output. Then, a multi-layer GCN is 

described with the following layer-wise propagation rule: 

                                𝓗(𝒍+𝟏) = 𝝈(𝓐̂𝓗(𝒍)𝓦(𝒍)),            (1) 

where 𝒜̂ is the normalisation of 𝒜 defined by: 

𝒜̂ = 𝐷̃−
1

2𝒜̃𝐷̃−
1

2 , 𝒜̃ = 𝒜 + 𝐼,    𝐷̃ = 𝑑𝑖𝑎𝑔(∑ 𝒜̃𝑗 𝑖𝑗
) 

𝒜̃ is the adjacency matrix of the graph 𝒢 with the added self-loops. 

𝜎 denotes the activation function such as 𝑅𝑒𝐿𝑈(. ) = max (0, . ). 

ℋ(𝑙) is the activation matrix and known as node embedding matrix. 

The first embedding matrix is derived from the node features which 

is denoted by 𝒳 =  ℋ(0).  

Regarding 2-hop neighbouring aggregation of features, a 2-layer 

GCN is used and it is often expressed by: 

              𝓗(𝟐) = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝓐̂. 𝐑𝐞𝐋𝐔(𝓐̂𝓧𝓦(𝟎)). 𝓦(𝟏)),          (2) 

where 𝒲(0)  and 𝒲(1)  encompass the learnable weights using 

gradient descent, and softmax function is defined as:  

softmax(x) = 
1

𝒵
exp (𝑥𝑖), where 𝒵 =  ∑ exp (𝑥𝑖)𝑖 . 

3.3 Proposed Method 
The stated GCN inherently operates on undirected graphs, whilst 

Bitcoin graphs are directed. In other words, the stated model works 

more efficiently with symmetric normalised Laplacian. Thus, we 

refer to [19] wherein a different approach of GCN is introduced 

known as Relational-GCN (R-GCN). Briefly, R-GCN uses the 

aggregation of the transformed feature vectors of local 

neighbouring nodes through a normalised sum. Motivated by the 

normalised constant as stated in the latter reference, we have used 

a modified version of GCN which empirically works better with 

directed graphs. Thus, the modified GCN differs from the regular 

one by using the so-called random walk normalisation. In other 

words, the normalised adjacency matrix is modified as: 𝒜̂ =
𝐷̃−1𝒜̃ . In all what follows, we consider GCN as the modified 

version. The proposed method is based on GCN using graph 

convolutional layers and accompanied by linear layers. First, the 

model consists of 2-layers GCN as represented in Figure 2. The 

output of the last layer is concatenated with the output of a linear 

layer having the original node features as input. The overall output 

is then squashed with ReLU activation function, and forwarded into 

two consecutive linear layers. Subsequently, the second linear layer 

is squashed with ReLU function and the last layer is stepped with 

log_softmax function to output the log of the prediction 

probabilities of the different classes as depicted in Figure 2. This 

architecture is motivated by the GCN model, in which the 

convolutional layer is based on the local neighbourhood 

aggregations and provided with self-loops to include the features of 

the given node. Likewise, the idea here is to supposedly ensure that 

the features accompanied by nodes are reproduced in the following 

layers. The proposed method can be  

Figure 1: Abstract representation of train/test sets split of Elliptic data set. Nodes labelling represent the time-steps. Each 

connected graph has a unique time-step. 



 

viewed as leveraging intuitively two sub-models; the first model is 

a graph-based spectral approach and the second is based on linearly 

transformed feature matrix in Euclidean domain. In this method, 

the idea of concatenation encourages the reuse of the latent features 

to maintain the maximum flow of the information between the 

layers. The input of GCN is given by Bitcoin transaction graph that 

is accompanied by node feature matrix X, while the input of the 

linear layer is solely provided by X. 

4. EXPERIMENT 
To train our model, we used PyG (Pytorch Geometric Package in 

Python Programming Language) [20]. We aim to perform node 

classification of licit/illicit transactions of Elliptic data set.  In this 

experiment, the used features express the local information of the 

used data set excluding the timestamp feature, resulting in 93 

features. We empirically tuned the hyper-parameters of the neural 

network after fixing the number of epochs to 50. During each 

epoch, the model is trained in a graph-wise way; gradient descent 

is used to minimize the loss, whereas each of the 34 graphs (train 

set) is fed to the model to update its parameters. We used Adam 

optimizer to train the model with a learning rate of 0.001 and a 

weight decay of 5x10−4 . The sizes of the first and second 

convolutional layers are set to 50 and 10 respectively. Moreover, a 

dropout layer is applied to the former convolutional layer with a 

probability equals to 0.5 to avoid overfitting. Regarding the linear 

layers, the sizes of the first and second are set to 100 and 81 

respectively. Subsequently, the output is squashed with 

log_softmax(.)= 𝐿𝑜𝑔(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. )), resulting in two output values 

that correspond to the licit and illicit classes respectively. We 

trained the model using a weighted Negative Likelihood Loss, in 

which we opted for 0.7/0.3 weights for the licit and illicit classes to 

include more innocent transactions. Table 2 reveals the evaluation 

of the proposed model in terms of precision, recall, F1 score and 

accuracy of the test set. Eventually, the proposed method 

outperforms GCN’s experiment used in the original work [8] using 

the same data set. 

Table 2: Comparison of results between original work in [8] 

and the proposed method using Elliptic data set. 

Model Precision Recall F1 score Accuracy 

GCN[8] 0.812 0.512 0.628 0.961 

Skip-GCN[8] 0.812 0.623 0.628 0.961 

GCN-based 

(ours) 
0.899 0.678 0.773 0.974 

 

5. DISCUSSION 
In this experiment, the proposed method, GCN assisted with linear 

layers, has significantly achieved adequate results. Admittedly, it 

outperforms the results achieved in the previous work in [8] using 

Elliptic data set. The reuse of the latent features with GCN has 

efficiently enhanced the predictions, rather than using only multi-

convolutional layers. Referring to what preceded, GCN based 

spectral approach can be viewed as an accumulation of the 

neighbouring node features through a normalised sum. The 

aggregated nodes might not contribute fairly to the node of interest 

through the weights associated with the normalised Laplacian. For 

this reason, the output signal given by GCN might be distorted or 

modified. Another reason is that GCN spectral approach is an 

appropriate approach for undirected graphs, albeit we used the 

modified version. Thus, the proposed method maintains the latent 

features of the input matrix at the output of the convolutional layers 

where the output of the latter layers is supposedly subjected to 

unfair weights regarding the normalisation factor. Besides, we have 

checked the performance of the proposed model without using 

GCN layers (only linear layers) and under the same conditions, in 

order to highlight the competence of GCN in this context. Hence, 

the proposed model, with graph convolutional layers, surpassed a 

similar model without GCN as depicted in Figure 3. Consequently, 

this comparison insures the importance of utilising a concatenation 

between GCN and the linear layer, in which a better performance 

is achieved. From the perspective of the linear layers, the features 

formed by GCN has provided useful information to the following 

layers. The time-stamp is excluded in our experiment because it is 

not very informative which represents the time-step when the 

transactions of every graph network were extracted. The real 

timestamps associated with the transactions might be more useful 

for learning. For instance, criminals might appear at a certain time, 

Figure 2: Architecture of the proposed method. X represents the node feature matrix accompanied by a graph 

network derived from Bitcoin. The output represents the predictions of licit/illicit transactions. 

Figure 3: Comparison of two models. “With GCN” indicates 

the proposed method. “Without GCN” denotes the proposed 

method after removing GCN layers. Training/Validation 

accuracy are depicted on the left/right figure. 



in which a significant pattern is processed by Bitcoin blockchain. 

Henceforth, the real-time associated with transactions might be a 

good idea as an additional feature for GCN input. This idea will be 

further investigated in future work. 

6. CONCLUSION 
We present a novel approach based on GCNs to predict illicit 

transactions in the Bitcoin transaction graph. The proposed method 

highlights the competence of GCN when combined with Multi-

Layer Perceptron that is consolidating graph-based spectral 

approach with a feedforward neural network. The experimental 

evaluations demonstrate that the concatenation of features derived 

from GCN and the latent representation of a linear layer boosts the 

performance of the model, rather than merely applying graph 

convolutions. Our proposed method outperforms graph 

convolutional methods used in the original paper of the same data.  
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