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Abstract—In medical image analysis applications, the availabil-
ity of large amounts of annotated data is becoming increasingly
critical. However, annotated medical data is often scarce and
costly to obtain. In this paper, we address the problem of
synthesizing retinal color images by applying recent techniques
based on adversarial learning. In this setting, a generative model
is trained to maximize a loss function provided by a second
model attempting to classify its output into real or synthetic. In
particular, we propose to implement an adversarial autoencoder
for the task of retinal vessel network synthesis. We use the
generated vessel trees as an intermediate stage for the generation
of color retinal images, which is accomplished with a Generative
Adversarial Network. Both models require the optimization of
almost everywhere differentiable loss functions, which allows us
to train them jointly. The resulting model offers an end-to-end
retinal image synthesis system capable of generating as many
retinal images as the user requires, with their corresponding ves-
sel networks, by sampling from a simple probability distribution
that we impose to the associated latent space. We show that the
learned latent space contains a well-defined semantic structure,
implying that we can perform calculations in the space of retinal
images, e.g., smoothly interpolating new data points between two
retinal images. Visual and quantitative results demonstrate that
the synthesized images are substantially different from those in
the training set, while being also anatomically consistent and
displaying a reasonable visual quality.

Index Terms—Retinal Image Synthesis, Retinal Image Analy-
sis, Generative Adversarial Networks, Adversarial Autoencoders.

I. INTRODUCTION

THE ability to generate meaningful synthetic information
is highly desirable for many computer-aided medical

applications, where annotated data is often scarce and costly
to obtain. A wide availability of such data may allow re-
searchers to develop and validate more sophisticated com-
putational techniques. This pressing need for annotated data,
particularly images, has largely increased with the advent
of deep neural networks, which are progressively becoming
the standard approach in most machine learning tasks [1].
However, these techniques require large amounts of data to
be trained. Therefore, the problem of medical data generation
is of great interest, and as such, it has been deeply studied in
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recent years [2]. Nevertheless, the realistic synthesis of high-
quality medical data still remains a widely unsolved challenge.

Most medical image generation methods follow two main
strategies. The most conventional approach endeavors to for-
mulate a mathematical model of the observed data. These
models can range from simple digital phantoms [3] to more
complex methodologies attempting to mimic anatomical and
physiological medical knowledge [4]. In combination with
the modeling of relevant characteristics of the different ac-
quisition devices, these techniques can generate new high-
quality images by sampling an appropriate parameter space.
This approach is often referred to as image simulation.

In recent years the data-driven approach of image synthesis
has started gaining popularity. In this context, the intrinsic
variability within a large pool of training images is extracted
by means of machine learning techniques. Ideally, the model is
able to learn the underlying probability distribution that defines
the manifold of real images. Once trained, the same system
can be sampled to output new images that are likely to lie
on that manifold, i.e. realistic synthetic images. This approach
has recently been successfully applied to improve classification
of multi-sequence MRI with missing/corrupted sequences [5],
to estimate cross-modality transformations [6], or to perform
knowledge transfer by learning features invariant to the MR
scanning protocol [7].

In the retinal image analysis field, in [8] the authors propose
an algorithm for the generation of the retinal background and
the fovea, and a separate technique for the generation of the
optical disk. For the former, the method relies on the construc-
tion of a large dictionary of small vessel-free image patches.
These patches are extracted from a dataset of co-registered
real images and clustered together, before tiling them in a
consistent manner. For the latter, a parametric intensity model
is proposed, with the parameters being estimated over a dataset
of real images.

The work in [2] is complementary to [8], since it focuses
on the generation of the vascular network only. The authors
propose a method to generate realistic retinal vessel trees.
The parameters controlling the geometry are learned from
real vessel trees. The method also enforces meaningful vessel
orientation and calibers by following a physical bifurcation
law describing the correct oxygenation of the retinal surface
[9]. The output of both approaches can then be superimposed,
allowing for the generation of high-quality large-resolution
images. However, concatenation of both techniques results in
a considerably complex computational pipeline, relying on
sensitive sub-processes such as image registration, patch-to-
image stitching or image blending.

Recently, a purely data-driven approach has been proposed
in [10]. It consists of a simple application of adversarial
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Fig. 1. Overview of our approach. The pair (p, q) is an adversarial autoencoder trained to reconstruct retinal vessel maps. The pair (G,D) is a Generative
Adversarial Network trained to generate color retinal images out of vessel maps. Once the model is trained, the system can generate a new retinal image and
an associated vessel map. The only required input is sampling a distribution p, which is enforced to follow a simple multi-dimensional Gaussian distribution
during training by means of an adversarial loss.

learning methods [11], in which a model is trained on pairs
of real vessel networks and their corresponding retinal fundus
images. The goal is to learn a transformation between them,
and once trained, this technique can generate a plausible retinal
image out of a pre-existing binary vessel tree. Unfortunately,
this approach has been shown to have a relevant drawback: the
model is dependent on the availability of a pre-existing vessel
network in order to generate a new retinal image. The vessel
networks employed for generating images were obtained by
application of an independent vessel segmentation method to
real retinal images. If the original image is defocused, the
retrieved vessel tree will be undercomplete, and the obtained
synthetic image will contain visual artifacts [10].

In this work, we substantially improve upon [10] by remov-
ing the dependence of the model on the previous existence of
a retinal vessel tree. This is achieved by building an autoen-
coder that can learn to generate realistic retinal vessel trees.
Moreover, by minimizing an adversarial loss, the autoencoder
allows to generate vessel networks by simply sampling a multi-
dimensional Normal distribution. A schematic representation
of our approach is depicted in Fig. 1.

It is worth noting that it is theoretically possible to perform a
separate training of the retinal vessel synthesis module and the
vessel network to retinal image mapping. However, since both
tasks are closely related, it is more natural to train both systems
jointly. We achieve this by combining the loss functions
associated to each task in a more general framework. The
resulting method presents several advantages over previously
proposed approaches:

1) The adversarial learning framework allows us to model
the underlying distribution of plausible retinal images
only from training data, without manually interacting
with parameters controlling complex mathematical mod-

els of the retinal anatomy.
2) Once trained, the model improves upon [10] by allowing

to generate any amount of realistic retinal images, with
associated vessel trees, in an efficient manner.

3) Unlike [2], [8], we generate separate parts of the retinal
anatomy through the same process, avoiding the combi-
nation of complex image processing tasks.

The proposed framework provides an effective end-to-end
retinal image synthesis tool, capable of producing realistic eye
fundus images and associated vessel networks with a simple
sampling procedure. We provide objective evaluation of both
the quality and the applicability of our synthetic images. Even
if the generated images and associated vessel maps are of
low resolution, suffer from small inconsistencies, and may
still not be used to train more complex retinal image analysis
algorithms, we show them to be useful for learning a retinal
vessel segmentation model with reasonable performance. This
represents a promising first step towards achieving synthetic
data that can be used in more complex automatic retinal image
analysis applications.

II. ADVERSARIAL IMAGE GENERATION

A. Vessel Network to Retinal Image Translation

The research herein reported considers retinal color image
generation out of an existing vessel network as an image-
to-image translation problem, learning a mapping G from
a binary vessel map v into another representation r [12].
Since many retinal images could share a similar binary vessel
network due to variations in color, texture, illumination, etc.,
in our case G is a multi-valued mapping G : v → {r1, ..., rm}.
As such, learning G is an ill-posed problem and some uncer-
tainty is present.
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Fig. 2. The discriminator D learns to distinguish between real pairs of vessel
networks and eye fundus images (v, r) and synthetic pairs. The generator G
maps an input vessel network v to a color eye fundus image r.

Connected to this is the choice of the objective function to
be minimized while learning G. Training a model to minimize
the L2 distance between G(vi) and ri for a collection of
training pairs given by {(r1, v1), . . . , (rn, vn)} will produce
low-quality results with lack of detail [13], due to the model
selecting an average of many potentially valid representations.

Recent ideas based on Generative Adversarial Networks
(GANs) [11] are able to overcome this problem by learning
a more suitable loss function directly from data [12]. The
underlying strategy of adversarial methods consists of emulat-
ing a competition, in which the mapping G, called Generator,
attempts to produce realistic images, while a second player, the
Discriminator D, is trained to distinguish the output generated
by G from real examples. Here, both G and D are neural
networks, and act as adversaries, since the goal of G is to
maximize the misclassification error of D, while D’s objective
is to beat G by learning to identify generated images. As in
[11], the adversarial loss, driving the learning of G and D, is:

Ladv(G,D) = Ev,r∼pdata(v,r)[log(D(v, r))] (1)
+ Ev∼pdata(v)[log(1−D(v,G(v)))],

where Ev,r∼pdata(v,r) is the expectation over the pairs
(v, r), sampled from the joint data distribution of real pairs
pdata(v, r) and pdata(v) is the real vessel trees distribution.
The Discriminator’s objective is to maximize (1), while the
Generator’s goal is to minimize it. Therefore, it is D that
provides the training signal to G, replacing more conventional
loss functions.

Although minimizing the above loss function induces G to
produce visually sharp results, recent work in [12], [14] has
shown that combining Eq. (1) with a global L1 loss provides
more consistent results. Thus, the loss function to optimize
becomes:

Lim2im(G,D) = Ladv(G,D) (2)
+ λEv,r∼pdata(v,r)[||r −G(v)||1],

where λ balances the contribution of the two losses. The
discriminator’s objective is in this case local, i.e., it attempts
to discriminate N × N image regions as real or generated,
but the goal of G is supplemented with a requirement not
only to generate realistically looking images but also images
that preserve a global regularity. Since the L1 loss guarantees
that the output of G is globally consistent, D can concentrate

on modeling only high frequency structures. Thus, while D
penalizes locally over-smooth image regions, the L1 loss
promotes the consistency of global visual features, such as
the presence of a single optical disk and macula in the image.
An overview of this model is shown in Figure 2.

B. Adversarial Autoencoders for Vessel Trees Generation

Ideally, an end-to-end retinal image synthesis system should
also generate realistic vessel networks. Such a model would
also learn from data and generate as many vessel networks
as the user requires, with a high degree of variability, while
remaining anatomically plausible. In this work, we propose to
achieve this goal by means of an adversarial autoencoder.

Autoencoders are models trained to reconstruct their input.
They are composed of two submodels: 1) an encoder Q, that
maps a training example v to a latent (hidden) representation
z = Q(v), and 2) a decoder P , mapping z to an output that
aims to be a replica of the input. An autoencoder can thus be
trained on a training set of vessel trees v, in order to minimize
a reconstruction objective Lrec(Q,P ).

Modern autoencoders feature deep neural networks both for
the encoder and the decoder, and introduce stochasticity by
considering probability distributions instead of deterministic
mappings Q,P . Here we define both the decoder and the
autoencoder to be conditional probability distributions, q(z|v)
and p(v|z).

Autoencoders can be employed to learn useful abstractions
of the data through their latent representations. These can then
be applied in other contexts, e.g. data compression or semi-
supervised learning. However, in the above form, the trivial
mapping that associates each vessel tree example v in the
training set to itself can succeed in minimizing the recon-
struction loss while failing to learn any valuable abstraction.
To avoid this, several types of regularization can be added to
the loss, e.g. minimizing Lrec(q, p) while requiring the latent
representation to be sparse [15].

However, even when properly regularized, an autoencoder
still has no ability to fulfill the goal of generating new
elements close to the true data manifold, since we do not
have knowledge of the underlying probability distribution q(z)
governing the space of latent representations. This prevents us
from sampling it in order to obtain a new code z that can then
be mapped by p to a retinal image.

To achieve the twofold goal of turning the autoencoder into
a generative model while regularizing it in such a way that
it can learn interesting representations of retinal vessel trees,
we apply the adversarial autoencoder framework, proposed
in [16]. In this case, the autoencoder learning process is
embedded in an adversarial competition, similar to the one
described in the previous section. The goal of the autoencoder
is to minimize the reconstruction error, but at the same time,
we attempt to gain control on the probabilistic structure of q(z)
by matching it to a prior distribution p(z) that can be easily
sampled (e.g. a multi-dimensional unit normal distribution).
The encoding distribution q(z|v) in the autoencoder is the
generator component of the adversarial game. This consists
of a neural network enforced to produce latent representations
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Fig. 3. At first, the discriminator Dcode is trained to distinguish between
samples from the given prior p(z) and latent representations of training vessel
networks v from the encoder q(z|v). Then, the autoencoder is trained to
minimize the reconstruction loss between its output and v and, at the same
time, maximize the misclassification of Dcode.

z following the pre-specified prior distribution p(z). This is
achieved via the maximization of the classification error of
the discriminator module Dcode, which is trained to classify
codes z sampled from q(z) according to whether they come
from the true prior distribution p(z) or not. Figure 3 depicts
a schematic representation of this process.

The autoencoder training is performed by gradient descent,
with the gradients computed by standard backpropagation. The
optimization process consists of two alternate stages. In the
first step, the discriminator is updated to distinguish samples
generated by q from those coming from the prior distribution
p(z). This is achieved by maximizing the following loss:

Lcode(Dcode, q) = Ez∼p(z)[log(Dcode(z))] (3)
+ Ev∼pdata(v)[log(1−Dcode(q(z|v)))].

In addition, both the encoder and the decoder weights are
updated to minimize the reconstruction error and, at the same
time, to maximize the classification error of the discriminator.
In this way, the complete loss function that drives the learning
of the adversarial autoencoder is a combination of both losses:

LAAE(Dcode, q, p) = Lcode(Dcode, q) + γLrec(q, p), (4)

where γ weights the importance of the two losses. The goal
of q and p is to minimize LAAE , while Dcode attempts
to maximize it. When the optimization process reaches an
equilibrium point of Eq. (4), the decoder p defines a generative
model than can be employed to generate new vessel trees
starting from a sample of the imposed prior p(z) on the latent
distribution.

C. From Random Samples to Retinal Images

The vessel-to-retinal image model presented in section II-A
can map a vessel tree v to a realistic eye fundus image r, while
the adversarial autoencoder defined in the previous section
generates a vessel network v from a random sample z coming
from a simple probability distribution. When both models are
combined, we obtain a single system capable of generating a
vessel map and a retinal image r from a random sample z.

However, both sub-tasks are deeply interconnected. The
generation of vessel networks of better quality will lead to

a more realistic retinal image r. Conversely, if the generated
image r is able to deceive the discriminator in such a way that
it classifies it as plausible, it means that the vessel network v
contained in it also needs to be plausible.

Following this argument, we build a single joint model, in
which both sub-systems are trained at the same time, instead
of independently. In our case, the loss functions defining both
models are differentiable almost everywhere. Accordingly, to
build a joint loss function we can directly combine them by
simple addition. Nonetheless, we need to redefine the image-
to-image losses in Eqs. (1) and (2), so that they take the output
of the adversarial autoencoder as the input to G:

L̃adv(G,D) = Ev,r∼pdata(v,r)[log(D(v, r))] (5)
+ Ev∼pdata(v)[log(1−D(ṽ, G(ṽ)))],

L̃im2im(G,D) = L̃adv(G,D) (6)
+ λEv,r∼pdata(v,r)[||r −G(ṽ)||1],

where ṽ = p(q(v)) is the vessel tree generated by the
adversarial autoencoder. With this modification, both loss
functions can be linearly combined into a global one:

L(G,D,Dcode, q, p) =L̃im2im(G,D) (7)
+ LAAE(Dcode, q, p).

In this formulation, the goal of G, q and p is to minimize
the loss function in Eq. (7), while D and Dcode attempt to
maximize it. The main advantage of this joint training scheme
is that the discriminator D also provides with a better loss
function for the adversarial autoencoder. The decoder p needs
to produce realistic looking vessels in order to maximize the
misclassification of D. Also, part of the training signal that
arrives to p flows through G. As a consequence, the adversarial
autoencoder also benefits when the generator produces realistic
eye fundus images. A schematic representation of the whole
model is shown in Figure 4.

D. Understanding the Latent Space

After training the model as described above, it is possible
to sample from p(z) in order to produce a synthetic pair of
vessel network and eye fundus images. Nonetheless, the latent
space might contain zones that are not on the manifold learned
during training. This implies that points sampled from p(z)
that are far from the latent representations of all the training
examples might produce pairs that are not plausible (e.g. an
eye fundus image with two optical disks).

Fortunately, there are techniques that allow to sample from
generative models in order to avoid these cases. For instance,
given two real vessel network images v1, vn, we may apply
the encoder q to obtain their latent representations z1, zn,
and interpolate between these two known locations in the
latent space to obtain a smooth transition between two images,
{z2, ..., zn−1}. If the model did not overfit the training data,
the vessel trees obtained when decoding these intermediate
representations, i.e., {q(z2), ..., q(zn−1)}, will be plausible
vessel networks that are not present on the set of real vessel
networks in which the model was trained with.



0278-0062 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2759102, IEEE
Transactions on Medical Imaging

TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. X, JULY 2017 5

D

Draw samples 
from pdata(v, r)

Dcode

Draw samples 
from p(z)

Gq pz

Draw samples 
from pdata(v)

Synthetic
vessel tree

Synthetic eye 
fundus image

Pos.
example

Neg.
example

Pos.
example

Neg.
example

Fig. 4. The model consists of an adversarial autoencoder followed by a conditional Generative Adversarial Network. The adversarial autoencoder and the
conditional GAN are trained to minimize the distance between their output and the training pair (v, r) and, at the same time, maximize the misclassification
of D and Dcode. Simultaneously, D learns to distinguish between real pairs (v, r) and synthetic pairs and Dcode learns to distinguish between latent
representations produced by the encoder q and samples from the given prior p(z).
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Fig. 5. An example of a spherical interpolation between two points z0 and
z3 from the latent space.

To find a correct path linking z1 to zn, typically, linear
interpolation is applied. However, this is not recommendable
when a Gaussian prior is used [17], as is our case. Linearly in-
terpolated latent representations traverse points that are indeed
unlikely given this prior. Instead, it has been shown that the
application of a spherical interpolation (slerp) [17] produces
better results. This is defined by the following equation:

slerp(z1, zn, t) =
sin((1− t)θ)

sin(θ)
z1 +

sin(tθ)

sin(θ)
zn, (8)

where θ is the angle between z1 and zn and t is a value ranging
from 0 to 1. For t = 0 the result of slerp is z1, whereas for
t = 1, it takes the value of zn. On every intermediate value,
the slerp interpolation outputs a point in a great arc from a
sphere containing z1 and zn.

It is also well known that the latent space learned by an
autoencoder contains a semantic structure, which implies that
it allows us to perform meaningful vector space arithmetic. As
an example, in this vector space we are able to solve visual
analogies [18]. An analogy is defined as a 4-tuple:

z1 : z2 :: z3 : z4, (9)

which symbolizes that the relationship between z1 and z2 is
the same as the relationship between z3 and z4.

For instance, we can analyze the result of applying the
same transformation between z1 and z2 to z3, which would
be written in analogies terminology as z1 : z2 :: z3 : ?. If
the points zi lie in a space supporting vector arithmetic, this
analogy can be resolved by vector addition, simply computing:

z4 = z1 − z2 + z3. (10)

For instance, given two images encoded by the latent factors
z1, z2, we can compute a transformation mapping one image to
the other by simply obtaining the vector given by −−→z1 z2. After
this, we can apply that same transformation to a third image
by encoding it into a latent representation z3, and computing
z4 = z3 +

−−→z1 z2.
In the case of the retinal images synthesized by our model,

the latent space is embedded in an N–dimensional vector
space, where N is a hyperparameter of the model. This
provides a finer degree of control on the high-level properties
of the generated images. Applying the above technique, we can
isolate factors of variation in the associated space of vessel
trees defined by pdata(v). In this case, we gain control on
global visual properties such as the position of the optical disk
or the amount of vessels. Visual examples of these concepts
are demonstrated in the Evaluation section below.

E. Implementation and Training

To be trained, the proposed model requires a dataset of
vessel trees and associated eye fundus image pairs. In or-
der to have enough training data, automatic retinal vessel
segmentations of the Messidor-1 dataset [19] were used.
As this dataset does not include manual segmentations, the
vessel tree was extracted using a U-Net model trained on
the DRIVE dataset [20]. This model achieved a 0.9755 AUC
on the DRIVE test set, a result aligned with state-of-the-
art methods for retinal vessel segmentation [21]–[24]. Further
details about the implementation are described in [10]. Then,
the model as trained on DRIVE was used to segment images
from the Messidor-1 dataset [19]. The obtained segmentations
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were validated visually by the fifth author (MDA), who is a
fellowship-trained retinal specialist. This strategy allowed us
to use a larger set of training examples, since the Messidor-
1 dataset contains 1200 images, while DRIVE contains only
40. In addition, employing Messidor-1 images increases the
variability of the data in training time, since they contain more
diverse colors and texture.

However, Messidor-1 also contains images with different
grades of diabetic retinopathy (grade 0 to 4), while in DRIVE
only 7 images display signs of mild diabetic retinopahty (grade
1). This led to a poor generalization of our vessel segmentation
technique, which produced incorrect segmentations for images
in a later stage of diabetic retinopathy. For this reason, only
images from Messidor-1 with grades 0, 1 and 2 were used
in this work, reducing the number of example pairs to 946.
This dataset was randomly divided into training (614 pairs),
validation (155 pairs) and test (177 pairs) sets, which were
downscaled to 256× 256 before training the model.

For the encoder network q, our model assumes that the
posterior probability of the encoder q(z|v) follows a nor-
mal distribution on a N -dimensional space, with mean µ(v)
and standard deviation σ(v), i.e. z ∼ N (µ(v), σ(v)). The
dimension N of the latent space was set to 32. For back-
propagating the gradient through the encoder network, the re-
parameterization trick proposed by Kingma and Welling [25]
was used.

Table I shows the architectures for both the encoder and
decoder, where Cn stands for a 3×3 Convolutional layer with
n filters followed by a Batch-Normalization layer [26], Dn is
the same but the Convolutional layer is applied with stride
2 to downsample the activation map, Un doubles the size of
the activation map before applying a Cn block, and Fn is a
Fully-Connected layer with n units. All blocks are followed
by a Leaky ReLU [27] activation function except for the last
layers. The outputs of the encoder (µ(v), σ(v)) are followed
by a linear activation function while the output of the decoder
is followed by a sigmoid activation function. Finally, Dcode

is a F64 followed by a F1 with a sigmoid as the activation
function.

The discriminator D in Eq. (2) classifies 16×16 patches of
31×31 pixels and the generator G in Eq. (2) is a U-Net. Both
D and G have the same architecture as in the work of Isola et
al., see [12] for further details. After a hyper-parameter search,
both α and γ in Eqs. (2) and (4) were set to 100. The model
was implemented with Keras [28].1

Regarding the training process, we monitored D’s loss on
the validation set and stopped training when the loss stopped
increasing. The accuracy achieved by the Discriminator at
distinguishing real and synthetic pairs was approximately 0.5.
After training, the generator took approximately 17.35s. to
generate a set of 100 images.

III. EXPERIMENTAL EVALUATION

The proposed technique can be employed to generate as
many synthetic retinal images as the user requires. To sim-
plify the evaluation of our results, we generated a fixed

1Code to reproduce our experiments will be made available upon
publication of this work.

Fig. 6. Random samples of eye fundus images and corresponding vessel
networks generated by our model.

dataset containing the same amount of image pairs (vessel
network/retinal image) as in our initial training dataset (614
pairs), and performed experimental qualitative and quantitative
comparisons on them. This dataset will be denoted as Syn-
thetic Dataset (SD). For quality comparison with real image
pairs, we considered two different datasets: 1) The set of
images used during training, containing 614 real retinal images
and corresponding vessel trees extracted from the Messidor-
1 database, denoted Training Real Dataset (TrainRD); 2)
The held-out test set, that was not used during training, and
contains 177 real retinal images and associated vessel trees,
denoted Test Real Dataset (TestRD).

As the model outputs pairs of images with 256 × 256
resolution, every real image was downscaled to the same size
in order to perform a meaningful comparison. Although these
resolutions are lower than those of currently acquired retinal
images, Gulshan et al. [29] showed that it is possible to obtain
state-of-the-art results in diabetic retinopathy classification
with eye fundus images of size 299 × 299, which is close
to the output resolution of our model.

A. Subjective Visual Quality Evaluation

For visual evaluation, in Figure 6 we show some of our
synthetically generated retinal images, together with the asso-
ciated vessel networks. The global consistency of the image
is correct, since the model learned to introduce visual content
only in the circular Field of View. Also, the optical disk and
the macula appear correctly located. The vessel network 2 also
shows high plausibility, with the two main arcades displaying

2Note that the synthetic vessel trees contain continuous values in [0,1], due
to our model minimizing the cross-entropy loss. These vessel networks can
be considered as probability maps, and thresholded appropriately if a binary
vessel network is needed for some further application.
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TABLE I
ARCHITECTURE OF ENCODER AND DECODER NETWORKS.

Encoder D64 C64 D128 C128 D256 C256 D512 C512 D512 C512 D512 C512 D512 C512 D512 F32 µ
F32 σ

Decoder F512 U512 U512 U512 U512 U256 C256 U128 C128 U64 C64 U64 C64 C1

Fig. 7. Comparison of randomly selected synthetic images with the training pair that is closest with respect to the vessel network. For each set of images,
from the leftmost column to the last: synthetic eye fundus image; corresponding synthetic vessel network ṽ; training vessel network closest to ṽ with respect
to the Mutual Information distance; and corresponding training eye fundus image. The generated vessel networks are clearly different from the closest ones
on the training set, indicating that the model did not simply memorize the training examples.

a thicker caliber than the rest of the vascular segments. It is
worth noting that our model also learned to insert the optical
disk at the confluence of these arcades. Likewise, color and
illumination were generated in a consistent manner.

In the case of machine learning-based generative methods,
it is useful to verify that the model has not simply memorized
the training data. This can be accomplished by analyzing
the distance between the real images used for training and
the synthetic ones. If the method did not memorize, it is
expected that synthetic images will display visual differences
with respect to the training set.

We proceed by extracting a synthetic vessel network ṽ from
SD and finding the vessel network v in TrainRD that is
closest to ṽ. To perform this matching, we apply the Mutual
Information (MI) measure, widely used in medical image
registration [30]. This metric allows us to quantify the amount
of information overlap between v and ṽ by computing the
following:

MI(v, ṽ) =
∑
vi∈v

∑
ṽi∈ṽ

p(vi, ṽi)log
( p(vi, ṽi)

p(vi)p(ṽi)

)
, (11)

where vi, ṽi are pixel intensities in the vessel tree images.
Finally, we visually compare the real retinal image associated
to v and the synthetic image related to ṽ. An example of this
experiment is shown in Fig. 7, where it can be appreciated that
the generated retinal images, although sharing a similar vessel
network, were markedly different in terms of global appear-
ance. This verifies the assumption that our model generalizes
properly and did not trivially memorize the examples in the
training set.

B. Quantitative Quality Evaluation
Objectively verifying the degree of realism of synthetically

generated images is known to be a challenging task when no

reference is available [31]. In the case of generative models,
it is also well known that a specific quality measure should
be used for each application [32]. Accordingly, to report a
quantitative image quality analysis, we employ the Image
Structure Clustering (ISC) metric proposed in [33]. This is a
no-reference quality metric that is trained on an independent
dataset of retinal images, previously annotated by retinal
specialists who indicated whether the quality of the images
was good enough to evaluate the image for the presence of
diabetic retinopathy.

The ISC score estimates if there is a correct proportion of
pixel intensities corresponding to the relevant retinal anatomi-
cal structures, i.e. the vessel tree, the optical disk, the macula
and the background. It achieves this goal by decomposing a
retinal image, assigning each pixel to one out of 5 clusters
in the space of responses to Gaussian derivatives of several
orders. Responses are aggregated into histograms, and a clas-
sifier is trained on these histograms’ counts in order to decide
if a retinal image contains a reasonable visible proportion of
such structures, under the assumption that the lack of presence
of one of these clusters is an indicator of low quality, see [33]
for the technical details.

The ISC score was computed on the retinal images from
the entire SD and on TrainRD , which contained the same
amount of images. Both quality score distributions were nor-
mal according to the Kolmogorov-Smirnov test. The resulting
data was therefore expressed as mean ± standard deviation,
and compared with the unpaired Student’s t-test. All p-values
were two-tailed and p < 0.05 was considered significant.
Statistical analyses were performed using GraphPad Prism 7
(Graphpad Software Inc.) software. The results are reported in
Table II, and show that, even if the synthetic images obtained
a statistically significantly lower quality score (p < 0.00063),
a large fraction of the image quality present in the training
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TABLE II
ISC QUALITY MEASURE ON REAL/SYNTHETIC IMAGES.

Mean ISC score Std. dev.

Real Images 0.9832 0.1117

Synthetic Images 0.9671 0.0307

dataset was preserved while generating new retinal images.

C. Retinal Vessel Segmentation Using Synthetic Training Data

One of the main motivations for the present work is the
growing need for annotated data in the automated medical
image analysis area. The technique introduced in this paper
provides pairs of synthetic images and corresponding vessel
trees. It is thereby meaningful to evaluate if the generated
images could potentially be applied for segmenting the vessel
tree from eye fundus images.

To verify how the synthetically generated data performs in
this task, the segmentation model described in section II-E
was trained first using real data, and afterwards using only
synthetic data for performance comparison. The considered
dataset was the publicly available DRIVE dataset [20]. For a
fair comparison, and due to the low resolution of the produced
synthetic images, DRIVE images were downsampled to a
resolution of 256× 256.

We trained both on real and synthetic images. In the
experiment with real images, the remaining 20 images in
DRIVE were used to train. In the experiment with synthetic
images, 20 images and corresponding vessel maps were ex-
tracted from SD . The selected pairs where those achieving
highest ISC scores. In both cases, 20 images were used for
testing the model. Since the training process of this model
is not deterministic due to the stochastic gradient descent,
for a robust evaluation in both cases 11 different models
were trained separately, and the resulting performance figures
were averaged. The resulting average ROC curves, built from
varying the decision threshold, are displayed in Fig. 8. The
models trained with real images obtained an average AUC of
0.887 ± 0.004, while when using only synthetic images, the
average AUC was 0.841± 0.009.

The results from these experiments are encouraging. The
performance of the vessel segmentation model when trained
with synthetic images is well above a baseline random model,
and when allowed a fraction of false positives approximately
greater than 0.35, the resulting system shows greater sensitiv-
ity than the same segmentation model trained with real images.
However, results should be interpreted with caution. First, the
obtained vessel segmentation performances are well below
state-of-the-art results on this dataset, something probably due
to the considered reduced resolution. Second, we observed a
decrease in performance when combining synthetic and real
images for training. This seems to hint at a possible lack of
quality in the resulting images, especially the vessel maps,
which sometimes show certain inconsistencies, e.g. as vessel
interruptions.
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Comparison of real and synthetic average ROC curves

Trained with r = 20 AUC = 0.887± 0.004

Trained with sy = 20 AUC = 0.841± 0.009

Fig. 8. ROC curves for models trained using 20 synthetic (sy) images (blue)
and 20 real (r) images (red). FPR refers to False Positive Rate and TPR to
True Positive Rate, where a False Positive is the incorrect declaration of a
background pixel as vessel pixel, and a True Positive represents the correct
declaration of a vessel pixel as belonging to a vessel. Bands represent 3 ×
standard deviation from the mean performance at a given decision threshold.

D. Exploring the Latent Space

Generative models produce latent spaces that allow us to
better understand the underlying structure of our training data,
as well as how good our model is in generalizing to new inputs.
In this section, we provide an exploratory analysis of the latent
space structure our model learned, in terms of the techniques
presented in Section II-D. Every real image employed in this
section was extracted from the TestRD set, which was not
used during training.

An example of interpolation between two points in the
latent space is shown in Fig. 9. In this case, we selected two
vessel tree images v1 and v2 from TestRD , corresponding
to images with the optical disk on the left and on the
right respectively. These images were mapped by the encoder
into their corresponding latent representations p(z1|v1) and
p(z2|v2). A set of intermediate points was computed following
Eq. (8). Those intermediate representations were then used to
generate synthetic vessel networks and corresponding retinal
images, displayed in Fig. 9. We can appreciate how the vessel
networks clearly change from one point to another, which is
yet another indicator that the model did not simply memorize
the training examples. Moreover, the transition between left
and right optical disk is sharp, indicating that the model
successfully captured the knowledge that valid vessel networks
only contain one optical disk. Also, the color and texture of
the eye fundus images varies smoothly, even on the sharp
transition between left and right-located optical disk.

Next, in order to analyze if the latent space captures the
semantic properties of the vessel networks, we performed two
visual analogies. In the first case, three retinal network images
v11, v12, and v21 were chosen such that: 1) v11 contains
relatively few visible vasculature and the optical disk to the
left; 2) v12 contains relatively much visible vasculature and
the optical disk also to the left; 3) v21 contains relatively less
visible vasculature and the optical disk on the right. We then
apply the encoder q to obtain their associated latent repre-
sentations q(z11|v11), q(z12|v12), and q(z21|v21). Finally,we
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Fig. 9. Interpolation between the latent representation of a vessel tree with the optical disk on the left and another with the optical disk on the right.

: :::

(a)

: :::

(b)

Fig. 10. Vessel networks from the first 3 columns (v1, v2 and v3) of both Figs.
(10a) a (10b) were encoded from test set vessel networks. The vessel network
from the last column (v4) is the result of applying the same transformation
between v1 and v2 to v3. In Fig. (10a), the relationship that was successfully
captured by the model was the increase in the amount of visible vessels. In
Fig. (10b), the true relationship was the change in the position of the optical
disk.

compute a fourth latent representation z22 associated to z21
in the following sense: z22 should have the same relationship
with respect to z21 as z12 has with respect to z11. This means
that the decoded vessel network image should maintain the
optical disk on the right, while showing a larger amount of
visible vessels. We thus apply Eq. (10) to obtain z22, and
synthesize the corresponding vessel network and associated
retinal image. The results of this experiment are shown in
Fig. (10a). As expected, the generated images contained a
more visible vasculature, while the optical disk’s position was
preserved.

In our last experiment, we tested if we were able to
disentangle the latent factors related to the position of the
optical disk. For that, we selected three vessel tree images
od11, od12, and od21 such that: 1) od11 contains the optical
disk to the right; 2) od12 contains the optical disk to the left;
3) od21 contains the optical disk on the left. After application

of the same strategy as before, we should expect to synthesize
a retinal image that preserves the amount of vasculature,
but translates the optical disk to the right. As shown in
Fig. (10b), our model successfully displaced the optical disk
while keeping the amount of visible vessels, implying that it
correctly disentangled the latent space direction related to the
optical disk’s location.

IV. LIMITATIONS AND FUTURE WORK

Generative models are always limited by the information
contained within the training set, and how it captures the
variability of the underlying real world data distribution.
In this sense, the proposed technique was only trained on
614 healthy macula-centered retinal images, extracted from
a single database (Messidor-1). Even with such a relatively
small training set, our technique shows a remarkable capabil-
ity of generating realistic synthetic images that substantially
differ from the examples the system observed during training.
Nevertheless, this reduced training set limits its capability to
generate, e.g., optical disk centered images, or pathological
instances. Overcoming this obstacle is the first natural ex-
tension of our work. A first alternative could be to train a
one-class classifier with synthetic healthy images, and treat
pathology as an anomaly discovery problem. A more general
approach would involve addressing the diagnosing problem by
implementing Class-Conditional Adversarial Models, such as
[34] or [35], in which the training data comes with annotations.
These kind of models can generate points in the data manifold
corresponding to a particular label. In this way, not only
diagnosing systems but many applications can be enhanced
by newly generated images, annotated with information of in-
terest. For instance, a compelling problem to investigate would
be to employ generated retinal images to replace missing
or corrupted images within longitudinal studies. This could
be achieved by means of a model that learns to interpolate
between different time points within a large dataset.

There are other limitations of the proposed approach that
should be object of future research. First, the size of the
synthetic images (256 × 256) is far from the resolution
provided by images produced by current retinal fundus image
acquisition systems. Also, although the generated images and
associated vessel networks have an overall consistent appear-
ance, and they seem to be reasonably useful to train a vessel
segmentation model without manual vessel annotations, the
realism of the synthetic vessel maps still does not reach that
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of real vasculatures. The generated synthetic vessel networks
often exhibit abnormal interruptions, unusual width variation
along the same vessel, and there does not seem to be a clear
distinction between veins and arteries.

Most of the above drawbacks can be attributed to the amount
of available data and computational resource restrictions,
and not to a limitation intrinsic to the proposed technique.
Therefore, in the future, the introduction of clinical labels or
annotations in the context of a large scale high-resolution data
collection will be the first natural extension of our model,
as a part of the more general goal of producing realistic
and interesting synthetic images that can be employed to
train models to solve more complex retinal image analysis
tasks. These may involve locating different areas of the retinal
anatomy, or performing diabetic retinopathy diagnosis, to
name a few.

In general, the availability of an additional set of training
examples that can be efficiently generated on-demand could
greatly impact the size and capacity of the models the reti-
nal image analysis community train. These new annotated
examples can be applied to validate novel retinal image
understanding techniques, or to supplement existing datasets
by expanding them with meaningful data. In addition, the
proposed approach is not limited to retinal imaging. In our
case, we employed the vessel tree as a proxy that serves
as a guide for the model to learn to locate all parts of the
anatomy consistently while generating plausible texture. The
same methodology could be applied to different medical image
analysis problems in which there exists such an intermediate
structure.

V. CONCLUSIONS

In this work, a generative model capable of synthesizing
new vessel networks and corresponding eye fundus images
was presented. This model learns the underlying structure of
the manifold of plausible retinal images from examples of
pairs of vessel networks and eye fundus images . Once trained,
it can generate both synthesized vessel networks and retinal
images, that are shown to contain rich visual information and
to be different from the training examples. The method is
capable of generating realistic vessel geometries and retinal
image texture, while keeping the global structure consistent.

Notably, the user is only required to sample from an N -
dimensional predefined prior Gaussian distribution p(z) to
generate a new pair of images. Additionally, we provided vi-
sual experiments demonstrating that the latent space associated
with our generative model contained a well-defined semantic
structure. Furthermore, our results show that it is possible to
exploit that structure in order to gain more control over its
output.
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