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Abstract  15 

The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become 16 

increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen 17 

species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as 18 

a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have 19 

suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus 20 

Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell 21 

death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, 22 

esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40-4000 nM) 23 

concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of 24 

H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of 25 

a preliminary study. Results showed a general effect of dose and time dependent relationship in all three Microcystis 26 

strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, 27 

decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 µM 28 

H2O2 treatment), percentage of dead cells in microcystin-producing strains were significantly higher (p<0.05) from 29 

non-microcystin producing strains at 72h. These findings further cement our understanding of the influence of H2O2 30 

on different strains of Microcystis and its impact on membrane integrity and metabolic physiology; important to 31 

future toxic bloom control programmes. 32 

Keywords: algae bloom; microcystin; hydrogen peroxide; lethal; growth; metabolic activity; cell membrane 33 

integrity, flow cytometry 34 
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Introduction 36 

The toxic cyanobacterial secondary metabolite microcystin, produced by Microcystis sp. and other 37 

cyanobacteria represents a threat to drinking water and the use of recreational lakes worldwide (Carmichael &Boyer 38 

2016, Huisman et al. 2018, O’neil et al. 2012). H2O2 application is an effective anti-cyanobacterial control method 39 

(Matthijs et al. 2012, Wang et al. 2018). H2O2 has a short life span of 4 h to 20 h in water bodies (Cooper et al. 40 

1994) and is selectively toxic towards cyanobacteria compared to other phytoplankton taxa and aquatic invertebrates 41 

(Jančula et al. 2008). Several studies have reported H2O2 concentrations with a lethal effect on Microcystis cells 42 

(Drábková et al. 2007a, Dziallas &Grossart 2011, Matthijs et al. 2012) at concentrations ranging from 118 μM 43 

(Mikula et al. 2012) to 325 μM (Ding et al. 2012) with the potency of the H2O2 effect varying with light intensity 44 

(e.g. (Drábková et al. 2007a)). There is limited information on the variability of H2O2 sensitivity across Microcystis 45 

strains, and how this is linked with culture history. Recently, there has been great interest in the role of intracellular 46 

microcystin concentration in modulating sensitivity to oxidative stress measured by H2O2 degradation and 47 

transcriptome analysis (Schuurmans et al. 2018). Therefore, further testing on the Microcystis cellular response to 48 

H2O2 were conducted in this study using metabolic probes. 49 

Production of reactive oxygen species (ROS) within photosynthetic cells is an ecologically relevant and natural 50 

phenomenon. Types of reactive oxygen species include superoxide anion (O2
·-
), reactive hydroxyl radicals (

·
OH) as 51 

well as H2O2. The concentration of environmental H2O2 in lakes range from 0.03 to 1.04 μM (Cooper &Lean 1989, 52 

Häkkinen et al. 2004). These concentrations elevate when UV irradiation photo-catalyzes dissolved organic carbon 53 

in both surface and groundwater (Cooper &Zika 1983); releasing superoxide (O2
·-
) and H2O2 (Paerl &Otten 2013). 54 

ROS stress is exacerbated when exogenous H2O2 generation leads to a mismatch between oxidant concentration and 55 

cellular antioxidant capacity (Bouchard &Purdie 2011). Cellular damage linked to ROS stress in cyanobacteria 56 

includes suppression of de novo protein synthesis (Nishiyama et al. 2004), thylakoid membrane damage (Drábková 57 

et al. 2007b), inhibition of transcription of photosynthesis-related genes (i.e. psaB, psbD1, rbcL) (Qian et al. 2010) 58 

and finally DNA strand breakage (He &Häder 2002). In addition to these impacts, it has been observed that H2O2 59 

treatment results in a higher induction of cellular lipid peroxidation in cyanobacteria compared to green microalgae 60 

(Leunert et al. 2014).  61 
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Microcystin is produced non-ribosomally via a multifunctional enzyme complex (peptide synthetase and 62 

polyketide synthetase modules) as coded by the mcy gene cluster (Yamaguchi et al. 2020). Interestingly, there are 63 

two opposing theories. The first theory suggesting that microcystin (mcy)-producing cells have a greater tolerance 64 

compared to non-mcy producing strains when subjected to temperature and H2O2 stress (Dziallas &Grossart 2011, 65 

Zilliges et al. 2011). This selective advantage could be exacerbated by high light illumination (Kaebernick et al. 66 

2000), dissolved organic carbon (Paerl &Otten 2013) and oxidative stress (Phelan &Downing 2011). The second 67 

theory showed that this was not case where mcy-producing strain did not recover but non mcy-producing strain 68 

recovered post H2O2 treatment (Schuurmans et al. 2018). In this work, the relative ability of mcy-producing 69 

Microcystis cells (PCC7806; CCAP 1450/17) and non-mcy producing cells (PCC 7806-mcyB) to cope with H2O2 70 

stress was evaluated. The objective of this study was to compare the effects of sublethal (50 µM) and lethal (275 µM 71 

and 500 µM) concentrations of H2O2 at constant light levels of 110 µmol photons m
-2 

s
-1 

on Microcystis physiology. 72 

Measures of H2O2 effects included intracellular reactive oxygen species accumulation, growth rates, chlorophyll a 73 

content, percentage cells showing esterase activity and dead cells. 74 

Materials and methods 75 

Microcystis aeruginosa strains and culture conditions 76 

Three Microcystis strains: PCC 7806 and PCC7806-mcyB (location and year of isolation: Braakman water 77 

reservoir, The Netherlands; 1972) and CCAP 1450/17 (Ivy Lake, UK; 2014) were pre-cultivated in an AlgaeTron 78 

AG230 incubator (PSI, Czech Republic). The mcyB gene-deficient, PCC7806-mcyB strain was produced by 79 

insertional mutagenesis of a chloramphenicol resistance gene cassette and maintained at 5 μg/mL chloramphenicol 80 

(Dittmann et al. 1997). Inoculation density was 2×10
6 

cells/mL in 250 mL of BG11 (Stanier et al. 1971) in 500 mL 81 

Erlenmeyer flasks at 32.9±1.6 °C and light levels of 110 µmol photons m
-2 

s
-1 

(Biospherical Instrument Inc., PAR 82 

Scalar Irradiance sensor, San Diego, CA, United States) at a 12:12 L:D (light: dark) cycle for 5 days to obtain cells 83 

at mid-exponential phase.  84 

Toxin characterization 85 

Cultures were sampled bi-weekly in early to late exponential growth phase, three aliquots of 250 µL were 86 

taken and filtered using 25 mm 1.2 µm filters (Whatman, GF/C). Filter papers were preserved at -80 °C. On 87 

analysis, filters were allowed to thaw to room temperature and immersed in 10 mL of 80% methanol and 20% ultra-88 
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pure H2O (80/20 v/v), shaken on a high-speed rotary shaker for 5 mins and left for 1 h at ambient temperature. 89 

Measurements of microcystins were divided by cell counts to calculate the mass of toxin per cell in femtograms 90 

(fg/cell). Toxin analysis was carried out on stock cultures before experiments (but not during H2O2 exposures) by 91 

ultra-high performance liquid chromatography (UHPLC) (Acquity, Waters, Manchester, UK) coupled to a tandem 92 

quadruple mass spectrometer (Xevo TQ, Waters, Manchester, UK). All instrument solvents and chemicals were of 93 

LC-MS-grade (Fisher Optima, ThermoFisher, Manchester, UK). Reference toxins used for the detection method 94 

included the microcystin analogues MC-RR, MC-LA, MC-LY, MC-LF, MC-LW, MC-YR, MC-WR, MC-HilR, 95 

MC-HtyR, MC-LR & Asp3-MC-LR (Enzo Life Sciences, Exeter, UK) and [Dha
7
]-MC-LR and matrix reference 96 

material of blue-green algae (RM-BGA, Lot 201301) containing a range of microcystins (Institute of Biotoxin 97 

Metrology, National Research Council Canada). Analysis of microcystins was conducted following the method by 98 

Turner et al. (2018). Microcystins were chromatographically separated using a 1.7 µm, 2.1x50 mm Waters Acquity 99 

BEH C18 column, held at +60 °C, with mobile phase of H2O + 0.025% formic acid (A) and acetonitrile + 0.025% 100 

formic acid (B). The UHPLC gradient schedule was: 2% B initial conditions rising to 25% B at 0.5 min holding 101 

until 1.5 mins, rising to 40% B at 3.0 mins, increasing further to 50% B at 4 mins, a quick rise to 95% B at 4.1 mins 102 

and held until 4.5 mins until dropping back to 2% B at 5 mins. The total run time was 5.5 mins.  103 

The Waters Xevo TQ tune parameters were as follows: 150 
o
C source temperature, 600 

o
C desolvation 104 

temperature, 600 L/h desolvation gas flow, 0.15 mL/min collision gas flow. Capillary voltage was held at 1.0 kV. 105 

Selected Reaction Monitoring (SRM) transitions were built into the MS/MS method using positive mode acquisition 106 

for each toxin. Parent and daughter ions, as well as cone and collision voltages were optimized following 107 

experiments infusing pure standards into the mass spectrometer in the mobile phase. Most microcystins exhibited 108 

unique SRM transitions and chromatographic retention times, resulting in good separation over the 5.5 mins run 109 

time. The exception was [Dha
7
]-MC-LR and Asp3-MC-LR, which shared the same transitions and could not be 110 

completely resolved. These two microcystins are therefore reported together. This method has been previously 111 

validated for the quantification of microcystins in water and algae and is accredited to ISO17025 standard (Turner et 112 

al. 2018). 113 
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Selection of H2O2 treatments  114 

The determination of suitable H2O2 dosages was investigated in preliminary experiments. Concentrations of 115 

H2O2 (40 nM, 400 nM and 4000 nM) caused no, or only a very small, difference to the number of dead cells within 116 

the population as assessed by SYTOX-green staining (Table 1). Subsequently, 50 μM, 275 μM and 500 μM 117 

concentrations were selected to encompass a range of sub-lethal and lethal population doses to the three 118 

investigated Microcystis strains. 119 

H2O2 exposure: physiological assessment 120 

After pre-cultivation, triplicate cultures were diluted with fresh BG11 media to obtain 100 mL of experimental 121 

cell suspensions at an initial cell density of 1×10
6 

cells/mL
 
in 250 mL Erlenmeyer flasks. The strains, along with no 122 

H2O2 controls, were incubated for three days with a daily addition of H2O2 (50 μM, 275 μM, 500 μM) during the 123 

middle of the light phase. Cultures were gently agitated once per day. Cells were left to incubate for 60 mins after 124 

the addition of H2O2 (30% w/w, Sigma-Aldrich, cat. no. H1009, St. Louis, USA). After that, samples from each 125 

Microcystis culture were analyzed on a benchtop Accuri C6 flow cytometer (BD Biosciences, San Jose, California) 126 

in order to examine cell esterase activity (CM-FDA staining), membrane integrity (SYTOX
®
 Green staining) and 127 

intracellular reactive oxygen species content (CM-H2DCFDA staining). The influence of different H2O2 128 

concentrations on Microcystis cell membrane and physiology was monitored every 24 h for 3 days. The water 129 

samples were collected 3 h after initial light cycle started. 130 

Cell counts with BD accuri C6 flow cytometry and chlorophyll a extractions 131 

Total Microcystis cells were counted every 24 h for 3 days. The effect of H2O2 on cell growth was evaluated by 132 

measuring forward scattering properties (FSC) and phycocyanin (FL4: 675±12.5 nm; far red) florescence using flow 133 

cytometry. Cytometer run settings were 2 mins, 10 μL core size, 14 μL/min flow rate and threshold set at 10,000 on 134 

FSC signal following a previous method (Hartnell et al. 2016). Histograms of cell populations were plotted (counts 135 

vs. FSC) and number of cells calculated. Each H2O2 treatment was run in triplicate (n=3). M. aeruginosa cells were 136 

distinguished by gating the highest histogram peak found in the far red channel representing cells with non-degraded 137 

phycocyanin fluorescence (FL4-H: excitation 640 nm: emission 675±12.5 nm) into a FSC-H histogram plot 138 

representing cell size. The FSC-H peak was then gated in a density plot of both FSC-H and SSC-H to determine the 139 

final count. Besides that, the chlorophyll a content of Microcystis cells was measured on the first and last day of the 140 
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experiment. This was done by extracting chl a in 100% methanol for 4 h and absorbance readings taken using a UV-141 

VIS spectrophotometer at 665.2 nm, 652.4 nm and 470 nm (Wellburn 1994). Pigment results were expressed in μg 142 

chl a/mL.  143 

CM-H2DCFDA (ROS) labelling  144 

Intracellular reactive oxygen species (ROS) in Microcystis cells were detected via staining with chloromethyl 145 

2’,7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA; Life Technologies, cat. no, C6827, Oregon, USA). 146 

CM-H2DCFDA is hydrolysed by nonspecific esterases which releases 2’, 7’-dichlorodihydrofluorescein 147 

(CM-H2DCF). This is further oxidized by intracellular ROS (e.g. H2O2) to CM-DCF (which emits green 148 

fluorescence) (Eruslanov &Kusmartsev 2010). A modified cell staining protocol was followed (Peperzak 149 

&Brussaard 2011). A stock solution was prepared by adding 100 μL of ethanol to a tube containing 50 μg CM-150 

H2DCFDA to yield the working stock of 0.86 μM. Following this, 5.2 μL from the working stock was added to 151 

180 μL of sample in the flow cytometric tube to yield a final concentration of 20 nM which was left to incubate for 152 

60 mins. The green probe fluorescence (FL1) was measured at 533±15 nm. 153 

CMFDA (esterase) labelling 154 

Esterase activity of Microcystis sp. was assessed by flow cytometry using fluorescein diacetate (CM-FDA) 155 

(Invitrogen, cat. no. S925, Life Technologies, Grand Island, NY, USA) with some modification from a previous 156 

method (Mikula et al. 2012). The non-fluorescent FDA substrate is rapidly taken up by cells, where it is hydrolysed 157 

intracellularly through cleavage by cellular esterase to give a green-fluorescent substance fluorescein. This 158 

fluorescence reflects general hydrolytic enzyme activity which is generally used as a proxy for cell viability (Geary 159 

et al. 1998). Before measurement, a stock solution was diluted to yield a 100 µM working solution. Five µL of 160 

working solution was added to flow cytometry tube containing 1 mL of sample to yield a final concentration of 161 

0.5 µM and incubated for 30 mins. Stained cells were analysed with flow cytometry and Microcystis cells were 162 

distinguished by gating on dot plots of forward scatter (FSC, indicating cell size). 163 

SYTOX Green (cell membrane integrity) labelling 164 

Dead Microcystis cells were identified and enumerated by flow cytometry using SYTOX
®
 Green following a 165 

previously published method (Chapman et al. 2016). SYTOX
®
 Green is a membrane-impermeable fluorescent dye. 166 

It is only when cell membrane integrity has been lost (during cell death) that SYTOX green crosses the cell 167 

membrane and binds to nucleic acids. A stock solution of 5 mM SYTOX Green in DMSO (Invitrogen, catalogue 168 
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number S7020, Life Technologies, Grand Island, NY, USA) was diluted to a working solution of 100 μM with 169 

ultrapure filtered H2O. For measurement, 5 μL of working solution was added to 1 mL of sample to obtain a final 170 

SYTOX
®
 concentration of 0.5 μM. Samples were left to incubate for 30 mins in the dark at room temperature. The 171 

green probe fluorescence (FL1) was measured at 533±15 nm. Cytographs (FL4 vs FL1) were plotted to show 172 

percentage of SYTOX+ cells.  173 

Statistical analysis 174 

Data were processed with SPSS software Version 23 (SPSS Inc, Chicago, USA). After normality testing 175 

(p>0.05), a factorial ANOVA was used to test for differences between treatments. To observe differences within 176 

treatments at p<0.05, a one-way ANOVA and Tukey HSD post hoc test was applied. Pearson correlation was 177 

employed to observe significant relationships (p<0.05) between the investigated parameters. Values were given as 178 

means ± standard deviation (SD) of three replicates. Values were considered statistically significant when p<0.05. 179 

Results  180 

Toxin content of Microcystis strains 181 

Microcystis strains PCC 7806 and CCAP 1450/17 both contained MC-LR and [Dha
7
]-MC-LR/Asp3-182 

MC-LR, ranging in total microcystins from 21.95 to 31.90 fg/cell for PCC 7806 and 22.70 to 41.50 fg/cell for 183 

CCAP 1450/17. Strain PCC 7806-mcyB was negative for all microcystins tested (Table 2).  184 

Effects of H2O2 on cell growth and chlorophyll a concentration  185 

In untreated (no H2O2) PCC 7806-mcyB cultures mean cell number increased from 1.63×10
6
 to 186 

8.83×10
6
 cells/mL over the experimental period with a growth rate of 0.57 µ/d. Meanwhile, mean culture 187 

chlorophyll a content significantly increased from 0.17 to 0.97 μg chl a/mL. Untreated PCC 7806 cultures increased 188 

to a mean of 6.46×10
6
 cells/mL and 0.89 μg/mL with a growth rate of 0.32 µ/d. Untreated CCAP 1450/17 increased 189 

to a mean of 3.59×10
6
 cells/mL, 0.59 μg chl a/mL with a growth rate of 0.28 µ/d (Figure 1).  190 

Moreover at 50 µM H2O2 treatment, the non-mcy producing strain (PCC 7806-mcyB) demonstrated an 191 

increase in number of cells from 24h to 72h by 3.46 ×10
6
 cells. This was followed by the mcy-producing strain 192 

PCC7806 with a smaller increase of 1.15 ×10
6
  cells and 1.50 ×10

5
  for CCAP1450/17 strain. Parallel to cell 193 

numbers, post 50 µM H2O2 treatment, chlorophyll a content showed a similar pattern where PCC 7806-mcyB strain 194 
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increased to 0.80±0.04 μg/mL at 72h and followed by mcy-producing PCC7806 strain (0.76±0.03 μg/mL). The 195 

CCAP1450/17 (0.54±0.01 μg/mL) strain showed the least increase in chlorophyll a content. (Figure 1). 196 

Effects of H2O2 on intracellular reactive oxygen species (ROS labelling) 197 

Increasing lethal doses of H2O2 treatment (275 μM, 500 μM) led to a gradual production of intracellular 198 

reactive oxygen species (% ROS) (Figure 2). This contrasts with the decrease of % ROS with time in untreated cells. 199 

When compared to PCC 7806-mcyB or PCC 7806, CCAP 1450/17 started responding to H2O2 treatment at 50 μM as 200 

reflected by the upward trend of % ROS (36.12% 46.67% 57.45% 63.13%); at a time dependent manner. 201 

Instead, the increase in % ROS in PCC 7806-mcyB and PCC 7806 was only observed in treatment at higher doses of 202 

275 μM and 500 μM; when compared to the respective starting time.  203 

Effects of H2O2 on esterase activity (CMFDA labelling) 204 

A general trend was observed where increasing H2O2 treatment in cells resulted in decreasing esterase 205 

activity. Furthermore at 50 µm H2O2 treatment, the non-mcy producing strain (PCC7806-mcyB) demonstrated an 206 

increase in esterase activity from 24h to 72h by 38.36%. This was followed by PCC7806 with a smaller increase of 207 

17.59% (Figure 3). Unlike the other two strains, the CCAP1450/17 mcy-producing strain demonstrated the opposite 208 

with a decrease in esterase activity from 23.60±14.81% (24h) to 10.32±5.25% (72h). The pH of each Microcystis 209 

culture during the 3-day experimental study was within the dye’s physiological range. 210 

Cell membrane integrity (SYTOX-Green labelling) 211 

Untreated cells in PCC 7806-mcyB (22.47%), CCAP 1450/17 (29.72%) and PCC 7806 (25.83%) had 212 

lowest population of dead cells by the end of the experiment compared to respective treated cells (Figure 4). For 213 

example, the dead cell population of treated cells at lethal doses (275 μM and 500 μM) resulted in a peak (82.56%-214 

86.32%) at 24 h and plateaued (71.91%-82.14%). This pattern was similar in all treated strains. 215 

In relation to previous discussion of sub-lethal 50 μM treatment, percentage cells stained with Sytox green 216 

in CCAP1450/17 strain were increasing in a time-dependent manner. This was observed from 48
th

 to 72
nd

 hour 217 

where percentage dead cells in CCAP 1450/17 continued to increase to 56.17±0.11%. This was significantly higher 218 

(p<0.05) compared to PCC7806 (48.05±6.1%) and PCC7806-mcy (21.38±1.63%).  219 
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Discussion 220 

Toxin content of Microcystis strains 221 

Recorded total microcystins cellular quota for PCC7806 strain in this study differed slightly from those of  222 

previous studies reporting a maximum of 3 fg/cell at low light treatments (Phelan &Downing 2011) or 40 fg/cell at 223 

13±3 µmoles photons m
-2

 s
-1

 (Schuurmans et al. 2018). They also differed slightly from Wiedner et al. (2003) who 224 

reported a range of 40 to 80 fg/cell across their light treatments (10-403 µmol photons m
-2 

s
-1

). These differences are 225 

likely to be attributed to the methods of light intensities, cell counting and toxin quantification, for example Phelan 226 

& Downing (2011) used optical density as a measure of cell abundance and microcystins were quantified by ELISA. 227 

Whereas, Wiedner et al. (2003) used a CASY 1 TTC cell analyser system to measure cell density and microcystins 228 

were quantified by High-Performance Liquid Chromatography coupled to Time-Of-Fight Mass Spectrometry, with 229 

neither approach using ISO-accredited methods. The microcystin analysis conducted here was fully validated and 230 

accredited to ISO17025 quality standard, and whilst not used throughout the experimental exposures, did indicate 231 

clear differences in microcystin content between strains at the outset of the experiments. 232 

Effects of H2O2 on cell growth and chlorophyll a concentration  233 

Overall, our data were supported by a previous study where high doses of H2O2 (250 uM and 325 uM) in 234 

Microcystis strain FACHB-905 resulted in a significant decrease in cell growth (Ding et al. 2012; Mikula et al. 235 

2012). Despite the general trend in the effects of H2O2, some differences were evident in the species. By 72h, the 236 

mcy-producing CCAP1450/17 experienced the biggest drop in cell number at 50 uM H2O2 treatment to reach 237 

1.23 ×10
6
 ±1.50 ×10

5
 cells. Similarly, PCC7806 cell number dropped to 3.62 ×10

6
 ±2.49 ×10

5
 cells whereas the 238 

non-mcy producing strain (PCC7806-mcyB) experienced the lowest drop in cell numbers after 50 uM H2O2 239 

treatment to reach 5.35×10
6
±3.46×10

6
 cells. This shows that at sub-lethal H2O2 concentration, mcy-producing strains 240 

were more negatively affected than the non-mcy producing strain.  241 

Effects of H2O2 on intracellular reactive oxygen species (ROS) 242 

The data from this study show a direct relationship between H2O2 treatment and ROS accumulation in 243 

Microcystis cells. The 2’7’-dichlorofluorescein probe is a commonly used to effectively quantify ROS levels (LeBel 244 

et al. 1992). It is also sensitive and can be detected at Pico mole levels (Cathcart et al. 1983). To date, there are still 245 

limited studies on the quantification of intracellular ROS in Microcystis strains; except for a study by Bouchard & 246 

Purdie (2011) who employed the use of another fluorescence dihydrorhodamine (DHR) probe. 247 
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Peroxiredoxins are redox-sensitive proteins with thiol groups of cysteines and play an important role as 248 

antioxidant enzymes to maintain oxidative balance, especially in cyanobacteria (Allahverdiyeva et al. 2015, Asada 249 

1999, Helman et al. 2005). The presence of mcy gene interferes with peroxiredoxins by binding to the thiol group 250 

thereby blocking H2O2 degradation (Schuurmans et al. 2018). During excess exogenous H2O2 treatment, the reactive 251 

oxygen species crosses the Microcystis cell membrane via diffusion and aquaporin homologue channels (Bienert et 252 

al. 2006). The sudden overload of H2O2 overwhelms the antioxidant balance of the cell, as reflected by the rise in 253 

intracellular reactive oxygen species in the ROS assay. Consequently, significant losses of chlorophyll a content was 254 

observed in the three investigated strains. It seems that with increasing percentage dead cells in cultures, degradation 255 

of H2O2 by these antioxidant enzymes could not keep up with daily dosage of exogenous H2O2, causing an 256 

oxidative-stressed environment in the cells. This may have led to the disintegration of thylakoids as reflected by 257 

decreased chlorophyll a content in the experiment. Past results reported that oxidative stress result in breakdown of 258 

light harvesting complexes and inhibition of pigment synthesis (Latifi et al. 2009, Qian et al. 2010). Similarly, this 259 

study observed a significant decline in chlorophyll a content with increasing dosage and incubation time. 260 

The findings of this study do not support the hypothesis of Dziallas & Grossart (2011) that the presence of 261 

microcystin in cells allows a greater resilience of chlorophyll a against H2O2 degradation during oxidative stress. 262 

However, an important methodological distinction between these two studies is H2O2 concentration. Dziallas & 263 

Grossart (2011) opted for 25 nM, 50 nM and 100 nM whilst this study selected higher H2O2 treatments of 50 µM, 264 

275 µM and 500 µM. Another contributing factor to the differences between these two studies could be related to 265 

the manner of chlorophyll quantification. Both studies used 100% methanol to extract chlorophyll a and a 266 

conventional spectrophotometric method. This may have been insufficiently sensitive as a quantification tool to 267 

detect very small changes in chlorophyll a. In order to more accurately quantify the effects of ROS degradation of 268 

photopigments in Microcystis, and the interaction of this process with viability, high performance liquid 269 

chromatography (HPLC) would be a better analytical approach. Overall, this study shows the sub-lethal 50 µm H2O2 270 

treatment influenced all Microcystis strains with the mcy-producing strains (PCC7806 and CCAP1450/17) showing 271 

a higher extent of response than the non-mcy producing strain (PCC7806-mcyB). This was reflected by 272 

CCAP1450/17 having the smallest increase in cell number, chl a content, esterase activity and the highest dead cell 273 

population. This was followed by the PCC7806 strain having a moderate increase in cell number, chl a content, 274 

esterase activity and the second highest dead cell population. Finally, the non-mcy producing strain (PCC7806-275 
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mcyB) at 50 µm H2O2 treatment responded with an increase in cell number, chl a content, esterase actiivty and the 276 

least dead cell population of 21.38±1.63% at 72h.  277 

Effects of H2O2 on esterase activity 278 

It was observed in this study that H2O2 influenced both microcystin and non-microcystin producing strains. 279 

In fact, the mcy-producing strains (CCAP1450/17 and PCC7806) experienced significant changes (p<0.05) in their 280 

final esterase activity at 72h as compared to the non-mcy producing strain (PCC7806-mcyB) at 50 µm H2O2 281 

treatment. At the same time, an increase in percentage dead cells was observed. This can largely be due to cell lysis 282 

where loss in membrane integrity and subsequent leakage from cell result in lower fluorescent signals. During cell 283 

lysis, intracellular enzymes like caspase, peroxidase and hydrolase are released from dead cell compartments; 284 

triggered by lytic enzyme, beta-cyclocitral (Arii et al. 2015). This hypothesis was supported by the increasing dead 285 

cell population peaking at 86.32% in PCC 7806 and 83.49% in CCAP 1450/17 at 24 h.  286 

The use of CMFDA in M. aeruginosa is common to explain metabolic activity in the cells (Regel et al. 287 

2002). Esterases are positively correlated with cell growth because the rate of FDA conversion to fluorescein is 288 

correlated with photosynthesis. It was further supported that metabolic activity and induced chlorophyll a 289 

fluorescence are one of the most sensitive biomarkers of exposure of cyanobacteria to H2O2 (Mikula et al. 2012).  290 

Cell membrane integrity 291 

Besides the use of CMFDA, SYTOX
®
 green is an unsymmetrical cyanine dye with 4 positive charges and 292 

has allowed scientists to rather accurately distinguish between dead and live populations (Roth et al. 1997). Live 293 

eukaryotic and prokaryotic cells completely exclude the dye from the cell. However, if cell membrane integrity was 294 

compromised, the dye could enter and stain its nucleic acid. This study is one of the first to report membrane 295 

integrity changes after H2O2 treatments in three Microcystis strains.  296 

 As pointed out in previous sections, strain CCAP 1450/17 reacted differently at sub lethal dose of 50 μM 297 

H2O2 treatment compared to the other two strains. This strain experienced a gradual increase of intracellular reactive 298 

oxygen species, followed by decreased chlorophyll a content, low esterase activity and ultimately accumulation of 299 

dead cells, with time. These findings show that mcy-producing strain CCAP 1450/17 was sensitive to lower amounts 300 

of H2O2 especially at 50 μM H2O2 and 72h treatment. In comparison to PCC 7806 strains which have been 301 

maintained in an artificial environment (i.e. laboratory cultures) for at least 4 decades (date of strain 302 

isolation: 1
st
 January 1972), CCAP 1450/17 was only recently isolated (year of strain isolation: 2014). It is important 303 
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to note that there is a risk that long term maintenance of microalgae in liquid cultures and increased passage 304 

numbers may introduce genetic drift and changes to cell characteristics in a similar way as animal cell lines. For 305 

example animal cells at high passage numbers experience changes in morphology, stimuli response and gene 306 

expression, as compared to lower passage numbers (Briske-Anderson et al. 1997). Nevertheless, all strains 307 

demonstrated a general trend that H2O2 treatment led to a significant increase in intracellular oxidative stress, 308 

decreased chlorophyll a content, decreased cell abundance (r=0.706, p<0.05), decreased esterase activity (r=0.852; 309 

p<0.05) and increased number of dead cells (r=0.849; p<0.05).  310 

Finally, factorial ANOVA statistical analysis enabled us to check if dependent variables (i.e. cell number, 311 

esterase activity, membrane integrity) showed consistent differences between factor levels (i.e. dose, time, strain 312 

type). Firstly, the main effect H2O2 concentration (i.e. 0 μM and 50 μM) were significantly different (p<0.05) from 313 

275 μM and 500 μM in each dependent variable investigated. Secondly, the main effect duration of dosage at 72 h 314 

were significantly different (p<0.05) from the rest of the time of H2O2 incubation. From this, results illustrate H2O2 315 

treatment significantly influences Microcystis population mortality in a dose and time dependent manner. Thirdly, 316 

strain type also has a significant effect (p<0.05) on investigated dependent variables. Finally, statistical values 317 

showed there is an interaction effect (p<0.05) between factors (dose*time*strain; dose*time; dose*strain; 318 

time*strain).  319 

This study uses three Microcystis strains and a combination of modern techniques to provide useful data to 320 

one of the most important questions in cyanobacteria ecology currently: whether the predicted increase in 321 

cyanobacteria will consist of toxigenic vs non-toxigenic cells due to the way these different types of cells respond to 322 

increasing H2O2 treatment. This is important as the usage rate of H2O2 to control algae blooms is a very important 323 

question for water managers. Overall, the findings in this study support Schuurmans et al. (2018) but does not 324 

support a previous theory where presence of mcy-gene in strains could confer protection against oxidative stress. 325 

Findings from this study showed that H2O2 treatment of more than 275 µM were lethal regardless if it was a mcy or 326 

non mcy producing strain. In addition, the sub lethal 50 µM H2O2 treatment could selectively control mcy-producing 327 

strains resulting in lesser increase in cell number, chl a content, esterase activity and the most percentage dead cell 328 

population as observed in the CCAP1450/17 strains. Conversely at the same 50 µM H2O2 treatment, the 329 

non mcy-producing strain (PCC7806-mcyB) evidenced an increase in cell number, chl a content, esterase activity 330 

and the least dead cell population of 21.38±1.63% at 72h.  331 
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Conclusions 332 

 This study shows a dose and time dependent relationship of H2O2 treatment in all investigated strains, where 333 

general effects of H2O2 treatment were confirmed as observed in the significant increase in intracellular reactive 334 

oxygen species, decreased chlorophyll a content, decreased number of cells (r=0.706, p<0.05), decreased esterase 335 

activity (r=0.852; p<0.05) and an increased number of dead cells (r=0.849; p<0.05). Our findings did not support the 336 

idea that microcystin-producing cells (PCC7806 or CCAP1450/17) are better at coping with H2O2 stress than 337 

non-toxin producing strain, PCC 7806-mcyB. More so, the mcy-producing CCAP 1450/17 strain was found to be 338 

sensitive to lower amounts of H2O2 treatment compared to the two PCC 7806 strains; corroborating Schuurmans et 339 

al. (2018)’s findings that presence of mcy gene do not confer protection to cells. This study demonstrates the overall 340 

influence of H2O2 treatment on Microcystis membrane integrity, metabolic physiology, and intracellular reactive 341 

oxygen species accumulation; and highlight the factors that can contribute to differences between strains.  342 
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Fig. 1 Cell density and Chlorophyll a levels of three Microcystis sp. treated at an increasing H2O2 concentration. 479 

Values are given as the means±standard deviation (SD) of three replicates 480 

 481 

 482 
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 483 

 484 
 485 

Fig. 2 CM-H2DCFDA (ROS) positive cells (%) produced in three Microcystis strains in untreated (A) and 486 

H2O2 treated (B): 50 μM; (C): 275 μM; (D): 500 μM) cells; over time. Values are given as the means±standard 487 

deviation (SD) of three replicates 488 

489 
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Table 1 Influence of sub-lethal H2O2 (40 nM-4000 nM) concentration on percentage dead cells in Microcystis strains 490 

Strains H2O2 dose Percentage dead cells (%) 

Incubation 0 nM 40 nM 400 nM 4000 nM 

PCC 7806-mcyB 24 h 50.06±0.18
a
 50.14

a
 49.94

a
 50.30

a
 

48 h 43.32±0.20
a
 42.82

a
 42.52

a
 41.98

b
 

72 h 38.02±0.25
a
 35.92

b
 35.18

b
 33.39

b
 

CCAP 1450/17  24 h 25.92±0.66
a
 25.32

a
 26.84

b
 26.53

b
 

48 h 23.74±0.02
a
 23.61b 24.02

b
 23.39

b
 

72 h 16.22±0.50
a
 18.06

b
 17.85

b
 16.61

a
 

PCC 7806 24 h 12.92±0.01
a
 12.67

b
 12.52

b
 12.92

a
 

48 h 19.36±0.01
a
 17.76

b
 21.02

b
 17.42

b
 

72 h 14.43±0.02
a
 12.92

b
 14.64

b
 14.42

a
 

a-b
: Different letters within the same row indicate significant difference relative to respective control (p<0.05). 491 

 492 

Table 2 Total microcystins and variants cellular quotas in the Microcystis strains analyzed by UHPLC and MS/MS 493 

Strains MC-LR 

(fg/cell) 

[Dha
7
]-MC-LR 

Asp3-MC-LR (fg/cell) 

Total microcystins 

(fg/cell) 

Range Mean Range Mean Range Mean 

PCC 7806 14.85 - 23.00 18.60 5.20 - 10.80 8.75 21.95 - 31.90 27.40 

CCAP 1450/17 15.90 - 27.70 21.55 7.10 - 13.80 10.60 22.70 - 41.50 32.15 

PCC 7806-mcyB  

 

nd 

>LOD* 

nd 

>LOD* 

nd 

>LOD 

*LOD for MC-LR= 0.0013±0.0011 ng/mL and [Dha
7
]-MC-LR/Asp3-MC-LR=0.002±0.0014 ng/mL

 
(Turner et al 494 

2018)  495 

 496 
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 498 

 499 

 500 

 501 

Fig. 3 Percentage cells showing esterase activity via CMFDA staining at increasing H2O2 treatment in three 502 

Microcystis strains. Values are given as the means±standard deviation (SD) of three replicates 503 

 504 

505 
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506 

507 

 508 

Fig. 4 Percentage dead cells via Sytox Green staining at increasing H2O2 treatment in three Microcystis strains. 509 

Values are given as the means±standard deviation (SD) of three replicates  510 


