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Two-stage deep regression enhanced depth
estimation from a single RGB image

Jianyuan Sun, Zidong Wang, Fellow, IEEE, Hui Yu, Senior Member, IEEE, Shu Zhang,
Junyu Dong*, Pengxiang Gao

Abstract—Depth estimation plays a significant role in industrial applications, e.g. augmented reality, robotic mapping and autonomous
driving. Traditional approaches for capturing depth, such as laser or depth sensor based methods, are difficult to use in most scenarios
due to the limitations of high system cost and limited operational conditions. As an inexpensive and convenient approach, using the
computational models to estimate depth from a single RGB image offers a preferable way for the depth prediction. Although the design
of computational models to estimate the depth map has been widely investigated, the majority of models suffers from low prediction
accuracy due to the sole utilization of a one-stage regression strategy. Inspired by both theoretical and practical success of two-stage
regression, we propose a two-stage deep regression model, which is composed of two state-of-the-art network architectures, i.e. the
fully convolutional residual network (FCRN) and the conditional generation adversarial network (cGAN). FCRN has been proved to
possess a strong prediction ability for depth prediction, but fine details in the depth map are still incomplete. Accordingly, we have
improved the existing cGAN model to refine the FCRN-based depth prediction. The experimental results show that the proposed
two-stage deep regression model outperforms existing state-of-the-art methods.

Index Terms—depth prediction, a single RGB image, the rough depth map, neural networks.
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1 INTRODUCTION

D EPTH estimation plays an increasingly key role
in industrial applications [1], [2]. In particular, depth

estimation has widespread applications in the field of
robotics [3], autonomous driving [4], augmented reality
(AR) [5] and 3D modelling [6] etc. Due to the limitations of
high system cost and limited operation availabilities, the
traditional depth capturing approaches including the ones
based on the laser and other depth sensors are facing
unprecedented technical challenges and difficulties in most
scenarios. On the contrary, using the computational models
to estimate depth from a single RGB image offers a more
feasible and preferable way to capture the depth map with
a lower system cost and wider operational conditions.
Designing computational models for accurately predicting
depth information from a single RGB image is a
challenging task, due to the inherent ambiguity of mapping
the intensity or color measurement into a depth value. In
particular, for the indoor scenes, there are plenty of
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Fig. 1. The framework of the proposed model. In the first stage, the
trained FCRN model is used to obtain a rough depth map. Moreover, a
new cGAN model is used to refine the rough depth map and output the
final prediction in the second stage.

geometric details and serious object occlusions, large
texture and object structural variations, all of which
conduces to the difficulty of accurate estimation depth.
However, obtaining the availability and reasonably
accurate depth information is a key element for many
computer vision tasks and promoting the development of
engineering [7], [8].

Recently, Convolutional Neural Networks (CNNs) and
their variants have been widely used to learn an inherent
ambiguity relation between the RGB pixels and the depth
information, which have achieved promising
performance [9], [10], [11], [12], [13], [14], [15], [16]. Among
the existing methods, most of the CNNs based approaches
exploit some post-processing or regularization methods to
refine the estimated depth map. For instance, CNNs are
combined with the conditional random field (CRF) [12] to
estimate the depth under the guidance of superpixel-wise
depth information. Moreover, the multiple-scale CNNs
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models [9], [10], [15] have been proposed and developed to
refine the predictions using a sequence convolution kernel
of different scales to accurately capture the details of an
object. Apart from these methods, some CNNs variants
deal with the depth estimation tasks with an end-to-end
learning architecture, which has achieved satisfying
performance by increasing the layer number of the network
architecture [14]. However, these methods not only need to
hand-engineer the loss function for an acceptable result,
but also require a large number of training data. Moreover,
these methods usually have a higher complexity due to a
large number of parameters involved in a complex or deep
network architecture.

More importantly, the accuracy and reliability of the
state-of-the-art RGB-based depth prediction deep network
architectures [11], [14], [15] are still far from being practical.
These methods are not effective in predicting the objects
with far distance on NYU Depth v2 dataset [17] and
Make3D dataset [18]. It is obvious that the existing
methods only use the one-stage deep regression scheme to
predict the depth from a single RGB image, normally only
using a single deep learning model (CNNs or others) to
predict depth. In fact, methods only using one-stage
regression tend to lead to more inaccuracy for the depth
prediction task due to the one-stage regression lacks the
opportunity of re-learning or re-improving. In
statistics [19], two-stage regression is proved to be able to
provide better regression results than one-stage. The
two-stage regression learning method has been successfully
applied in the field of facial landmark detection [20] and
other fields [21], [22], [23].

In this paper, inspired by both theoretical and practical
success of two-stage regression, we propose a two-stage
regression network, which is composed of two different
types of state-of-the-art network architectures, i.e., the fully
convolutional residual network (FCRN) and the conditional
generation adversarial network (cGAN). The framework of
the proposed model is shown in Fig. 1. The architecture of
the FCRN consists of the fully convolutional architecture
with residual learning. The convolution network has
achieved great success in solving image tasks [24]. In
particular, FCRN has been proved to possess a strong
prediction ability for the depth prediction from a single
RGB image [14]. However, the detailed information of the
depth predictions is incomplete since the middle-level
features are not fuse into the network. To achieve a more
detailed depth map, we have improved the existing cGAN
model [25] to tackle the regression task from the rough
depth map to the ground truth depth map. In particular,
the improved cGAN model allows us to use the maximum
depth value to normalize the depth map for both indoor
and outdoor scenarios, which can help improve the
prediction accuracy for objects with far distance [26].

The contributions of this paper include:

• We propose a two-stage deep regression model for
the task of depth estimation from a single RGB
image according to the success of two-stage
regression in both statistical theory and practice.
The proposed model is composed of two different
types of state-of-the-art network architectures. i.e.

the fully convolutional residual network (FCRN)
and the conditional generation adversarial network
(cGAN). To our best knowledge, it is the first
attempt to combine two different types of network
architectures to tackle the depth estimation task.

• Inspired by the success of cGAN on regression
tasks [26], [27], a new effectively refinement method
is presented on the second stage of the proposed
model. We improve the existing cGAN model with a
”U-Net” generator to refine the FCRN-based depth
prediction of the first stage. In particular, the
proposed second stage model only needs a small
number of training data compared with the
state-of-the-art methods.

• With the experimental verification, in contrast to the
existing methods using one-stage regression, the
performance of the proposed two-stage regression
model is superior to the previous fusion approaches
on both indoor and outdoor scenarios [9], [10], [11],
[12], [16].

2 RELATED WORK

Depth prediction from a monocular RGB image has been
receiving great attention, while it remains a very hard task
due to the inherent ambiguity of mapping the RGB image
intensity measure into the depth value. To tackle this task,
many depth learning methods have been proposed to
predict depth from a single RGB image in recent years,
such as the convolutional neural networks (CNNs) and
their variants. CNNs and its variants promote the
state-of-the-art results for the challenging tasks of
computer vision, which have also been applied to depth
prediction from a single image and achieved great
success [9], [10], [11], [12], [13], [14], [15], [16].

There exist two types of approaches to this problem: the
multi-scale technique and the super-pixel pooling with
conditional random field (CRF) algorithm. For the
multi-scale technique, Eigen et al. [9] combined the depths
from the global and refined network to obtain clear depth
predictions. Their work later was extended to use a
multi-scale convolutional network to predict depth by
employing existing Alex and VGG networks [10]. Beyond
that, most of the methods tended to combine the neural
networks and a novel super-pixel pooling method of CRF
to refine the depths. Liu et al. [11] first addressed this issue
based on the fully convolutional networks and CRF.
However, the prediction results are still far from the
ground truth. Moreover, Wang et al. [13] and Li et al. [12]
explored the benefit of the hierarchical CRF to refine the
patch-wise predictions from the super-pixel level down to
pixel level. Dan et al. [15] proposed a multi-scale
continuous CRF as a sequential deep network for the depth
prediction by exploring the side outputs of deep networks.
In addition, Roy et al. [16] introduced an end-to-end
architecture by integrating the random regression forests
and convolutional neural networks to tackle the depth
estimation. Recently, the residual network (ResNet) has
successfully solved the gradient vanishing problem in the
deeper networks, which have also been applied to depth
prediction from a single image. For example, Laina et
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al. [14] built a deeper fully convolutional residual networks
and designed the up-sampling blocks to obtain a
high-resolution depth. However, the detailed information
of the depth predictions is incomplete due to the fact that
the middle-level features are not fused into the network.

Besides, the utilization of convolutional neural
networks, Generative Adversarial Networks (GANs) and
its variants have also attracted many researchers’ attention
due to the GANs have achieved great success in many
applications, such as image-to-image translation [25], face
image generation [28], image in-painting [29], [30] and style
transfer [31]. Moreover, there is some work using the
GANs to tackle the depth prediction task. For example,
Arun et al. [32] used GANs with flexible loss function to
predict the depth map from a single RGB image on the
KITTI dataset, which obtained depth prediction results
more favorably compared with the state-of-the-art. In
addition, Hyungjoo et al. [26] employed the existing cGAN
model and design a fully convolutional multi-scale
network to sequentially estimate the global and the local
structures of the depth image. However, most of the depth
prediction methods uses a single type of network model
(CNNs or GANs) and enhances the network prediction
ability by increasing the number of layers in the network.
As a result, these networks require millions of training data
for an acceptable estimation result.

In this paper, to reduce the complexity and improve the
accuracy of depth prediction, we proposed a two-stage
deep regression model that combines two different types of
regression network architectures to track the depth
prediction task, i.e., the trained FCRN [14] and the cGAN
model. Our model combines the advantages of FCRN and
cGAN, and uses the powerful prediction ability of cGAN
on the regression task [26], [27] to further enhance the
depth prediction. To our best knowledge, it is the first time
to combine two different types of regression network
models on the task of depth prediction.

3 PROPOSED METHOD

The proposed method aims to predict the depth map from
a single RGB image. We specifically design a new two-stage
deep regression model to accurately predict the depth
image from a single RGB image. In the first stage, the initial
(rough) depth map is obtained using a pre-trained fully
convolutional residual network model (FCRN) [14]. In the
second stage, a new conditional generative adversarial
network (cGAN) [25] is proposed to refine the FCRN-based
depth prediction.

3.1 Two-stage deep regression model

Inspired by the success of two-stage regression in both
theory and practice, we propose a two-stage deep
regression model to predict the depth map from a single
RGB image. The proposed model is composed of two
different network architectures. i.e. the fully convolutional
residual network (FCRN) and the improved conditional
generation adversarial network (cGAN).

The network architecture of the proposed model is
illustrated in Fig. 2. For the first stage model, the fully

convolutional residual network (FCRN) is first proposed by
Laina et al. [14]. In particular, FCRN model has achieved
promising results in the task of the depth prediction. The
FCRN architecture is based on the ResNet-50 and uses a
new up-projection block, which yields an output of roughly
half the input resolution [14]. The input size of FCRN is
483 × 483. To reduce billions of parameters and dozens of
GB memory generated by the full convolution network,
FCRN use a new up-sampling blocks that contain fewer
weights. Moreover, the ResNet-50 [33] can make the FCRN
muck deeper and prevent gradients from vanishing or
degradation. Therefore, there are large receptive fields for
the FCRN with the deep architecture.

Using the up-projection block is the key technology to
make the FCRN achieve good prediction results. The
up-projection block is a new up-sampling block and
extends the idea of the projection connection [33] to
up-convolutions. Here, the up-convolutions are the
up-sampling res-blocks. The main idea is to introduce a
simple of 3 × 3 or 5 × 5 convolution after the
up-convolution to add a projection connection from the
lower resolution feature map to the result. Beyond that,
Laina et al. developed the chain up-projection blocks in
FCRN that allowed high-level information to be more
efficiently passed forward in the network while
progressively increasing feature map sizes [14].

For the FCRN optimization, it uses a reverse Huber [34],
[35] as the loss function B.

B(x) =
{ |x| |x| ≤ c,

x2+c2

2c |x| > c.
(1)

As shown in Eq. (1), the Berhu loss is equal to the
L1(x) = |x| norm when x ∈ [−c, c], and equal to L2 norm
when |x| > c. Here, c = 1

5maxi(|ỹi − yi|), where i
represents the index of each pixel in each image in the
current batch.

In the proposed model, we first obtain the initial depth
map from a single RGB image by using the trained FCRN
model [14] in the first stage. The output resolution of FCRN
is 160× 128. To carry out the prediction of the second stage,
we use a bilinear interpolation method to up-sample the
obtained depth maps back to the size of 256 × 256 due to
the input size of the improved cGAN model is 256× 256.

For the second stage, the improved cGAN model is
used to refine the depth predictions of the first stage FCRN
model. Inspired by the work of image-to-image
translation [25], we improved the original cGAN
model [25]to tackle the rough depth map d to the ground
truth depth map g translation task. Like the original cGAN
model, the improved cGAN model also consists of a
generator network G(·) and a discriminator network D(·).

For the generator G(·) of the improved cGAN, it has the
skip connections to shuttle the low-level information
directly across the net. Moreover, the generator follows the
shape of ”U-NET” [36] like the generator in the model of
image-to-image translation [25], as shown in Fig. 3.
Specifically, there are skip connections between each layer i
and layer n − i, where n indicates the total number of
layers. In order to adapt the task of refining the rough
depth maps, we have changed the number of spatial filters
at each convolution layer and de-convolution layer. In
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Fig. 2. The two-stage deep regression architecture. In the first stage, a trained FCRN is used to obtain the rough depth maps [14]. The FCRN builds
upon ResNet-50, and uses a novel up-sampling blocks. In the second stage, we propose a new cGAN based on the existing cGAN model [25] to
tackle the task of refining the FCRN-based depth prediction. Note that, the new cGAN model adopts the ”U-Net” for the generator.

addition, the improved cGAN uses 3× 3 spatial filters with
stride 2 for all convolution layer instead of the original
cGAN uses 5 × 5 spatial filters with stride 2 in the
image-to-image translation task. Specially, we only use the
dropout in the first three convolution layers of ”U-Net”
decoder.

For the discriminator, to learn the high-frequency
information from the depth map, we restrict the
discriminator to use the structure of the local image
patches. That is, the discriminator of the improved only
penalizes the scale of patches for the depth maps, which
tried to classify each N × N patch in a depth map being
real or fake. Inspired by the structure of existing
model [25], using the convolution operations on
discriminator to achieve the scale discrimination of the
depth map. Moreover, we run this discriminator
convolutional across the depth map and average all
responses to provide the ultimate output of discriminator
D. In particular, we use 70 × 70 discriminator patch
according to the experience.

For the improved cGAN optimization, like the original
cGAN model, it alternatively optimizes D(·) along with a
generator G(·) to solve the follow min-max optimization
problem [25], [37]:

min
G

max
D

Eg∼pG
[log(1−D(g,G(g))] + Eg′ ,d′∼pgt

[logD(g
′
, d
′
)] + λEg∼pG,d∼pgt

[‖G(g)− d‖1],
(2)

where the discriminator D(·) is trained to distinguish
samples from the ground truth distribution pgt and the
generative distribution pG. (g, d) and (g

′
, d
′
) are sampled

from the rough depth map to the ground truth depth map,
and λ represents the relative weighting factor.

Conv Cov + ReLU + BN De-Conv + BN + ReLU + DropOut

De-Conv + BN + ReLU

De-Conv + ReLU +tanh

Kernel size: 3 3

Stride: 2 2

Input Output

Rough depth map 

and ground truth

Refined depth map

Fig. 3. Generator architecture of the improved cGAN. The ”U-
net” [36] based encoder-decoder with skip connections is similar to the
generator of the original cGAN [25].

For the optimization of the refine depth map, Eq. (2)
consists of an adversarial loss (the first two terms) and a
pixel-wise reconstruction loss (the last term). The
discriminator D takes the generated depth map from the
generator G and the ground-truth depth map as the inputs
and discriminates whether these are network output or not.
That is, Eq. (2) can enable one to train the generator
network G and deceive discriminator network D.
Accordingly, we can obtain the results that are highly close
to the ground truth depth map or are indistinguishable by
D.

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed model for
monocular depth prediction, we carry out the experiments
on two public datasets including the indoor dataset (NYU
Depth v2) and the outdoor dataset (Make3D). For the
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quantitative evaluation of the results, we use some metrics
from the existing works:

• Abs rel: 1
N

∑
yi∈|N |

|yi−y∗i |
y∗i

• Rms:
√

1
N

∑
yi∈|N | |yi − y

∗
i |2

• Average log10 error: log10 = 1
N

∑
yi∈|N | | log10(yi)−

log10(y
∗
i )|

• Threshold: max(
y∗i
yi
, yi

y∗i
) = δ < threshold(t ∈

[1.25, 1.252, 1.253])

where yi denotes the estimated depth, y∗i is the
corresponding ground truth depth, N is the total number
of pixels.

Implementation Details For the proposed two-stage
model, we first use the trained FCRN model [14] to obtain
the rough depth map. Then, we combine each estimated
rough depth map and the corresponding ground truth
depth map in a side by side manner as the input of the
improved cGAN model. Moreover, we introduce the details
of the proposed cGAN model for refining the FCRN-based
depth prediction on the NYU Depth v2 dataset and
Make3D dataset respectively. To explicitly describe the
details of the improved cGAN architecture, we define Ck
to represent a Convolution-BatchNorm-ReLU layer with k
spatial filters and CDk represents a
Convolution-BatchNorm-Dropout-ReLU layer with the
dropout rate of 50%.

For the generator architecture in the improved cGAN
model, the encoder and decoder architecture of ”U-Net” are
as follows.

For the NYU Depth v2 dataset, ”U-Net” encoder is

C256−C256−C512−C512−C512−C256−C256−C256,

and ”U-Net” decoder is

CD512− CD384− C576− C513− C513− C257− C257.

For the Make3D dataset, ”U-Net” encoder is

C256−C512−C512−C512−C512−C256−C256−C256,

and ”U-Net” decoder is

CD384− CD320− C578− C513− C513− C513− C257.

For the discriminator architecture, the 70 × 70
discriminator architecture for the NYU Depth v2 dataset is

C32− C64− C128− C256,

and the 70 × 70 discriminator architecture for the Make3D
dataset is

C1− C1− C1− C1− C1.

Note that, all ReLUs are leaky, with slope 0.2 in the
improved cGAN model. In addition, we use
TensorFlow [38] deep learning framework to implement
the proposed model for the validation experiments. The
improved cGAN model is trained on a single NVIDIA
GeForce GTX TITAN with 12GB memory. The evaluation
results on the NYU Depth v2 dataset and Make3D dataset
are discussed in the following subsections.

4.1 NYU Depth v2 Dataset

The NYU Depth v2 Dataset is a publicly available dataset,
which contains 645 indoor scenes. To evaluate the
performance of the proposed model, we follow the official
training and testing assignment, i.e., the training dataset
consists 249 scenes with 795 images, and testing dataset
consists 215 scenes with 654 images. For the proposed
model, the training process of the first stage FCRN model
is the same as that of Laina et al [14]. That is, nearly 95k
pairs of RGB-D images of the NYU Depth v2 are obtained
by sampling equally-spaced frames for each training
sequence and using the data augment methods to train the
first stage FCRN model. In particular, we down-sample the
original images of size 640 × 480 pixels to 1/2 resolution
and center-crop to 304 × 228 pixels, as input to the FCRN.
Moreover, the FCRN is trained with a batch size of 16 for
approximately 20 epochs. The starting learning rate is set to
10−2 for all layers, which is gradually reduced every 6 − 8
epochs. The momentum is 0.9.

The trained FCRN model [14] is used as the first stage
FCRN model to obtain the roughly estimated depth map
for the 795 training dataset and 654 testing dataset,
respectively. Then, we combine each roughly estimated
depth map and the corresponding ground truth depth map
from 795 training dataset and 654 testing dataset in a side
by side way before implementing the second stage of the
model. In this way, it can form up the new training dataset
and test dataset for the second stage of the model. That is,
we use the proposed cGAN model to refine the rough
depth maps based on the corresponding ground truth.
Here, the size of the FCRN-based rough depth map is
160 × 128, and the size of the input depth map of cGAN is
256 × 256. Therefore, the estimated rough depth maps are
up-sampled to 256× 256 using bilinear interpolation before
obtaining the new training and testing dataset. In
particular, we only use the 795 training data to train the
cGAN model in the second stage for the NYU Depth v2
dataset.

For the parameters of the second stage model, the
proposed cGAN model is trained with a batch size of 1 for
about 20 epochs. Following [25], we use minibatch SGD
and Adam solve [39] with the learning rate being 0.0002,
and the momentum parameters β1 = 0.5, β2 = 0.999. To
compare our results with state-of-the-art methods, we
up-sample the estimated depth maps back to the original
size 640 × 480. The quantitative comparisons on NYU
Depth v2 are shown in Table 1. From the comparison
results, our model achieves the promising results.

Moreover, the visualization results of the estimated
depth map are shown in Fig. 4. We compare a CNN-based
method with the multi-scale architecture [10], a method of
fusing the CNNs and the CRF [11], the single FCRN
method [14] and the single cGAN model [25] to show the
performance among different models. From Fig. 4, it is
obvious that our results are closer to the realistic.

To illustrate the effectiveness of the proposed model for
predicting the depth value of objects with far distance. The
visualization results of the details of the estimated depth
map are presented in Fig. 5. Specially, we compare a depth
prediction method of fusing the CNNs and the classical
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random forests regression algorithm [16] with the proposed
model. As show in Fig. 5, our model is more effective for
predicting the depth value of objects with far distance.

TABLE 1
Comparison results of Monocular depth prediction on the NYU Depth
v2 dataset [17]. The values are those reported original reported from

the authors in their respective paper.

NYU Depth v2 rel rms log10 δ1 δ2 δ3

Karsh et al. [40] 0.374 1.12 0.134 − − −
Ladicky et al. [41] − − − 0.542 0.829 0.941

Liu et al. [42] 0.335 1.06 0.127 − − −
Li et al. [12] 0.232 0.821 0.094 0.621 0.886 0.968

Liu et al. [11] 0.230 0.824 0.095 0.614 0.883 0.971
Wang et al. [13] 0.220 0.745 0.094 0.605 0.890 0.970
Eigen et al. [9] 0.215 0.907 − 0.611 0.887 0.971

Roy and Todorovic [16] 0.187 0.744 0.078 − − −
Eigen and Fergus [10] 0.158 0.641 − 0.769 0.950 0.988

Lei et al. [43] 0.151 0.572 0.064 0.787 0.948 0.986
The single FCRN [26] 0.127 0.573 0.055 0.811 0.953 0.988

The single cGAN 0.184 1.573 − 0.186 0.348 0.489
Our model 0.114 0.563 0.049 0.812 0.955 0.989

TABLE 2
Comparison results of Monocular depth prediction on the Make3D

dataset [18].

Make3D rel rms log10

Karsh et al. [40] 0.355 9.20 0.127
Liu et al. [42] 0.335 9.49 0.137
Liu et al. [11] 0.314 8.60 0.119
Li et al. [12] 0.278 7.19 0.092
Lei et al. [43] 0.207 6.90 0.084

The single FCRN [26] 0.175 4.45 0.072
The single cGAN 0.336 8.38 0.187

Our model 0.167 4.32 0.064

Fig. 5. Details of depth prediction on the NYU Depth v2. From left to
right: ground truth, the results of Roy and Todorovic [16] and our results.

4.2 Make3D Dataset

The Make3D dataset is a publicly available dataset for
outdoor scenarios, which consists of 400 training and 134
testing images. For the proposed model, the training
process of the first stage FCRN model is the consistent with

Fig. 6. Qualitative results on the Make3D. For our results, pixels that
distances > 70m are masked out according to the existing work [14],
[42].

that of Laina et al [14]. That is, nearly 15k pairs of RGB-D
images of the Make3D are obtained by using the data
augment methods to train the first stage FCRN model. In
particular, we down-sample the original images of size
345 × 460 pixels to 1/2 resolution and center-crop to
304 × 228 pixels, as input to the FCRN. Moreover, the
FCRN is trained with a batch size of 16 for approximately
30 epochs. The starting learning rate is set to 0.01 for all
layers, which is gradually reduced by optimizing the loss
function. The momentum is 0.9.

The trained FCRN model [14] is used as our first stage
FCRN model to obtain the roughly estimated depth map
for the 795 training dataset and 654 testing dataset,
respectively. Then, we combine each roughly estimated
depth map and the corresponding ground truth depth map
for the 400 training and 134 testing images in a side by side
way before implementing the second stage of the model.
Then, we can obtain the new training and testing dataset.
That is, we use the proposed cGAN model to refine the
rough depth maps based on this new training and testing
dataset. Moreover, we expand the new training dataset
from 400 to 15598 by using some methods of the training
data augmentation [44]. The dataset augmentation methods
include the scale transformation, i.e., the roughly estimated
depth maps are scaled by a random number s ∈ [10, 15]
and the corresponding ground truth are divided by s; flips,
i.e., the rough estimated depth maps and the
corresponding ground truth maps are both horizontally
flipped with a 90% chance; adjust the brightness of the
rough estimated depth maps and the corresponding
ground truth depth maps.
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Fig. 4. Qualitative results on the NYU Depth v2. From left to right: RGB image, ground truth, the results of Liu et al. [11], the results of Eigen and
Fergus [10], the results using FCRN [26] and our results.

For the parameters of the second stage model, the
proposed cGAN model is trained with a batch size of 1 for
about 20 epochs. We also use minibatch SGD and Adam
solve [39] with the learning rate 0.0002, and the
momentum parameters β1 = 0.5, β2 = 0.999. To compare
our results with state-of-the-art, we up-sample the
estimated depth maps back to 345 × 460. Moreover, the
quantitative evaluation of our model is shown in Table 2. In
particular, considering the low-resolution ground truth and
the inaccuracy over the range 70m (e.g. sky pixels mapping
is 80m), we train against ground truth depth maps and
obtain the quantitative results by masking out pixels of
distances over 70m according to the existing work [14],
[42]. From the results, we can see that our model represents
the state-of-the-art. In addition, the qualitative results on
Make3D are shown in Fig. 6, from which the predictions of
our method are closer to the realistic.

4.3 Result Analysis

Based on the above experiments, the performance of the
proposed two-stage model is better than that of other state-
of-the-art methods on the depth prediction task. The reasons
for this result are as follows.

As we all know, the two-stage regression model has one
more regression process than the one-stage regression
model. That is to say, our model has one more process of
correcting prediction error than the existing one-stage
regression model. In the first stage of our model, the
trained FCRN obtains the original depth maps from the
single RGB image. This regression process is equivalent to
adding a probabilistic priori to the training dataset in the
second stage. The first step regression will reduce the
computational search space of the second stage regression
and improve the prediction accuracy. Accordingly, in the
second stage, the improved cGAN model further improves
the accuracy of FCRN-based predictions. In addition, from
the Table 1 and Table 2, we found that the cGAN model
alone cannot accurately predict the depth image from a
single RGB image. In fact, the cGAN model can achieve
high-precision conversion for the two images with similar
styles [25]. Depth prediction from a single RGB image is a

very hard task due to the inherent ambiguity of mapping
the RGB image intensity measure into the depth value.
Therefore, we cannot obtain a depth map with higher
accuracy by using the cGAN model alone.

In most cases, the multi-stage learning approach yields
better predictive results than the one-stage learning
approach. Therefore, we have tried to add the third stage
regression model to the proposed model. i.e.
FCRN-cGAN-cGAN. The quantitative results on NYU
Depth v2 and Make3D are shown in Table 3and Table 4. It
is not difficult to find that the prediction results are worse
than those of the two-stage regression model. The
three-stage regression model did not significantly improve
the prediction results of the two-stage regression model. In
fact, for some models, the two-stage regression model is
sufficient to solve practical problems, such as the
Two-Stage Least Squares (2SLS) Regression Analysis [19],
[45].

TABLE 3
Comparison results between the proposed two-stage model and

three-stage model on the NYU Depth v2 dataset [17].

NYU Depth v2 rel rms log10 δ1 δ2 δ3

Two-stage model 0.114 0.563 0.049 0.812 0.955 0.989
Three-stage model 0.124 1.150 0.070 0.627 0.836 0.926

TABLE 4
Comparison results between the proposed two-stage model and

three-stage model on the Make3D dataset [18].

Make3D rel rms log10

Two-stage model 0.167 4.32 0.064
Three-stage model 0.173 4.56 0.082

5 CONCLUSION AND FUTURE RESEARCH

In this work, we propose a two-stage regression model to
tackle the task of depth estimation from a single RGB
image. Unlike most existing methods, which use the only
one-stage regression method, this paper is the first attempt
to explore the two-stage regression method for predicting
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the depth from a single RGB image. The two-stage
regression model is proved to be able to provide a better
performance than its one-stage counterpart. Previous
one-stage regression methods usually require a lot of
training data due to they mainly increase the number of
layers and the complexity of the model to achieve
satisfactory results. In the second stage of our model, only
a few training data sets are needed to improve the results
of the existing depth prediction model. Our model also has
some disadvantages. i.e., the proposed two-stage model
has more parameters and complexity than the existing
one-stage methods.

The success of our model lies in combines two different
types of state-of-the-art network architectures. i.e. the fully
convolutional residual network (FCRN) and the
conditional generation adversarial network (cGAN). Based
on the research results, we can conclude that the proposed
second stage model can not only improve the accuracy of
FCRN-based depth prediction but also improve the depth
prediction results of existing depth models. In the future,
we will use the proposed second stage model to improve
the results of other existing models for solving different
tasks.
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