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Abstract

Superpixel segmentation is important for promoting various image processing tasks. However, existing methods still have dif-
ficulties in generating high-quality superpixels in textured images, because they cannot separate textures from structures well.
Though texture filtering can be adopted for smoothing textures before superpixel segmentation, the filtering would also smooth
the object boundaries, and thus weaken the quality of generated superpixels. In this paper, we propose to use the adaptive
scale box smoothing instead of the texture filtering to obtain more high-quality texture and boundary information. Further-
more, we design a novel distance metric to measure the distance between different pixels, which considers boundary, color
and Euclidean distance simultaneously. As a result, our method can achieve high-quality superpixel segmentation in textured
images without texture filtering. The experimental results demonstrate the superiority of our method over existing methods, even
the learning-based methods. Benefited from using boundaries to guide superpixel segmentation, our method can also suppress

noise to generate high-quality superpixels in non-textured images.

CCS Concepts

o Computing methodologies — Image processing; Texturing; Image segmentation;

1. Introduction

Superpixel segmentation can effectively capture image features and
greatly reduce the complexity of subsequent image processing,
which plays an important role in many applications, such as im-
age segmentation [RM03, PAB*17, CLH* 16, RS13, LJIP*18], ob-
ject tracking [WLYY11], salient object detection [YZL*13], 3D
reconstruction [MK10], contour detection [MPAVG18, AMFM11]
and edge detection [LCH* 17]. Thus, many methods have been pro-
posed for superpixel segmentation, including graph-based meth-
ods [SMO00,FH04,LTRC11], clustering-based methods [DBBR* 12,
ASS*12, CLH17, AS17, LYYHI16, PZCZ19], and learning-based
methods [JSL*18, TLJ* 18, URF19].

Though much progress has been achieved, the existing tradi-
tional methods [LTRC11, ASS*12] are mainly relied on the color
difference between pixels to derive edge information and perform
superpixel segmentation. This prevents them from obtaining high-
quality results in textured images since textures may also contain
edge information, as illustrated in Fig.1 (b) and (d), the resulting
superpixels from existing methods are cluttered, and their edges
significantly deviate from the boundaries between different texture
regions. The learning-based methods [JSL*18, TLJ* 18] usually re-
quire a large amount of labeled data to train the model and the train-
ing is time-consuming. Besides, the learning method cannot yield
compact superpixels in textured images, though they can obtain
boundary-preserved superpixels in non-textured images, as shown
in Fig. 6.
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A possible way is to smooth the textures before superpixel
segmentation. Unfortunately, texture filtering is always expen-
sive [CLKL14]. Even worse, texture smoothing is done by aver-
aging the color of the pixels in a region, which would unavoidably
decrease the contrast around the boundaries. Hence, the boundaries
between different textured regions are difficult to detect, thus pre-
venting generating boundary-preserved superpixels, as illustrated
in Fig. 1 (c), (e), where some of the boundaries between textured
regions are broken.

In this paper, we address this challenge by developing a novel
algorithm to generate uniform and boundary-preserved superpix-
els in textured images. Specifically, we forgo texture filtering and
instead estimate the probability of pixels on boundaries using the
adaptive scale box. In this way, the textures are well-considered
while the shortcomings of employing texture filtering are avoided.
Besides, we developed a novel distance measure that utilizes the
boundary probability information, color and Euclidean distance at
the same time. As illustrated in Fig. 1 (f), our produced superpix-
els are compact and well boundary-preserved, while this cannot be
achieved with existing methods, even when they use the filtered im-
ages as input. In addition, our approach can run quickly, as shown in
Fig. 9. When the superpixels are required in different numbers, our
method is also able to produce high-quality results, as illustrated in
Fig. 2.

In the experiments, we compared our method with ten state-
of-the-art methods, including a graph-based method [LTRCI11],
three learning-based methods [JSL*18, TLI*18, URF19] and six
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Figure 1: Comparison between our method and some existing methods for the superpixel segmentation in a textured image (100 superpixels).
Our results are compact and the boundaries are well preserved, while those of other methods are not, as shown in the enlarged red/.
rectangles. (a) The input image (top) and its filtered one (bottom) using BTF [CLKLI14] with 4 iterations. (b) The resulting superpixels by
applying ERS [LTRCI11] to the input image, which are cluttered and the boundaries are not preserved. (c) The resulting superpixels by
applying ERS to the filtered image, which contain some broken boundaries. (d) The resulting superpixels by applying SLIC [ASS*12] to the
input image, which are not compact and do not have well-preserved boundaries. (e) The resulting superpixels by applying SLIC to the filtered
image, which have some broken boundaries. (f) Our results from the input image are compact and have well-preserved boundaries.

clustering-based methods [DBBR*12, ASS*12, CLH17, AS17,
LYYH16,GTP18]. The results show that our method can consider-
ably promote superpixel segmentation in textured images. Besides,
our method can also obtain high-quality superpixels in non-textured
images, since our algorithm can treat the noises and details as tex-
tures to suppress their interferences on superpixel segmentation.
The experiments demonstrate that our method can achieve compa-
rable efficiency to the state-of-the-art methods.

Our contributions are summarized as follows:

e We propose an adaptive scale box that can measure the tex-
ture/boundary probability information and reduce the influence
of textures in superpixel segmentation.

e We design a novel boundary metric to measure the distance be-
tween different pixels, which makes use of boundary informa-
tion, color and Euclidean distance simultaneously. Therefore,
our method can generate boundary-preserved superpixels in tex-
tured images.

e We compare the proposed method with ten approaches on two
datasets. The experimental results demonstrate that the proposed
method can achieve the significant performance under different
evaluation metrics.

The rest of this paper is organized as follows. A brief discus-
sion of the related work is given in Section 2. Then, our boundary
estimation and distance measure are described in Section 3 and 4,
respectively. The detailed algorithm for superpixel segmentation is

Figure 2: Images are segmented into 100/200/400 high-quality su-
perpixels using our proposed algorithm.

presented in Section 5. Afterwards, the experimental results are dis-
cussed in Section 6. Finally, the conclusion is drawn in Section 7.

2. Related Work
2.1. Superpixel Segmentation

Numerous superpixel segmentation methods have been developed.
They are mostly based on graphs or clustering techniques. Re-
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cently, learning-based methods were studied and have achieved sig-
nificant progress. They are discussed in the following.

Graph-based algorithms consider an image as a planar graph
and partition the graph into subgraphs to generate the superpixels.
Here, the pixels are regarded as graph nodes and they are connected
by the affinities between them. Until now, various partition meth-
ods using merging or splitting techniques have been proposed. For
example, the NCUTS algorithm [SMO00] recursively computes nor-
malized cuts on a graph for partitioning, and the bottom-up method
(FH) [FHO4] progressively merges sets of pixels based on the in-
ternal variation of the pixel affinities. To preserve the boundaries in
superpixel segmentation well, the ERS method [LTRC11] merges
disjointed sets of pixels by maximizing the entropy rate of the pixel
affinities. However, the irregular shape of its superpixels may be-
come a potential drawback in the following tasks [YZL*13]. In
general, graph-based methods are always time-consuming and their
superpixels are not very uniform, as their splitting or merging tech-
niques are not easy to execute on graphical structures.

Clustering-based algorithms are more preferred due to their
efficiency and easy implementation. They progressively refine an
initial clustering of pixels until they converge. The initial cluster-
ing is always performed by evenly distributing the seeds in the
image, which is then refined by using various clustering tech-
niques. Some popular methods are introduced as follows. The
SEEDS [DBBR*12] algorithm uses uniform blocks as the initial
approximation of superpixels and iteratively exchanges the neigh-
boring blocks in a coarse-to-fine manner. However, this approach
suffers from shape irregularity and has difficulties in controlling
the number of superpixels. The SLIC [ASS*12] method places the
initial cluster centers on a uniform grid and performs k-means clus-
tering in the five-dimensional space of the CIELab color and po-
sition feature space to achieve fast superpixel segmentation. The
LSC [CLH17] method uses a kernel function to map pixels to
a high dimensional feature space to capture perceptually impor-
tant global image properties, which allow it to produce compact
and regular shaped superpixels with linear time complexity and
high memory efficiency. The MSLIC [LYYH16] maps an image
to a 2-dimensional manifold space to more effectively capture
the boundary information and improve superpixel segmentation.
The SNIC [AS17] proposed a non-iterative clustering method us-
ing progressive propagation from seeds in a synchronous manner.
Though much progress has been made with these methods, they
cannot handle textured images since they do not consider the ef-
fects of textures on superpixel segmentation.

Learning-based algorithms have been recently proposed for
superpixel segmentation. The SEAL-ERS [TLJ*18] proposed a
segmentation-aware affinity learning approach to enhance bound-
ary detection and promote graph-based superpixel segmentation.
Based on the SLIC method, The SSN [JSL*18] proposed a differ-
entiable algorithm and construct an end-to-end learning system for
superpixel segmentation. The BASS [URF19] proposed a bayesian
nonparametric mixture model for superpixel segmentation, which
also respects topology and favors spatial coherence. In learning-
based methods, there is the challenge of collecting sufficient la-
beled images. Otherwise, high-quality results cannot be achieved.
In addition, the learning-based methods always rely on the color
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differences in pixels, which would focus too much on the details
and so ineffective at handling textures. Thus, their resulting super-
pixels are not regular and they are not effective at handling textured
images, which will be discussed in Section 6.

There are several other approaches such as the watershed trans-
form [MFCP*15] and geometric flows [LSK*09]. Interested read-
ers can refer to a recent survey paper [SHL18]. To the best of our
knowledge, there is a lack of existing studies on the effects of tex-
tures on superpixel segmentation. This prevents these approaches
from preserving boundaries between textured regions, which im-
pair superpixel segmentation.

2.2. Texture Filtering

Texture filtering is designed to smooth textures while preserving the
prominent structures of an image. For texture measurements, Xu
et al. [XYXJ12] offered a relative total variation measure within a
window for effectively distinguishing textures and structures. How-
ever, textures of various scales can coexist in an image, and small
structures may be mistaken as textures within a large window. Thus,
many methods have been proposed to promote texture measure-
ment to improve texture filtering. Cho et al. [CLKL14] suggested
patch-shifting to have the window placed inside textured regions
as much as possible. Lin et al. [LWS*16] used smaller patches
to preserve pixels at structured edges to avoid overly smooth-
ing small structured edges while using larger patches to smooth
the texture regions. Jeon et al. [JLKL16] presented a scale-aware
method for finding the optimal per-pixel smoothing scales to fil-
ter textures adaptively. Xu et al. [XW18] provided long and nar-
row edge-aware windows for adaptive texture measurements to pre-
serve small structures. Unfortunately, texture filtering methods un-
avoidably smooth boundaries, thereby preventing boundary detec-
tion and preservation in superpixel segmentation, as illustrated in
Fig. 1 (c) and (e). In addition, texture filtering methods are gener-
ally time-consuming because of their iterative smoothing.

Based on these works for texture measurement and detection, we
developed a novel measure to effectively detect the boundaries be-
tween textured regions. With the estimated boundary information,
our method can achieve high-quality superpixel segmentation.

3. Boundary Estimation

To well estimate the boundaries between different textured regions,
we need to measure textures to know their respective covered re-
gions. As we know, existing texture filtering methods have made
many efforts to this target. Unfortunately, due to the various scales
of textures and the small structures in an image, high-quality esti-
mates of the boundaries is still a difficult problem. As illustrated in
Fig. 3 (b) and (f), the method [CLKL14] missed or merged some
boundaries into small structures.

Therefore, we present a measure for well detecting multi-scale
textures and preserving small structures, thereby improving bound-
ary estimation. This algorithm includes the following steps:

1. Texture measurement with a large box is applied to each pixel
in the image.



4 / EG BIEX Author Guidelines

(e) 0]

(® (h)

Figure 3: Comparison of the estimated boundaries in textured images using the method from [CLKLI14] and ours. (a) and (e) are the input
images. (d) and (h) are the ground truths. In (b) and (f), the method from [CLKLI14] resulted in some missed boundaries (in red rectangles),
some boundaries in small structures being merged (in blue rectangles), and blurred estimated boundaries. For our results in (c) and (g), the
boundaries are well detected, even in small structures, and they are very clean. Compared with the ground truth, our estimation can well

capture the prominent object boundaries in textured images.

2. Each pixel is assigned an adaptive scale box for adaptive mean
smoothing of the image, in which the size of the pixel’s adaptive
scale box is determined by its measured texture value from step
1).

3. Texture measurement with a small box is applied to each pixel
in the smoothed image of step 2).

4. The results from step 3) can well approximate the probability
of pixels at boundaries, and they form the map for boundary
estimation, which is called Tnap.

Now, we discuss our measure for high-quality boundary estima-
tion using the illustration in Fig. 4. In step 1), using a large box
for texture measurement is helpful for detecting both large-scale
textures and small-scale textures. Of course, some small structures
will be mistaken as textures. Fortunately, the pixels in the textured
regions tend to have lower values in this texture measurement, and
the pixels on boundaries would have higher values, even when the
pixels are in small structures, which will be explained at the end of
this section. Benefited from these differences, we can determine the
adaptive boxes to smooth the image in step 2), through which the
pixels in the texture regions would be smoothed using larger boxes,
while the pixels at the boundaries would be smoothed using smaller
boxes. Thus, the color differences between these two kinds of pix-
els would be enlarged. As a result, by using a small box for texture
measurement in step 3), the values of the pixels on the boundaries
and the pixels in textured regions can be well separated, as illus-
trated in the table in Fig. 4. Therefore, our boundary estimation
in step 4) can be high-quality, as illustrated in Fig. 4. The exper-
imental results in Section 6 will show that our results have much
higher boundary recalls than existing methods, even the learning-

based methods. This means that our measure is very effective for
estimating the boundaries in textured images.

In our implementation, we used a large box with a size of 9 x 9
pixels for texture measurement in step 1) since the largest scale of
textures in images is seldom larger than this size according to the
previous literature. For the texture measurement in step 3), we used
a small box of 3 x 3 pixels to enhance the individual characteristics
of the pixels, and well separate the pixels on the boundaries from
the pixels in textured regions. With regard to the adaptive scale box
for smoothing a pixel p in step 2), it is computed by using the fol-
lowing formula:

K(p) =5(10x (1=T(p))) €0

where T'(p) is the value of the texture measurement of p in step
1), and C is a function that takes the nearest odd integer number.
Clearly, if T(p) is smaller, its K(p) will be larger, and vice versa.
Since T'(p) is generally in [0,1], K(p) will be an odd number in [1,
9], meaning that the box for smoothing would not be larger than our
used large box for texture measurement in step 1). In Fig. 4, for the
pixels a; and a; in the textured region, their smoothing boxes are
9 x 9 pixels, and for the pixels b; and b, on the boundaries, their
smoothing boxes are 3 x 3 pixels. This shows the effectiveness of
our method for adaptive smoothing of pixels.

With respect to texture measurement, we adopted the measure
in [LWS*16] due to its ease of use, which employs two kinds of
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Pixels | First 7' | Final 7},,4,
al 0.18 0.13
as 0.08 0.05
b1 0.76 0.84
b 0.78 0.85
c1 0.32 0.18
Co 0.56 0.72
(d) Smoothed (© Tnap (f) Measured values of
image the corresponding pixels

Figure 4: Our texture measurement for boundary estimation. The first texture measurement (First T ) with large boxes of 9 X 9 pixels can
make the pixels a| and a inside texture regions have low values, and the pixels by and by at boundaries have high values. As for the pixels
¢y and ¢y in small structures, their values are in the middle, and c has a lower value than c;, because ¢y is inside a texture region while c
at the boundary. After an adaptive smoothing, our second texture measurement (Final Tinap) with small boxes of 3 X 3 pixels can make a;
and ay assigned much lower values, and by, by assigned much higher values. As for cy, its value is decreased to be very low. With regard to
¢y, its value is increased to be very high. This shows our potential for effective boundary estimation.

boxes to handle pixels located in textured regions or in small struc-
tures. This measure is computed by the following formula:

Te(p) = | Z 8p.q - (0xI)g]

q€R(p)
T(p)=1 Y. &pq- ()]

g€R(p) 2 2 o
8pq X exp(_(xp_xq) +0p—yq) )

207
T(p) = Norm(Tx(p) + Ty(p))

where [ is the input image, dx/ and dyl are the gradients of the
input image along the x and y directions, respectively. R(p) is the
box centered at pixel p and gp 4 is a weighting function. 7x(p) and
Ty(p) are called windowed inherent variation, which calculates the
absolute sum of partial derivative’s value. Norm is for normalizing
the Tinap values into the range of [0,1].

As discussed in [XYXJ12], if pixel p is inside a texture region,
its T'(p) value would be very low since the partial derivative’s value
may be positive and negative, when summing the values up, the
positive and negative values may be counteracted by each other. In
contrast, if pixel p is on a boundary, it would have a high T'(p)
value.

4. Distance Measure

Our method for superpixel segmentation also clusters pixels using
seeds set beforehand. Here, an important task is to measure the dis-
tances between pixels and seeds. To suppress the impairment of the
textures in superpixel segmentation. Inspired by [ZLGZ17], we de-
velop a distance measure to well preserve the boundaries between
textured regions when generating superpixels. It is given as:
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D(p,s) =wp X B(p,s) +w;i xI'(p,s) + ax we xC(p,s)  (3)

B(p,s), I'(p,s) and C(p,s), called the boundary term, the color
term and the compactness term, respectively, are used for measur-
ing the differences between the textures, colors and positions of two
pixels in textured regions, and they each have their own weights that
adjust their effects in superpixel segmentation. Noticed that I'(p, s)
is the smoothed image introduced in step 2), Section 3 and Algo-
rithm 1. o is a parameter to control the compactness of the resulting
superpixels. When a is higher, the resulting superpixels would be
more compact, but their boundary adherence would be reduced, and
vice versa. Generally, o can be set as a value in [0.1,5]. In this pa-
per, o is set to 1.0 to achieve a good balance between compactness
and boundary adherence. To make the three terms have similar ef-
fects on superpixel segmentation, we compute their weights using
the following formula:

I'(p,s)+C(p,s)

wp = 7
v, — B(p:5) +C(ps)

’ J @)
e — L:9) jB(pJ)

J=2(B(p,s) +1'(p,5) +C(p,s))

Clearly, if the boundary term has a higher value, its weight will
be lower to reduce its effects on the distance measure, and vice
versa. In this type of balancing treatment, the boundary term can
well prevent the color term from having larger effects, thereby sup-
pressing the influences of textures in superpixel generation. Thus,
high-quality superpixels can be expected in textured images.



6 / EG BIEX Author Guidelines

Algorithm 1 Our superpixel segmentation algorithm

Input: Input image /, desired superpixel number M and compact-
ness parameter o.
Output: The resulted superpixels RS.

1: Compute T (p) for each pixel p in I with Eq(2), where a large
box of 9 x 9 pixels is used.
: Compute K (p) for each pixel p with Eq(1).
: for each pixel p do
I'(p) + adaptive mean filtering of I(p).
: end for
: Compute Tuap(p) for each pixel p in I’ with Eq(2), where a
small box of 3 x 3 pixels is used..
7: Initialize clustering seeds Cy; by sampling pixels evenly with
the interval S between them.
8: Each initial seed is optimized to be at the pixel with the lowest
Tmap value in a box of 3 x 3 pixels that is centered at the seed.
9: fort =0: njer — 1 do
10:  for each clustering seed Cys do
11: Collect the best matching pixels from its 25 x 2§ square
neighborhood by the distance measure with Eq(3).
12:  end for
13: end for
14: Enforce connectivity.

As done in previous works [ASS*12, AS17], our color term and
compactness term are computed using the following formulas:

I'(p.5) =\ (Lp =L+ (ap—as 2+ (bp b2 (5)

where I’ (p,s) is the smoothed image, (L, ap,bp) and (Ls, as, bs)
are respectively the colors of pixel p and seed s in the CIELab
space.

Cp.5) =/ (e —x0) + (rp 32 ®)

where (xp, yp) and (xs, ys) are the coordinates of pixel p and seed
s in the image, respectively.

For the computation and the effects of the boundary term for
superpixel segmentation, we conduct a detailed discussion in the
following subsection.

4.1. Boundary Term

To avoid superpixels from straddling the boundaries of different
texture regions, we use the boundary term to measure the probabil-
ity of the line segment from pixel p to seed s straddling boundaries.
Here, we use the Line Iterator in the OpenCV library to obtain the
line pixels because it is simple and fast. For these pixels, their val-
ues of Tinap are accumulated to compute the boundary term. If the
boundary term has a higher value, it is more likely that the line seg-
ment straddles the boundaries between textured regions. Here, we
use a clipping operation to avoid the accumulation of small Tuap
values that can mistake boundary information along with a long

(a) (b) ©

Figure 5: Comparison of the generated superpixels with dif-
ferent boundary estimations using our method and the method
from [CLKLI4]. (a) is the input image. (b) is the result by the
method [CLKLI14] and (c) is the result by our method. Clearly, our
resulting superpixels are much better, e.g., those in the red rectan-
gles.

line segment. This is helpful for generating high-quality results
when fewer superpixels are required because each of them tends
to be much larger. The clipping operation forces the values that are
smaller than a threshold to be zero. In our tests, we set the mean
value of Tinqp as the threshold and it is able to obtain very good
results. Finally, our boundary term is computed using the following
formula:

B(p,s) = Z Tnap(q),U is the line from pto s
qelU

T (q) _ Tmal’(Q)v if Tmup(q) > Tmap
e 0, otherwise

@)

where U is the line from pixel p to seed s. fmap is the mean value
of Tmap-

Here, we have an analysis of our boundary term. Let’s do not
consider the color I’ and the position C information first. If there are
object boundaries between the pixel p and the seed s, the value of
the boundary term and distance measure will be larger, so the pixel
p is unlikely to belong to the superpixel of the seed s. In contrast, if
there is no object boundary between the pixel p and the seed s, the
boundary term is small or even zero, then the pixel p may belong
to the superpixel of the seed s. Of course, distance measure also
needs to consider color and position information. If the pixel p is
in the texture region, the boundary term may be zero. But because
the texture region in the smoothed image I’ is more uniform than
the source image /, the results of our method are more compact
than other methods, as shown in Fig. 6.

5. Our Algorithm

Our algorithm is composed of two parts. First, we construct Tiuqp
using the measures in Section 3. Then, we follow the pipeline of
SLIC [ASS*12] for superpixel segmentation. For an image with N
pixels, the neighboring superpixels should be positioned at a reg-
ular grid interval S = 1/N/M. The pixels joining the cluster of a
seed are from a 25 x 28 area centered at the seed. Afterwards, we
use our new distance measure described in Section 4 to select the

submitted to EUROGRAPHICS 2020.



/ EG BIEX Author Guidelines 7

SLIC ERS SEEDS

LSC

MSLIC

SEAL-ERS SNIC

i
)
1

i

<]

0l 1=
= }'h,-“- \
'i&ﬁb‘ ‘_J‘i.lﬁl

SSN

N

SCALP

BASS

3
&

Figure 6: Visual comparison of our method against other state-of-the-art algorithms, including SEEDS [DBBR*12], ERS [LTRCI1],
SLIC [ASS*12], LSC [CLHI7], MSLIC [LYYH16], SNIC [AS17], SEAL-ERS [TLJ* 18], SSN [JSL* 18], SCALP [GTP18] and BASS [URF19].
As illustrated in the zoomed-in regions, our superpixels can well and compactly adhere to the boundaries, while the superpixels of the other
methods cannot.
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pixels for generating superpixels. Our algorithm is listed in Algo-
rithm 1. Our Tygp is constructed from Line 1 to Line 6, and our
superpixel segmentation proceeds from Line 7 to Line 14.

In our algorithm, Tinqp plays an important role. If the boundaries
in textured images are high-quality estimates, the superpixels can
be well generated, and vice versa. As illustrated in Fig. 5, with the
estimated boundaries using the method from [CLKL14], the gen-
erated superpixels cannot well preserve boundaries, while with our
method, the generated superpixels are very good.

6. Experiments

We compared our method with ten existing methods, including
the graph-based method ERS [LTRCI11], the learning-based
method SEAL-ERS [TLJ*18], SSN [JSL*18], BASS [URF19]
and six clustering-based methods SEEDS [DBBR*12],
SLIC [ASS*12],LSC [CLH17], MSLIC [LYYH16], SNIC [AS17],

SCALP [GTP18]. We implemented our method with C++, and
ran the implementation of the compared methods from their
websites respectively. The datasets used for the comparison are
the conventional images from the BSD500 [MFTMO1] and the 40
textured images from [XW18]. The criteria for the quantitative
evaluation are as follows:

e Undersegmentation Error (UE). UE measures the deviation of
superpixels from the ground truth segments. It is computed by
the overlap of superpixels with multiple, nearby ground truth
segments [NP12]. A lower UE indicates that more objects in an
image are well recognized.

e Boundary Recall (BR). BR is an important metric for evaluating
the boundary adherence of superpixels by measuring the fraction
of the ground truth boundaries that fall within at least two pixels
of the resulting superpixel boundaries [MFTMO1]. A high BR
indicates that very few true boundaries are missed.

e Achievable Segmentation Accuracy (ASA). ASA measures
whether the objects in images are correctly recognized, by label-
ing each superpixel with the ground truth segments of the largest
overlapping area [LTRC11]. Higher ASA values are expected
when more correct objects are recognized.

o Compactness (COM). COM cares for whether each superpixel
has a regular shape and size [SFS12]. It is computed by com-
paring the area of each superpixel with the area of a circle (the
most compact 2-dimensional shape) with the same perimeter,
i.e., higher is better.

Fig. 6 displays some resulting superpixels from these methods,
showing the superiority of our method over existing methods with
respect to boundary preservation and compactness.

Fig. 7 plots the quantitative evaluation results for these four cri-
teria for the resulting superpixels when using these methods on the
BSD500 images [MFTMO1]. Because SEAL-ERS and SSN use the
segmentation ground truth of BSD500 as the training data, it be-
haves better than ours in terms of UE and ASA. Except for this, our
method has the best performance among the compared methods.
From the results in Fig. 6, it is clear that the generated superpixels
with the learning-based methods SEAL-ERS, SSN and BASS are
significantly cluttered.

Fig. 8 shows the evaluation results of BR and COM for these
methods with respect to the textured images in [XW18]. We do not
compute their UE and ASA values since only the ground truth of
the boundaries are provided for these textured images. Note that
BASS has the highest BR and the lowest COM values. This is be-
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cause BASS cannot well distinguish the edge information in tex-
tures from the object boundaries, and so its results are much clut-
tered, as shown in Fig. 6. Our method makes considerable improve-
ments in terms of BR and COM metrics in textured images.

We also compared these methods with respect to their efficiency
in treating these images. The time costs were collected using a per-
sonal computer installed with an Intel Core i7, 3.40 GHz CPU,
where the images are kept as 321x481 pixels. The average time
for them to generate superpixels of different numbers in an im-
age is plotted in Fig. 9. Since our method needs to construct Tiuqp
for boundary estimation, which requires approximately 0.2 seconds
for an image in general, our method is a little slower than SEEDS,
SLIC and SNIC. Even so, our method still have comparable effi-
ciency to the state-of-the-art methods.

7. Conclusion

In this paper, we proposed a new superpixel segmentation algo-
rithm that forgoes texture filtering and instead estimates the proba-
bility of pixels on boundaries in textured regions using the adaptive
scale box, then we employed the probability information to design
a novel distance measure for well considering the boundary, color,
and Euclidean distance simultaneously. In this way, our approach
can produce boundary-preserved superpixels. The experimental re-
sults show the superiority of our method over existing methods.
Besides, our method is simple and fast, and it could be helpful for
other vision tasks.
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