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I have often wondered how such an apparently delicate insect 
manages to exist in such a wind-swept locality 
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Wake up! Wake up, sleeping butterfly! We have a long journey ahead  
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The Falkland Fritillary:  Biological and Ecological Factors in the 
Conservation of Yramea cytheris cytheris (Drury 1773) 
  
Nigel Robert Haywood 
 
Abstract  
 

This thesis aims to address gaps in the knowledge of the Falkland Islands' only resident 

butterfly, Yramea cytheris cytheris (Drury 1773), and thereby to contribute to an 

evidence-based approach to its conservation. Sightings had been infrequent, and its 

distribution, life cycle, habitat requirements and relationship to its Latin American co-

subspecies Y. c. siga (Geyer 1832) little studied. Research set out here showed it to be 

an obligate Viola-feeder, most commonly on Viola maculata, which was widely, but 

sparsely, spread around the islands in small (< 1 ha) patches around the coast, 

particularly amongst dwarf shrub heath. Y. c. cytheris had a wide geographic spread, but 

records of only 21 populations had been recorded.  For oviposition, it favoured medium-

sized Viola in warm, sheltered locations, for example north-east facing slopes within a 

matrix of dwarf shrub heath, grass and patches of bare ground. There was evidence that 

it chose plants with above-average chlorophyll content. It appeared to be univoltine, 

laying its eggs singly, with a preference for warmer leaves; the larvae were not 

gregarious. Female adults were on the wing for an average of four days, the males five, 

over a flying season from December to February. It showed little mobility, even between 

adjacent patches. Populations were small, generally <10 on a given day, though catch 

rates varied considerably. Y. c. cytheris and Y. c. siga differed little genetically: the 

commonest haplotypes for each of the genes COI, EF-1α, wingless, as well as a 

concatenation of all three, were shared by both. Latin American butterflies were larger 

than those from the Falklands, with a lower wing aspect ratio. Morphometric analyses 

showed Latin American butterflies had more scalloped outer margins to their forewings. 

Y. c. cytheris showed local adaptation in claw shape, with those from the windiest sites 

being more curved. A draft species action plan sets out recommendations. There are 

still knowledge gaps in the life cycle, particularly diapause and pupation, and in 

population sizes and dynamics. An integrated morphometric and molecular approach is 

advocated in approaching relationships between populations. Viola conservation is 

important, especially in the light of climate change, with greater understanding needed 

of the role of grazing. Urgent consideration should be given to ensuring reintroductions 

can be made in response to extinctions. A case is made for Y. c. cytheris to become a 

flagship for insect conservation in the Falklands.  
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Preface 
 

The Falkland Island Government’s Biodiversity Strategy identified the Falkland fritillary, 

Yramea cytheris cytheris (Drury 1773), as one of the species of concern for which plans 

should be drawn up to "identify the causes of decline, threatening processes and the 

specific measures needed to arrest and and reverse the decline, as well as any research, 

survey or monitoring requirements needed to underpin the action" (Falkland Islands 

Government 2008, p.13). 

 

Falklands Conservation approached the UK NGO Butterfly Conservation for advice on 

implementation, and, following further discussions which included the Falkland Islands 

Government, the South Atlantic Environmental Research Institute (SAERI) and 

Bournemouth University, this project was established.  

 

I am grateful to the following for their support for this project: Bournemouth University, 

for a Vice-Chancellor's Scholarship, together with a morale-boosting Sports Scholarship; 

SAERI, for air fares and logistical support for my three study visits; and the Shackleton 

Scholarship Fund, for a scholarship for my 2016-2017 study visit. 

 

Ethics statement 
 
Research work in the Falklands was carried out under Licence R19/2015 from the 

Falkland Islands Government. Y. c. cytheris is a protected species in the Falkland Islands 

(Falkland Islands Government 1999) and lethal collection of specimens was limited by 

quota. In all cases field work took place with the permission of landowners. 
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Chapter 1: Introduction 
 

1.1 The Falkland Islands: an overview 
 
The Falkland Islands archipelago comprises the two main Islands of East and West 

Falkland, together with over 500 smaller islands and islets.  The islands, which have a 

total land area of about 1,220,000 ha, lie in the South Atlantic 400 km east of the South 

American continent.  The highest point on the islands is Mount Usborne, 705 m. Much 

of the terrain is covered by acid grassland on poorly drained peat, or dwarf shrub heath 

where the soil is better drained (Armstrong, 1994; Liddle, 2007).  

 

 
Figure 1.1  The Falkland Islands and Latin America.  Country and UK Overseas Territory names are shown 

in italics; capital cities and major settlements in UK Overseas Territories are marked in bold. Sites from 

which specimens of Yramea cytheris were available for study are marked in blue for Y.  c. siga and orange 
for Y.  c. cytheris Land use: agricultural development and the impact of grazing  

 

Earliest records of the Falklands, dating from the eighteenth century, described a 

landscape without trees or pasture, covered in heath, with tussac grass, Poa flabellata, 

up to two metres high, fringing the coast and covering small islands (Tourangeau et al. 
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2019). Cattle were introduced with the first settlers in the mid-eighteenth century, with 

numbers reaching a recorded peak of 60,000 in 1846; sheep, introduced at the same 

time, began to predominate in the late nineteenth century, reaching 807,000 by 1898 

(Armstrong 1994, Palmer 2004). Grazing has shaped the environment, particularly in 

those coastal areas which would otherwise have been covered by tussac,  

 

The Falkland Islands outside Stanley are sparsely populated. The 2012 census recorded  

2,840 inhabitants, excluding the 1000 strong garrison, of whom 2,140 lived in Stanley 

(Falkland Islands Government 2013). Grazing remains the main agricultural activity, at 

a low density (Armstrong 1994, McAdam 2014), with 5,000 cattle and 500,000 sheep 

recorded in 2016 (Department of Agriculture, Falkland Islands 2017). 

 

The aftermath of the 1982 conflict had an impact on the landscape (Royle 1994, McAdam 

2013).  The majority of large farm holdings, with owners outside the islands, were broken 

up, and sold to local farmers; a road network was built up, which gave relatively easy 

access to the settlements outside Stanley; the garrison was established at Mount 

Pleasant, serviced by regular flights and ships from the UK, set up in part to help the 

economic development of the islands; tourism began; a major fishing industry was 

established, and offshore oil exploration started.  

 
There have been no major changes in land use since the introduction of grazing. Focus 

since the conflict has been on agricultural development, with improvement of the land to 

enable better support for livestock a priority. There has been an increasing focus on 

conservation since the foundation of the NGO Falklands Conservation in 1979, with re-

planting of coastal tussac and the establishment of conservation areas. 

 

1.1.1 Climate 
 
Over the five-year period 2013 - 2017, temperatures recorded at the Falklands' main 

weather station, Mount Pleasant Airport, averaged 10ºC in January and February, and 

3ºC in July and August (Figure 1.2) (Valor and López 2017). Snow occurred throughout 

the year, though seldom settled for long; rainfall averaged 38.9 mm a month, with little 

monthly variation. The wind was predominantly from the west or south-west, with an 

annual mean of 8 ms-1, and marked by heavy gusting, averaging 19.3 ms-1 (Figure 1.3).  

At a wind speed of  8 ms-1, the wind chill would make the perceived mean temperature 

away from shelter  -2.4ºC in the winter and 6.7ºC in the summer (Osczevski and 

Bluestein 2005). 
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Figure 1.2  Annual temperature range at Mount Pleasant Airport over the five-year period 2013 - 2017. 

Shaded areas represent the standard error of the fitted regression lines after loess smoothing. Maximum 

and minimum temperatures ranges are based on weekly means.   

 

 

Figure 1.3  Annual wind directions and wind speed ranges from Mount Pleasant Airport. Data are from the 
five year period 2013 - 2017.  The air flow was predominantly from the west and south west, with an annual 

mean speed of 8 ms-1.  The maximum gusts represent the weekly average of the highest wind speeds, with 

an annual mean of 19.3 ms-1. Shaded areas represent the standard error of the fitted regression lines after 
loess smoothing. 
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1.2 Butterflies in the Falkland Islands 
 

The Falkland fritillary, Yramea cytheris cytheris (Figure 1.4) is, as far as is known, the 

only butterfly resident in the Falklands. A southern monarch, Danaus erippus, caught on 

the islands, was exhibited in 1892 (South London Entomological and Natural History 

Society 1892). Robinson (1984) listed the southern painted lady, Vanessa carye, to 

which Jones (Jones and Lewington 2004) added the Brazilian painted lady, Vanessa 

braziliensis, speculating that the two species might sometimes breed on the islands.   

 

 
Figure 1.4 The Falkland fritillary, Yramea cytheris cytheris , on a patch of wild celery, Apium australe, on 
Bleaker Island. Photograph by the author. 

Jones also recorded a butterfly, the Falkland blue, which had yet to be collected and 

identified, although an example had been photographed on West Falkland in 1987 

(Figure 1.5). This butterfly, which continues to be the subject of speculation in the 

Islands, was first reported at second hand by Vallentin (1901) as occurring in Stanley, 

though in 1904 he reported  "it appears to be quite extinct" (Vallentin 1904, p. 22). Elliott 

(1927) recorded reports from Port Louis. Bálint et al (2013), on the basis of the 1987 

photograph, placed the butterfly in the Latin American Lycaenid genus Pseudolucia. 

 

The inclusion of the Falkland blue butterfly in the Falklands fauna is problematic. Most 

Lycaenid larvae have some form of association with ants, albeit obligate for only a small 

proportion (Malicky 1970, Fiedler 2006, Schär et al. 2018); ants, other than those found 

in biosecurity checks (e.g. lenipethima humile, Ochitellus spp.), have not been reported 

in the Falkland Islands (Wetterer et al. 2007, James 2016).  Lycaenid larvae also have 

a preference for Leguminosae as host plants (Downey 1962, Munguira et al. 2009), a 

family which only exists in the islands through introductions.  These factors diminish the 
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likelihood of the butterfly’s being a long-term resident. One possibility is accidental 

introduction: for example a larva which subsequently hatched into a Lycaenid, Lampides 

boeticus, was found in a pack of imported peas (Penguin News 2011). 

 

 
Figure 1.5   An unidentified blue butterfly photographed at Hill Cove in November 1987.  The site was 10 km 

to the east of the settlement, at 350 m. Photograph by Chris Samson supplied by Dubi Benyamini of the 

Israeli Lepidopterists' Society. 

 
Elliott (1927) reported sightings of yellow butterflies at Port Louis and Darwin without 

speculating on their species. No other records of yellow butterflies in the Falklands have 

been found.  Darwin's (2005) and Fitzroy's (Darwin et al. 1839) observation of large 

numbers of butterflies about 800 km north east of the Falklands, off San Blas, in a strong 

north-westerly breeze, during the 1831 voyage of the Beagle showed mass movement, 

driven by wind, was possible. Darwin noted “infinite numbers of Lepidoptera” of various 

species, chiefly yellow; Fitzroy observed that they filled a space not less than two 

hundred yards in height, a mile in width and several miles in length. Williams (1930) 

suggested the yellow butterflies were Colias lesbia, a migratory species found in the 

Andes, with a range extending from Brazil to southern Argentina and Chile. These would 

appear a strong candidate for the yellow butterfly reported by Elliott. 
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1.3 Yramea cytheris: questions of classification 
 

1.3.1 Position among the fritillaries 
 

Yramea cytheris is a member of the tribe Argynnini (Nymphalidae: Heliconiinae: 

Argynnini), the fritillaries, mainly found in the northern hemisphere (Lamas and Grados 

2004,  Simonsen 2006). The species name cytheris had variously been ascribed to 

Brenthis, Argynnis and Issoria before settling in Yramea (Reuss 1921),  a genus currently 

comprising six species, all, other than the Falkland population of Y. cytheris, found in 

Latin America, mainly in Chile, Argentina, Peru and Bolivia. 

 

Simonsen et al. (2006) drew together work on Argynnini, investigating larval host plants, 

morphology and DNA. They concluded that it was a robust, monophyletic clade, which 

split into two further clades, the Euptoietina and a grouping of Yrameina, Boloriina and 

Argynnina. Yrameina only comprised the genus Yramea, Boloriina the genus Boloria, 

and Argynnina the genuses Issoria, Brenthis and Argynnis. 

 

Y. cytheris  was first described, illustrated by a male, as Papilio nymphalis cytheris, from 

a specimen “from one of the Falkland islands, situated near the entrance of the streights 

[sic] of Magellan” (Drury 1773, p. 7). Two sub-species are currently accepted: the 

nominate, Y. c. cytheris, the Falkland fritillary, found in the Falkland Islands, and 

Y. c. siga (Geyer, 1832) found in South America, principally Chile and Argentina. The 

basis for regarding them as co-subspecies is considered at 1.3.3. 

 

1.3.2 Early classification 
 

The first mention of what appears to be Y. cytheris as a South American species was as 

Argynnis siga, in Geyer's continuation of Hübner's Zuträge zur Sammlung exotische 

Schmetterlinge (Geyer 1832). The illustration, like Drury's, shows a male, in this case 

recorded, presumably in error (Burmeister 1878), as being taken in Java (present day 

Indonesia).  

 

Y. cytheris is sexually dimorphic (Figure 1.6) the female resembling Y. lathonioides 

(Blanchard 1852), the sexes of which are alike. Blanchard (1852) and Reed (1877), 

perhaps assuming they were dealing with a similarly monomorphic species, recorded 

the female as Argynnis anna (which Reed had considered renaming Argynnis chilensis). 
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The species name lives on in the Spanish name for the butterfly, ana del sur (Klimaitis 

2000). 

 

 

Figure 1.6  Ventral surfaces of the right hind wing of Yramea cytheris showing sexual dimorphism. The 

female is on the left, the male on the right. Photograph by the author. 

Butler (1881 pp 465-6) unpicked the confusion to some extent, although putting cytheris 

in the genus Brenthis and supporting the addition of a separate species, Argynnis 

montana (Reed, 1877) with a "much more vivid coloration of the under surface". By the 

time of Elwes (1889), who noted "The synonymy of the Chilian [sic] species of Argynnis 

is somewhat involved", and Staudinger (1899), who went over the previous literature and 

examined a range of new examples, the situation started to settle. Staudinger rejected 

anna as a separate species, stating that he had received many hundreds of specimens 

from Chile, and that, if the two species were commonly found, he would not have 

expected to find only Y. cytheris.  Enderlein (1912) finally brought together as synonyms 

cytheris, siga, anna and lathonioides, although the latter is now recognised as a separate 

species. Herrera et al. (1958) summarised the various changes, and gave a useful 

timeline. 

 

The differentiation between siga and cytheris was not, however, settled. Butler (1893) 

and Vallentin (1904) both described butterflies caught in the Falklands as Argynnis siga. 

Reuss (1921), who first proposed the genus Yramea, in which he placed it, used cytheris  

for the South American butterfly.   

 

1.3.3 Basis for two subspecies 
 

Watkins (1924) was the first to propose a subspecies, Argynnis cytheris falklandica, for 

the Falklands butterfly. This was unconventional, as the type of cytheris was caught in 

the Falklands, so should, as nominate, have been A. cytheris cytheris. The South 
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American subspecies would then have been given a different subspecies name. This 

might be because of the misconception that Drury's specimen was from South America: 

Butler (1881, p. 466) wrote "Drury's type was from the Straits of Magellan, and an 

example in the British Museum of Natural History, London (BMNH) from Port Famine 

agrees well with it: none of the Magellan males are quite so brilliantly coloured as the 

Chilian [sic] variety B. siga." Watkins's proposed name, however, was not accepted, nor 

was a further sub-species proposal, with a new genus name, for a Chilean specimen, 

Chilargynnis cytheris subtusviola (Bryk 1944). The principle of subspecies was, 

however, accepted and the present-day situation was arrived at, with the nominate Y. c. 

cytheris representing the Falklands butterfly, and Y. c. siga the Latin American (Lamas 

and Heppner, 2004, Benyamini et al., 2014). 

 

Just as much of the discussion about species was based on colour, so was the division 

into subspecies. Bryk's (1944) proposal made that explicit, with subtusviola suggesting 

a violet underwing. Watkins (1924, p.456) set out a clear differentiation for the Falkland 

subspecies:  

 

"This, the Falkland Islands race of cytheris, differs from the typical form from the 
Magellan Straits in the greater whiteness of the pale markings below (the costal 
marks of both wings and the long central dash of the hind wing), and also in the 
general tint of the light areas of the underside in the ♀, which have no trace of 
ochreous or brownish, but are whitish pink as a background to dark purplish 
markings."  

 

1.3.4 Naming conventions in this thesis 
 
(i) English 
 
Y. c. cytheris is sometimes referred to as the Queen of the Falklands fritillary (Strange, 

1992; Jones and Lewington, 2004). The earliest usage appears to be on a Falkland 

Islands postage stamp of 1984, designed by Ian Strange (Gibbons 2016).  It possibly 

originated in Y. c. cytheris's earlier attribution to the genus Issoria, represented in Europe 

by I. lathonia, the Queen of Spain fritillary. In accordance with the Falkland Island 

Biodiversity Strategy (Falkland Islands Government 2008) the name Falkland fritillary is 

used in this thesis. 

(ii) Scientific names 
 

Yramea cytheris is used in the following chapters for both populations of Y. cytheris when 

it is obvious whether the Falkland or the Latin American butterfly is being considered.  
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The terms Y. c. cytheris and Y. c. siga are used when further clarity is required. This 

does not prejudge the question of whether the two populations constitute two separate 

subspecies. 

 

1.4 Yramea cytheris: range and distribution 
  
1.4.1 Latin American populations 
 
Yramea cytheris has a wide distribution in Latin America, from Mendoza to Tierra del 

Fuego (Dapoto et al. 2003), a north-south range of over 1700 km. There is one possible 

mention for Ecuador, as "A. cytheris", though probably with "A." for "Adelpha" rather than 

"Argynnis" (Brown 1950). If the latter, it would be very much an outlier. The attribution to 

Java (1.3.2), in present day Indonesia (Geyer 1832), is almost certainly an error. Klimaitis 

(2009) gives its range in Argentina as the provinces of Río Negro, Neuquén, Chubut, 

Santa Cruz and Tierra del Fuego. Benyamini et al. (2014) give its Chilean distribution as 

all the provinces from Metropolitan Santiago to Magallanes. This overall distribution is 

confirmed by the origins of specimens in the BMNH (n = 49: Huertas (2007)) and Oxford 

University Museum of Natural History (n =24: author's record), and through searches on 

the internet (Figure 1.7). Particularly helpful web sites for observations, supported by 

photographs, were EcoRegistros.org (n =22), and iNaturalist.org. (n =64). 

 

 
Figure 1.7 Latin American records of Y. cytheris, compiled from museum specimens and the results of 
literature searches.  Capital cities, including Stanley, the principal settlement in the Falkland Islands, are 

shown for reference. 
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1.4.2 Falkland Island populations: 19th and 20th century records 
 

 
 

Figure 1.8  Earliest records of Y. cytheris in the Falkland Islands, divided into: pre 1935, drawing on museum 

specimens and the results of literature searches; between 1935 and 1990, drawing on Carstairs (1990); and 
post 1990, drawing on personal communications and observations.  

After the specimen described by Drury, the next record of Y. cytheris in the Falklands 

was a single specimen caught at Darwin Harbour (Butler 1893), although the butterfly 

was already known on the islands by 1892 (South London Entomological and Natural 

History Society 1892). Vallentin recorded specimens of Y. cytheris at Roy Cove in 

January 1900, which were subsequently passed to the BMNH. He observed (Vallentin 

1904, p. 22), "I noticed numbers [...] round the house, and also in the vast enclosures of 

Mr. Bertrand's property. The bright flowers growing in the sheltered corners of the garden 

seemed very attractive to these butterflies, and without any difficulty I captured a nice 

series of them".  He added that the butterfly had been seen in various places in the West 

Falklands, but that Butler's example was the only record from the East Falklands, and 

"must have been a stray specimen blown thither by the wind".  He noted that the best of 

Butler's specimens were incorporated with the national collection: they are now to be 

found at the BMNH (Huertas 2007). 

 

Vallentin, in Notes on Insects in The Falkland Islands (Boyson 1924) recorded that he 

had collected further specimens from West Falkland in 1909-10. He gave two further 

records: of Dr Wace, who had found Y. cytheris "fairly commonly" in the Darwin area, 
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and Colonel Reid, who had caught 14 specimens of the butterfly in Darwin between 

October 1908 and February 1909. Some of Reid's collection are also in the BMNH 

(Huertas 2007). Vallentin added that it was possible to ride for a whole day over West 

Falkland and never see more than two or three specimens. 

 

Further probable records from the early 20th century are to be found in the papers of 

Arthur Cobb (Cobb 1996). He recorded a "red butterfly" at Hill Cove on 1 February 1910, 

two "buttermoths, rusty with sparks on" on Bleaker Island on 14 December 1910, and 

his "first red butterfly, during a heatwave" on 7 December 1922. One of the difficulties of 

assessing historical records is that migrant Vanessa spp. on the islands, especially the 

southern painted lady, V.  carye, could be mistaken at a distance for Y.  cytheris. These, 

however, usually appear from January to March (Strange 1992), so the two Bleaker 

sightings are most likely to be Y. cytheris. No historical specimens of Y.  cytheris from 

Bleaker have been discovered. 

  

Records are sparse later in the 20th century, although the BMNH have specimens from 

an unspecified location in the Islands donated by Elliott in 1934, and from San Carlos 

collected by Bonner in 1935 (Huertas 2007). Elliott was the Falkland Island Company's 

manager at North Arm. In a letter to the Company (Elliott 1927) he wrote that he believed 

the fritillary was common everywhere in the Falklands. He added that he did not get 

much chance of collecting away from North Arm, which suggests that his butterflies had 

been caught there.  

 

Carstairs (1990) reviewed records of sightings of Y. cytheris in the Falklands.  He noted 

that Robin Woods, an ornithologist who travelled throughout the islands from 1956 to 

1963, recorded only two sightings over that period, in Stanley in the summer of 1961-2, 

and on West Point in February 1963. Carstairs himself, living on the islands from 1972-

5, and travelling widely as a peripatetic teacher, recorded the butterfly only once, on 

Staats Island on 27 December 1973. He gave other reported sightings following the 1982 

conflict, some in response to a radio appeal, all from West Falkland: one on Keppel 

Island in October 1983, and one on Carcass Island in January 1988, as well as reports 

from Hill Cove, Fox Bay and Port Howard between 1983 and 1989.  

 

In a short follow-up report, Carstairs (1992) recorded that, to September 1991, 

substantiated sightings of the butterfly were known for 14 localities, in 13 ten-kilometre 

grid squares (the Falkland Islands, as a UK Overseas Territory, having been mapped by 

the Overseas Directorate of the Ordnance Survey). Ten localities were on West Falkland 
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and four on the East.  Records were spread from November to February, with the 

majority (21%) reported in December.  He observed that both elevation and habitat 

preferences appeared to be wide, with butterflies being recorded to 1000 feet above sea 

level and over a variety of site types, including diddle dee camp, white grass, re-seeded 

grassland and boulder fields.  

 

Reports of  butterflies from 1890 to 1999 show a patchy pattern, although there was a 

gap from 1935 to 1961 which gives some support to the view ascribed by Carstairs 

(1990) to those living outside Stanley that numbers had declined (Figure 1.9). 

 

 

 
Figure 1.9  Recorded sightings of Y. cytheris, 1890 - 1999.  Numbers refer to records, rather than to 

individual butterflies. Equality of search effort cannot be assumed. There appears to be no clear pattern, 
although there was a gap in records from 1935-1961, supporting a view, ascribed by Carstairs (1990) to 

those living outside Stanley, that numbers had declined. 

 

 

1.4.3 Life cycle 
 

The records in 1.4.2 gave no details of the life cycle of Y. cytheris, nor did they contain 

any observations of its eggs, larvae or pupae in the Falklands. Carstairs (1990) stated 

that the food plant of the larvae was not known, but might be the common violet, 

Viola maculata or gorse, Ulex europaeus. The Latin American population had already 

been associated with V. tricolor, with larvae feeding on V. odorata in captivity (Herrera 

et al. 1958), and with unspecified Viola spp. (Hovanitz 1970, Hayward 1973, and Dapoto 

et al. 2003). Woods (2000) said it was "highly probable" that the larval food plant of the 
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Falklands butterfly was V. maculata, which Jones and Lewington (2004) reflected. The 

earliest recorded observation of eggs and larvae in the Falklands was by Robin Woods, 

a visiting ornithologist (2010, personal communication, 1 November) in December 1996 

on Carcass Island. He found eggs and a single larva of around 3 mm on V. maculata 

leaves. He added that he had observed the butterfly on Sea Lion Island, which had 

populations of V. magellanica but not V. maculata, and speculated that the former might 

also be a larval host plant.  Dubi Benyamini, of the Israeli Lepidopterists Society (2012, 

personal communication, 1 April) recorded reports of eggs on V. maculata at Port Louis, 

and on cultivated V. tricolor in Stanley. No record was found of eggs laid on any genus 

other than Viola, although Shapiro (1992) observed, without supporting evidence, that in 

Latin America larvae also fed on Rosaceae (Acaena); nor was there any evidence of 

eggs being laid on bare ground or litter.  

 

While there are inadequate records to set out a phenology, Vallentin gave his earliest 

sighting of the imago over the summer of 1909-1910 as 7 November, and the latest as 

15 March (Boyson, 1924). 

 

1.5 Larval host plants: Viola spp. in the Falkland Islands 
 
The Viola genus comprises around 550 species worldwide (Ballard and Sytsma 2000). 

Their phylogeny is outlined by Ballard et al. (1999), with the position of V. maculata 

analysed by Marcussen et al. (2011).  Six species of Viola have been recorded in the 

Falklands: 

 

Viola maculata  Cav.  (Figure 1.10) 

• range: Central and southern Chile and Argentina, northwards to 33ºS in the 

Andes where it is found at elevations up to 2500m; 

• Falklands status: East and West Falkland.  Fairly common (Vallentin and Cotton 

1921); common and widespread (Broughton and McAdam 2005). Moderate 

vulnerability (Upson et al. 2016). Elevation  0 - 250 m (Broughton and McAdam 

2005). 

 

V. magellanica  Forst. f.   

• range: Southern Patagonia, northwards to 39ºS  (Moore 1974); 

• Falklands status: Sea Lion Island (Woods 2000) and a few isolated sites on West 

Falkland (Falklands Conservation, unpublished). Very rare (Upson 2012). High 

vulnerability (Upson et al. 2016). Elevation 1 m (Broughton and McAdam 2005). 
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V. tridentata Menz. ex Ging.  

• range: Southern Patagonia, northwards to 47ºS  (Moore 1968);   

• Falklands status:  Mountain species, very scarce (Vallentin and Cotton 1921); 

locally distributed, particularly on uplands (Broughton and McAdam 2005).  

Moderate vulnerability (Upson et al. 2016). Elevation 15 - 610 m (Broughton and 

McAdam 2005). 

 

V. arvensis Murray.  

• range: Eurasia and North Africa, widely naturalised elsewhere (Moore 1968); 

• Falklands status: East and West Falkland. Cultivated and waste ground near 

settlements. Rather common (Moore 1968). 

 

V. tricolor L.  and V. x wittrockiana Gams. have also been recorded, as cultivars, by 

Falklands Conservation (unpublished).  

 

 

 
Figure 1.10   Y. cytheris's  main larval host plant on the Falklands, the common violet, Viola maculata.  The 

example here is shown growing amongst wild celery, Apium australe, on Bleaker Island. Photograph by the 

author. 
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1.5.1 Distribution and dispersal 
 

Data supplied from Falklands Conservation showed that Viola spp. were widely spread 

throughout the islands (Figure 1.11).  V. maculata was the commonest, found most 

frequently in small patches amongst dwarf shrub heath on coastal slopes (Moore 1968, 

Woods 2000, Broughton and McAdam 2005, Liddle 2007). From the references in 

Vallentin and Cotton (1921) they appear to have been widespread for over a century.  

 

 
Figure 1.11  Distribution of Viola spp. in the Falkland Islands. Most of the sites were around the coast, but 

V. arvensis, V. maculata and V. tridentata were all found at elevations of up to 250 m. Data (current to 2013) 
were supplied by Rebecca Upson of Falklands Conservation. 

 

The dispersal mechanism of Viola in the Falklands is not clear. There are three types of 

Viola dispersal generally recognised: myrmecochorous, or spreading by ants; 

autochorous, explosive ejection of seeds by the parent plant; and diplochorous, 

explosive ejection of seeds, followed by spreading by ants (Beattie and Lyons 1975).  

The role of ants in Viola dispersal, and the implications for the range of Boloria fritillaries 

in the UK, has been examined by Randle (2009). While the methods used by V. maculata 

and V. magellanica have not been recorded, the absence of ants in the Falklands rules 

out all but autochorous dispersal. This is a slow process: Beattie and Lyons (1975) gave 

the example of V. odorata, with a mean dispersal distance of 0.01 m.  On that basis, 

were there local extinctions of Viola, recolonisation would be slow.  
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The possibility of endozoochorous dispersal of Viola, through birds or sheep, which 

would be faster, has not been studied. It would be particularly instructive to consider the 

possible role of sheep, as sheep tracks through dwarf shrub heath, for example, have, 

by definition, a large number of sheep passing along them, and also provide sheltered 

environments for Viola germination and growth. 

 

1.5.2 Threats 
 
The principal threats to Viola in the Falklands are climate change and changing land use. 

 

(i) Climate change  
 
Jones et al. (2013), compared eight regional climate models drawn up under the EU-

funded CLARIS LPB Project. These projected a 1.8°C (± 0.34 SD) increase in the 

Falklands' mean annual maximum temperature by 2071-2100 compared with the period 

1961-90, but little change in annual rainfall (20.8mm ± 39.0 SD). They did not model 

seasonality of change.  A manipulation study of Empetrum heathland in the Falklands 

(Bokhorst et al. 2008), using climate warming scenarios of up to 1°C, showed little 

change in cover and biomass over its 12 year duration, although there was a 37% decline 

in soil arthropod abundance, possibly in response to higher temperatures and increased 

evaporation. Upson et al. (2016) identified a range of threats to Falklands dwarf shrub 

heath as a result of higher temperatures. These included changes in soil moisture levels, 

with consequent drying out and resistance to rewetting; an increase in invasive plants 

more suitable to higher temperatures, particularly gorse, Ulex europaeus; increased fire 

risk in dwarf shrub heath; and changes in soil organic carbon, with particular damage to 

peatlands, including risks of compaction, erosion and flooding. Assessing the responses 

of Falklands plants to this, they placed V. magellanica in the highest category of 

vulnerability, and V. maculata and V. tridentata in the medium, based on their exposure 

level and sensitivity (Williams et al. 2008).   

 

(ii) Land use 
 

Climate change would have an impact on stock density and forage resources. Grazing 

land, at present, has a low capacity for stock. Sheep density is approximately one sheep 

per two hectares (McAdam 2014); by comparison, upland farms in the UK carry upwards 

of 50 sheep per hectare.  Landowners are constantly looking for greater efficiency: a 

warmer climate would change their decision-making process, with potential change in 
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grazing patterns (Kerr 2002).  A change in grazing patterns would change the potential 

habitat for Viola, with the impact unknown. 

 

Grazing remains an important consideration in conservation work on the Falklands 

(McAdam 1980).  Much of the tussac grass (Poa flabellata) which surrounded the 

Islands' coastline was destroyed over the past 150 years by overgrazing, with a 

deleterious effect on a wide range of native species which depended on it for shelter 

(McAdam 1980, Tourangeau et al. 2019). Moore (1968) considered that grazing could 

have had an impact on Viola spp., causing them to be restricted to the more lightly 

grazed coastal slopes.  

 

1.6 Aims and research questions 
 

The following research questions (RQs) formed the basis of the project.  

 

RQ1. Do morphological and genetic comparisons support the classification of Yramea 

cytheris cytheris and Yramea cytheris siga as separate sub-species of the same 

species? 

 

RQ2. What are the characteristics of suitable habitat for Y. cytheris both at patch and 

oviposition location level? 

 

RQ3. Do the population dynamics of Yramea cytheris and its habitat requirements 

suggest that it can adapt to predictable climatic and other environmental changes on the 

Falkland Islands? 

 
1.7 Statistical power and effect sizes 
 
The data sets from the Falklands and Latin America were small, particularly when 

subsetting was necessary.  This was an inevitable concomitant of working with small 

populations of an uncommon species (Cardini and Elton 2007), the butterfly's protected 

status in the Falklands, and the difficulty of obtaining samples from Latin America. This 

had implications for statistical power.  

 

To enable assessment of results in these circumstances both effect sizes, and 

correlation strengths, using the appropriate metric together with associated p-values, 

have been given, together with confidence intervals (Anderson et al. 2000, Tan and Tan 
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2010).  Effect sizes and correlation strengths have also been given a descriptor, such as 

"small", or "weak". The basis for these is Cohen (1988), modified in Sawilowsky (2009) 

and Fowler et al. (2013). Cohen's "t-shirt size" approach (Glass et al. 1981) has been 

criticised as detracting from the data (for a discussion, see Ellis 2010). Readily 

understandable descriptors can, however, be helpful where measurement scales vary, 

and are used here, in the form shown in Table 1.1, as an aid to interpretation (Lajeunesse 

2013, Brenner 2019).  In using this approach, Thompson's (2001) warning has been 

borne in mind: "If people interpreted effect sizes with the same rigidity that α = .05 has 

been used in statistical testing, we would merely be being stupid in another metric". 

The usage of descriptors has been even more controversial in the case of p-values: for 

a review see Hubbard (2015), and for an uncompromising adherence to significance 

equalling p < 0.05 see Hankins (2013).  Descriptors have been used here, as with effect 

sizes and correlation strengths, as an aid to interpretation and also concision, 

"significant" meaning, for example, "significant at p < 0.05".  They have not been invested 

with a pass/fail power: in the words of Rosnow and Rosenthal (1989), "surely God loves 

the .06 nearly as much as the .05". 

 
Table 1.1.  Effect sizes, correlation strengths, significance and their descriptors.  Effect sizes are based on 

Cohen (1988), correlation strengths are based on Fowler et al. (2013), significance on Hubbard (2015 p. 

203) and the usage of the R programme (R Core Team 2018). These conventions have been followed 
throughout the chapter as an aid to assessing the strength of a given effect, though they are supplementary 

to, rather than a replacement for, the calculated measures.  

effect size  correlation strength  significance 
desc d ηp2  desc r ρ  desc p-value R 

very small* 0.1   very weak 0.1 0.1  significant <0.05 * 
small 0.2 0.01  weak 0.2 0.2  very significant <0.01 ** 
medium 0.5 0.06  moderate 0.4 0.4  highly significant   <0.001 *** 
large 0.8 0.14  strong 0.7 0.7     
very large* 1.2   very strong 0.9 0.9     
huge* 2.0          

*The categories 'very small', 'very large' and 'huge' for d were proposed by Sawilowsky (2009)  

 
 
1.8 Conventions 
 

The following stylistic conventions have been observed: 

 

(i) citations and bibliography follow Bournemouth University’s Harvard-style 

recommendations (Bournemouth University 2018);  
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(ii) orthography, punctuation and the setting of formulas follow the guidance in New 

Hart’s Rules (Waddingham 2014);  

 

(iii) graphics employing more than one colour use the colour-blind friendly palette 

advocated by Chang (2012). When other colour palettes are in widespread use, e.g. for 

Phase 1 habitat surveys or Beaufort scales, conventional practice is followed; 

 

(iv) p-values are given as 0.xxx, the fact of their being, by definition, <1 notwithstanding, 

to improve the appearance of tables. 
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Chapter 2: Study sites 
 
This chapter gives an overview of the study sites, providing background to the analyses 

in Chapters 3 to 7.  It includes maps (sources at 2.2) recording oviposition sites and adult 

butterflies. The methodology behind the data points is covered in subsequent chapters: 

for oviposition sites see 4.2.1 and for adult butterflies see 3.2.2. Locations of Viola spp. 

shown on the maps were noted during the Phase 1 survey, and, while recording Viola 

presence, should not, with one exception, be regarded as exhaustive at the level of 

individual plant. The exception is for Sea Lion (2.3.4 (iii)), where the data points for 

January 2018 Viola in Figure 2.16 represent each individual Viola plant found in a three-

hour search of the entire site.  

 

2.1  Selection of study sites 
 
The aim was to identify four study sites, the maximum possible given time, distance and 

resource constraints: one study site on East Falkland, one on West Falkland, and two 

others, including at least one island, to provide a broad spread on both the north-south 

and east-west axes. This would enable investigation of the genetic and morphological 

contrasts between populations and its relationship with geographical distance. Variation 

between the sites in topography and vegetation was also sought to assess any impact 

on oviposition preferences. There were two overriding considerations: a site had to have 

recent records of Viola spp. to make it worth investigating, based on the unpublished 

records held by Falklands Conservation (1.5.1, Figure 1.11); more important, during 

initial investigation, there had to be sufficient evidence of Y. cytheris - at the minimum 

adults in flight - to suggest that adequate data could be collected.  An analysis of existing 

knowledge suggested seven candidate sites (Figure 2.1). 



 
 
 

 61 

 
Figure 2.1  Falkland Island study sites. Those marked "preliminary" were investigated, but showed 
insufficient numbers of Y. cytheris to justify a full investigation. The four sites selected for full investigation 

provided the data for all subsequent analyses. 

 
These were: 

 

Bleaker Island: personal observation of adults in 2013 suggested a thriving colony. 

There was an historical dimension, from Cobb's observations in 1910 and 1922 (Cobb 

1996). It was unusual in having only one known colony, which was on a raised beach. 

There were no other patches of Viola maculata on the island; 

 

Bodie Creek: personal observation of an adult in 2013, and communications from 

Falkland Islanders who had seen numbers of adults, suggested there was a colony, with 

a number of smaller colonies nearby, which might be helpful for population structure 

analyses;  

 

Darwin: the first record of Y. cytheris from a named Falkland Island location was from 

Darwin Harbour (Butler 1893). There are further records of captures by Reid and Wace 

in the early 20th century (Boyson 1924).  Specimens collected by Reid are held by the 

Oxford University museum of Natural History (OUMNH) and British Museum of Natural 

History, London (BMNH); 
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Frying Pan: personal observation of small numbers of adults in 2010 had suggested the 

presence of small colonies of butterflies in a 1.5 km strip along a low cliff; eggs and 

larvae had also been found; 

 

Hill Cove: Cobb (1996) recorded an adult in 1910. Carstairs (1990) reported sightings 

of adults in the 1980s. Falklands Conservation's unpublished records showed Viola were 

widespread, and at a range of elevations. It was one of two possible sites on West 

Falkland; 

 

Roy Cove: Vallentin caught a series of adults in 1900 which are held by BMNH. This 

was the other possible site on West Falkland; 

 

Sea Lion Island: personal observation of a single egg in 2013, together with 

communications from Falkland Islanders, suggested a small colony. This was the only 

location holding V. magellanica rather than V. maculata. 

 

There were exploratory visits to Bleaker, the Frying Pan, Hill Cove, Roy Cove and Sea 

Lion in January and February 2016, and to Darwin and Bodie Creek in December 2016, 

during Y. cytheris's observed flying period. Each site was mapped following the 

guidelines for Phase 1 Surveys set out by the Joint Nature Conservation Committee 

(JNCC) (JNCC 2010). JNCC numbering, description and colouring of habitat types was 

followed, with the Falkland habitat numbering proposed by Upson (2012) included in the 

legends. This initial survey formed the basis for subsequent searches for Viola spp.  

 

No evidence of Y. cytheris was found at Bodie Creek; two eggs, 4 km apart, were found 

at Hill Cove. Both sites were rejected as unlikely to provide enough usable data. This left 

Bleaker (31 adults, 59 eggs, 3 larvae), Frying Pan (2 adults, 23 eggs, 12 larvae), Roy 

Cove (12 adults, 31 eggs, 13 larvae), Sea Lion (6 adults, no eggs or larvae) and Darwin 

(1 adult, 3 eggs).  Sea Lion was selected rather than Darwin, as it provided a contrast 

with the other sites, particularly in having a different larval host plant, V. magellanica.   
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2.2  Site descriptions:  methodology 
 
The study sites are described in a common format; the rejected sites are covered in less 

detail. The overview and land use sections were based on discussions with landowners, 

supplemented by guidebooks, particularly Wagstaff (2003), Wheeler (2004) and 

Summers (2005). Agricultural data were taken from the Falkland Island Government's 

website (Department of Agriculture, Falkland Islands 2020). Vegetation was recorded 

during the Phase 1 Survey, and identified principally through Liddle (2007), although 

Vallentin and Cotton (1921), Woods (2000) and Broughton and McAdam (2005) were 

also helpful. 

 

Wind direction and speed data were taken over five summers (November to February), 

from 2013 to 2018 from the WMO weather stations nearest to each of the four study 

sites. The exception was Bleaker Island, which has a non-WMO weather station, a 

MetPak II (Gill Instruments, Lymington, Hants, UK) using PC200W software (Campbell 

Scientific, UT, USA). WMO weather station data were accessed from the OGIMET 

website (Valor and López 2017). Bleaker data were supplied by the landowner, Mike 

Rendell. Records were complete for all weather stations other than Sea Lion, for which 

data were available for only 291 out of a possible 596 days. 

 

Each site description includes a photograph of the site, with features referenced by 

letters to a separate aerial map, and a Phase 1 Survey map.  All maps were drawn up 

in QGIS 3.4 (QGIS Development Team 2018).  The base maps were accessed through 

QGIS XYZ tiles from Bing Aerial (for Bleaker, Bodie Creek, Darwin, Hill Cove, Roy Cove 

and Sea Lion) and Google Satellite (for Frying Pan). 

 
Wind roses were produced from weather station data using the package openair 

(Carslaw and Ropkins 2012) in R (R Core Team 2018). 

 
 
2.3  Study site descriptions 
 
2.3.1  Bleaker Island  
 
(i) Overview 
 

Bleaker Island (52.21º S, 58.85º W) is 26 km long, with a maximum width of 3 km, 

covering 2,070 ha.  It is low lying, with the highest point being Semaphore Hill, 89 m 

(Figure 2.3).  Bleaker lies off East Falkland, from which it is separated at its southern 



 
 
 

 64 

end by an 800 m channel, the nearest settlement being North Arm, 32 km to the west.  

It is a working farm and tourist destination. The northern end of the island is a National 

Nature Reserve.  

 
(ii) Vegetation 
 
The predominant vegetation of Bleaker is dwarf shrub heath, principally diddle dee 

(Empetrum rubrum) and Christmas bush (Baccharis magellanica), together with semi-

improved neutral grassland, to a great extent fertilised by droppings from livestock and 

birds (Figure 2.2). Abandoned nesting sites, particularly those of king cormorants 

(Phalacrocorax atriceps), provide fertile substrate for groundsel (Senecio vulgaris). 

There are large stands of tussac (Poa flabellata) around the coast. 

 

 

 
Figure 2.2  Bleaker Island: Phase 1 survey, January 2016. The main oviposition sites are around the edges 

of the two rock runs, with occasional sites on the edge of the neutral grassland where it meets the dwarf 
shrub heath.   

 

(iii) Violets and butterflies 
 
The main Viola patch, of V. maculata, is on the raised beach above Pebbly Bay. The 

patch is approximately 0.25 ha.  Land within 5 km of the patch was surveyed over three 

field visits: the only other Viola spp. were found in a small clump north of Long Gulch 

(Figure 2.3) The land owners had not seen any others on the island. 
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Figure 2.3  Bleaker Island Viola and butterfly sites, 2016 - 2018. The oviposition site, marked in red on the 

smaller scale map derived from Figure 2.1, covers an area of approximately 0.25 ha. The Viola there were 

thought, until 2018, to be the only ones on the island: a small clump, however, was found at the north end 
of Long Gulch in 2017.  The "A" marked in the middle of Pebbly Bay corresponds to that in Figure 2.4.  Figure 

3.1 shows the butterfly site at a larger scale. 

 

The butterfly site has two distinct rock runs (Figure 2.4) with Viola along their edges, and 

a large area of relatively bare ground at its southern end with a number of very bushy 

Viola plants. Vegetation includes wild celery (Apium australe), diddle dee (Empetrum 

rubrum), daisy (Bellis perennis), prickly burr (Acaena magellanica), sea cabbage 

(Senecio candidans), sheep's sorrel (Rumex acetosella) and acid grassland, both 

unimproved and semi-improved (Figure 2.2).  There are scattered patches of tussac 

(Poa flabellata) around the patch. 
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Figure 2.4  Bleaker Island, Pebbly Bay, looking south. There is a wide rock run on the right of the picture, 

with a narrower one towards the middle. The main concentrations of oviposition sites are around the edges 
of these runs, on Viola sheltered either by stones or by wild celery (Apium australe). The "A" marked in the 

middle of Pebbly Bay corresponds to that in Figure 2.3. Photograph by the author. 

 

(iv) Land use 

 
Agriculture 
 
Bleaker has been run as a farm from the late 19th century, at one stage with over 3000 

sheep. It now has approximately 1000 sheep and 70 cattle. Bleaker's tussac is managed 

sustainably to provide winter feed for the cattle. The farm is organic. 

 

Other 

 

Bleaker is a popular destination for wildlife tourists who access it via its own air strip. 

While there is a landing stage for small vessels, it is not used for passenger traffic. There 

is accommodation for 12 and there are occasional day visitors. The footfall is not heavy, 

and all visitors are briefed by the owners to ensure they have as little impact on the 

environment as possible. 

 

A
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(v) Wind 

 
The small weather station on Bleaker is run by the landowner, Mike Rendell, who 

provided wind data for five summers (November to February), from 2013 to 2018 (Figure 

2.5). The wind was predominantly from the north-west, west and south-west with a mean 

speed of 6.85 ms-1. The flat, pebbly nature of the butterfly patch, with little shelter other 

than Apium australe, means that the oviposition sites are very exposed 

 

 
Figure 2.5  Wind rose for Bleaker Island, November - February, 2013 to 2018.  The spread across the three 
westerly octants is unusual: none of the other sites has a strong northwesterly component. The oviposition 

site's location on a raised beach affords it little protection from the prevailing wind. 

 
2.3.2  The Frying Pan  
 

(i) Overview 
 
The Frying Pan (51.81º S, 58.33º W), named from the shape of the creek (Munro 1998), 

opens into Island Harbour. It is on the Stanley - Mount Pleasant Airfield (MPA) road, the 

busiest in the Falklands. The creek has rock cliffs on either side, the north side being the 

site of a disused quarry. It is approximately 8 km east of MPA. The Frying Pan is part of 

Fitzroy lands, some 27,250 ha, held by Falkland Island Landholdings.   
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(ii) Vegetation 
The predominant vegetation is dwarf shrub heath on a sand/gravel substrate (Figure 2.6) 

There is some marshy and neutral grassland, although most grass is in a mosaic with 

dwarf shrub heath and sand or gravel. Vegetation on cliffs is principally diddle dee 

(Empetrum rubrum) and Christmas bush (Baccharis magellanica) growing in crevices or 

on thin soil substrate. 

 

 
Figure 2.6  The Frying Pan, south cliff: Phase 1 survey, February 2016. The main oviposition sites are 

around the hard cliffs and in the areas where the cliffs meet the dwarf shrub heath. While much of the 

vegetation is shown as dwarf shrub heath, it takes the form of a mosaic with grass and bare sand or gravel. 

 

 
 

(iii) Violets and butterflies 
 
Viola spp. are widespread over the west bank of the creek (Figure 2.7), in groups of 

separate, distinct patches extending for over 1500 m. Only two small patches were found 

on the east bank. Individual plants are found on the flat, gravelly ground above the creek, 

but the greatest concentrations are on the steep slopes leading down to the water.  

Oviposition sites are concentrated in three main areas: the north-facing cliffs near the 

road; a small patch sheltered by rocks 300 m further south; and a grazed area of dwarf 

shrub heath by the sand bar at the mouth of the creek. 
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Figure 2.7  Frying Pan Viola and butterfly sites, 2016 - 2018. Viola plants are widespread, in patches, along 
the west bank of the creek.  Oviposition sites are also spread, but concentrated in three main areas: the 

cliffs at the north end marked "A", corresponding to that in Figure 2.8; a small patch sheltered by rocks 300m 

further south; and a grazed area of dwarf shrub heath by the sand bar at the mouth of the creek.  

 
 
(iv) Land use 
The 16,000 strong flock of sheep at Fitzroy is the fourth largest in the Falklands. The 

Frying Pan is only sporadically grazed, including by a few horses around the sand bar 

(Figure 2.7). The Frying Pan is a popular, easily accessible angling location, particularly 

amongst the approximately 1000 service personnel at MPA. The north-facing cliffs on 

the southern bank (marked "A" in Figure 2.7) have a particularly heavy footfall. 
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Figure 2.8  The northern end of the Frying Pan. The flags mark oviposition sites, which are usually on small 
plants growing on shallow soil pockets between rock outcrops. The intertidal stones provide basking sites 

for the butterflies. The letter "A" corresponds to that in Figure 2.7. Photograph by the author. 

 
(v) Wind 
 
The nearest weather station is at MPA (WMO ID 88889).  It is the only station on the 

islands with comprehensive coverage of all weather metrics.  Mean summer 

(November-February) wind speed 2013 - 2018 was 8.38 ms-1, with wind predominantly 

from the west to south-west (Figure 2.9).  
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Figure 2.9  Wind rose for Mount Pleasant Airport, November - February, 2013 to 2018.  The cliffs on the 

west bank of the Frying Pan afford shelter from the predominantly westerly and southwesterly winds, 
although the north-facing section of bank is exposed to strong westerlies. 

 

2.3.3  Roy Cove  
 

(i) Overview 

 
Roy Cove (51.55º S, 60.38º W), established as a settlement in 1872, is on the north-west 

coast of West Falkland. The study site is mostly within the boundaries of Crooked Inlet 

farm. It is hilly countryside, dominated by Cooke Hill, 282 m. It is accessible by road from 

Port Howard, and has its own airstrip. 

 

(ii) Vegetation 
 

Roy Cove is a mixture of unimproved and semi-improved acid grassland, dwarf shrub 

heath, rock outcrops and bare sandy patches (Figure 2.10).  Shelter near the settlement 

is provided by gorse hedges (Ulex europaeus). The dwarf shrub heath mainly comprises 

diddle dee (Empetrum rubrum) and Christmas bush (Baccharis magellanica) with some 

scurvy grass (Oxalis enneaphylla).  There are patches of small fern (Blechnum penna-

marina) and native yarrow (Acaena lucida) in rock runs and on the edges of dwarf shrub 

heath, together with dandelions (Taraxacum agg.) which provide a nectaring resource.  

Pig vine (Gunnera magellanica) is common in marshy grassland. 
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Figure 2.10  Roy Cove: Phase 1 survey, January 2016. The main oviposition sites on the edge of the semi-

improved grassland where it meets the dwarf shrub heath and around the inland cliffs. 

 

(iii) Violets and butterflies 
 
Roy Cove was the source of historical specimens of Y. cytheris, now in the BMNH and 

the OUMNH, collected by Vallentin (1904, and in Boyson, 1924) from the enclosures 

around Bertrand's former house (Figure 2.11). 

 
Viola spp. are spread widely around Roy Cove, mostly in a 1500 m strip from north to 

south, in the lee of hills providing shelter from the prevailing southwesterly wind.  
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Figure 2.11   Roy Cove Viola and butterfly sites, 2016 - 2018. The letters A - C correspond to those in Figure 
2.12. The yellow straight lines show gorse shelter, planted to protect sheep from the wind. The site of 

Bertrands' former house shows where Vallentin (see Vallentin 1904) stayed while collecting Y. cytheris in 

the house's enclosures. The bare patches of coarse sand are clearly visible.  

 
Figure 2.12  Slopes above Roy Cove seen from Cooke Hill. Viola typically are found in small groups in areas 

with a mixture of rock, bare ground and dwarf shrub heath. The letters A - C correspond to those in Figure 

2.11. "A" is the upper meadow, the furthest extent north of the butterfly colonies. "B" is Crooked Inlet farm, 
and "C" the main shearing enclosure and shed for neighbouring Pickthorne farm. Photograph by the author. 
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(iv) Land use 
 
Agriculture 

 

Crooked Inlet farm, the major landholder at Roy Cove, farms 5,700 sheep and 30 cattle. 

It is certified organic. The sheep graze widely, including over butterfly oviposition areas. 

The neighbouring Pickthorne farm has 1000 sheep (Department of Agriculture, Falkland 

Islands 2020).  

 

Other 

 

Crooked Inlet has a single self-catering cottage, but tourism is otherwise undeveloped. 

There is no other land use. 

 

(v) Wind 

 
Figure 2.13  Wind rose for Mount Byron, the nearest meteorological station to Roy Cove, November - 

February, 2013 to 2018.  The southwesterly prevailing wind averaged 9.35 ms-1. The butterfly sites are 

predominantly in north-east facing areas sheltered by hills or cliffs. 

The nearest weather station is at Mount Byron (WMO ID 88870). Mean summer wind 

speed 2013 - 2018 was 9.35 ms-1, with wind predominantly from the south-west. Mount 

Byron has the highest mean wind speeds of the Falkland Island weather stations. The 

station is at 480 m, with no land between it and Latin America.  The Roy Cove sites, 

however, showed wind speeds on average, 47% lower than those of Mount Byron (7.2.3 

(i)), due to the lower vertical shear effect and the rolling countryside. 
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2.3.4  Sea Lion Island  
 

(i) Overview 
 

Sea Lion Island (52.42º S, 59.08º W), covering 905 ha, is the most southerly inhabited 

island in the Falklands archipelago (Figure 2.1), lying 17 km off the southern tip of East 

Falkland. It is low-lying, with the highest point, Bull Hill, at 46 m, at its southern end, 

where there are also vertical hard cliffs of 24 m. A Ramsar site, it became a national 

nature reserve in 2017 and is one of the Falklands’ major tourist destinations. It was 

formerly a sheep farm, but all agricultural work has now ceased.   

 

(ii) Vegetation 

 
The island is a mosaic of dwarf shrub heath, marshy and semi-improved grassland, with 

expanses of cinnamon grass (Hierochloe redolens) (Figure 2.14). There are also 

extensive areas of tussac (Poa flabellata) around the coast, which were protected from 

overgrazing when the island was farmed. Old penguin and cormorant rookeries provide 

a substrate for patches of groundsel (Senecio vulgaris).  

 
 
Figure 2.14  Sea Lion Phase 1 survey, January 2016. The main oviposition sites are on edges where dwarf 
shrub heath, whether wet or dry, or tussac, which provide shelter, meet grassland.  
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(iii) Violets and butterflies 
 
Sea Lion is the only major site in the islands for Viola magellanica. The patch is north of 

the lodge, with sand dunes and patches of tussac (Poa flabellata) marking its northern 

boundary (Figure 2.15). It comprises, in part, broken, marshy ground, where the 

predominant vegetation is grass, small fern (Blechnum penna-marina), pig vine 

(Gunnera magellanica) and Christmas bush (Baccharis magellanica).  This alternates 

with dwarf shrub heath and grass mosaic. The lodge warden knew of no other patches 

of Viola spp. on the island. The Viola on Sea Lion were found in small clumps, and in a 

range of environments such as old Magellanic penguin burrows and on the edge of 

marshy grassland. 

 
 

Figure 2.15  Sea Lion Island, Viola and butterfly site, 2016 - 2018.  The site is marked in red on the smaller 
scale map derived from Figure 2.1. The letters A - C correspond to those in Figure 2.17. The white sand 

patches, particularly that to the north-west of Dugas's grave, are used by Y. cytheris for basking. The most 

westerly group of sightings were from December 2016 around a flowering Christmas bush. 

 

One phenomenon observed, but not analysed, was the variation in observed Viola plants 

from year to year and its link to grass growth. Few Viola were observed in 2018, a year 

of strong grass growth, whereas they were relatively common in 2016 - 2017 when the 

grass appeared parched (Figure 2.16). While in 2018 strong grass growth was also 
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observable in, for example, Roy Cove, extensive grazing appeared to have ensured the 

Viola were not choked out.   

 

 
Figure 2.16  Sea Lion: comparison between Viola spp. found in January 2018 with those found in January 

and December 2016. In each case the whole site was searched. 2018 saw a reduction in Viola numbers 
and distribution, together with strong grass growth. 

 
(iv) Land use 
 

Agriculture 

Sea Lion is ungrazed. Tussac is being replanted in areas where it had been overgrazed 

in the past.  

 

Other 

Sea Lion is a major tourist destination. Visitors primarily go for its wildlife, but also 

because the memorial to HMS Sheffield, lost in the 1982 conflict, is at Bull Hill.  The 

lodge has accommodation for 20, but there are often day visitors, with regular parties of 

12 visiting by helicopter from the MPA.  All visitors are briefed by lodge staff to ensure 

they have as little impact on the environment as possible. 
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Figure 2.17  Sea Lion Island looking south, showing a section of Viola magellanica patch.  The letters A - C 

correspond to those in Figure 2.15. "A" is the lodge, "B" is the main gentoo penguin rookery, "C" is an area 

of dry heath and acid grassland.  Viola are found, in small clumps, between the grassland and the gentoo 

rookery, and in the dwarf shrub heath to the west of the gentoos. Photograph by the author. 

 

(v) Wind 
 

 
Figure 2.18  Wind rose for Sea Lion Island, November - February, 2013 to 2018. The mainly westerly 

prevailing wind averaged 7.4 ms-1, from which the main oviposition sites had only partial shelter from tussac.  
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Sea Lion has its own weather station (WMO ID 88897), although its coverage is not 

comprehensive, and the records show down periods. Data for five summers (November 

to February), from 2013 to 2018 (Figure 2.18), and with records missing for 305 out of a 

possible 596 days, showed the wind predominantly from the west and south-west, with 

a mean wind speed of 7.4 ms-1. The flat nature of the butterfly patch, with Poa flabellata 

only occasionally providing shelter, meant that most oviposition sites were exposed. 

 

2.4  Rejected study sites 
 

2.4.1  Bodie Creek  
 
(i) Overview 
Bodie Creek (51.86º S, 59.01º W) is part of Goose Green land, the Falklands' biggest 

farm, at 152,000 ha, with 77,000 sheep and 200 cattle. It is centred on Bodie Creek 

bridge (Figure 2.21) which, although it is the world's most southerly suspension bridge, 

remains a somewhat niche tourist attraction. The site is a mixture of dwarf shrub heath, 

coastal heathland and neutral to acid grassland. It has a few narrow valleys, mainly 

comprising marshy grassland (Figure 2.19).  Goose Green itself is readily accessible by 

road from Stanley, and has its own landing strip. 

 

 
Figure 2.19  Bodie Creek Phase 1 survey, December 2016. The main Viola sites are where dwarf shrub 

heath or coastal heath meet grassland. 

 

����������������	
��
����
���������������
��
�

��������������
�����
�����
�������

 �����!������� 
���"�
#���
�$��
������$���%

������&'����(��

��������������
��%�$$�
�

�)����&*��������!��������
�������

&'��	'������

��
����

����������	
���
�����������



 
 
 

 80 

(ii) Violets and butterflies 
There are small patches of Viola, mainly on the intersections between grassland and 

dwarf shrub heath (Figure 2.20). Although butterflies had been found on the dwarf shrub 

heath in previous years, and had been on occasions abundant, two exploratory visits in 

2017 and 2018 failed to find evidence of butterflies or oviposition sites.  

 
Figure 2.20  Bodie Creek Viola sites, December 2016. The plants were in small clumps, widely scattered. 
The butterfly sighting at A is a casual observation from 2013. 

 
Figure 2.21  Bodie Creek showing the suspension bridge. The letters A and B correspond to those in Figure 
2.20. Butterflies had been found in previous years on the heathland, marked "A". Photograph by the author. 
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2.4.2  Darwin  
 
(i) Overview 
Darwin (51.81º S, 58.96º W) was established in the mid 19th century and became the 

centre of the Falkland Island Company’s operations outside Stanley.  The farm is part of 

Goose Green lands. Like Goose Green it is a popular tourist destination because of its 

role in the 1982 conflict.  The lodge, Darwin House, sleeps 12, and it attracts day visitors 

from MPA and Stanley, both easily accessible by road.  

 

The land is mainly unimproved acid grassland interspersed with coastal heathland, with 

small areas of dwarf shrub heath (Figure 2.22).  The settlement has a large green, of 

semi-improved neutral grassland, and has shelter provided by gorse hedges. 

 
Figure 2.22  Darwin, Phase 1 survey, December 2016.  The greater part of the site is acid grassland, which 

contains patches of dwarf shrub heath, though not in large enough areas to be mapped separately. 

 
(ii) Violets and butterflies 
Viola are patchily distributed around the settlement, although there is a prominent 200 m 

stretch of plants on the edge of the track leading to the main road. Butterflies had been 

found "fairly commonly" around the settlement in 1908-1909 (Vallentin, in Boyson 1924), 

and specimens are preserved in the collections of BMNH and OUMNH. Four days of 

searching in December 2016, however, only uncovered three oviposition sites and a 

single butterfly. 
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Figure 2.23  Darwin Viola and butterfly sites, December 2016. The largest patch of violets is seen along the 
south side of the track at the bottom of the picture. 

 

 
Figure 2.24  Darwin looking towards the settlement from the butterfly site. The letters A (Darwin House) and 

B (butterfly sighting) correspond to those in Figure 2.23. Photograph by the author. 
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2.4.3  Hill Cove 
 
(i) Overview 

 
Hill Cove (51.49º S, 60.08º W) is a north-facing settlement, backed to the south-west by 

French Peaks, rising to 275 m, and to the south-east by Mt Adam, rising to 700 m.   The 

major landowner is Peaks Farm, which controls 8600 ha, grazing 5500 sheep and 200 

cattle. It contains the only forest on the Falklands (Figure 2.25) There is a small 

settlement, although some of the houses are only occupied seasonally, and the resident 

population is only in single figures. Hill Cove is accessible by road from Port Howard, 

and has its own airstrip. 

 

 
Figure 2.25  Hill Cove, Phase 1 survey, January 2016. The greater part of the site is acid grassland, with 

semi-improved neutral grassland greens around the main settlement. The dwarf shrub heath is in small 

patches within the grassland. 

 
(ii) Violets and butterflies 
 
An area west of the settlement was explored in January 2016.  A solitary patch of Viola 

was found near Peaks Farm distributed throughout a rock run of approximately 80 m by 

22 m. The previous landowners, in a subsequent meeting, said this was the only patch 

that they were aware of. The rock run, facing NNE, was predominantly diddle dee, 

Christmas bush, grass, dandelion (Taraxacum agg.) and daisy. 
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Figure 2.26  Hill Cove Viola sites, January 2016. The rock run site is to the west of Peaks Farm. The letters 
A and B at Deep Pass correspond to those in Figure 2.27.  Aside from the rock run, Viola were only found 

around the coast. 

 

A further 10 km of coastline was walked to the east of the settlement, and slopes were 

investigated to 200 m. Two further patches were found, at Fox Ridge and Deep Pass 

(Figure 2.26).  One small group of plants was found on a point east of Peaks Farm. Two 

oviposition locations were found on single plants on small promontories. 

 
There is a historical record in Cobb's diary for 1 February 1910 of a "red butterfly" at Port 

Howard, although it is not clear whether this was Y.c. cytheris or one of the painted ladies 

(Cynthia spp.) which occasionally appear in the Falklands.  The landowners had seen 

butterflies in their garden, but knew of no other sites, nor of any sites of Viola spp. 
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Figure 2.27  Hill Cove, Deep Pass. The letters A and B correspond to those in Figure 2.26.  The Viola plants 

are amongst the dwarf shrub heath outcrops marked "B". Photograph by the author. 
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Chapter 3: Population dynamics and behavioural 
patterns 
 
 
3.1 Introduction 
 
This chapter considers the population size and dynamics of Yramea cytheris using mark-

release-recapture (MRR).   

   

3.1.1 Population dynamics 
 
An understanding of population structure and dynamics can help establish baselines, 

give a basis for recognising changes, and determine when, and in what form, 

interventions need to be made. It is an indispensable element in assessing and 

monitoring conservation status  (Pollard and Yates 1993, Taron and Ries 2015, 

Henderson and Southwood 2016), although population trends in insects are marked by 

considerable annual variation which makes overall assessment of conservation difficult 

(Strien et al. 1997, van Swaay et al. 2011, Fox et al. 2019). This chapter draws on MRR 

data from the four study sites (Chapter 2) on three field visits to the Falkland Islands.  It 

considers the size of the population at a given site; its distribution; and the longevity of 

individual butterflies.  

 

Small, isolated colonies of butterflies, living on fragmented sites, and often at the edges 

of their ranges, have long been a focus of population studies, with fritillaries frequently 

providing the study species (Wahlberg, Klemetti, Selonen and Hanski 2002, Ehrlich and 

Hanski 2004).  Species studied include Melitaea aurelia (Eichel and Fartmann 2008); 

Melitaea cinxia (Hanski et al. 1994, Nieminen et al. 2004, Mattila et al. 2012); 

Euphydryas aurinia (Wahlberg, Klemetti and Hanski 2002, Hula et al. 2004, Schtickzelle 

et al. 2005); Euphydryas editha (Hellmann et al. 2004) and Boloria eunomia (Baguette 

and Nève 1994). M. cinxia, in particular, has been at the centre of the development of 

metapopulation theory, which is rooted in stochastic space occupancy models, whereby 

a fraction of available habitats is unoccupied at any given time (Hanski and Thomas 

1994, Hanski and Ovaskainen 2003, Ovaskainen and Saastamoinen 2018), although it 

is accepted that not all fragmented populations necessarily form metapopulations 

(Baguette 2004, Hanski 2004). 

 

An understanding of the population structures of individual small patches, and their 

dynamics, is important in assessing the viability of populations, particularly where there 
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is no evidence of a metapopulation structure (Osváth-Ferencz et al. 2017), where 

occupied sites are loosely connected through dispersal and where butterflies occupy 

most suitable habitat patches (Nowicki et al. 2007). As Hanski (2004) remarked, classical 

metapopulation models are not likely to be of great value for small patch networks.   

 
Population size and dynamics underpin the assessment of conservation threat levels.  

This is important for local conservation efforts, but, perhaps more importantly, in global 

efforts (IUCN 2012), where population size, together with its growth (positive or negative) 

form the main criteria in assessing the threat of extinction. The challenges of using IUCN 

population criteria for small island butterfly populations have been explored by Grill et al. 

(2002), and for butterflies more widely by van Swaay and Warren (1999) and van Swaay 

et al. (2011), with the assessment of European butterflies' possible population decline 

measured as a trend over 25 rather than a ten years, and an increased focus on 

distribution areas (the sum of all areas within an imaginary line bounding the species 

population) identified as the key metrics. In the absence of any literature on the 

population size and dynamics of Y. cytheris in either Latin America or the Falklands, this 

chapter attempts to establish some of the basics on which future work can build. 

 

3.1.2 Behaviour 
 
The most obvious aspect of butterfly behaviour is a commonplace: as an ectothermic 

organism, the butterfly is less active in cold, windy or overcast conditions, hence the 

weather condition protocols in most monitoring schemes (Pollard and Yates 1993, 

Samways et al. 2009). On the days on which they appear, butterfly activity patterns are 

largely driven by strategies for mating, or, for mated females, oviposition (Dennis and 

Shreeve 1988).   

 

Hannam et al. (2018) considered, through laboratory experiments, daily patterns of 

eclosion in the pipevine swallowtail (Battus philenor) and their effect on mating 

strategies. They investigated whether males were on the wing earlier, or even eclosed 

earlier, than females, ready to mate as soon as receptive females either eclosed or 

emerged from vegetation. Their results were inconclusive, and Sencio and Rutowski 

(2019) found no such pattern in an analysis of six nymphalid butterflies, including the 

fritillary Euphydryas chalcedona. As field observation of Y. cytheris suggested, however, 

some evidence of a preponderance of males early in the day, emergence, and, to the 

extent possible, eclosion, were investigated through MRR. 
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While female butterflies have a predominantly searching pattern, whether seeking nectar 

or oviposition locations, males generally have one of two strategies in seeking a mate, 

perching or patrolling (Shreeve 1987, Berwaerts et al. 2002, Dudley 2002). The 

relationship between the two male strategies and wing shape morphology are 

considered in Chapter 6.  The mating process, with whichever strategy, has been shown 

to influence male behaviour over the course of a day (Konvička et al. 2002, Slamova et 

al. 2011, Vlašánek et al. 2018) with activities such as patrolling or perching, interaction 

and mating itself early in the day, and, primary activity done, recovery activity later. This 

was investigated for Y. cytheris, with female behaviour also considered, to assess 

whether mating and oviposition produced a comparable pattern. 

 

Nectaring patterns were also investigated. In other species these show a range of 

behaviours from not nectaring at all through to collecting large quantities of pollen and 

nectar throughout the day (Odendaal et al. 1985). 

 
 
3.1.3 Research questions 
 
RQ1: to what extent is it possible to estimate the size of populations of Y. cytheris at the 

four Falkland study sites? 

RQ2: to what extent do movement patterns of Y. cytheris at the study sites, both within 

and between patches, suggest the existence of metapopulation structures? 

RQ3: to what extent do males and females differ in key population and behavioural 

metrics? 
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3.2 Materials and methods 
 
 
3.2.1 Study sites 
 
Population studies were carried out at the four Falkland study sites, Bleaker Island, the 

Frying Pan, Roy Cove and Sea Lion Island (Chapter 2), Investigation focused on 

individual habitat patches, distinct topographical locations containing a population of 

butterflies, such as an area of dwarf shrub heath or a rock run, either comprising a site 

in its entirety, or within a site (Table 3.1, Appendix Table A.1) Although both Bleaker and 

Sea Lion (2.3.1 and 2.3.4) contained areas of distinct topographical and vegetation 

features, adults in both cases moved freely over the whole study site. It was therefore 

decided to address each as a single patch. 

 
Table 3.1  Study sites and habitat patches: sizes and distances between patches.  Patches at Frying Pan 

and Roy Cove have a linear rather than a network relationship, therefore distances between any two patches 

can be calculated by adding distances between pairings together. Patch names in lower case are purely 
descriptive, with no formal geographic status. 

   distance between patches 
site patch area (ha) pairing (m) 

Bleaker Bleaker (BL) 0.63 - - 
Frying Pan south cliffs (SC) 0.18 -  
 fence line (FL) 0.42 SC - FL   220 
 river mouth (RM) 0.08 FL - RM   1000 
Roy Cove upper meadow (UM) 0.80 -  
 bluebottle rocks (BB) 0.79 UM - BB   300 
 lower meadow (LM) 0.28 BB - LM   280 
 windmill hill (WH) 0.06 LM - WH   230 
 rock run (RR) 0.52 WH - RR   100 
Sea Lion Sea Lion (SL) 7.00 - - 

 

 

 

3.2.2 Data collection 
 
Mark-release-recapture (MRR) was used to estimate population size, imago life span 

and mobility, and to investigate different behaviour patterns between the sexes.  

Populations were sampled over three austral summers, 2015-2016, 2016-2017 and 

2017-2018, although MRR data were not gathered during the first summer, which was 

focused on finding suitable populations for analysis.  
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Y. cytheris has a flying season from November to February, with no evidence of bi- or 

multi-voltinism. Resource constraints meant it was not possible to sample through an 

entire season.  This made accurate assessment of population size difficult, as data only 

allowed estimates for the capture period at each site.   

 

The rapidly changing daily weather conditions in the Falkland Islands made it difficult to 

set a daily timetable for MRR, as there were few ideal capture days of warmth, 

uninterrupted sunshine and minimal wind. MRR was carried out on all days which had 

some clear sky, no matter how strong the wind, although eight out of a possible 57 MRR 

days were lost to persistent rain. During such periods, other fieldwork was undertaken, 

during which no butterflies were sighted. 

 

Each of the patches at the Frying Pan and Roy Cove was searched for butterflies for a 

minimum continuous period of 40 minutes of each day, with a start time of 0900 (although 

captures before this were included in data). If no butterfly was seen during that period, 

the next patch was examined. The order of search between patches was changed each 

day. Sea Lion and Bleaker, treated as single patches, were searched for two hours a 

day.  On-site adjustments were made until it appeared that all butterflies that were likely 

to be caught had been caught. This indicator was a succession of within-day recaptures, 

with no new butterflies. Searches included a buffer zone of 100m from the main patches. 

 

Butterflies were captured with a 40cm net on a 50cm handle, both black to minimise 

flash.  Each butterfly was marked immediately after capture and then gently released at 

the place of capture. To ensure a unique ID, sequential letters were marked on the 

underside of a hind wing using a Sharpie fine point permanent marker in one of four 

colours. All markings were clear and legible during subsequent recaptures. The 

butterfly’s number was recorded, together with its capture coordinates, taken from a 

Garmin GPSMAP 64S GPS Meter (nominal accuracy ± 3 m). Records were also taken 

of the time of capture, sex, condition on a scale of A (fresh) to D (very worn), and activity 

when captured. Data were recorded from repeat captures on subsequent days, but not 

from repeat captures on the same day. 

 

Any butterflies needed for DNA or morphometric work were only killed on the last day of 

MRR to avoid distortion in the data analysis.  
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3.2.3 Data Analysis 
 
(i) Population size and dynamics 
 
An open population was assumed. This would allow for birth (or, in the case of adult 

insects, eclosion), death and migration, as well as population change over the duration 

of the sampling period.   

 

Population parameters were assessed through the Jolly-Seber method (Jolly 1965, 

Seber 1965) which was designed for use with open populations and has been widely 

adopted for butterfly population analyses (e.g. Samways and Lu 2007, Wilson and Roy 

2009, Sielezniew and Nowicki 2017, Sielezniew et al. 2019). It enables the estimation of 

population size (N), the total number of butterflies present in the study population over 

the study period; apparent survival probability (φ); the probability of capture during a 

given sampling period (p); and the probability of entry into the population between two 

given sampling periods (pent). The survival estimator (φ) cannot distinguish between 

death and emigration without further information, therefore the term "apparent survival", 

which encompasses recorded residence time, is used here (Lebreton et al. 1992, Pollock 

and Alpizar-Jara 2005). 

 

Assumptions of equality of survival and catchability were tested to ensure the Jolly-Seber 

method was valid (Begon 1983, Henderson and Southwood 2016). The largest data set, 

Bleaker BL11 (Table 3.2) was used to test both assumptions. The test statistics for 

Manly's (1971) test (g = -0.362, where inequality of survival would be significant at 

g > 1.64) and Cormack's (1966) test (z = -0.002, where inequality of catchability would 

be significant at z > 1.64) enabled both assumptions to be made 

 

The Bleaker BL11 data set (Table 3.2) was also used to select an appropriate model 

within the Jolly-Seber method based on Akaike’s information criteria, corrected for small 

sample size (AICc) (Burnham and Anderson 2003). All calculations were carried out in 

RMark (Laake 2013). Candidate models were ranked according to their AICc values. The 

model selected was POPAN (Schwarz and Arnason 2009, Laake 2013) φ(~1) p(~1) 

pent(~1) N(~1), with an AICc value of 258.4. The other candidates, Link-Barker, 

Pradel-recruitment and Pradel-λ, each had much higher AICc values of 502.3, with a fifth 

candidate, Burnham JS showing no convergence of the parameter estimates.  
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The sexes were pooled to maximise the numbers available for estimating population size 

for each site study visit. Study visits were pooled to maximise the numbers available for 

estimating any variation between the sexes in φ, p and pent. 

 

(ii) Population distribution 
Heat maps were drawn up for each site, and for patches within sites, to identify areas of 

population concentration. The GPS coordinates of all captures and recaptures were 

mapped in QGIS 3.4 (QGIS Development Team 2018).  The kernel density estimation 

feature was then used to produce a heat map, using a buffer of 10m around each capture 

to allow a pursuit distance between sighting and capture. 

 
(iii) Mobility 
 
Distances between captures and recaptures were calculated using the spherical rule of 

cosines and were visualised in QGIS 3.4. To assess whether these were correlated with 

patch area, the areas of sites, and patches within sites, were calculated using the field 

calculator tool in QGIS, based on vegetation data from Phase 1 mapping (Chapter 2), 

with patches in such cases containing Viola spp. Distances flown by females and males 

were compared to establish whether mobility patterns differed between the sexes. 

 

(iv) Imago longevity 
 
Field visits, ranging from between one and eight days, did not give enough time to 

provide a clear picture of the time spent by Y. cytheris as an imago. Estimates were, 

however, made based on (i) capture history, (ii) apparent survival probability, derived 

from capture history using the Jolly-Seber method, and (iii) measurement of the rate of 

decline of recaptured butterflies’ condition.  

 

Capture histories of more than five days duration were used to note the average number 

of days between first and last captures.  The condition of butterflies at each capture were 

recorded as:  A = pristine, B=some fading of colour, C = as B, but with wing damage, D 

= faded and battered. To assess the decline in condition over time, the condition of each 

recaptured butterfly, initially captured in condition A, was plotted. 
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(v) Assessment of daily emergence patterns, activity and nectaring 
To assess daily emergence patterns, time of first capture during the day was noted for 

all butterflies. Captures were allocated to one-hour periods, and numbers were 

compared; comparisons were also made between the first hour of MRR, 0900 - 0959, 

and the last four, 1300 - 1659. To consider whether there was evidence for daily eclosion, 

first capture times of butterflies with wing condition A, as a proxy for newly emerged 

butterflies, were compared. In all cases butterfly activity immediately before capture was 

noted.  The categories used were basking (lying with wings flat, on stone, sand or bare 

earth); searching (apparently aimless movement, with pauses, across the patch); 

interacting (pursuing, or being pursued by, another butterfly, either in courtship or 

conflict); mating; nectaring; and resting (pausing, usually on foliage, with no apparent 

motive). No butterflies were caught, and only one was seen, ovipositing. Two glosses 

might be added to the terminology. First, while other activities, such as nectaring and 

resting, contained elements of basking, and the butterfly might hold its wings flat while 

doing both, "basking" is here used of a very specific activity where the butterfly rests, 

seemingly motionless, on rocks or bare ground. Second, despite males and females 

having different requirements, field observation failed to distinguish between male and 

female flight patterns. While patrolling for males, and showing availability, or seeking to 

oviposit, for females might be expected to appear distinct, the flight patterns of the two 

sexes could not be distinguished. The term "searching" is used for all such activity.  
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3.3 Results 
 
3.3.1 Data sets 
 

 
Over the three seasons a total of 403 butterflies were captured at the four study sites of 

Bleaker, Frying Pan, Roy Cove and Sea Lion over 49 days (Appendix Table A.1). 51 

captures took place during exploratory visits in January 2016 and were excluded from 

population analyses. For the two seasons (2016 - 2017, 2017 - 2018) in which mark-

release-recapture (MRR) took place, a total of 270 (130 female, 140 male) individuals 

were captured; there were 82 (44 female and 38 male) recaptures, involving 49 

individuals. The maximum number of recaptures on different days at any site was three 

for both females and males. A separate data set was drawn up for the different habitat 

patches of Frying Pan and Roy Cove (Table 3.3). The capture rate varied considerably 

both between sites and within sites on different days (Table 3.4) 
 

Table 3.2 Summary of Y. cytheris captures at Falkland Island sites. These include captures and recaptures, 
over three seasons. 

  days all captures marked recaptures 
visit date visit MRR total     F   M   F M F M 

SL01 Jan 16 1 1     6     4   2   4 2 0 0 
BL01 Jan 16 4 2   31   23   8 23 8 0 0 
RC01 Jan 16 1 1   12     7   5   7 5 0 0 
FP01 Jan-Feb 16 5 3     2     2   0   2 0 0 0 
SL11* Dec 16 4 4    78   33 45 27   37 3 7 
BL11* Dec 16 5 4  131   56 75 43   56   12    17 
FP11 Dec 16 1 1     5     0   5   0 5 0 0 
RC11* Jan 17 7 6   44   35   9 23 8    7 1 
RC12 Jan 17 1 1     7     1   6   1 6 0 0 
BL12 Jan 17 2 2   25   17   8 12 7 5 1 
RC13 Jan 17 5 3   10     9   1   9 1 0 0 
FP12 Feb 17 1 1     2     2   0   2 0 0 0 
RC21* Jan 18 8 7   14     6   8   6 5 0 1 
SL21 Jan 18 2 2     0     0   0   0 0 0 0 
BL21* Jan 18 7 7   23     9 14   4 8 2 3 
FP21* Jan-Feb 18 6 4   13     6   7   4 7 2 0 
           Total    60  49 403 210   193 166 155  31   30 

Visits are coded by site: BL = Bleaker, FP = Frying Pan, RC = Roy Cove and SL = Sea Lion. The two digits 
following refer to a combination of the season (0 = 2015-2016, 1 = 2016-2017 and 2 = 2017-2018) and the 

site visit within that season (1-3).  All captures = total of butterflies netted, including repeat captures on 

subsequent days. Visit = the duration, in days, of a site visit; MRR = the number of days within the visit that 
MRR was undertaken. Marked = the number of individuals marked for the first time in a visit; recaptures = 

the number of individuals recaptured in total, irrespective of the number of times they were recaptured. F 

and M refer to female and male. Visits marked * were long enough for analysis of population using the Jolly-
Seber method and also produced recaptures.  
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Table 3.3 Summary of Y. cytheris captures at Frying Pan and Roy Cove patches. These include captures 

and recaptures, over three seasons.  

  days all captures marked recaptures 
visit date visit MRR total     F   M   F M F M 

LM01 Jan 16 1 1 9 4 5 4 5 0 0 
RR01 Jan 16 1 1 1 1 0 1 0 0 0 
WH01 Jan 16 1 1 2 2 0 2 0 0 0 
SC01 Jan 16 5 1 2 0 2 0 2 0 0 
WH11 Jan 17 1 1 1 1 0 1 0 0 0 
BB11 Jan 17 7 3 5 2 3 2 3 0 0 
LM11 Jan 17 7 5 33 27 6 10 5 7 1 
RR11 Jan 17 7 2 5 4 1 4 1 0 0 
UM12 Jan 17 1 1 7 1 6 1 6 0 0 
BB13 Jan 17 5 1 3 3 0 3 0 0 0 
WH13 Jan 17 5 1 1 0 1 0 1 0 0 
LM13 Jan 17 5 3 5 5 0 5 0 0 0 
RR13 Jan 17 5 1 1 1 0 1 0 0 0 
FL12 Feb 17 1 1 2 2 0 2 0 0 0 
WH21 Jan 18 8 1 1 1 0 1 0 0 0 
LM21 Jan 18 8 2 2 2 0 2 0 0 0 
UM21 Jan 18 8 2 4 2 2 2 2 0 0 
BB21 Jan 18 8 4 7 1 6 1 2 0 1 
FL21 Feb 18 6 3 6 5 1 2 1 1 0 
RM21 Feb 18 1 1 6 1 5 1 5 0 0 
           
Total    103 65 38 45 33 8 2 

Visits are coded by patch. Frying Pan patches are: FL = fence line, RM = river mouth and SC = south cliff; 

Roy Cove sites are: BB = bluebottle rocks, LM = lower meadow, RR = rock run, UM = upper meadow, WH 

= windmill hill.  The two digits following refer to a combination of the season (0 = 2015-2016, 1 = 2016-2017 
and 2 = 2017-2018) and the site visit within that season (1-3).  Visit = the duration, in days, of a site visit; 

MRR = the number of days within the visit that MRR was undertaken. These have not been totalled as they 

overlap.  Marked = the number of individuals marked for the first time in a visit; recaptures = the number of 
individuals recaptured, irrespective of the number of times they were recaptured. F and M refer to female 

and male.   

 

 
 

Table 3.4 Mean Y. cytheris daily capture rate at the four study sites over three study visits. 

visit Bleaker Frying Pan Roy Cove Sea Lion 
Jan 2016 15.50 ±7.78     (2)   0.67 ±1.15 (3)   12.00 ±NA     (1)   6.00 ±NA    (1) 
Dec 2016 32.75 ±9.71     (4) - - 19.50 ±8.50  (4) 
Jan 2017a 12.50 ±0.71     (2)   2.00 ±NA   (1)     7.29 ±3.50   (7) - 
Jan 2017b - -     3.33 ±2.31   (3) - 
Jan 2018   3.29 ±2.06     (7)   3.25 ±2.87 (4)     2.00 ±1.41   (7)   0.00 ±0.00  (2) 
     Overall 14.00 ±13.60 (15)   2.12 ±2.36  (8)     4.83 ±3.85 (18)  12.00 ±11.3  (7) 

Jan 2017 was split into a and b to incorporate two separate visits to Roy Cove. Figures represent mean 
number of individuals ±SD, with the number of days on which butterflies were pursued shown in brackets.  
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3.3.2 Population size 
 

There was a wide range in estimated population sizes between and within sites (Table 

3.5). Bleaker, for example, had both the highest estimated numbers (213.1±31.7; 95% 

CI [165.8, 293.8]) in December 2016 and the second lowest (14.4±2.5; 95% CI [12.4, 

24.7]) in January 2018.  

 
 
Table 3.5 Jolly-Seber analysis of Y. cytheris  MRR data for Falkland study sites. Visits of four days or more, 

containing recaptures, were included. Females and males were pooled.  

     n φ p pent 

visit date days mark rec n SE 95% CI φ SE p SE pent SE 

BL11 Dec 16    5 99 25 213.1 31.7 165.8, 293.8 0.84 0.11 0.19 0.05 0.06 0.06 

SL11 Dec 16    4 64   8 139.0 59.6   83.0, 359.8 0.49 0.26 0.34 0.25 0.18 0.07 

RC11 Jan 17    7 31   8   53.0 11.0   39.7, 86.5 0.66 0.09 0.35 0.10 0.07 0.02 

BL21 Jan 18    7 12   5   14.4   2.5   12.4, 24.7 0.69 0.10 0.58 0.13 0.04 0.26 

FP21 Jan 18    6 11   1   17.5   9.6   11.8, 64.5 0.63 0.24 0.42 0.35 0.13 0.03 

RC21 Jan 18    8 11   1   21.7   9.9   13.3, 61.1 0.56 0.14 0.32 0.17 0.04 0.02 

days = duration of visit in days; mark = number of individuals marked; recap = total number of recaptures; 

n= estimated size of population over study visit; φ = apparent survival probability; p = probability of capture 

during sampling period; pent = probability of entry into the population between sampling periods. 

 
The variation in population estimates reflected the wide range in apparent survival 

probability φ, probability of capture over the marking period p and probability of entry into 

the population between sampling periods pent.  

 

Capture histories by sex (Table 3.6) showed φ to be higher for females, 0.78 compared 

with 0.68 for males, while pent was higher for males, 0.14 compared with 0.13 for 

females. There was little difference in p. 

 
Table 3.6 Estimated means of probability of survival (φ), capture (p) and entry into the population (pent) of 

female and male Y. cytheris. Data are taken from the field visits recorded in Table 3.5 

  φ p pent 

 ch φ SE   [95% CI] p SE   [95% CI] pent SE   [95% CI] 

all 228 0.73 0.05 [0.61, 0.83] 0.24     0.04 [0.17, 0.32] 0.14    <0.01 [0.13, 0.14] 

female 107 0.78 0.08 [0.60, 0.90] 0.24 0.05 [0.15, 0.36] 0.13 <0.01 [0.12, 0.14] 

male 121 0.68 0.07 [0.52, 0.81] 0.25 0.06 [0.15, 0.37] 0.14 <0.01 [0.14, 0.14] 

ch= number of capture histories; φ = apparent survival probability; p = probability of capture during sampling 

period; pent = probability of entry into the population between sampling periods. 
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Capture histories by site (Table 3.7) showed Bleaker and Roy Cove to be comparable 

for φ (0.75 and 0.74 respectively) and p (0.26 and 0.23), though with a contrast in pent 

(0.14 and 0.07). Sea Lion showed a different pattern with a low φ (0.49), and a high pent 

(0.18). Both Sea Lion and Frying Pan showed less robust data sets, with large 

confidence intervals for φ and p. 

 
Table 3.7 Estimated means of probability of survival (φ), capture (p) and entry into the population (pent) of 

Y. cytheris at each site, combining data from all visits in Table 3.5, with sexes pooled.  

  φ p  

 

pent 

site ch φ SE   [95% CI] p SE   [95% CI] pent SE   [95% CI] 

all 228 0.74 0.05 [0.61, 0.83] 0.24   0.04 [0.174, 0.325] 0.14     <0.01 [0.13, 0.14] 

BL 111 0.75 0.07 [0.59, 0.86] 0.26 0.05 [0.173, 0.378] 0.14 <0.01 [0.14, 0.14] 

FP 11 0.63 0.24 [0.18, 0.93] 0.42 0.35 [0.041, 0.926] 0.13   0.03 [0.08, 0.20] 

RC 42 0.74 0.08 [0.57, 0.86] 0.23 0.07 [0.121, 0.384] 0.07   0.02 [0.04, 0.11] 

SL 64 0.49 0.26 [0.11, 0.88] 0.34 0.25 [0.056, 0.818] 0.18   0.07 [0.08, 0.36] 

ch= number of capture histories; φ = apparent survival probability; p = probability of capture during sampling 

period; pent = probability of entry into the population between sampling periods. 

 
 
3.3.3 Population distribution and mobility 
 
Population distribution at all sites showed tight clustering within patches (Figures 3.1, 

3.2, 3.3, 3.4) with hot spots reflecting habitat features which, in turn, might impact on 

different activities. Thus, at Bleaker, a hot spot was a large patch of flowering groundsel, 

Senecio vulgaris (Figure 3.1), and at Sea Lion, a flowering Christmas bush, Baccharis 

magellanica, (Figure 3.4), in December 2017, both providing sources of nectar.  
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Figure 3.1 Population distribution of Y. cytheris at Bleaker, showing all captures 2016-2018.  A 10m buffer 

is marked around each individual. The principal population focus was a patch of groundsel, Senecio vulgaris, 
shown here as a red patch.   

 

 
Figure 3.2 Population distribution of Y. cytheris at the Frying Pan in the three main patches (the south cliff, 
the fence line and the river mouth) showing all captures 2016-2018.  A 10m buffer is marked around each 

individual.  
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Figure 3.3 Population distribution of Y. cytheris at Roy Cove in the five main patches (the upper meadow, 

bluebottle rocks, the lower meadow, windmill hill and the rock run) showing all captures 2016-2018.  A 10m 
buffer is marked around each individual.  

 
 

 
Figure 3.4 Population distribution of Y. cytheris at Sea Lion, showing all captures 2016-2018.  A 10m buffer 
is marked around each individual. The principal population focus was a flowering Christmas bush, Baccharis 

magellanica, in December 2016, shown here as a red patch. 
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A concentration of butterflies on the leeward side of a large gorse bush, Ulex europaeus 

(Figure 3.5) at the lower meadow of Roy Cove suggested that shelter, to aid mating and 

oviposition, could also provide a focal point. 

 

 

Figure 3.5 Population distribution of Y. cytheris at the lower meadow, Roy Cove, showing all captures 2016-

2018.  A 10m buffer is marked around each individual. The principal population focus was an area in the lee 

of a large gorse bush, Ulex europaeus, shown here as a red patch. 

 
 

There were 76 movements between capture and recapture recorded.  All of these were 

within sites or within individual patches within sites. No movements were recorded 

between patches, or between sites. The sites or patches showing the most repeat 

captures were Bleaker (Figure 3.6), Sea Lion (Figure 3.7) and the lower meadow at Roy 

Cove (Figure 3.8) The mean distance flown between captures was 26.6m (SD = 21.3; 

95% CI 21.7, 31.4), with the maximum distance 119m and minimum 3.4m (Table 3.8, 

Figure 3.9). There was no evidence to suggest female flight distances differed 

significantly from male  
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Figure 3.6 Flight patterns of Y. cytheris at Bleaker, showing that both sexes ranged widely across the patch, 

although with frequent movements to and from the groundsel flowers. 

 

 
Figure 3.7 Flight patterns of female and male Y. cytheris between capture and recapture at Sea Lion, 
2016-2018, showing the attraction of a flowering Christmas bush, Baccharis magellanica, in December 

2016. Five of the recaptures were of butterflies caught at the bush on successive days. 
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Figure 3.8 Flight patterns of female and male Y. cytheris between capture and recapture at the lower 

meadow, Roy Cove, 2016-2018, showing that butterflies movement was focused on a 30m x 20m area in 

the lee of a gorse bush, Ulex europaeus. 

 
Table 3.8 Distances flown between captures within patches. 

   flight distance (m) 
site patch area (ha) n M SD 95% CI 
BL BL 0.63 48 26.64 15.56 22.26, 31.01 
FP FL 0.42   2 45.24 10.48   48.87, 139.36 

 RM 0.08 - - - - 
 SC 0.18 - - - - 

RC BB 0.79   3   7.97   3.15  0.15, 15.79 
 LM 0.28 13 17.90 13.38  9.81, 25.99 
 RR 0.52 - - - - 
 UM 0.80 - - - - 
 WH 0.06 - - - - 

SL SL 7.00 10 33.72 43.88 2.33, 65.10 
Key: sites: BL = Bleaker, FP = Frying Pan, RC = Roy Cove, SL = Sea Lion; patches: FL = fence line, RM = 

river mouth, SC = south cliffs, BB = bluebottle rocks, LM = lower meadow, RR = rock run, UM = upper 
meadow, WH = windmill hill.  Patches at which there were no recaptures have data recorded as "-". 
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Figure 3.9 Distances flown between captures, by site and sex 

 
Only two patches at Roy Cove (bluebottle rocks, lower meadow) and one at the Frying 

Pan (fence line) had repeat captures, which made meaningful comparisons difficult 

(Table 3.3). No strong correlation was, however, found between distances flown 

between captures and patch size (Spearman: ρ = 0.420, p = 0.227), and the two patches 

with the most repeat captures, Bleaker and the lower meadow at Roy Cove, were the 

fourth and sixth largest respectively. 

 

Both sexes flew extensively over their patches, whether patrolling (males) or searching 

(males and females) with a focus on particular areas: flowering groundsel, Senecio 

vulgaris, at Bleaker (Figure 3.1); a flowering Christmas bush, Baccharis magellanica, at 

Sea Lion (Figure 3.7) and the shelter of a large gorse bush, Ulex europaeus, at the lower 

meadow, Roy Cove (Figure 3.8). 

 

The only butterflies found away from the main patches were on Bleaker. One, a male of 

wing condition 3, was in the settlement, 300m from the main patch; the other, a female 

of wing condition 3, on the track 850m southwest of the main patch. While both were old 

adults, the sample size was inadequate to support any hypothesis of the age at which 

butterflies might move from patches. 

 
 
3.3.4 Imago longevity 
 
Analysis over a five-day period, initial capture followed by four days of potential 

recapture, showed a mean apparent survival (φ) period of 2.93 days (SD = 1.62; 95% 
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CI [2.33, 3.53]) from first capture. There was a significant difference between female (M 

= 3.53, SD = 1.55) and male (M = 2.33, SD = 1.49) survival over the five days F (1, 

28) = 4.65, p = 0.040, 95% CI [-2.34, -0.06], d = 0.79.  Inclusive of first and last days, 

this gave a mean age for females of 4.53 days, and for males 3.33 days. The maximum 

period between first and last capture was six days, inclusive of first and last days, in the 

case of females and seven in the case of males. 

 

Jolly-Seber analysis (Table 3.6) showed female survival rates (φ) to be higher than male. 

Data from the sample population used to estimate five-day longevity predicted that the 

more rapid decline in male numbers would lead to females taking over the larger initial 

number of males by day four (Figure 3.10a).  The application of survival rates to initial 

populations of each sex predicted that 10% of females would survive until day 11, 

whereas 10% of males would only survive to day 7 (Figure 3.10b).  The estimated mean 

life spans produced by this analysis, over a 20-day period, were 4.73 days, 

95%CI [2.61, 7.41] for females and 3.35 days, 95%CI [2.16, 5.34] days for males. 

 

 
Figure 3.10 Predicted numbers of Y. cytheris on each day after initial capture, by sex The starting numbers 

on day 1 (a) were female, n = 28 and male, n = 38, representing the numbers of butterflies with potentially 
three further days of capture ahead of them.  Each previous day's figure is multiplied by the mean apparent 

survival rate (φ) for the sex, derived from the Jolly-Seber analysis of MRR data (Table 3.5). (b) compares 

predicted losses to the population from a starting point of 100 butterflies for each sex. 

 
Plotting butterfly wing condition against day of capture (Figure 3.11) showed a daily 

decline in condition, measured by the number of categories moved, significantly less in 

females (M = 0.42, SD = 0.38) than in males (M = 1.05, SD = 0.24) over the study period, 

with a large effect size F (1, 37) = 9.05, p = 0.005, 95% CI [-0.21, -1.07], d = 0.99.  
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Table 1.6 Distances flown between captures within patches. 
   flight distance (m) 

site patch area (ha) n M SD 95% CI 
BL BL 0.63 51 26.64 15.56 22.26, 31.01 
FP FL 0.42   2 45.24 10.48   48.87, 139.36 

 RM 0.08 - - - - 
 SC 0.18 - - - - 

RC BB 0.79   3   7.97   3.15  0.15, 15.79 
 LM 0.28 13 17.90 13.38  9.81, 25.99 
 RR 0.52 - - - - 
 UM 0.80 - - - - 
 WH 0.06 - - - - 

SL SL 7.00 10 33.72 43.88 2.33, 65.10 
Key: sites: BL = Bleaker, FP = Frying Pan, RC = Roy Cove, SL = Sea Lion; patches: FL = fence line, RM = 
river mouth, SC = south cliffs, BB = bluebottle rocks, LM = lower meadow, RR = rock run, UM = upper 
meadow, WH = windmill hill.  Patches at which there were no recaptures have data recorded as "-". 
 

 

 
 
 

 
1.3.4 imago longevity 
 
 
 
Longevity over a five-day period, initial capture followed by four days of potential 

recapture, showed a mean survival period of 2.93 days (SD = 1.62; 95% CI 2.33, 3.53). 

There was a significant difference between female (M = 3.53, SD = 1.55) and male (M = 

2.33, SD = 1.49) survival over the five days F (1, 28) = 4.65, p = 0.040, 95% CI [-

2.34, -0.06], d = 0.79. 

 

Jolly-Seber analysis (Table 1.4) showed female survival rates (φ) to be higher than male. 

Applied to the sample population used to estimate five-day longevity 0.7980.703 
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Figure 3.11 Wing condition of Y. cytheris on recapture. Key to condition: A = pristine, B = some fading of 

colour, C = as B, but with wing damage, D = faded and battered. Day 1 includes only butterflies in pristine 

condition with at least three further days of possible capture ahead of them.  Captures on days 2 – 7 are of 
butterflies originally captured on day1. Repeat captures on the same day are not recorded. 

3.3.5 Sex ratio and emergence patterns 
 
Captures were effectively balanced in terms of sex: of the 403 captures, 210 (52.1%) 

were female and 193 (47.9%) male (Table 3.2); of the 321 individuals marked, 166 

(51.7%) were female, and 155 (48.3%) male. More males than females were caught in 

the first hour of MRR, 0900 - 0959, and fewer in the last four, 1300 - 1659 (χ2 = 7.93, 

df = 1, p = 0.005) (Figure 3.12). 

 

 
Figure 3.12 Daily first capture times by sex of Y. cytheris over all study visits. 
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First captures of butterflies with wing condition A showed more males (31)  than females 

(20) were caught in the morning, with numbers of males (19) and females (21) nearly 

equal in the afternoon, although, in considering evidence for early eclosion, the 

difference between the sexes in the morning was not significant (χ2 = 2.37, df = 1, 

p = 0.123, 95% CI [0.46, 0.74]) (Figure 3.13). 

 

 
Figure 3.13 Daily first capture times by sex of pristine (wing condition A) Y. cytheris over all study visits. 

 
3.3.6 Activity at the time of capture 
 
The main pattern of activity for both sexes was a seemingly aimless, restless movement 

across the patch, characterised in this chapter as searching (Figure 3.14). There was no 

evidence of male perching as a prelude to launching into mating or other interaction. 

Activity generally declined in the afternoon, with captures falling off after 1300. More 

males (6) than females (17) were caught before 1000, and more females (12) than males 

(4) after 1600. 

 

There was an overall difference in behaviour pattern for the combined sexes in the 

afternoon compared with the morning (χ2 = 13.88, df = 5, p = 0.016), although the 

difference for each sex was not significant (females: χ2 = 6.64, df = 5, p = 0.249, males: 

χ2 = 9.58, df = 5, p = 0.088). Nor was the difference overall in behaviour pattern of the 

sexes significant (χ2 = 7.75, df = 5, p = 0.170), although the overall tendency was for 

females to pursue much the same course of behaviour over the day, but for the males 

to change. Nectaring, with wings open, for both sexes was more prevalent in the 
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morning, while basking on bare surfaces was more prevalent in the afternoon. Male 

interacting was commoner in the morning than the afternoon.  

 

 
Figure 3.14 Activity by Y. cytheris at the time of capture, by sex and time of day. Key: morning = up to 1159, 

afternoon = 1200 onwards;  basking = lying with wings flat, on stone, sand or bare earth; searching = 

seemingly aimless movement, with pauses for nectaring across the patch; interacting = pursuing, or being 
pursued by, another butterfly, either in courtship or conflict; mating and nectaring are self-explanatory; 

resting = pausing, usually on foliage, with no apparent motive. No butterflies were caught, and only one was 

seen, ovipositing. 

3.3.7 Nectaring preference 
 
Y. cytheris was observed nectaring on seven species of plant, apparently 

indiscriminately (Figure 3.15). Choice of nectaring plant appeared to be determined by 

what was flowering at the time, with the dominance of Christmas bush Baccharis 

magellanica on Sea Lion, where a large patch was in flower in December 2016, and of 

groundsel, Senecio vulgaris, which was in flower in December and January on Bleaker 

(Figure 3.1). 
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Figure 3.15 Plants used by Y. cytheris for nectaring at the time of capture. Key: celery = wild celery, Apium 

australe; dandelion = Taraxacum agg; daisy = Bellis perennis; groundsel = Senecio vulgaris; sea kale = 

Senecio candicans; violet = Viola spp.; Christmas bush = Baccharis magellanica. 
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3.4 . Discussion 
 
 

3.4.1 Population size and structure 
 
(i) Findings 
 
There were no records of Y. cytheris moving between habitat patches, although two 

butterflies were found at 350 m and 850 m from the nearest patch.  All flights measured 

were within the boundaries of a patch, with a mean distance flown between captures of 

26 m.    

 
Y. cytheris spent little time as an adult, with an apparent survival (φ) mean of 4.5 days 

for females and 3.3 days for males. Evidence from declining wing condition supported 

these time scales.  

 
While MRR was able to provide data for some metrics, such as survival, replenishment 

rates, and capture probabilities, there was inadequate evidence to estimate overall 

population size, other than to provide estimates of orders of magnitude at certain time 

periods. 

 
 
(ii) Discussion 

The linkage between sedentary behaviour in butterflies and niche breadth has been 

extensively explored (Hanski 1982, Shreeve 1995, Gaston et al. 1997, Komonen et al. 

2004) and linked to wider studies of dispersal (Stevens et al. 2010). Larval host plant 

specificity and narrowness of habitat were shown to be two key indicators. A further 

factor was position at the end of a species range, where Komonen et al. (2004) 

concluded that, having found a suitable patch, with the prospect of few others within 

range, a butterfly was likely to remain in it. On this basis, Y. cytheris, dependant on Viola 

spp., living in small patches, and at the edge of its range, would be readily predicted to 

be sedentary. 

The extent to which Y. cytheris is sedentary remains unclear.  Sekar (2012), investigating 

predictors of mobility, found that flight period duration, the length of time during which 

adults could be observed on the wing, was an important predictor, second only to 

wingspan (considered in Chapter 6). Y. cytheris, with a recorded 121 days (Boyson 

1924) has a long flight period compared with other butterflies: Bubová et al. (2016), for 

example, found flying seasons in European butterflies varied from 16.5 days 
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(Pseudophilotes bavius) to 76 days (Coenonympha pamphilus). In the Falklands, with 

constant winds and heavy gusting, this maximises the opportunities for the butterfly to 

be blown distances beyond its habitual flying range, although further investigation is 

necessary to determine the extent of that range. On available evidence it might best be 

described as sedentary, though stochastically mobile. 

No gap within the flying season was found to suggest Y. cytheris was bivoltine, and 

Välimäki et al. (2008) showed that butterflies were more likely to be univoltine at higher 

latitudes.  

A meta-analysis of adult longevity amongst European butterflies (Bubová et al. 2016) 

showed considerable variation between species.  Mean life spans ranged from 2.4 days 

(Maculinea alcon) to 15 days (Cupido minimus). By comparison, Y. cytheris, with 

apparent survival rates (φ) of 4.5 days for females and 3.3 days for males, with maxima 

of 6 and 7 days respectively, appeared to be short-lived. This unexpected combination 

of a short adult lifespan and a long flying period requires further investigation. 

While it proved possible to estimate the key metrics in population analysis, apparent 

survival and replenishment rates, together with capture probabilities, attempts to 

measure population could only provide estimates of orders of magnitude over certain 

time periods. The conclusion reached was essentially that of Osváth-Ferencz et al. 

(2017): that estimates of daily population size were "unreliable (or impossible or 

meaningless)" when sampling did not cover the whole flight period, or when either 

sampling frequency or the number of daily captures and recaptures was low.  

 

The difference in apparent survival between the sexes also requires further investigation. 

As overall capture figures showed a balance between the sexes, and there were no 

records of immigration into habitat patches, the pent for males, 0.141 compared with 

0.135 for females, suggests that a higher number of males eclosed each day than 

females.  

 

The absence of any repeat captures demonstrating movement between patches at Roy 

Cove and the Frying Pan give no grounds for regarding population structures as 

networks between patches, and no evidence for metapopulation structures on sites. The 

capture of two butterflies away from the patch Bleaker showed some mobility, but the 

question of population structure at the local level remains largely unsolved. As the 

patches on Roy Cove are only 200-300m apart, it would be plausible for there to be 

movement between them.   
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A comparison was made with the Boloria cluster of butterflies, the nearest relatives to 

Yramea (Simonsen 2005), to identify any commonalities in population structure. The 

picture was mixed. There were no species matching Y. cytheris's recorded 121 days of 

flight period (Boyson 1924). B. napaea was the nearest, recorded at 68 days in the Alps, 

although only 26 in the Arctic (Ehl, Holzhauer et al. 2019); B. pales was at 63 days (Ehl, 

Böhm et al. 2019); while Bubová et al. (2016) recorded maximum flight periods for B. 

eunomia at 45 days, B euphrosyne at 32 days, and B aquilonaris at 21 days. Nor was 

there any evidence that Y. cytheris in the Falkland Islands shared the biennialism 

recorded in some Boloria fritillaries. As the examples came from butterflies found at high 

elevations or latitudes, such as B. acrocnema, at 3500m, though only 40ºN (Britten and 

Riley 1994); B. chariclea, above 60ºN (McFarland 2003), and B. alberta (Pinel 1995), at 

2500m, 51ºN, biennialism would not be predicted from low elevations at 51ºS.  

 

Ehl, Böhm et al. (2019) considered apparent survival (φ) of B. pales, which, at 3.3 days 

for females, and 4.5 for males, was as low as Y.cytheris, although the variation between 

the sexes differed, with Y. cytheris at 4.5 days for females and 3.3 days for males. 

Bubová et al. (2016) recorded φ of other Boloria fritillaries at between 4.3 days (B. 

aquilonaris) and 9 days (B. euphrosyne), with a maximum of 11.5 days (B. eunomia).  

 

Boloria mobility is generally low. An analysis by Komonen et al. (2004) of butterflies in 

Finland, using a mobility index of 0-10, from least to most mobile, only scored B. 

euphrosyne (7.5) and B. selene (6.5) above 5.0, with the ten other species listed scoring 

between 1.8 and 3.7. Their approach was based on an expert survey, therefore it is not 

possible to compare Y. cytheris directly with the other species. It appears, however, 

consistent with their results.  

 

Further work is needed to understand mobility, as it is difficult for a single investigator, 

running a variety of studies within tight time frames at a number of sites, to produce 

sufficient data. Next steps might involve more investigators spending longer at individual 

sites, especially those containing numbers of patches such as Roy Cove and the Frying 

Pan, tracking individuals and spending time on the terrain between patches. Subsequent 

work might also include finding more sites with distinct and separate patches of Viola 

and continuing MRR activity there. Next Generation Sequencing of DNA should then be 

considered as a way of identifying relationships between patches (Ekblom and Galindo 

2011, Klepsatel and Flatt 2011) and, in particular, between sites, as an assessment of 

the overall population distribution in the Falklands is possible at this stage. This would 
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lead on to examining the Falkland populations within the context of the overall population 

of Y. cytheris, by undertaking similar studies in Latin America. 

 
3.4.2 Behavioural patterns 
 
(i) Findings 
 

There was some evidence of males emerging earlier in the day than females, with the 

greater proportion of males caught in the morning than in the afternoon. The main pattern 

of activity for both sexes was a seemingly aimless, restless movement across the patch, 

described here as searching. 

 

Patterns of behaviour for both sexes changed over the course of a day, with nectaring 

more common in the morning and basking in the afternoon. Male interaction, whether 

courting or chasing away competition, was more prevalent in the morning. Nectaring 

appeared indiscriminate, with Y. cytheris observed feeding on seven species of plant. 

As the flight records showed, large flowering patches exerting a strong pull on population 

distribution. 

 
(ii) Discussion 
 
Sea Lion provided an illustration. In December 2016, when a single Baccharis 

magellanica patch was flowering, 64 individuals were marked over four days, with a 

population estimated, through Jolly-Seber, at 139, 95% CI [83.0, 359.8].  On two other 

visits, however, in January 2016 and January 2018, by which time B. magellanica had 

ceased to flower, the total catches were 6 (over one day) and 0 (over two days).  

 

The Sea Lion example does, however, point to other hypotheses.  Analysis of nectaring 

suggested that Y. cytheris was not particularly discriminating. Furthermore, Thomas et 

al. (2011) in a meta-analysis of factors which might underpin evidence-based 

conservation, observe that nectar resources were not a driver in dynamic population 

change. Yet the flowering of B. magellanica on Sea Lion, and of Senecio vulgaris on 

Bleaker coincided with the appearance of large numbers of butterflies drawn in from all 

over their patches.  Possible explanations include (i) there are large populations 

throughout the season on both, but they spend most of their time concealed; (ii) 

populations peak around the time of a major flowering; (iii) the butterfly peaks in 

December, and only small populations are found thereafter.  
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Further investigation is needed to understand the dynamics. Ideally, sites should be 

identified that appear to have large populations, and that can be monitored from 

November to February. If specific roosting areas can be identified, these might form focal 

points. Sites should be visited weekly, or ideally, given the imago life span, twice a week 

and undergo MRR. Particular note should be taken of nectaring plant flowering seasons. 

As part of this process a system of Pollard Walks (Pollard 1977, Pollard and Yates 1993), 

with robust steps to minimise bias (Harker and Shreeve 2008) should be considered to 

produce and monitor changes in population indices. 
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Chapter 4: Habitat requirements 
 
4.1  Introduction 
 

Effective conservation planning for species with complex life cycles requires an 

understanding of how different life stages respond to the environment at different scales 

(Taboada et al. 2013, Curtis and Isaac 2015, Samways 2019).  These may be 

considered at two levels: that of the individual butterfly, and that of populations. For an 

individual butterfly, the scale for oviposition is at the level of the leaf; for larval feeding, 

at the level of the plant, or group of plants; and, for pupation, at the level of the plant, or 

the location of attachment or concealment. Adult flight, including the activities of 

nectaring, basking, mating, interacting and oviposition, can cover levels from a small 

patch up to a landscape, and, in the case of migratory butterflies, beyond (Turlure et al. 

2010, Evans et al. 2020, Kral-O'Brien et al. 2020).  Population level takes a step beyond 

the flight of an individual, and considers the distribution of the butterfly, a function of its 

mobility and suitable habitat. The levels used in this chapter for Yramea cytheris are set 

out in Box 1. 

 

Each stage of life has its own habitat, the specific resources, encompassing topography, 

climate and vegetation, on which it depends.  While there is a debate about the meaning 

of habitat and its semantic network (Guthery and Strickland 2015), the advice of Morrison 

and Mathewson (2015) has been followed here: to spell out the intended meaning early 

on and then religiously apply it. In this chapter, the butterfly's habitat is understood as 

the resources it utilises, and the way in which those resources interact with each other, 

at a given scale (Dennis et al. 2003, Dennis and Hardy 2018).   

 

This chapter investigates the habitat requirements of Yramea cytheris by contrasting the 

biotic and abiotic aspects of locations where eggs had been laid, and those where they 

had not. It assesses the threats to those requirements, considering the wider population 

of the species both in the Falklands and South America, and suggests ways in which 

they might be addressed.  
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4.1.1  Habitat factors at a range of scales 
 
(i)   The geographical and landscape scales: the impact of climate change 
 
Yramea cytheris has a wide distribution in South America, from metropolitan Santiago in 

Chile to Tierra del Fuego (Chapter 1), a north-south spread of 1500 km. It is found at 

elevations from sea level to 890 m (Bariloche, Chile), at sites with mean December 

maximum temperatures from 15º C (Falkland Islands, Tierra del Fuego) to 29º C 

(Santiago, Chile).  This suggests that it is, as a species, tolerant of a range of abiotic 

circumstances.  

 

In the Falklands, Y. cytheris is a species at the edge of its range, in a region, the sub-

Antarctic, which is particularly sensitive to climate change (Pendlebury and Barnes-

Keoghan 2007, Terauds et al. 2012, Chown and Convey 2016). Regional climate models 

 Box 1:  Scales at which habitat data are analysed 
 
Geographical:  the complete geographical range of the species or 

subspecies. 

 

Landscape:  a major geographical area. Here Latin America or the Falkland 

Islands. 

 

Site:  a defined geographical area within the landscape, such as a settlement 

or island. Here generally one of the four study sites, Bleaker, Frying Pan, 

Roy Cove or Sea Lion. 

 

Patch:  a distinct topographical location within a site, such as meadow, dwarf 

shrub heath, rock run or edge within a site. 

 

Location: a single Viola plant, or small group of Viola plants, within a patch 

which are potential larval hosts. A fundamental scale in this chapter, as 

contrasts between non-oviposition or oviposition are generally at this level. 

 

Plant:  a single plant within a location, Viola spp. unless otherwise stated. 

 

Leaf:  a single leaf on a plant  
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have predicted a 1.8°C (± 0.34 SD) rise in the Falklands' mean annual maximum 

temperature by the 2080s compared with the period 1961-90 (Jones et al. 2013). An 

increase in air temperature at its present oviposition sites may not only have a direct 

effect on the butterfly itself, but also an indirect one through its impact on the butterfly's 

larval host plants, with potential for changes in distribution and physiology (Becklin et al. 

2016).  Maritime warming threatens a change in the Antarctic Circumpolar Current 

(ACC), a rise in sea level and an increase in storms (Pendlebury and Barnes-Keoghan 

2007), potentially threatening the existence of those oviposition sites which are close to 

the shoreline. A greater, though remoter, risk in a change in the ACC is its impact on the 

unstable north slope of the Burdwood Bank 150 km to the south of the islands, and the 

resultant threat of a tsunami (Regnauld et al. 2008, Nicholson et al. 2020).  

 

An important potential response of butterflies to climate change is a range shift, towards 

the poles or to higher elevations (Parmesan et al. 1999, Hill et al. 2009, Chen et al. 2011, 

Mason et al. 2015). Parmesan (2003) observed that, with each 1º C increase in mean 

annual temperature, a species' range would need to shift several hundred kilometres to 

maintain its climatic envelope.  There is limited scope for either the butterfly or its larval 

host plant to maintain its present climatic envelope at the landscape level in the 

Falklands, which barely cover 1º 30' of latitude, representing a temperature change of 

0.75º C (La Sorte et al. 2014) from north to south, and have a maximum elevation of 

705 m, a temperature change of 4.6º C (Ingleby 2013). The butterfly's tolerance of a 

wide range of temperatures in Latin America, together with evidence that the rate of 

retreat of the warmer, trailing edge of the climate envelope for lepidoptera is slower than 

the expansion of the leading, cooler edge (Chen et al. 2011) suggest that even at the 

landscape level there is the possibility of successful adaptation.  

 

(ii)  The site and patch scales: the impact of changing land use 
 
Largely sedentary butterflies, such as Y. cytheris (3.4.1 (ii)), mainly spend their lives at 

site, and often simply at patch, level. The principal constraint at these levels is the 

presence or absence of the larval host plant, in the case of Y. cytheris, Viola spp. Both 

sites and patches are defined through separation by areas without larval host plants, 

such as improved grassland, acid grassland, scrub, bog or rock. 

 

The structure of separate patches of potential or actual habitat within a site is important 

in considering population structures, as it underpins metapopulation theory (Hanski 

1999, 2004). While the Falklands, and in particular Roy Cove, would allow further 
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exploration of this for Y. cytheris, adequate resources were not available to pursue it in 

this thesis. 

 

It is at the site and patch level that changing land use (1.5.2 (ii)) potentially has the 

greatest effect, The Falklands' heathland is a plagioclimax environment, shaped by 

human activity including grazing and fires, particularly in those areas which would 

otherwise have been covered by Poa flabellata. This environment, existing in its present 

form from the mid 19th century (Palmer 2004), is a fragile one, at threat from improved 

agricultural practices on the one hand and conservation measures such as suspension 

of grazing, removal of established invasive species, and replanting of tussac on the other 

(Tourangeau et al. 2019). While this man-made environment is recent, it is one which 

has favoured, and potentially enabled, the wide distribution of Viola spp., and the 

consequent wide distribution of Y. cytheris, on the islands. 

 

Climate variables, such as temperature and wind speed, are generally first analysed at 

the site level, using data drawn from WMO weather stations. This is helpful when looking 

at wider scale changes, such as range shift, where the data contribute to the 

identification of a pattern (Warren et al. 2001). WMO data is less helpful in making finer 

scale comparisons, particularly as weather stations are positioned in such a way as to 

avoid precisely those characteristics, such as shade and shelter, which influence the 

microclimate, a key determinant of habitat selection (Frenne and Verheyen 2016, 

Montejo-Kovacevich et al. 2020).  Comparing data within the same topographic area, 

but for a range of habitats, Suggitt et al. (2011) recorded differences amongst them of 

more than 5°C in monthly maxima and minima, and of 10°C in thermal range, 

comparable, as they observed, with the level of warming expected for extreme future 

climate change scenarios. 

 

(iii)  The location scale and microhabitat scales 
 
For butterflies which are largely sedentary, such as Y. cytheris (3.4.1 (ii)), two other 

responses to climate change are possible, at least when the threat of stochastic 

inundation is not imminent: a phenological adjustment to eclosion (Macgregor et al. 

2019) and changing microhabitat to maintain the same microclimate (Parmesan et al. 

1999, Davies et al. 2006, Bennett et al. 2015, Singer 2017).  There are inadequate data 

to consider possible phenological change in Y. cytheris (1.4.3).  Microhabitat adjustment, 

however, offers additional scope, beyond latitude and elevation shift, to mitigate 

potentially harmful temperature changes. The variability between actual and potential 
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microhabitats (Weiss et al. 1988, Bennie et al. 2008, Lawson et al. 2014) affords the 

possibility of finding suitable conditions nearby when one habitat becomes unsuitable. 

Bennie et al. (2008), for example, noted a mean annual temperature difference between 

adjacent north and south facing slopes in British calcareous grassland of 2.5-3º C. In the 

Falklands, the difference between sheltered and exposed sites in a mean wind speed of 

8 ms-1 would be 3.3º C in summer (Osczevski and Bluestein 2005). Either of these would 

be equivalent to a shift of 5º in latitude or 500m in elevation.  

 

This chapter aims to identify the microhabitat preferences of Y.c. cytheris, about which 

virtually nothing has been recorded (1.4.3). The main area of focus is its preferred 

microclimate, particularly its temperature preferences and factors, such as wind and 

microtopography (e.g. shelter, and heat retaining features, such as bare earth rocks) 

which contribute to it.  This is important in conservation planning. Microclimates are 

particularly important at range limits (Thomas et al. 1999), and ensuring that a 

heterogeneous environment exists at site level which provides microclimate options is  

potentially important in ensuring a species survival in the context of environmental 

stochacity (Gillingham 2010, Oliver et al. 2010, Bennett et al. 2015). 

 

(iv)  Factors in the selection of oviposition and larval host plants 
 
Literature searches showed, as with microclimates, a considerable knowledge gap about 

Y. cytheris's selection of locations for oviposition and larval feeding. Like the majority of 

the Argynnini tribe of fritillaries, Y. cytheris appears to be a specialist on Violaceae as 

larval host plants (Simonsen 2006), which it also uses for oviposition. There is no 

evidence of its ovipositing on nearby vegetation or litter (1.4.3), as can be the case with 

related Boloria species (Brakefield et al. 1992). 

 

 But even within a single species of host plant, butterflies have been observed to show 

preference for a particular size (Thomas et al. 1991, Randle 2009) or chemical 

composition (Myers 1985, Dicke 2000, Vickerman and de Boer 2002).  

 

Selection is likely to be more critical if the butterfly lays its eggs in clutches. Singer (2004) 

observed that the clutch-laying Euphydryas editha spent several minutes searching for 

the right leaf, whereas species that laid eggs singly might only investigate a leaf for a 

few seconds and then move on to the next. Y. cytheris lays its eggs singly, again a 

feature of the Argynnini; of the 13 members of the tribe recorded in Germany, for 

example, (Fartmann and Hermann 2006), only Boloria eunomia laid its eggs in groups. 



 
 
 

 127 

Stefanescu et al. (2006) suggested that chlorophyll content was a factor in oviposition 

location selection, observing that Euphydryas aurinia generally laid eggs on leaves with 

the highest chlorophyll content, although they found no difference in chlorophyll levels 

between between non-oviposition and oviposition plants.   

 

Plant size and chlorophyll were tested at both plant and leaf level. The conservation 

implications of any strong preference would be similar to those for microhabitat selection: 

a range of options would need to be made available at any given site to mitigate 

environmental stochacity. A key question is, as Jaumann (2017) put it in connection with 

the preferences of Pieris rapae, just how choosy the butterflies are. 

 

4.1.2   Research Questions 
 

RQ1:  what are the key factors in Y. cytheris's selection of oviposition sites? 

RQ2:  which factors provide the best-fitting model for predicting an oviposition site? 
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4.2 Materials and methods 
 
4.2.1 Selection of study sites, patches and locations. 

 
The selection of study sites is discussed in Chapter 2. The one common factor in all 

patches containing oviposition sites was the presence of Viola spp. During the initial field 

visit other plants, together with leaf litter around Viola spp., were searched for eggs, 

particularly the Acaena magellanica on Bleaker, given the reference to Acaena as a host 

genus in Latin America (Shapiro 1992), but no oviposition was found anywhere other 

than on Viola plants. Analysis of ground cover was therefore based only on those 

locations with Viola plants, whether non-oviposition or oviposition. 

 

The study sites were divided into patches, corresponding to the differing topographic 

areas identified in the Phase 1 Analysis (Chapter 2). Each patch was first searched for 

Viola spp. Patches on which Viola were found were subsequently searched for 

oviposition locations following a decision-making flow chart (Figure 4.1). 

 

All oviposition locations found in a patch were marked. Five Viola plants were then 

selected on each patch for comparison with plants where oviposition had taken place. 

This was done by estimating, by a combination of eye and pacing, the size of a patch 

and the number of paces required between markers to make five stopping points in a W-

shaped walk (JNCC 2009, Franklin et al. 2018). If the stopping point was within a metre 

of the edge of a patch, an additional two steps were taken to ensure a similarity of habitat 

in each case. The nearest Viola plant to the front foot was then marked. 
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Figure 4.1 Decision-making flow chart for data collection at the study sites.  

 Fa
lk

la
nd

 fr
iti

lla
ry

: d
at

a 
co

lle
ct

io
n

P
at

ch
S

ub
-p

at
ch

Lo
ca

tio
n

P
la

nt

S
el

ec
t s

ub
-

pa
tc

h
V

io
la

 s
ea

rc
h

V
io

la
 

fo
un

d

C
om

pl
et

e 
30

 
m

in
ut

e 
se

ar
ch

N
o

E
gg

/ l
ar

va
 

se
ar

ch

C
om

pl
et

e 
30

 
m

in
ut

e 
se

ar
ch

E
gg

/la
rv

a 
fo

un
d

Ye
s

C
om

pl
et

e 
30

 
m

in
ut

e 
se

ar
ch

, 
m

ar
ki

ng
 

ov
ip

os
iti

on
 

si
te

s

Ye
s

N
o

S
el

ec
t 

5 
ra

nd
om

 
V

io
la

 p
la

nt
s

S
el

ec
t 

al
l V

io
la

 p
la

nt
s 

w
ith

 e
gg

s/
la

rv
ae

C
en

tre
 

qu
ad

ra
t o

n 
V

io
la

 p
la

nt

C
en

tre
 

qu
ad

ra
t o

n 
V

io
la

 p
la

nt

C
en

tre
 

qu
ad

ra
t o

n 
V

io
la

 p
la

nt

Q
ua

dr
at

 A
na

ly
si

s:
- c

oo
rd

in
at

es
- v

eg
et

at
io

n 
- w

in
d 

sp
ee

ds
- w

in
d 

sh
ad

ow
 

- d
at

a 
lo

gg
er

s 
(2

 p
er

 
5 

pl
an

ts
)

Pl
an

t A
na

ly
si

s:
- m

ea
n 

le
af

 te
m

pe
ra

tu
re

- m
ea

n 
ch

lo
ro

ph
yl

l l
ev

el
- s

iz
e

Le
af

O
vi

po
si

tio
n 

Le
af

 A
na

ly
si

s:
- l

ea
f t

em
pe

ra
tu

re
- c

hl
or

op
hy

ll 
le

ve
l

- s
iz

e
- l

oc
at

io
n 

of
 e

gg
/la

rv
a 

(h
ei

gh
t, 

le
af

 s
ur

fa
ce

, 
po

si
tio

n)

Pl
an

t A
na

ly
si

s:
- m

ea
n 

le
af

 te
m

pe
ra

tu
re

- m
ea

n 
ch

lo
ro

ph
yl

l l
ev

el
- s

iz
e

Pl
an

t A
na

ly
si

s:
- m

ea
n 

le
af

 te
m

pe
ra

tu
re

- m
ea

n 
ch

lo
ro

ph
yl

l l
ev

el
- s

iz
e

Q
ua

dr
at

 A
na

ly
si

s:
- c

oo
rd

in
at

es
- v

eg
et

at
io

n 
- w

in
d 

sp
ee

ds
- w

in
d 

sh
ad

ow
 

- d
at

a 
lo

gg
er

s 
(2

 p
er

 
5 

pl
an

ts
)

Q
ua

dr
at

 A
na

ly
si

s:
- c

oo
rd

in
at

es
- v

eg
et

at
io

n 
- w

in
d 

sp
ee

ds
- w

in
d 

sh
ad

ow
 

- d
at

a 
lo

gg
er

s 
(2

 p
er

 
5 

pl
an

ts
)

R
ec

or
d 

qu
ad

ra
t d

at
a

R
ec

or
d 

qu
ad

ra
t d

at
a

R
ec

or
d 

qu
ad

ra
t d

at
a

R
ec

or
d 

pl
an

t 
da

ta

R
ec

or
d 

pl
an

t 
da

ta

R
ec

or
d 

pl
an

t 
da

ta

R
ec

or
d 

se
ar

ch
 e

ffo
rt

R
ec

or
d 

se
ar

ch
 e

ffo
rt

R
ec

or
d 

se
ar

ch
 e

ffo
rt

R
ec

or
d 

le
af

 
da

ta

C
om

pl
et

e 
re

co
rd

in
g

S
el

ec
t 

5 
ra

nd
om

 
V

io
la

 p
la

nt
s

V
io

la
 

fo
un

d
E

gg
/la

rv
a 

fo
un

d

N
o

N
o

Ye
s

Ye
s



 
 
 

 130 

 

All oviposition locations found in a patch were marked. Five Viola plants were then 

selected on each patch for comparison with plants where oviposition had taken place. 

This was done by estimating, by a combination of eye and pacing, the size of a patch 

and the number of paces required between markers to make five stopping points in a W-

shaped walk (JNCC 2009, Franklin et al. 2018). If the stopping point was within a metre 

of the edge of a patch, an additional two steps were taken to ensure a similarity of habitat 

in each case. The nearest Viola plant to the front foot was then marked. 

 

Oviposition locations were marked with red flags or plant markers, non-oviposition 

locations with yellow. Flags were used on the first field visit, but on the following visits 

they were replaced by plant markers to counter strong winds and the attentions of 

striated caracara (Phalcoboenus australis), both of which tended to tear flags apart 

(Figure 4.2). 

 

 
Figure 4.2 Challenges to field work in the Falklands. A striated caracara (Phalcoboenus australis) on Sea 

Lion starts to demolish the flags marking oviposition locations. The following season small plant markers 
rather than flags were used, albeit with only slightly greater success. Photograph by the author. 

 

 

Subsequent analysis of each location was based on a 50cm quadrat (50cm x 50cm) 

centred on the Viola plant selected. Data for all variables, other than temperature, were 

collected for each quadrat. The limited number of data loggers available for temperature 

measurement meant that, at each patch, two were deployed for every five non-

oviposition locations, and a maximum of two for the oviposition locations. In each case 

they were allocated at random by drawing numbered plant markers from a pocket. 
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A 10cm quadrat (10cm x 10cm) around the selected Viola was also used for analysis of 

ground cover and vegetation, to determine whether there were any key characteristics 

of the immediate surroundings of an oviposition plant. 

 

4.2.2  Approaches to quantifying topography 
 

(i)  Elevation, slope and aspect: direct measurements  
 
Elevation, slope and aspect were coded as ordinal categorical variables (Table 4.1, 

Table 4.2). Elevation and slope were split into five categories, and aspect into eight 

octants, to determine whether a particular level in a variable, or combination of variables, 

was preferred for oviposition. The distribution of Viola, comparing non-oviposition and 

oviposition sites, was then analysed to determine whether there was a preference for 

any factor or combination of factors.   

 

Elevation 
 
Elevation measurements were taken at each potential or actual oviposition location with 

a Garmin GPSMAP 64S GPS Meter. The manufacturer gave a vertical accuracy of 

15-38m with auto-calibration enabled. Tests against known datum points in the field gave 

an accuracy of ± 5m.  Elevations recorded as negative when visibly at, or just above, 

high tide level, were regarded as being at 1m. The elevation of each location was 

allocated to one of five thirty-metre levels (Table 4.1). 

 
Slope 
 

A quadrat was held with one of its edges aligned with the slope. The angle of the slope 

was calculated using the application Angle Meter (Phagdeechat, N., n.d. ) on an iPhone 

held along the upper edge of the quadrat. There was no published accuracy for Angle 

Meter, but tests with a protractor and spirit level, which would otherwise have been used 

in the field, showed a correspondence of ± 1º. The slope of each location was allocated 

to one of five ten-degree levels (Table 4.1). 
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Table 4.1 Viola locations: elevation and slope categories. Each location is assigned to one of the five levels 

for elevation and slope respectively. These are then used to help determine whether Y. c. cytheris favours 
particular topographic combinations in selecting an oviposition location. 

level elevation (m) slope (º) 
1         0 - 29      0 - 9 
2       30 - 59    10 - 19 
3       60 - 89    20 - 29 
4       90 - 119    30 - 39 
5     120 - 149    40 - 49 

 
Aspect 
 

A hand-held compass, a Silva Expedition 4 (Silva Sweden AB, Bromma, Stockholm) 

calibrated to true north was used to assign the downward direction of a given slope to 

the nearest cardinal or intercardinal point. 

 
Aspect was considered as two factors ( 

Table 4.2), wind shade and direct radiation, each allocated to an octant numbered 

clockwise from 1 to 8.  For wind shade, octant 1 was the direction facing the prevailing 

wind, ascertained from wind roses drawn up for each site from meteorological station 

data (Chapter 2).  This was west for Bleaker, Frying Pan and Sea Lion, and south west 

for Roy Cove.  Individual octants were analysed as, although, for example, octants 2 and 

8 might appear to afford the same level of wind shade, being either side of 1, there was 

not necessary any symmetry, as can be seen in the wind roses of Frying Pan (Figure 

2.9) and Sea Lion (Figure 2.18). For direct radiation octant 1 was north, the position of 

the sun at noon. 
 

Table 4.2  Location-specific wind shade and direct radiation variables. Categories were numbered clockwise 

by compass point. The direction facing the prevailing wind, which varied by site, was categorised as 1, as 
was the maximum exposure to direct radiation (marked dir. radn.), facing north (sun position at midday).  

  wind shade  dir. radn. 
orientation  Bleaker Frying Pan Roy Cove Sea Lion  all 
N  3 3 4 3  1 
NE  4 4 5 4  2 
E  5 5 6 5  3 
SE  6 6 7 6  4 
S  7 7 8 7  5 
SW  8 8 1 8  6 
W  1 1 2 1  7 
NW  2 2 3 2  8 
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(ii) Wind shade and openness: hemispherical photography 
 
Hemispherical or fish-eye photography has been used extensively in plant ecology, 

particularly in forestry, for measuring the amount of direct sunlight, or indirect light, falling 

on a particular location (Anderson 1964, Newton 2007, Fournier and Hall 2017). As it 

does this by measuring the percentage of an image in which light is blocked, the method 

is extended here to measure the percentage of the image which blocks the prevailing 

wind. 

 

Images were recorded with a Nikon D90 digital single lens reflex camera (Nikon 

Corporation, Tokyo, Japan) and a Sigma 4.5mm f 2.8 circular fisheye lens (Sigma 

Corporation, Kanagawa, Japan).  The back of the camera was placed on the ground and 

aligned horizontally with plastic wedges using a two-directional bubble level mounted in 

the accessory shoe, with the front element of the lens 14 cm above the ground. This was 

selected as the minimum distance possible with the equipment. A distance of 3cm above 

ground for the front lens would have been preferable, representing oviposition height. 

Attempts to achieve this with an iPhone 6 (Apple Inc, Cupertino, CA, USA) and a 180º 

fish eye lens (QTOP 3-in-1, Ningbo, China) were unsuccessful, as the lens (i) failed to 

produce a circular image, which proved irremediable in post-processing, and (ii) only 

recorded 165º. 

 

Images were imported into GLA 2.0 (Frazer et al. 1999).  Magnetic correction of 02º 47" 

W (2018) was applied during registration, using data for Stanley from the British 

Geological Survey website (http://www.geomag.bgs.ac.uk/operations/falklands.html), to 

produce an image aligned to true north.  Projection was set as Lambert's Equal Area, for 

which the lens was designed. Latitude and longitude were entered as parameters 

(although longitude is not taken into account in GLA's calculations), as was elevation.    

 

The colour image was converted to greyscale. The grey scale image was further reduced 

to either black or white pixels, with the density of grey scale in the image which returned 

a black pixel adjusted by eye. All adjustments were made by the author to maximise 

consistency. The resulting image was split into 16 azimuth bins, the dividing lines 

radiating to the 16 points of the wind compass. Each azimuth bin was split into four zenith 

bins (Figure 4.3). All statistical output from GLA reflected those divisions. 
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Figure 4.3 Divisions of a hemispherical photograph used for gap light analysis. The yellow lines show the 
sixteen azimuth divisions.  The yellow circles show the four zenith divisions using equal-area projection, the 

red show equal angle division of the sky. Note that images taken with hemispherical lenses show east to 

the left of north. Photograph by the author. 

 
To assess wind shade, a quadrant, comprising four azimuth bins, was selected, centred 

on the prevailing wind direction of each site (Chapter 2).  Each of the azimuth bins was 

split into four zenith bins, and the percentage of open sky in each bin calculated through 

a count of the white pixels. From this the overall percentage of the quadrant not open, 

and therefore representing wind shelter, was derived. A similar approach was adopted 

to ascertain openness, the percentage of direct and indirect light received by a location, 

in this case through a count of white pixels in all bins. 

 

(iii) Direct solar radiation: hemispherical photography 
 

The maximum amount of direct sunlight received by a location was calculated for the 

butterfly's peak flying season of 1 November to 28 February.  Derived from the 

hemispherical photographs used to calculate wind shelter, the calculation is based on 

the sun track for a given period at a given latitude (Figure 4.4). It is expressed as the 

mean, in moles per square metre per day (mol·m−2·d−1), of direct radiation, unobscured 

•
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by topography or vegetation, falling on the location each day over the 

November-February flying season. 

 

 
 
Figure 4.4 Hemispherical photograph showing a sun path overlay for November to February. True north is 
at the top of the image. This allows the calculation of direct radiation (expressed in mol·m−2·d−1) received at 

the location of the camera's focal plane. Photograph by the author. 

 

4.2.3 Climate analysis 
 

(i) Wind speed at site and location level 
 

Wind speeds were measured with a hand-held Kestrel 4500 weather station. All 

measurements were taken in wind speeds greater than 5 ms-1, when the wind was 

blowing from the quadrant of the prevailing wind.  

 

A reading (“site measurement”) was taken at each site on each day that location 

measurements were taken. This was from a high central point with no topographic 

obstruction of the wind, with the meter held at approximately 2m above ground level. 

Further readings were then taken at each location at three levels: 1.5m ("ceiling"), 

representing the observed flying ceiling for Yramea cytheris; 30cm ("flight"), the 
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observed height of a butterfly patrolling or searching; and 3cm ("oviposition"), 

representing a nominal oviposition height.  In all cases the Kestrel was held until the 

measurement of average wind speed stabilised. 

 

To enable comparisons between sites, location wind speeds at each of the three levels 

were converted to a proportion of their respective site wind speeds. Thus, for example, 

it was possible to determine whether the mean wind speed at flight level at site A was a 

higher proportion of the mean site measurement than that at site B, suggesting that the 

butterflies at site A were more exposed. 

 

To enable visualisation of those percentages in terms of actual wind speeds, an 

illustrative transformation was applied: 

• a mean overall noon wind speed was calculated for the flying period, November-

February, 2013-2018. This was based on combined data from the four Falkland 

Island meteorological stations nearest to the study sites (Bleaker, Mount Byron, 

Mount Pleasant, Sea Lion). This was 8.11 ms-1.  

• the calculated proportions from each site at each level were then applied to this 

overall mean speed. Thus a measurement of wind speed at flight level at site A 

was transformed to show what it would have been had the site measurement 

been 8.11 ms-1, assuming that wind speed at ceiling, flight and oviposition levels 

responded in a linear way to that at site level. 

 

A weakness in this approach is the assumption of linearity in the impact at lower 

elevations of changing site wind speeds. In the absence, however, of a method which 

can be deployed easily across a large and remote terrain to produce simultaneous 

anemometric readings at microhabitat levels, it at least enables a framework for making 

microclimate comparisons to be constructed. 

 

(ii) Temperature at site and location level 
 
HOBO UA-002 data loggers (Onset Computer Corporation, Bourne, MA, USA) were 

used to record temperatures at 15 min intervals.  Loggers were placed for a minimum of 

24 hrs at each site, and measurements recorded at three time scales: over 24hrs (96 

data points); over the butterflies' peak observed flying period, 1000-1600 (24 data 

points); and at night, 2200-0400 (24 data points).   
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Two loggers were placed in each patch, randomly located at non-oviposition sites.  A 

HOBO logger was placed at each oviposition site (up to a maximum of two) in the patch.  

The loggers were all placed in foliage, usually dwarf shrub heath, to protect them from 

direct sunlight but to afford some ventilation (Gillingham 2010). While this method could 

produce inconsistencies, particularly temperature spikes, compared with a system of 

screened loggers (Bramer et al. 2018), it was relatively straightforward to identify 

affected loggers by their data output, and to remove them from analyses. This affected 

four loggers (two Bleaker, one Roy Cove, one Sea Lion), their daytime temperatures (> 

35º C) suggesting direct exposure to the sun. In addition, two loggers were lost at Roy 

Cove, possibly as a result of wildlife interventions. 

 

As with wind speeds, temperature data were transformed to enable the use of a larger 

data set, and comparison between sites:  

• data from each site were merged to provide overall mean temperatures for that 

site at three time scales; 

• the mean temperature from each logger for each of those periods was expressed 

as a proportion of the site temperature; 

• data from all sites were merged to provide overall mean landscape (Box 1) 

temperatures at three time scales. These were: 24 hr, 14.93º C; day, 21.35º C; 

and night, 9.55º C; 

• in comparing sites, the site temperature proportion for each logger was applied 

to the mean landscape temperature for the appropriate time scale. 

 

The weakness, noted at 4.2.3 (i), in assuming linearity, also applies to temperatures.   

 
4.2.4  Ground cover and vegetation 
 

(i)  Viola distribution 
 
Distribution of Viola spp. at each site was investigated through counts of individual plants 

at the patch level. Patches (n = 27) were identified across the four study sites, principally 

those investigated for oviposition locations on the basis of Phase 1 habitat analyses 

(Chapter 2). Thirty 50 cm quadrats were placed on each patch through a W-shaped walk 

(4.2.1).  
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(ii)   Ground cover 
 
Ground cover was assessed through 50cm quadrats, placed at the locations identified 

in 4.2.1, centred upon the selected Viola.  Analysis focused on six categories: Viola spp., 

bare ground, litter, grass, dwarf shrub heath and other vegetation (principally forbs). 

Given the relatively low extent of layering at all the sites, percentage cover was summed 

to 100%, with no account taken of, for example, earth or litter under vegetation. The 

same categories were also analysed at 10 cm quadrat level, to determine whether the 

immediate surroundings of an oviposition plant differed significantly from a non-

oviposition one.  For both the 50 cm and 10 cm quadrats vegetation was identified to 

species level to enable the "other vegetation" category to be expanded upon where 

necessary. 

 

Differences in ground cover between quadrats were evaluated through a non-parametric 

multivariate analysis of similarities (ANOSIM) (Clarke 1993).  A similarity percentages 

analysis (SIMPER) was used to determine which sort of cover contributed most to the 

average between-group Bray-Curtis dissimilarity. The analyses were carried out in the 

package vegan in R (Oksanen et al. 2019). 

 
(iii)  Vegetation height 
 
Maximum vegetation height for each quadrat was recorded by a single drop disc 

measurement, in which a light plastic disc was lowered until it touched the top of the 

highest plant. This was effectively the sward stick method advocated by Stewart et al. 

(2001). The aim was to identify and quantify taller vegetation in locations which mostly 

comprised dwarf shrub heath, bare ground and grass, each of which was recorded 

separately. 

 

(iv)  Bare patches 
 
Bare patches within 30cm and 60cm of quadrat edge 
 
Bare patches can help provide warm microhabitats, as well as areas for basking, of 

particular value for ectotherms (Randle 2009, Taboada et al. 2013, Dennis et al. 2003, 

2006, 2007).  The number of patches larger than 10cm in diameter, whether sand, earth 

or stone, within distances of 30cm and 60cm from the edge of each quadrat, were 

recorded. 
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Basking locations 
 
A distinctive feature of Bleaker and the Frying Pan was the large quantity of flat stones 

by the side of the estuary and on the raised beach respectively. In the case of Bleaker 

there was also a large patch of vegetation litter by the side of groundsel plants used for 

nectaring. At both locations long term basking by butterflies (up to five minutes) was 

observed.  On the other locations, one butterfly was observed basking on sand at Sea 

Lion, but none were observed doing so at Roy Cove.  

 
A series of measurements was taken to determine the difference between the ambient 

air temperature at 150cm above the features, and the surfaces of the features 

themselves. All temperatures were taken with a Testo 810 infra-red thermometer (Testo 

SE & Co. KGaA, Lenzkirch, Germany), shaded by the body. 

 
4.2.5 Plant and leaf data 

 
(i)  Plant size 
 
Numbers of individual Viola plants were recorded in each 50cm quadrat, whether used 

for oviposition or not. Each plant was checked for eggs or larvae. It was then assigned 

to one of four categories: (1) small, compact, one or two leaves of <20 mm; (2) erect, 

three to five leaves of <35 mm; (3) larger, more erect, more than five leaves <40 mm;  

(4) large, vigorous, sprawling, some leaves >40 mm (Randle 2009).  

 

(ii)  Chlorophyll content of plants and leaves 
 
Chlorophyll content was measured on the 2018 field visit with an Opti-Sciences CCM-

300 meter (Opti-Sciences, Inc., Hudson, NH03051, USA), designed for use on difficult 

and small samples. On the previous visit a CCM-300 meter by the same company was 

used, but the large sensor size produced highly variable results on small leaves. The 

CCM-300 measures fluorescence ratios, comparing the ratio of fluorescence emission 

at 735 nm and 700 nm. This ratio shows a linear response to chlorophyll content in the 

range from 41 to 675 mg m-2, thus allowing the CCM-300 to provide, in effect, a direct 

read-out of chlorophyll content (Gitelson et al. 1999). 

 

The mean of ten readings was taken from each leaf, using the CCM-300's inbuilt 

calculator together with its two SD outlier removal protocol.  Measurements taken were: 

(i) single leaf, where oviposition had taken place or a larva was found; (ii) the mean of 
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three leaves, excluding the oviposition/larva leaf. These were selected by dividing the 

overall number of leaves on the plant by three, and taking the first from each group. 

Where the number of leaves ≤ 4, all leaves other than the oviposition/larva leaf were 

measured; (iii) as (ii), but for a non-oviposition larva plant, measuring all leaves where 

the number ≤ 3. 

 
Data exploration of Viola began at site level, as the Sea Lion population was of 

V. magellanica, whereas other sites were of V.  maculata. It was therefore necessary to 

assess whether their chlorophyll levels varied to an extent that they could not be 

regarded as a single statistical population. 

 
(iii)  Plant and leaf temperatures 
 

Plant and leaf temperatures were measured to determine whether butterflies selected 

plants for oviposition that were significantly warmer, or colder, than other plants, and 

whether they selected leaves for oviposition that were significantly warmer, or colder, 

than other leaves on the same plant.  

 

As plant temperatures were measured in varying air temperatures, comparisons were 

made, at plant level, by calculating a ratio between plant and air temperature for each 

plant. The ratios were then compared through t-tests.  At leaf level, as the oviposition 

leaf temperature was measured in the same time frame as the temperatures of 

surrounding leaves, a paired t-test was used to compare the oviposition leaf with the 

mean of the other leaves. 

 

Leaves were selected for temperature measurement in the same way as they were for 

chlorophyll analysis (4.2.5 (ii)). All temperatures were taken with a Testo 810 infra-red 

thermometer (Pryke et al. 2012). Readings were taken with the plant shaded from direct 

sunlight. Air temperature, also in the shade, was measured, using the Testo's 

air/temperature [sic] function. It was taken at 80cm above the ground, to minimise the 

impact of heat radiated from rocks or bare patches.  

 
(iv)  Characteristics of oviposition at leaf level 

 
The numbers of eggs and larvae per leaf and per plant, together with their positions, 

were recorded.   
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4.2.6 Exploration, through multivariate analysis, of possible habitat models for 
Roy Cove 

 
The extent to which Y. cytheris's preferred habitat could be modelled was approached 

through a combination of mixed linear effects models and multi-model inference. There 

were inadequate data across all the analyses to produce a model for all sites, particularly 

as HOBO data loggers and the CCM-300 chlorophyll meter were only used on the final 

field visit in 2018. This approach was therefore restricted to the largest data set, of 17 

locations, at Roy Cove, and should be regarded as exploratory. 

 

Factors showing levels of variation p < 0.1 between non-oviposition and oviposition 

locations in the univariate tests (4.2.2 to 4.2.5 ), particularly those with large effect size, 

were considered for inclusion in the candidate models. This approach bridged classical 

hypothesis testing and information-theoretics (Harrison et al. 2018), avoiding the pitfalls 

of data-dredging (Ellison 1999, Anderson et al. 2000, Anderson and Burnham 2002). 

Particular attention was paid to collinearity, as the nexus of topography, climate and 

vegetation could potentially show correlations which would damage the model. In 

obvious cases, the analysis of topography through both direct observation and gap light 

analysis, and the three different time periods for measuring temperature, only one such 

metric was used in a model at a time. 

 

A set of competing linear models was drawn up. An information-theoretic approach was 

adopted to find the model with the greatest explanatory power using MuMIn (Bartoń 

2019). Selection was based on Akaike’s information criteria, corrected for small sample 

size (AICc) (Burnham and Anderson 2003), with those with ΔAICc <2 considered robust 

(Burnham and Anderson 2004). 

 
4.2.7  Statistical analysis software where not otherwise listed 
 

The majority of calculations were done in R (R Core Team 2018), with t-tests carried out 

in the included package stats. The stats package was used for χ2 tests; as sample sizes 

were small the χ2 p-value was re-evaluated a 2000 replicate Monte Carlo test (Hope 

1968) included in the package. The tidyverse package, in particular ggplot2 and dplyer 

(Wickham 2016, 2017), was used for visualisations. Descriptive statistics were explored 

in pastecs (Grosjean and Ibanez 2018) and Psych (Revelle 2018), which was also used 

to test for correlation. Effect size was calculated using lsr (Navarro 2015) and effsize 

(Torchiano 2017). All mapping was done in QGIS 3.4 (QGIS Development Team 2018). 
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4.3 Results 
 

4.3.1  Approaches to quantifying topography 
 
(i)  Elevation, slope and aspect: direct measurements  
 
Elevation 
 
Elevation at the study sites ranged from sea level to 262 m at Roy Cove (Cook Hill). The 

highest oviposition location, at Roy Cove, was 86 m, and the highest non-oviposition 

Viola, also at Roy Cove, was at 127 m. The majority of oviposition locations (89.9%) 

were in levels 1 and 2 (0 - 59 m), with only 10 oviposition locations (10.1%) in level 3 (60 

- 89 m), and none in levels 4 or 5 (> 90 m) (Figure 4.5).  A chi-square test indicated a 

significant association between oviposition and elevation, χ2 (4, n = 191) = 18.9, 

p < 0.001. This p-value was confirmed by a 2000-replicate Monte Carlo test.  

 

 
Figure 4.5 Non-oviposition and oviposition locations by elevation, divided into five 30 m levels. The 
n - numbers under each level refer to the number of samples in that level, with numbers for non-oviposition 

and oviposition respectively shown in brackets. 

 

 
Slope 
 
Although a chi-square test indicated a significant association between oviposition and 

slope, χ2 (4, n = 191) = 12.6, p = 0.014 (p = 0.009, 2000-replicate Monte Carlo test), the 

pattern was mixed (Figure 4.6). The proportion of oviposition locations compared with 

non-oviposition locations increased over levels 2 - 4 (10 - 39º), but then fell to its lowest 
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level at level 5 (40 - 49º). 52.9% of all Viola were in level 1 (0 - 29º), and 86.9% at levels 

1 - 3 combined (0 - 29º).  

 

 
Figure 4.6 Non-oviposition and oviposition locations by slope, divided into five 10º levels. The n - numbers 

under each level refer to the number of samples in that level, with numbers for non-oviposition and 

oviposition respectively shown in brackets. 

 
Aspect: wind shade 
 
A chi-square test indicated a significant association between oviposition and wind 

direction, χ2 (7, n = 191) = 27.1, p < 0.001. This p-value was confirmed by a 2000-

replicate Monte Carlo test. 55.5% of oviposition locations were in the quadrant facing 

away from the prevailing wind, with only 7.1% in the windward quadrant (Figure 4.7).The 

pattern was less clear for non-oviposition locations at 45.6% and 31.5% respectively.  

The predominant aspect for Viola was facing octant 4 (north for Roy Cove, north-east for 

the other sites) This was shared by 33.5% of all Viola (32.6% of non-oviposition, 34.3% 

of oviposition). Octant 4 was one octant north of leeward; octant 6, one octant south of 

leeward, by contrast, showed no oviposition sites. There was, however, a strong 

influence of site on the distribution caused by Bleaker (Figure 4.7), where most locations 

faced octant 4. 
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Figure 4.7 Distribution of Viola by orientation of location towards the prevailing wind, and, within that, by site.  

 
 
 
 
Interaction between slope and wind shade 
 
There was a significant association between oviposition and the interaction between 

slope and wind shade: oviposition was more likely on a gentle slope facing away from 

the prevailing wind (Figure 4.8), χ2 (27, n = 191) = 47.6, p = 0.008. A 2000-replicate 

Monte Carlo test gave p = 0.001.  The predominant combination of octant 4 and slope 

level 1 again reflects the distribution at Bleaker (Figure 4.7). 
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Figure 4.8 Distribution of Viola by orientation of location towards the prevailing wind, and, within that, by 
slope.  The wind rose was divided into octants, clockwise from octant 1, which faces windward. This was 

south-west at Roy Cove, and west for Bleaker, Frying Pan and Sea Lion. Octant 5, leeward facing, was 

therefore the most sheltered by any slope. This was north-east for Roy Cove, and east for the others. 

 

 

Aspect: direct radiation 
 
A chi-square test indicated a significant association between oviposition and direct 

radiation: oviposition was more likely on a gentle slope facing the mid-day sun, χ2 (4, 

n = 191) = 24.0, p = 0.001 (p < 0.001, 2000-replicate Monte Carlo test). The 

predominant aspect for Viola (46.1%) was north-east (Figure 4.9)This was particularly 

so for oviposition sites, 52.5%, compared with 39.1% for non-oviposition sites. 
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Figure 4.9 Distribution of Viola by orientation of location towards the midday sun and, within that, by slope.   

 

Interaction between slope and direct radiation 
 

There was a significant association between oviposition and the interaction between 

slope and direct radiation (Figure 4.9), χ2 (26, n = 191) = 46.8, p = 0.008. A 2000-

replicate Monte Carlo test gave p = 0.001.   

 

(ii)  Wind shade and openness: hemispherical photography 
 
Gap light analysis showed that non-oviposition locations had a significantly lower 

percentage, analysed by pixel count, of wind shade (M = 19.39, SD = 10.75) than 

oviposition locations (M = 29.18, SD = 18.81), df = 83, t = -2.94, p = 0.004, 

95% CI [-16.42, -3.16], with a medium effect size, d = 0.63.  There was a difference in 

openness, albeit less significant, between non-oviposition locations (M = 80.46, 

SD = 6.56) and oviposition locations (M = 77.22, SD = 8.79), df = 83, t = 1.92, p = 0.058, 

95% CI [-0.12, 6.58], d = 0.42.   
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Wind shade at site level 
 
At site level, the pattern of wind shade was mixed (Figure 4.10), with all sites other than 

Sea Lion showing greater wind shade for oviposition sites than non-oviposition sites, 

although in no case was the difference significant (Appendix Table B.1). 

 

 

 
Figure 4.10 Wind shade, measured through gap light analysis, at the four study sites. For each location, 

represented by a circular image, set to show dark or light pixels, the four azimuth bins were selected which 

were centred on the direction from which the prevailing wind blew. This varied by site. The lower the 
percentage of dark pixels, the more the location was exposed to the prevailing wind. 

 
 
 
 
Openness at site level 
 
At site level, the pattern of openness was consistent (Figure 4.11) with all sites showing 

greater openness for non-oviposition locations than oviposition locations. In no case was 

the difference significant (Appendix Table B.2). 
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Figure 4.11 Openness, measured through gap light analysis, at the four study sites. For each location, 

represented by a circular image, set to show black or white pixels, the percentage of light pixels was 

recorded. The higher the percentage of light pixels, the more the location was open to light. 

 
 
(iii)  Direct solar radiation: hemispherical photography 
 
Sun track analysis of hemispherical photographs showed no significant difference in 

mean moles per square metre per day (mol·m-2·d-1) of direct radiation between non-

oviposition locations (M = 22.55, SD = 1.78) and oviposition locations (M = 22.16, 

SD = 1.6), df = 83, t = 1.06, p = 0.29, 95% CI [-0.34, 1.12], d = 0.23.   

 

Direct radiation differed little between non-oviposition and oviposition locations (Figure 

4.12), apart from in the small Sea Lion sample, and to a lesser extent Frying Pan, where 

vegetation obstruction occurred at either end of the sun track.  In no case was the 

difference significant (Appendix Table B.3). 
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Figure 4.12 Direct solar radiation, based on a sun track analysis of hemispherical photography. The circular 

image produced for each location, set to show black or white pixels, had an overlay added to it representing 

the daily track of the sun over the November to February flying season of Y.c.Cytheris. The daily percentage 
of light pixels falling within the track was recorded, and the mean calculated, to represent the mean number 

of moles per square metre per day falling on the location. 

 
 

4.3.2  Climate 
 
(i)  Landscape, site and location wind speeds  
 

Wind speeds, transformed on the basis of a landscape mean of  8.11 ms-1, showed that, 

across all sites, wind at non-oviposition locations was stronger than that at oviposition 

locations at all three measured levels above ground (Figure 4.13). A series of t-tests 

(Appendix Table B.4) showed that each contrast was significant at p < 0.01, although 

effect sizes were only medium.  
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Figure 4.13 Illustrative wind speeds at oviposition and non-oviposition locations across all sites. Ceiling 

represented the observed highest level of butterfly flight; flight, the normal patrolling height; and oviposition, 

the height of egg laying. These were standardised at 150 cm, 30 cm and 3 cm respectively. Data were 
recorded as proportions of the mean wind speed at a site at the time when measurements were taken (right 

hand y axis), and, to aid visualisation, applied to a base of 8.11 ms-1 , the mean wind speed of the four study 

sites (left hand y axis). Proportions of site wind speeds > 1.00 are a product of wind funnel effect from nearby 
rocks at Bleaker and Roy Cove. 

 
 
Data from the four study sites, transformed on the basis of a site measurement of 

8.11 ms-1, showed a wide range of median wind speeds, with Bleaker and Sea Lion 

having particularly high winds, reflecting their lack of wind shading from slopes (although 

Sea Lion's sample size was very small) (Figure 4.14). While at all sites the mean wind 

speeds at oviposition locations were lower than those at non-oviposition locations, the 

only significant variation was at Roy Cove at both ceiling (p = 0.044) and patrolling (p = 

0.018) heights, although in each case only with medium effect size (d = 0.65 and 0.79 

respectively) (Appendix Table B.5). 
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Figure 4.14 Illustrative wind speeds at oviposition and non-oviposition locations at the four study sites. 

Ceiling represented the observed highest level of butterfly flight; flight, the normal patrolling height; and 
oviposition, the height of egg laying. These were standardised at 150 cm, 30 cm and 3 cm respectively. Data 

were recorded as proportions of the mean wind speed at a site at the time when measurements were taken 

(right hand y axis), and, to aid visualisation, applied to a base of 8.11 ms-1 , the mean wind speed of the four 
study sites (left hand y axis). Proportions of site wind speeds > 1.00 are a product of wind funnel effect from 

nearby rocks at Bleaker and Roy Cove 

 

(ii) Temperatures at site and location level 

 
A comparison of data logger output, transformed to enable comparison between different 

sites at different times, indicated that non-oviposition locations were cooler than 

oviposition locations during daytime (1000 - 1600), although there was little difference at 

night (2200 - 0400). The combined 24 hr period reflected the difference between the 

daytime temperatures (Figure 4.15). t-tests showed that daytime and 24 hr contrasts 

were significant at p < 0.01, with large effect sizes (Appendix Table B.6). 
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Figure 4.15 Illustrative temperatures (ºC) at potential and actual oviposition locations at three time scales: 

24 hours; day (1000 - 1600); and night (2200 - 0400). Temperatures from data loggers were recorded as 

proportions of the mean temperature of each site. Those proportions were transformed by mean combined 
temperatures for 24hr (14.93), day (21.35) and night (9.55) to enable comparisons to be made between 

different sites at different times. 

 

Daytime temperatures, the main indicator, only showed significant temperature 

differences at Roy Cove (p = 0.005, d = 1.18) (Figure 4.16). While Bleaker showed 

temperature differences with a large effect size, sample size was too small to 

demonstrate significant variation (p = 0.182, d = 1.22) (Appendix Table B.7).  
 

 
Figure 4.16 Illustrative day time temperatures at potential and actual oviposition locations at the four study 

sites. Temperatures (ºC) were recorded at the butterflies peak flying time, 1000-1600. Temperatures from 

data loggers were recorded as proportions of the mean temperature of each site. Those proportions were 

transformed by the mean day time temperature of all sites, 21.35º, to enable comparisons between different 
sites at different times. 
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4.3.3  Ground cover and vegetation 
 
(i)  Viola distribution 
 
Falklands-wide and site level 
 
Analysis of 810 quadrats, covering all study sites, placed randomly over 27 patches 

where Viola had been seen, showed a mean Viola % cover of 1.94, SD = 5.8. The SD is 

explained in part by the unusually high concentration of Viola on Bleaker, M = 9.5, SD = 

11.74. Concentration at sites other than Bleaker was M = 0.7, SD = 2.31. 

 

A series of t-tests showed a greater concentration of individual Viola plants in "edge" 

patches, strips 2 m wide between vegetation stands such as dwarf shrub heath or tussac 

and grass (M = 3.2, SD = 6.0) than in patches within a feature, such as pasture or dwarf 

shrub heath (M = 1.65, SD = 5.72), t(808) = 2.96, p = 0.003, 95% CI [0.52, 2.57], 

although with a small effect size, d = 0.27. This variation was highly significant at Roy 

Cove, although with only a small effect size (p < 001, d = 0.48) (Table 4.3) 

 
Table 4.3  Distribution of individual Viola plants at the study sites.  Patches within the main matrix were 
compared with "edge" patches between stands of vegetation, principally dwarf shrub heath, and grass.  

site topog n M SD df t p-value 95% CI d 

Bleaker edge 1 9.90   8.63 118 0.46   0.649 -3.78, 6.05 0.09 
 matrix 3 8.97 12.63      

Frying Pan edge 0 NA NA NA NA NA NA NA 

 matrix 4 0.05   0.22      

Roy Cove edge 3 2.03   4.01 418 4.04 <0.001 0.64, 1.84 0.48 
 matrix 11 0.79   2.03      

Sea Lion edge 1 0.00   0.00 148 -0.69   0.491 -1.13, 0.54 0.14 

 matrix 4    8.73      

Significance at p < 0.05 is shown in bold; topog = topography of site. 

 
Overall, Viola were unevenly distributed. This was observable both at patch level (Figure 

4.17) and at quadrat level, where there were no Viola in 68.5% of the quadrats analysed.  
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Figure 4.17 Distribution of Viola spp. at the study sites. Each bar, designated by a capital letter, represents 
a patch. 27 patches in total were investigated, each of which had shown Viola. 30 x 50cm quadrats were 

randomly placed in each patch and the percentage of Viola in each quadrat was noted. Key: edge = 2m 

wide patches immediately adjacent to a feature, such as tussac, rock runs or dwarf shrub heath; matrix = 

patches within homogeneous matrices, such as dwarf shrub heath or grazed meadow. The patch on Bleaker 
with the highest percentage was, uniquely, in an area comprising large clumps of Viola. 

(ii) Ground cover 
 
Analysis across all sites 
 
Quadrat-level analysis across all four study sites showed that there was a significant 

contrast between non-oviposition and oviposition locations for four out of six types of 

ground cover (Figure 4.18). Non-oviposition sites had higher percentage coverage of 

dwarf shrub heath (p < 0.001, d = 0.57), and of vegetation (other than Viola and grass) 

(p = 0.007, d = 0.39); oviposition locations had more bare ground (p < 0.001, d = 0.65), 

and litter (p < 0.001, d = 0.68) (Appendix Table B.8). 
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Figure 4.18 Ground cover structures of Viola locations across all four study sites. Non-oviposition and 

oviposition locations were compared by analysing the percentages of six categories of ground cover, each 
quadrat summing to 100%.   

 

 
Analysis of similarities (ANOSIM) across all sites. 
 
Analysis of similarities (ANOSIM) between vegetation and other ground cover in, 

respectively, non-oviposition and oviposition locations, using the binomial index (where 

the null hypothesis is that the two categories of location are equal) showed no significant 

differences at either the 50cm (p = 0.294) or 10cm (p = 0.246) quadrat level, following 

9999 permutations. R-values were close to 0 at, respectively, 0.01 and 0.015, with  R on 

a scale of 0 to 1, where a value of 1 indicates complete dissimilarity between the groups 

(Clarke 1993). 

 
 

Despite the lack of significant differences, post-hoc testing was undertaken, following 

Wilcox (1987) and Howell (2012). A Bray-Curtis dissimilarity test (SIMPER) was applied 

to the quadrat data to test for significant contributions to whatever differences there were 

in ground cover (Table 4.4). 
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Table 4.4  Similarity in ground cover between non-oviposition and oviposition locations at (a) 50cm and (b) 

10cm quadrat level. The contribution of each type of ground cover to the average between-group Bray-
Curtis dissimilarity (SIMPER) was calculated through pairwise comparisons between quadrats, measuring 

the percentage cover in each case. 

a 

factor average SD ratio non-ov ov cumul %  p-value 
dwarf shrub heath 0.164 0.144 1.14 31.54     17.15   26.6 0.539 
grass 0.126 0.118 1.07 22.21     19.50   47.1 0.954 
bare ground 0.121 0.103 1.17 15.95     26.06   66.7 0.022 
litter 0.078 0.073 1.06 11.25 16.24   79.4 0.115 
other vegetation 0.074 0.894 0.89 11.37 10.59   91.5 0.720 
Viola spp. 0.052 0.815 0.81   7.68 10.47 100.0 0.250 

b 

factor average sd ratio non-ov ov cumul %  p-value 
dwarf shrub heath 0.131 0.138 0.95 22.96     12.21   22.4 0.923 
litter 0.116 0.100 1.16 18.29     19.29   42.2 0.630 
Viola spp. 0.114 0.108 1.06 29.48     40.59   61.7 0.027 
grass 0.085 0.102 0.84 14.16   7.94   76.2 0.968 
bare ground 0.085 0.093 0.91   8.23 14.12   90.7 0.061 
other vegetation 0.055 0.055 0.59   6.87   5.83 100.0 0.620 

Quadrat coverage: non-oviposition locations, n = 56; oviposition locations, n = 34. Pairwise comparisons 

based on 9999 permutations.  Significance at p < 0.05 is shown in bold. key: factor = type of ground cover, 
ordered by size of contribution, largest to smallest; average = factor contribution to average between-group 

dissimilarity; SD = standard deviation of that contribution; ratio = average to SD ratio; non-ov, ov = average 

abundances (%) of each factor in non-oviposition and oviposition locations respectively; cumul % = 
cumulative contribution of each factor, based on average.  p-value is for comparison of averages of non-

oviposition and non-oviposition locations for each type of ground cover. 

 
 
At 50 cm quadrat level, the only significant factor (p = 0.022), contributing 19.6% to the 

dissimilarity, was the greater amount of bare ground at oviposition locations compared 

with non-oviposition locations. The next most significant factor, although at p = 0.115 

(12.7%) was litter, again with the greater amount at oviposition locations  

 
At 10 cm quadrat level, there was significantly greater coverage of Viola at oviposition 

locations (p = 0.027), contributing 19.5%, and, again, a greater percentage of bare 

ground, although at p = 0.061 and 14.5%.  Litter did not appear to be an important factor 

overall (p = 0.63), although it provided 19.8% of the structural difference between 

locations. 

 
The overall picture, with a number of factors showing little significant variation between 

non-oviposition and oviposition locations, while contributing high percentages in the 

Bray-Curtis dissimilarity tests, showed a lack of homogeneity in location structure, with 

bare ground the one potentially significant factor. 
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Lack of homogeneity at site level 
 
Both 50cm and 10 cm quadrats showed lack of homogeneity of structure between the 

sites (Figure 4.19). There was a clear difference between sites where 50 cm quadrats 

usually included dwarf shrub heath, Frying Pan and Roy Cove, and those which did not, 

Bleaker and Sea Lion. Bleaker's main vegetation was "other", principally wild celery 

Apium australe (Table 4.6), while Sea Lion's was grass.  Grass on Sea Lion was 

discussed at 2.3.4. While in some cases it provided shelter, it also appeared to choke 

out Viola growth, as a comparison between the already limited Viola distribution of 2015-

2017 and the much less dense distribution of 2017-2018, when there was strong grass 

growth, showed (Figure 1.16). Similar distributions of ground cover were seen in 10 cm 

quadrats, although Viola provided a greater percentage cover, unsurprisingly as a 10cm 

quadrat centred on a Viola plant was likely to be at least 25% Viola.   
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Figure 4.19  Differing vegetation structures of Viola locations in the four study sites in (a) 50cm and (b) 10 

cm quadrats.  Site names are followed, in brackets, by n for, respectively, non-oviposition and oviposition 

locations. The Viola under analysis was centred. Percentages for each quadrat sum to 100. 

 
Comparison between ground cover profiles at Bleaker and Roy Cove 
 
Quadrat data at Bleaker and Roy Cove were analysed further, given their very different 

ground cover and vegetation profiles at 50cm (Figure 4.19), to investigate if there were 

common themes underlying differences between non-oviposition and oviposition sites.  
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ANOSIMs of Bleaker and Roy Cove quadrats respectively showed significant contrasts 

between non-oviposition and oviposition locations: Bleaker at p = 0.015, R = 0.15; Roy 

Cove at p = 0.014, R = 0.05, each following 9999 permutations.  Bray-Curtis dissimilarity 

tests (SIMPER) were used to investigate factors contributing to those differences (Table 

4.5). 

 

At Bleaker (Table 4.5 a), "other vegetation" (more at non-oviposition than oviposition, 

p = 0.004), contributed 29.7% to the dissimilarity while litter (more at oviposition than 

non-oviposition, p = 0.001), contributed 15.3%.  At Roy Cove (Table 4.5 b), litter (more 

at oviposition than non-oviposition, p < 0.001), contributed 23.7% to the dissimilarity 

while Viola maculata (more at oviposition than non-oviposition, p = 0.002), contributed 

4.4%.   

 
Table 4.5  Comparison in ground cover between non-oviposition and oviposition locations at (a) Bleaker and 

(b) Roy Cove at 50cm quadrat level. The contribution of each type of ground cover to the average between-

group Bray-Curtis dissimilarity (SIMPER) was calculated through pairwise comparisons between quadrats, 
measuring the percentage cover in each case. 

a 

factor average SD ratio non-ov ov cumul %  p-value 
other vegetation   0.126 0.085 1.49 42.92     22.75   29.7    0.004 
bare ground   0.108 0.084 1.28 20.92     27.87   55.0    0.116 
litter   0.065 0.051 1.27   9.23     17.25   70.3    0.001 
Viola maculata   0.065 0.053 1.23 12.42 18.25   85.5    0.215 
grass   0.061 0.054 1.14 14.50 13.75   99.8    0.611 
dwarf shrub heath <0.001 0.002 0.26   0.00  0.12 100.0    0.377 

 
b 

factor average SD ratio non-ov ov cumul %  p-value 
dwarf shrub heath 0.155 0.111 1.39 41.33     35.74   28.4    0.648 
litter 0.129 0.119 1.09 13.02     29.67   52.1  <0.001 
grass 0.116 0.123 0.95 21.73     11.81   73.5    0.644 
other vegetation 0.064 0.076 0.85 11.07   6.88   85.3    0.916 
bare ground 0.056 0.054 1.03   9.24   9.77   95.6    0.469 
Viola maculata 0.024 0.024 0.98   3.62   6.12 100.0    0.002 

Quadrat coverage: Bleaker: non-oviposition locations, n = 26; oviposition locations, n = 16;  Roy Cove: non-

oviposition locations, n = 55; oviposition locations, n = 43. Pairwise comparisons based on 9999 

permutations.  Significance at p < 0.05 is shown in bold. key: factor = type of ground cover, ordered by size 
of contribution, largest to smallest; average = factor contribution to average between-group dissimilarity; SD 

= standard deviation of that contribution; ratio = average to sd ratio; non-ov, ov = average abundances (%) 

of each factor in non-oviposition and oviposition locations respectively; cumul % = cumulative contribution 
of each factor, based on average.  p-value is for comparison of averages of non-oviposition and non-

oviposition locations for each type of ground cover. Percentages for each quadrat sum to 100. 
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The "other vegetation" category at Bleaker was then expanded to species level in a 

SIMPER (Table 4.6).  This was inconclusive, with only sheep's sorrel, Rumex acetosella 

significant, at p = 0.023, but with a contribution of only 0.1%.  

 
 
Table 4.6  Ground cover, with vegetation at the species level, at Bleaker at 50cm quadrat level. Bray-Curtis 

dissimilarity (SIMPER) was calculated through pairwise comparisons between quadrats, measuring the 

percentage cover for each factor. 

factor average SD ratio non-ov ov cumul %  p-value 
bare ground   0.107 0.084 1.28 20.92 27.87   21.3 0.118 
Apium australe   0.089 0.069 1.29 21.23 18.37   38.8 0.750 
litter   0.065 0.051 1.28   9.23 17.25   51.7 0.002 
Viola maculata   0.065 0.053 1.23 12.42 18.25   64.5 0.209 
grass   0.061 0.054 1.14 14.50 13.75   76.6 0.613 
moss   0.054 0.071 0.76 10.81   0.75   87.3 0.612 
Acaena magellanica   0.030 0.053 0.57   5.77   0.75   93.3 0.956 
Bellis perennis   0.024 0.029 0.82   4.77   1.00   98.0 0.712 
Rumex acetosella   0.009 0.027 0.35   0.00   1.87   99.9 0.023 
Empetrum rubrum <0.001 0.002 0.26   0.00   0.12 100.0 0.152 

Quadrat coverage: Bleaker: non-oviposition locations, n = 26; oviposition locations, n = 16;  Roy Cove: non-

oviposition locations, n = 55; oviposition locations, n = 43. Pairwise comparisons based on 9999 
permutations.  Significance at p < 0.05 is shown in bold. key: factor = type of ground cover, ordered by size 

of contribution, largest to smallest; average = factor contribution to average between-group dissimilarity; 

SD= standard deviation of that contribution; ratio = average to SD ratio; non-ov, ov = average abundances 

(%) of each factor in non-oviposition and oviposition locations respectively; cumul % = cumulative 
contribution of each factor, based on average.  p-value is for comparison of averages of non-oviposition and 

non-oviposition locations for each type of ground cover. 

 
(iii) Vegetation height 
 
An exploratory plotting of quadrat vegetation height (50 cm quadrats) showed 

considerable variation between sites (Figure 4.20) although a t-test showed no 

significant difference between non-oviposition (M = 11.47, SD = 7.7), and oviposition 

(M = 12.95, SD = 9.47) locations t(92.15) = -1.07, p = 0.286, 95% CI [-4.21, 1.26], 

d = 0.16. The differences between sites are explicable by the abundance of wild celery, 

Apium australe, at  Bleaker and of tussac, Poa flabellata, together with rank grass, at 

Sea Lion. All of these provide shelter at sites which otherwise do not have much shelter 

from the prevailing wind. 
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Figure 4.20 Vegetation height at the four study sites. Site names are followed, in brackets, by overall 

numbers of locations and by numbers for, respectively, non-oviposition and oviposition locations. 

 
 

(iv) Bare patches 
 
Bare patches within 30cm and 60cm of quadrat edges 
 
There were significantly more bare patches (over 10cm diameter) at distances of 60cm 

and 30cm respectively from the edge of an oviposition quadrat than from the edge of a 

non-oviposition quadrat, although, in each case, only with a medium effect size. 

 

 
Table 4.7  Numbers of bare patches >10 cm diameter within 60 cm and 30 cm of 50 cm quadrat edges. Non-

-oviposition and oviposition locations were compared by t-tests 

distance oviposition n Mdn M SD df t p-value 95% CI d 

60cm no 48 2 2.50 1.71 76 -3.25 0.002 -4.04,  -0.49 0.76 

 yes 30 4 3.77 1.61      

30cm no 48 1 1.08 0.94 76 -3.15 0.002 -1.17,  -0.26 0.73 
 yes 30 2 1.80 1.03      

Significance at p < 0.05 is shown in bold. Mdn = median number of bare patches. 

 
 
 
Basking locations 
 

 
Paired t-tests showed the mean temperature (ºC) of rocks or large bare patches of 

ground (M = 26.74, SD = 4.67) at Bleaker and the Frying Pan was, on average, 
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significantly higher than the ambient air temperature at the same location (M = 19.45, 

SD = 4.18), t(119) = 17.08, p < 0.001, 95% CI [6.44, 8.13], with a very large effect size, 

d = 1.56.   

 

4.3.4 Plant and leaf level characteristics 
 
(i) Plant size 
 
Y. cytheris mainly selected plants of size 2 (medium sized, erect, and with three to five 

leaves of up to 35 mm) and size 3 (larger, more erect, more than five leaves of up to 40 

mm) rather than the very small or very large (Table 4.8). A χ2 test showed the difference 

to be highly significant, χ2 (3, 1093) = 11.6, p = 0.009.  Given the low sample size for 

oviposition on size 1 and size 4 plants, the p-value was re-evaluated with a 2000 

replicate Monte Carlo test (Hope 1968), which still showed a significant difference, in this 

case at p = 0.01. 

 
 Table 4.8  Total number of individual Viola plants in a sample of 187 quadrats. The quadrats comprised 
both non-oviposition (n = 62) and oviposition locations (n = 125). Viola recorded as having oviposition  status 

held eggs, not larvae. 

Viola status size 1 size 2 size 3 size 4 
non-oviposition 221 590 265 17 
oviposition     4   50   20   0 

Key to Viola size: 1 - small, compact, one or two leaves of up to 20 mm; 2 - erect, three to five leaves of up 
to 35 mm; 3- larger, more erect, more than five leaves of up to 40 mm; 4 - large, vigorous, sprawling, leaves 

can be larger than 40 mm. 

 
(ii) Chlorophyll 
 
Plant level 
 
Concerns in comparing chlorophyll levels of Viola spp. with and without oviposition were 

(i) that two species might not share the same mean levels, Sea Lion having 

V. magellanica, the other sites V. maculata, and (ii) chlorophyll levels even in the same 

species might, in any case, vary by site for autecological reasons not explored in this 

thesis. These concerns were explored through a one-way between-groups ANOVA in 

which sites differed highly significantly, with a very large effect size 

(F = 14.03, p < 0.001, ηp2 = 0.3).  Sea Lion plants, V. magellanica, had the highest 

chlorophyll levels (mg·m-2), M = 513.4, SD = 74.86; followed by V. maculata at 

Roy Cove, M = 450.1, SD = 77.51; Bleaker, M = 376.8, SD = 63.24; and Frying Pan, 

M = 372.8, SD = 67.24.   
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A further test on the same data set compared the chlorophyll levels of plants at non-

oviposition locations, those with eggs and those with larvae. This was to determine 

whether, as for other analyses, plants with larvae and eggs could be aggregated as 

oviposition locations, despite the damage larvae did to their host plants (Figure 4.21).  

 

A one-way between-groups ANOVA did not show a significant difference between 

categories (F = 2.58, p = 0.08, ηp
2 = 0.04).  There was, nevertheless, a wide variation 

between sites, with plants with eggs having the highest chlorophyll levels 

(mg·m-2), M = 459.74, SD = 67.36, followed by those without oviposition, 

M = 427.11, SD = 90; and finally those with larvae M = 398.98, SD = 95.39.  
 

 
Figure 4.21 Larval feeding pattern. The larva eats the leaf tissue from each side, giving the leaf a diagnostic 
filleted appearance. This has an impact on chlorophyll levels; in extreme cases it can lead to the destruction 

of the host plant. Photograph by the author. 

 

The outcome of the tests suggested that aggregation was unsafe in both cases, even 

accepting the p = 0.08 for the eggs, larvae and non-oviposition comparison, producing 

a wide spread of averages when the two were combined (Figure 4.22). Oviposition 

locations were therefore represented only by plants with eggs. 
 

Analysis of the largest site data set (n = 53), Roy Cove, suggested that a chlorophyll 

analysis merited further exploration, even if the null hypothesis could not be rejected 

overall. Chlorophyll level at Roy Cove non-oviposition locations (n = 40, M = 435.3, 

SD = 77.2) was significantly lower than at locations with eggs (n = 13, M = 495.5, 

SD = 60.6), t(51) = -2.6, p = 0.013, 95% CI [-107.42, -12.98], with a large effect 
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size, d = 0.82.  Differences at Bleaker and Frying Pan were not 

significant, t(19) = -1.63, p = 0.12  and t(11) = -1.51, p = 0.159. 

 

 
Figure 4.22 Levels of chlorophyll in plants showing Y. cytheris eggs, larva and non-oviposition at the four 

study sites. 95% confidence intervals of the mean for each site are shown in orange.  Numbers in brackets 

refer to plants with eggs, larvae and no oviposition respectively. Plants on Sea Lion were Viola magellanica, 

those on other sites Viola maculata. 

 
 
Leaf level 
 
A paired t-test provided no significant evidence for Y. cytheris's selecting individual 

leaves for oviposition on the basis of chlorophyll content (mg·m-2):  leaves selected for 

oviposition (M = 448.87, SD = 90.52); mean of random leaves from the same plant 

(M = 459.74, SD = 67.36), t(22) = -1, p = 0.327, 95% CI [-33.38, 11.64], d = 0.14. 

 
 
Chlorophyll and plant size 
 
A one-way ANOVA showed that chlorophyll level did not vary significantly with plant size 

(F (7, 38) = 0.45, p = 0.638, ηp
2 = 0.009. (Figure 4.23).   

300

400

500

600

700

 
Bleaker

n = 29 (3, 8, 18)
 

Frying Pan
n = 18 (6, 5, 7)

 
Roy Cove

n = 57 (13, 4, 40)
 

Sea Lion
n = 17 (1, 2, 14)

pl
an

t c
hl

or
op

hy
ll 

( m
g

m
2  )

egg larva non−oviposition



 
 
 

 165 

 
Figure 4.23   Levels of chlorophyll by size of Viola. Sizes are: 1 - small, compact, one or two leaves of up to 

20 mm; 2 - erect, three to five leaves of up to 35 mm; 3 - larger, more erect, more than five leaves of up to 
40 mm. Sizes are followed by overall numbers and, in brackets, by numbers for, respectively, non-oviposition 

and oviposition locations.  

(iii) Plant temperature 
 
A t-test showed that the temperature (ºC) of plants where oviposition had occurred 

(M = 15.79, SD = 4.53) did not differ significantly from other plants (M = 14.54, 

SD = 4.13), t(109) = 1.49, p = 0.139, 95% CI [-0.41, 2.91], d = 0.29   

  
A further t-test, recognising that the plant temperature test data had been taken in 

varying air temperatures, showed that the ratio of plant temperature to air temperature 

for oviposition plants (M = 0.78, SD = 0.21) did not differ significantly from that for 

non-oviposition plants (M = 0.77, SD = 0.15), t(108) = 0.32, p = 0.752, 95% CI [-5.80, 

8.00], d = 0.06  

 
(iv) Characteristics of oviposition at leaf level 

 
Leaf temperature 
 
A paired t-test showed the temperature (ºC) of a leaf where oviposition had occurred 

(M = 16.17, SD = 4.6) was, on average, significantly higher than other leaves on the 

same plant (M = 15.62, SD = 4.54), t(38) = 2.71, p = 0.01, 95% CI [0.14, 0.95], but with 

a small effect size, d = 0.43.   
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Position on the leaf 
 
The majority of eggs were laid on the abaxial side of the leaf, predominantly near the 

base or in the middle (Figure 4.24, Figure 4.25) 

 
 

 
Figure 4.24 Position of Y. cytheris eggs on the leaf. Bar chart (a) shows distribution of samples (n = 104) by 

surface and position. Positions were attributed by eye. Base and tip form small, but distinct, sections of the 

leaf (b). Photograph by the author. 

 
 
 

 
Figure 4.25  The commonest oviposition location - a single egg on the abaxial leaf surface near the stem. 

The leaf was turned over to enable the egg to be photographed. Photograph by the author. 
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Occupation of individual leaves and plants 
 
The majority of eggs were laid singly on leaves, with most plants only showing oviposition 

on a single leaf. Larvae were similarly solitary (Table 4.9). 

 
 
Table 4.9  Numbers of eggs and larvae recorded per leaf and per plant across all sites. This included data 

from exploratory visits to Darwin and Hill Cove. Data included one FP plant occupied by two eggs and one 

larva, each on a separate leaf, and one RC plant occupied by one egg and one larva on the same leaf. 
Excluded is a stone at Frying Pan under which were seven larvae.  

   number per leaf  number per plant 
 site  1 2 3 4 5  1 2 3 4 5 6 7 8 
eggs BL   41    6 1 0 1   21 3 2 2 1 0 1 1 
 DA     4    0 0 0 0     4 0 0 0 0 0 0 0 
 FP   24    4 1 0 0   15 3 2 2 0 0 0 0 
 HC     1    0 0 0 0     1 0 0 0 0 0 0 0 
 RC   37    0 1 0 1   35 1 1 0 1 0 0 0 
 SL     1    0 0 0 0     1 1 0 0 0 0 0 0 
 Total  108  10 3 0 2   77 7 5 4 2 0 1 1 
                 
larvae BL   16    1 0 0 0     9 1 0 0 0 0 0 0 
 DA     0    0 0 0 0     0 0 0 0 0 0 0 0 
 FP   11    1 0 0 0   11 3 1 0 0 0 0 0 
 HC     1    0 0 0 0     1 0 0 0 0 0 0 0 
 RC   17    0 0 0 0   17 0 0 0 0 0 0 0 
 SL     2    0 0 0 0     2 0 0 0 0 0 0 0 
 Total   47    2 0 0 0   40 4 1 0 0 0 0 0 
Key: BL = Bleaker; DA = Darwin; FP = Frying Pan; HC = Hill Cove; RC = Roy Cove; SL = Sea Lion 

 

 

4.3.5 Multivariate analysis:  Roy Cove 
 
Multivariate analysis on Roy Cove data was carried out using the key predictors identified 

in 4.3.1 - 4.3.4 (Table 4.10). All factors with p <0.05 were included in modelling, as were 

the two with p <0.1, openness (p = 0.058) and bare ground (p = 0.061). Although 

variance inflation factor testing, using the R package car (Fox and Weisberg 2018), 

showed no evidence of collinearity (all scores were below 2.5), wind shade 

measurements and wind speed were not used in the same model as they might expect 

to be related: here tests in a wider data set (n = 68) showed a medium correlation 

between the two (Pearson's r = 0.4, p < 0.001). 
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Table 4.10 Factors considered for inclusion in multivariate analysis. These are based on p-values and effect 

sizes of comparisons for each factor between non-oviposition and oviposition locations. 

paragraph category factor p  <0.05 p  <0.1 d >0.8 

4.3.1(i) topography: direct measurements elevation <0.001 - note 1 

  slope <0.001 - note 1 

  wind shade (direct)   0.015 - note 1 

  direct radiation (direct) <0.001 - note 1 

  slope/wind shade interaction   0.003 - note 1 

4.3.1(ii) topography: GLA wind shade (GLA)   0.004 - n 

  openness (GLA) n 0.058 n 

4.3.1(iii)  direct radiation (GLA) n n n 

4.3.2(i) location wind speed wind at 150cm   0.004 - n 

  wind at 30 cm   0.003 - n 

  wind at 3 cm   0.005 - n 

4.3.2(ii) location temperature 24hr   0.002 - 0.93 

  day   0.003 - 0.89 

  night n n n 

4.3.3(ii) ground cover : SIMPER 50cm Viola spp. n n note 2 

  bare ground   0.022 - note 2 

  dwarf shrub heath n n note 2 

  grass n n note 2 

  litter n n note 2 

  other vegetation n n note 2 

      

  ground cover : SIMPER 10cm Viola spp.   0.027 - note 2 

  bare ground n 0.061 note 2 

  dwarf shrub heath n n note 2 

  grass n n note 2 

  litter n n note 2 

  other vegetation n n note 2 

4.3.3(iii) vegetation height height n n n 

4.3.3(iv) bare patch numbers 60cm from quadrat edge  0.002 - n 

  30cm from quadrat edge  0.002 - n 

4.3.4(i) Viola spp. of a given size 50cm quadrat  0.011a - n 

  10cm quadrat n n n 

4.3.4(ii) chlorophyll plant level  0.013b n 0.82 

  leaf level n n n 

4.3.4(iii) plant temperature direct comparison n n n 

  plant/air ratio n n n 

4.3.4(iv) leaf temperature plant level  0.010 - n 

Key: n = required level of significance or effect size not met; note1: p-values are for χ2 tests, with no effect 

size measured; note 2 : p-values are for comparisons contributing to Bray-Curtis dissimilarity (SIMPER); 

superscript  a : for Viola spp. of a given size, only the number of size 2 Viola differed significantly; superscript 
b: for Roy Cove only (n = 53)  
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The top four models (Table 4.11) were all robust at ΔAICc <2. In each of the models the 

daytime mean temperature of the plant location under observation was a factor: in model 

3, within the confidence limits, it was the sole factor. In the first three models wind was 

also a factor, whether adjusted wind speed at 30cm (models 1 and 2), or in protection 

from the wind, as shown by GLA (model 3). The presence of patches of bare ground, 

with a diameter of more than 10cm, within 60cm of the quadrat was a factor in model 4.  

Chlorophyll content was a factor in model 5, although, at ΔAICc = 3.86, the model was 

outside the confidence limits. 
 

Table 4.11 Candidate habitat models for Roy Cove. The five leading candidate models under AICc; the first 

four, where ΔAICc < 2 , can be regarded as robust. 

rank independent variables df loglik AICc ΔAICc  weight F (2, 14) r2 p-value 
1 temp, wind 4 -0.136 11.6 0.00 0.327 14.17 0.62 0.0004 
2 temp, wind shade (GLA) 4 -0.136 11.7 0.05 0.320 14.11 0.62 0.0004 
3 temp, wind, patches  5  0.985 13.5 1.88 0.128 10.62 0.64 0.0008 
4 temp 3 -2.823 13.5 1.89 0.127 18.07 0.52 0.0007 
5 temp, wind, patches, chlor 6  2.465 15.5 3.86 0.047   9.32 0.67 0.0011 

Significance at p < 0.05  and large effect size, r2 > 0.26 are shown in bold. Key to independent variables; 

temp = mean temperature of plant location 1000-1600hrs; wind = adjusted wind speed at 30cm above 

ground; wind shade (GLA) = shelter from the prevailing wind measured through gap light analysis; 
patches = number of patches of bare ground over 10cm diameter; chlor = chlorophyll content (mg·m-2) of 

plant observed. F-ratio, r2 and p-value all refer to the underlying linear model. 
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4.4 Discussion 
 

4.4.1 Summary of findings 
 

The four study sites on the Falklands showed that Yramea cytheris had adapted to a 

variety of physical environments: the raised beach at Bleaker Island, the low cliffs at the 

Frying Pan, the rolling, heavily grazed pastureland of Roy Cove and the mosaic of sand, 

dwarf shrub heath, tussac and penguin colonies at Sea Lion Island. The one common 

factor was the presence of Viola spp.  

 

Viola spp. are widely spread around the Falkland Islands, but no survey has been done 

to identify how many sites containing them also support colonies of Yramea cytheris. 

The study sites were near the coast, and mostly at a low elevation.  Where there was 

scope for the butterfly to go higher, up to 262 m at Roy Cove, the highest oviposition 

location was at 86 m. 

 

Data from the study sites showed that Y. cytheris preferred north-east facing patches, 

which had the combined benefits of being sheltered from prevailing westerly (and, at Roy 

Cove, south-westerly) winds and having the maximum direct exposure to the morning 

sun. At patch level, oviposition locations could be characterised most simply as warmer, 

sunnier and more sheltered from the wind than non-oviposition locations.   

 

A preference was shown for oviposition on medium-sized Viola, with three to five leaves 

of up to 35 mm. Selected plants tended to have a higher chlorophyll level. Oviposition, 

usually of single eggs, was on the warmer leaves of the Viola. 

 

In modelling an oviposition location, based on Roy Cove data, the most important factor 

was temperature, to the extent that it featured in the top four candidate models. It was, 

by itself, one of the models, the other factors were wind or wind shelter, and the number 

of bare patches of ground near to the oviposition site. 

 

4.4.2 The importance of microhabitat 
 

The data show that variability of topography, vegetation and ground cover was important 

at all scales in Y. cytheris's choice of an oviposition location, although all with the 

common effect of providing a location of the right temperature - that is to say, warmer 

than other potential locations - for eggs to hatch and larvae to develop.  To achieve the 
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necessary conditions, the realised niches to provide them might substantially differ 

(Anthes et al. 2008). In the case of Y. cytheris at the four, very different, study sites, the 

range of possible factors contributing to the temperature of an oviposition location was 

considerable: shelter, for example, being principally from wild celery Apium australe at 

Bleaker; cliffs at the Frying Pan; hills at Roy Cove; and Tussac at Sea Lion. But the 

important factors were those which led to a Viola plant's being sheltered from the wind, 

with enough bare earth to provide additional warmth, and facing the late morning sun.  

Microclimates, resulting from configurations of microhabitat, were key determinants in 

choice of oviposition and larval locations (Eilers et al. 2013, Vilbas et al. 2016, Čelik and 

Vreš 2018). This supports the view, derived from an evidence-based approach to 

butterfly conservation, that variation in the intrinsic quality of larval habitat is the most 

important factor determining the size and persistence of populations in locations where 

they occur (Dennis et al. 2006, 2007, Thomas et al. 2011). 

 

 
4.4.3 The importance of the larval host plant 
 
 
Y. cytheris appeared be totally dependent on Viola as an oviposition location and larval 

host plant. This raises a causality dilemma over the constraints on the butterfly's habitat 

requirements: whether Y. cytheris's perceived temperature requirements are those of 

the butterfly, or those of the larval host plant. If the latter, then the butterfly's choice for 

oviposition is most likely to be straightforward: the warmest location to speed up larval 

development (Anthes et al. 2008, Pennekamp et al. 2014). The attendant risk, that the 

location is too hot, causing desiccation of larvae, will have already been reduced by the 

Viola's habitat requirements (Figure 4.26). 
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Figure 4.26  When the balance between warmth and desiccation goes wrong.  Both Viola and Y. cytheris 

larvae risk desiccation in an isolated location amongst heat-retaining rocks and bare ground at the Frying 

Pan. Photograph by the author. 

 

Y. cytheris, like most other Viola-obligate members of the Argynnini, appears to lay only 

one egg on a leaf (Fartmann and Hermann 2006).  Its movement over a patch, and then 

over a prospective oviposition plant, is likely therefore to be rapid, to maximise 

oviposition opportunities.  As only one oviposition was seen over all three study trips, 

and actions either side of ovipositing were not observed, there was not enough evidence 

to confirm that.  Given, however, that the significant selection criteria were the warmest 

location, the plant with the highest chlorophyll content, and then the warmest leaf, that 

approach would be appropriate (Singer 2004).  Given that the butterfly still needs to lay 

a clutch of eggs, it suggests that a patch, to be chosen should have the potential for a 

number of suitable plants. While there was inadequate evidence to suggest density of 

Viola in a patch was a criterion, at the 10 cm quadrat level oviposition locations had a 

significantly larger density of Viola, in particular medium sized Viola, than 

non-oviposition, suggesting that butterflies were prioritising host-plant rich environments.  

 

Larval mobility was not examined, so it was unclear to what extent larvae remained on 

their oviposition plant.  As the oviposition pattern obviated the need for a large host plant 

to provide sufficient nutrition for a brood (Eichel and Fartmann 2008, Pennekamp et al. 
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2012), the choice of medium sized Viola would, unlike small Viola,  be adequate for the 

early instars, and, with their leaves closer to the ground than larger plants, be in a more 

sheltered, and therefore warmer environment.  

 

4.4.4 Implications for conservation 
 

The evidence suggests that a primary target of conservation efforts should be Viola spp., 

and in particular the dwarf shrub heathland mosaic, to ensure the necessary range of 

potential oviposition sites is maintained. Continued light grazing, as for Calluna 

heathland in the northern hemisphere (Gillingham 2010, Taboada et al. 2013, Čelik and 

Vreš 2018), will remain important where the sites are in pasture rather than on cliffs or 

amongst stones.  In places where grazing has ended, such as Sea Lion, some way of 

keeping rank grass levels low, particularly during wet summers, should be considered 

(WallisDeVries and Raemakers 2001, Evju et al. 2010).   

 

Three further areas of study, centred on Viola maculata, suggest themselves. The first 

is to gain a greater understanding of its autecology.  It is widely spread through the 

islands at a range of elevations (Vallentin and Cotton 1921). It is also widely distributed 

in Latin America, where it has been shown to have a strong tolerance of colder conditions 

at elevation (Seguí et al. 2018). Its tolerance of heat, however, appears untested. It 

would also be helpful to understand the extent to which, in the case of local extinctions, 

reintroductions might be successful.  

 

A second area is to quantify the extent to which Viola levels are affected by differing 

weather patterns, either directly, or through their impact on other vegetation, when there 

is no grazing. An exclosure study on a sheep farm should be carried out over enough 

seasons to make comparisons. 

 

The third area is an investigation of the relationship between Viola and sheep (Salz and 

Fartmann 2017), in the context of the role that extensive sheep grazing has had in 

shaping landscapes, particularly highlighted in the conservation of Maculinea arion 

(Warren 1993, Spitzer et al. 2009). Observation in the field further showed that sheep 

tracks through dwarf shrub heath provided an environment favourable to Viola growth. 

The wide-ranging nature of Falklands sheep over nutrient-poor grassland suggest that 

endozoochorous dispersal might have supported the spread of Viola through the islands, 

although studies in other environments have shown low establishment rates of 
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vegetation through sheep faeces pellets, either through desiccation or through being 

outcompeted.  

 

4.4.5 Implications for Yramea cytheris 
 

The wide range of Y. cytheris in South America, both in terms of latitude and elevation, 

suggests a range of climatic tolerance. The variety of habitats and potential habitats at 

its current range in the Falklands gives it scope to vary niches in response to climate 

change, although the threats of stochastic events such as inundation due to a change in 

maritime currents, or a tsunami, are less easy to mitigate. Although the adaptability 

suggested by the extent of Y. cytheris's distribution in South America does not 

necessarily mean it can cope with rapid climate change, action at an early stage to 

maintain a diverse dwarf shrub heath habitat, and to ensure that open Viola patches 

continue to flourish across the islands, will maximise its chances of survival. 
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Chapter 5: Conservation genetics  
 
5.1 Introduction 
 

This chapter outlines the developing use of genetic analysis in conservation, in particular 

as applied to isolated populations of butterflies. It then investigates the genetics of 

Yramea cytheris in the Falkland Islands, focusing on those elements of importance in 

conservation planning, and suggests how these might be incorporated in future work. 

 

5.1.1 The contribution of genetic analysis to conservation 
 

As genetic analysis has become more sophisticated, and cheaper, it has become 

increasingly used in conservation work.  While warnings that it might become an end in 

itself (Saarinen 2015), and that, done poorly, it might damage rather than assist 

conservation efforts (Morin et al. 2010) need to be heeded, genetic analysis is now 

indispensable in helping to underpin an evidence-based approach to a wide, and 

widening, range of conservation tasks (Frankham 2010, Habel et al. 2015, Fenster et al. 

2018, Holderegger et al. 2019).  

 

In considering an evidence-based approach to conservation of a single species and the 

way in which genetics can inform it, the usual terminology of extinction (Benson et al. 

2019, Figueiredo et al. 2019) has been rejected in this chapter in favour of a framework 

adapted from conflict management (Ackermann 2003, 2010), which moves from 

prevention to management, then to resolution and, finally, rehabilitation.  This is to reflect 

that, at the local level, and leaving aside what Swart (2018) calls resurrection 

conservation, extinction is not necessarily for ever (even if the local evolutionary lineages 

have gone), as the examples of the butterflies Maculinea arion in south-west England  

(Thomas et al. 2009) and Neonympha mitchellii francisci in North Carolina, USA (Haddad 

2018) demonstrate. 

 

(i) Prevention   

 
Addressing potential extinction of a local population is a combination of information 

gathering, establishing a baseline, developing indicators of possible deterioration, and 

setting up monitoring mechanisms. In the case of butterflies much of this work will be 

focused on habitat, but genetic analysis can be important in establishing baselines, such 
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as the taxonomy of the study species, the relationship between its populations, and its 

genetic health, in particular its capacity to evolve in response to environmental change.  

 
Allocation to taxa 
 
Taxonomic approaches based on morphological characters have been considered in the 

introduction (1.3), in particular in identifying possible subspecies of Yramea cytheris.   

 

Since the introduction of genetic barcoding (Hebert et al. 2003, Jinbo et al. 2011), based 

on the mitochondrial gene Cytochrome Oxidase subunit I (COI), DNA analysis has been 

an essential element in determining taxonomic status. Barcoding was envisaged as a 

preliminary step in species delimitation, aimed at producing an initial taxonomic 

framework as a basis for further analysis (Kekkonen and Hebert 2014). Ratnasingham 

and Hebert (2013), setting out a Barcode Index Numbering System, noted that a >2.2% 

(14 bp) variation between samples would suggest they were different species. As an 

indication of delimitation in Lepidoptera, Hajibabaei et al. (2006) found that congeneric 

species of skipper (Hesperiidae) showed average divergences in COI of 4.58% (30bp), 

with average within-species divergences of 0.17% (1 bp). Wiemers and Fiedler (2007), 

however, argued that COI was insufficient for species delimitation, giving examples of 

accepted Lycaenidae species with no COI variation (23 Agrodiaetus and three 

Maculinea species pairs), and others which showed intraspecific variation greater than 

this (e.g. Polyommatus amandus, with 3.8% divergence, and Polyommatus icarus, with 

5.7–6.8%). 

Even with questions about the sufficiency of COI for species delimitation (Wiemers and 

Fiedler 2007, Õunap and Viidalepp 2009), its utility as a starting point has been 

acknowledged (Galtier et al. 2009). Increasingly, in genetic analysis of Lepidoptera, in 

addition to COI a 604 bp section of the nuclear gene  Elongation Factor-1a  (EF-1α), and 

a 355 bp section of  the nuclear gene  wingless  have been used (Peña et al. 2006, 

Wahlberg and Wheat 2008, Simonsen et al. 2010, Wilson 2010, Aduse-Poku et al. 2015, 

Chazot et al. 2016, Kozlov et al. 2017). EF-1α has been proposed as an alternative to 

COI barcoding in Lepidoptera (Kim et al. 2017). The wingless gene has shown a rapid 

rate of substitution in nymphalids, with a <400 bp length comparable to, or exceeding, 

1200 bp of EF-1α (Cho et al. 1995, Brower and DeSalle 1998, Campbell et al. 2000). 

These sequences can be concatenated: while differing rates of evolution of the three 

genes has led to some concern about the robustness of doing so (Monteiro and Pierce 

2001), the process has become generally accepted (Elias et al. 2007, Rubinoff, San 

Jose, et al. 2012, Ortiz-Acevedo and Willmott 2013).   
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Next generation sequencing affords a step beyond the use of nuclear genes to 

supplement COI in considering species delimitation. Hinojosa et al. (2019), investigating 

the complexity of lineages in the skipper Thymelicus sylvestris through double-digest 

restriction-site associated DNA, showed how nuclear markers could help resolve 

phylogenetic complexity, in particular by highlighting population and geographic 

linkages. 

 

The possibility of cryptic species, which are identified genetically, needs to be considered 

(Bickford et al. 2007) although, whilst these have been found in Lepidoptera (Hebert et 

al. 2004, Dincă et al. 2011), there is no evidence of their having appeared in fritillaries. 

Delimitation is more uncertain when lower taxonomic levels are involved, as suggested 

by the weak capacity of COI analysis to allocate specimens correctly to currently 

established subspecies (Austerlitz et al. 2009), although this could be viewed as 

evidence that the subspecies in question are not valid (Braby et al. 2012). This dichotomy 

is central to the argument about the utility of the subspecies concept, considered in 

Chapter 8. 

 

Assigning the correct taxonym is not simply based on a desire for order (for an 

entertaining account of this impulse see Ritvo 1997). An endangered species is likely to 

be viewed by policy makers as a priority for conservation: the species persists as "the 

currency of biology" (Agapow et al. 2004). At a lower level, the extent of separation from 

the binomial nominate may determine the level of material support a taxon has for 

conservation work. An isolated, endemic species, for example, is likely to be a higher 

priority than a subspecies (however defined) or a small outlying population of a 

widespread taxon.  Other issues then become important, such as morphological or 

behavioural variation; economic, historical or cultural value; remoteness of populations 

and potential evolutionary significance (Gompert et al. 2006). Here the debate about 

Evolutionarily Significant Units and Management Units sensu Funk et al. (2012), and the 

extent to which these should be based on genetic factors, is relevant (Moritz 1994, 

Paetkau 1999). In this context, prioritisation of island species for conservation has been 

advocated Robertson et al. (2014). 

 

The relationship between populations 
 
Understanding whether small, isolated colonies are the product of single founder events, 

occasional immigrations or regular immigrations can help in assessing the level of threat 
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they face (Vandewoestijne et al. 2004, Papadopoulou and Knowles 2016, Maresova et 

al. 2019). Genetics-based phylogeography can then suggest lines of further 

investigation, such as habitat requirements and larval host plant preferences, which 

need to be considered in any conservation plan requiring a donor population.  

 

Island populations present particular challenges. Work on island biogeography has 

focused on the assemblage of species on islands and the processes which affect them 

(MacArthur and Wilson 2001, Lomolino et al. 2010). This approach has been reflected 

in work on butterflies, with genetic information increasingly suggesting connections 

between community composition and patterns of genetic differentiation (Vodă et al. 

2016, Dapporto et al. 2017, Dennis and Hardy 2018).  Thus some genetic structures 

might be expected to reflect membership of a largely stable community, while others 

might suggest a tendency towards dispersal. Genetic analysis has further helped 

illuminate work on species that have become part of wide-ranging studies, such as those 

on Maniola jurtina in the Isles of Scilly (Dowdeswell and Ford 1955, Creed et al. 1964, 

Dowdeswell 1981, Baxter et al. 2017) and those on Melitaea cinxia in the Åland Islands 

(Hanski 1998, Saccheri et al. 1998, Nonaka et al. 2019). 

 

Genetic health of populations 
 
Small and fragmented populations, particularly those on small islands, are particularly 

susceptible to a decline in genetic health (Lynch et al. 1995, Mattila et al. 2012, 

Frankham et al. 2017). Island populations are likely to suffer increased inbreeding 

relative to mainland populations reflecting a single founding event or a severe genetic 

bottleneck. Low dispersal rates, particularly amongst relatively immobile taxa, reduce 

gene flow, bringing the risk of genetic drift.  As a consequence, inbreeding depression 

can leave the butterfly with a reduced capacity to evolve in response to environmental 

change, with the attendant risk of extinction (Frankham 1998, Saccheri et al. 1998, 

Spielman et al. 2004, Roitman et al. 2017). 

 

The response of small island populations can, however, vary. Mattila et al. (2012), 

investigating the Melitaea cinxia population on the small (1km x 2km) Baltic Island of 

Pikku Tytärsaari, found a high genetic load but no evidence of inbreeding depression. 

This was attributed to a single founder event resulting in one generation of full-sib mating. 

Windig et al. (2004), investigating Pararge aegeria on Madeira, which resulted from a 

possible single founder event, found no detectable effects of inbreeding depression or 

high genetic load.   
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(ii) Management 
 
Genetic health 
 
Genetic diversity is not a guarantee of genetic health: Saarinen et al. (2014) observed 

an unpredicted increase in allelic richness and heterozygosity in one of the last two 

surviving populations of the Miami blue butterfly (Cyclargus thomasi bethunebakeri) 

shortly before that population went extinct.  It is, however, essential for the adaptability 

of a population in which inherited, fitness-related traits are crucial (Booy et al. 2000)  

 

In the case of inbreeding and bottlenecks, genetic rescue, through the introduction of 

individuals from other populations, can be considered. Frankham (2011) addressed 

concerns about outbreeding depression and the loss of local adaptions through genetic 

swamping by proposing a decision tree for possible introductions. The decision-tree 

approach has become part of the Open Standards for the Practice of Conservation and 

its software platform Miradi (Schwartz et al. 2012, and, for its application to Lepidoptera, 

see Daniels et al. 2018). Frankham (2015) subsequent meta-analysis suggested that, 

provided appropriate guidelines were followed, outcrossing with other populations could 

be successful, citing examples from a range of taxa (though not Lepidoptera). 

 

Wootton and Pfister (2015), working experimentally on flour beetles (Tribolium 

castaneum), suggested three ways of addressing genetic health. The first, evolutionary 

rescue, relied on standing variation in the population which would lead to adaptation to 

a changing environment; the second, demographic rescue, would mitigate against 

possible Allee effects by expanding the size of the population; the third, genetic rescue, 

would increase the genetic diversity, and therefore fitness, of the population through 

translocations from donor populations.  

 

(iii) Resolution 

 
Reintroduction 
 
Reintroductions have increasingly been used in conservation programmes, whether, in 

the terms used by Wootton and Pfister (2015), to augment the process of evolutionary 

rescue; to expand the population to mitigate the Allee effect; or to improve the genetic 

health of the population.  More eye-catchingly, and often controversially, they have been 

used where the taxon has gone extinct: for example the reintroduction into the UK of the 

large blue butterfly, Maculinea arion (Thomas et al. 2009); the Eurasian beaver, Castor 
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fiber (Gaywood 2018, Auster et al. 2019); and the potential reintroductions of the 

Eurasian lynx, Lynx lynx (Lipscombe et al. 2018) and the wolf Canis lupus (Nilsen et al. 

2007).  

 

The IUCN recognised that reintroductions (IUCN Wildlife Health Specialist Group 2013) 

needed to address a broad range of social and scientific considerations, but emphasised 

the need to consider genetic health. They recognised two potentially divergent 

approaches: replacing with something as close as possible to that which went extinct, 

and replacing with a large number of individuals with a wide genetic base. There is, 

however, the danger that reintroductions to augment a declining population, or replace 

an extinct one, fail to take into account adaptations to local conditions (Aardema et al. 

2011). 

 

There is the further risk that the introductions carry pathogens. Daniels et al. (2018), 

refocusing the IUCN guidelines on the particular needs of Lepidoptera, stressed the 

importance of genetic testing of source populations for pathogens, particularly 

Wolbachia, with its high incidence and potentially (though not inevitably) deleterious 

effects in Lepidoptera (Hamm et al. 2014, Ahmed et al. 2015). 

 

Captive breeding 
 
Captive breeding is one possible way of avoiding some of the potential problems from a 

poor choice of donor populations. It can establish a refuge population in case of 

extinction in the wild; provide individuals for reintroduction; and provide a population for 

experimental work (Longcore and Bonebrake 2012). Selection of a founding population 

needs to take into account variation in genotype, although adaptations both in 

morphology, and as a response to habitat, such as choice of larval host plant, will also 

need consideration. Any captive breeding programme will further need to mitigate 

against possible changes in its population resulting from adaptation to a captive 

environment, thus making it potentially less able to survive in the wild. Lewis and Thomas 

(2001), for example, observed that a captive population of large white butterflies, Pieris 

brassicae, had, over 100 - 150 generations, become heavier, with smaller wings and 

lower wing aspect ratios, impacting on their dispersal ability. 

 

Whether it is better in introductions to use individuals from other populations, or to collect 

butterflies from focal populations and captively rear offspring, will need to be judged on 
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the extent to which local adaptations are important. In this context, the extent to which 

local adaptations are important. 

 
(iv) Rehabilitation 
 
The rehabilitation process after successful management intervention, or wide-scale 

reintroduction, reverts to a monitoring programme based to some extent on the 

prevention approaches at  5.1.1(i).  This is backed up by work to address the biotic or 

abiotic factors which led to the decline or extinction.  Daniels et al. (2018) suggest regular 

genetic monitoring of released individuals or reinforced populations, particularly if there 

is a limited number of initial founders, and evaluation of genetic rescue or reinforcement. 

 
5.1.2 Concerns related to the Falklands 
 
Little is known about the distribution and genetic health of the Falkland populations of Y. 

cytheris. Those populations recorded (1.4.2) are widely separated, although the 

widespread distribution of Viola spp., the larval host plant, around the islands (Figure 

1.11) suggests that others may exist.  There is nothing known about their connectivity.  

Aside from the few specimens from Latin America with sequences recorded in GenBank 

(Table 5.2) and those papers dealing with the wider genetics of fritillaries (Simonsen 

2006a, Simonsen et al. 2006, 2010, 2010), there has been no genetic analysis of the 

butterfly on which to base further work.  The Latin American populations, which would 

be potential donors, appear to be similarly widely distributed, and equally poorly 

understood.   

 
5.1.3 Research questions 
 
This genetic investigation, addressing the practical conservation questions discussed 

above, has been based on four research questions (RQs). 

 
RQ1: to what extent does DNA analysis clarify the relationship between the Falkland 

Islands and Latin American populations of Y. cytheris? 

RQ2: to what extent does genetic data suggest either differentiation between, or 

subgrouping of, separate populations in the Falkland Islands? 

RQ3:  what evidence does DNA analysis provide for the genetic health of the Falkland 

Islands population? 

RQ4: what are the implications of the results of DNA analysis for conservation 

management of Y. cytheris? 
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5.2 Materials and methods 
 

5.2.1 Study populations 
 

The principal analyses were carried out on samples from four Falkland Islands study 

sites, Bleaker Island, the Frying Pan, Roy Cove and Sea Lion Island, with additional 

material from Punta Arenas, Torres del Paine, Puerto Williams and two unnamed sites, 

all in Chile (Figure 5.1, Table 5.1 Table 5.2). 

 

 
Figure 5.1 Sites of origin of samples used in genetic analysis (Table 5.1). The wind rose shows the 

predominant wind direction (south and south-west) and speed (> 60% at Beaufort Scale 4 and over) at Punta 
Arenas, a potential factor in population movement. Data used were 2014-2018, from the Ogimet website 

(Valor and López 2017).  

 

5.2.2 Collection of samples 
 

(i) Falkland Islands  
 

The Falkland Islands Government’s Conservation Committee allowed eight butterflies to 

be taken, with no more than two from an individual site, during the first field visit (January-

February 2016), and twelve, again with no more than two from a site, during the second 

(December 2016- February 2017) and third (January- February 2018) visits respectively.  

 11 

4.2 Materials and methods 
 

4.2.1 Ethics statement 
 

Research work in the Falklands was carried out under Licence R19/2015 from the 

Falkland Islands Government. Y. cytheris is a protected species in the Falkland Islands 

(Falkland Islands Government 1999) and lethal collection of specimens was limited by 

quota. In all cases research took place with the permission of land owners. 

 

4.2.2 Study populations 
 

The principal analyses were carried out on samples from four Falkland Islands study 

sites, Bleaker Island, the Frying Pan, Roy Cove and Sea Lion Island, with additional 

material from Punta Arenas, Torres del Paine, Puerto Williams and two unnamed sites, 

all in Chile (Figure 4.1, Table 4.1 Table 4.2). 
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Non-lethal sampling was permitted by removal of a leg, which was also used for claw 

analysis (Koscinski et al. 2011, Crawford et al. 2013) or a small section of wing, of 

approximately 2 mm x 2mm (Hamm et al. 2009). 

 

(ii) Latin America 
 

Four Latin American specimens, from four different sites in Chile (Table 5.1), collected 

between 2000 and 2003, were kindly donated by Alvaro Zúñiga-Reinoso These were 

compared with three specimens from GenBank (Table 5.2), only one of which had a 

clear attribution, to Santiago, Chile, although the two other specimens were attributable 

to Chile by their voucher codes.  A specimen of Yramea inca (Staudinger 1894), 

attributed to Peru by Simonsen et al. (2006), was used as the outgroup. A field visit to 

Punta Arenas to try to capture further samples, 3–8 February 2018, was unsuccessful. 

 
5.2.3 Data sets analysed 
 
Samples from Yramea cytheris were collected from the Falkland Islands for DNA 

analysis between 2016 and 2018. To these were added samples from Latin America, 

from the collection of Alvaro Zúñiga-Reinoso (Table 5.1) and GenBank (Table 5.2). 
 

 

Table 5.1 Number of individuals of Yramea cytheris successfully sequenced for the genes COI, EF-1α and 
wingless. The Falkland specimens were collected on field visits between 2016 and 2018; the Latin American 

specimens were collected by Alvaro Zúñiga-Reinoso between 2000 and 2003. 

  available sequences 

land mass population COI EF-1α wingless  
CO I + EF-1α 

+ wingless 

Falklands Bleaker  11 8 7 5 
Falklands Frying Pan   5 5 4 3 
Falklands Roy Cove   8 6 6 5 
Falklands Sea Lion   4 6 5 2 
Latin America Punta Arenas, Chile   1 1 1 1 
Latin America Santiago, Chile   - 1 - - 
Latin America Puerto Williams, Chile   1 1 1 1 
Latin America Torres del Paine, Chile   1 1 1 1 
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Table 5.2  Sequences from GenBank for the genes COI, EF-1α and wingless for Y. cytheris and, as an 

outgroup, Y. inca.  Attributions of Y. cytheris samples  CH-10B-4 and CH-8A-3 to Chile and Y. inca sample 
PE-22-2 to Peru were inferred from the country codes in Simonsen et al. (2006). 

   GenBank accession number 
species origin GenBank voucher COI EF-1α wingless 
Y. cytheris Chile CH-8A-3 KM012985 KM013045 KM013113 
Y. cytheris Chile  CH-10B-4 DQ922858 DQ922890 DQ922826 
Y. cytheris Santiago, Chile AYK-04-0543-08    KF492178 NA NA 
Y. inca Peru PE-22-2 DQ922859 DQ922891 DQ922827 

 
 
5.2.4 Phylogenetic methods 
 

(i) Primers  
 
Primers (Table 5.3) were LCO1490 and HCO2198 (Monteiro and Pierce 2001) for COI; 

ef2F and efrcM4R (Monteiro and Pierce 2001) for EF-1α, and LepWG1 and LepWG2 

(Brower and DeSalle 1998) for  wingless. 

 
(ii) DNA extraction 
 
DNA was extracted from using the QIAGEN DNeasy Blood & Tissue Kit, following the 

manufacturer's protocol DNA concentration was determined using a Nanodrop 

spectrophotometer (Thermo Scientific).  DNA was stored and used at a concentration of 

10 ng/µl. 
 
 

Table 5.3 Primers used for the amplification of COI, EF-1α and wingless genes 

Gene primer name primer sequence 
COI LCO1490-J-1514F GGT CAA CAA ATC ATA AAG ATA TTG G 
 HCO2198-N-2175 TAA ACT TCA GGG TGA CCA AAA AAT CA 
EF-1α ef2F AAA ATG CCC TGG TTC AAG GGA 
 efrcM4R ACA GCV ACK GTY TGY CTC ATR TC 
wingless LepWG1 GAR TGY AAR TGY CAY GGY ATG TCT GG 
 LepWG2 ACT HCG CAR CAC CAR TGG AAT GTR CA 

 

 

(iii) PCR and sequencing 
 
The primers used were LCO1490 and HCO2198 (Folmer et al. 1994) to amplify COI; 

ef2F and efrcM4R (Monteiro and Pierce 2001) to amplify EF-1α, and LepWG1 and 

LepWG2 (Brower and DeSalle 1998) to amplify wingless (Table 5.3).  Primers were used 

at a concentration of 20 µmol. 
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For COI and EF-1α, MyTaq DNA Polymerase was used in 50µl volume reactions (2µl 

DNA, 1µl forward primer, 1µl reverse primer, 0.25µl MyTaqDNA, 10µl MyTaq Buffer and 

35.75µl water). For wingless, which had proved less amenable, and for COI and EF-1α 

which had only shown faint signs of amplification, the QIAGEN Multiplex PCR Kit was 

used. Varying dilutions of DNA were tried, with the best amplification occurring with a 

10µl reaction and a high concentration of DNA (4.6µl DNA, 0.2µl forward primer, 0.2µl 

reverse primer, 5 µml QIAGEN Multiplex PCR Master Mix). 

 

Reactions were run through PCR programmes in either GeneTouch or GenePro Thermal 

Cyclers.  

 

The basic cycling profile for COI and EF-1α was 95°C for 5 min; 40 cycles of 94°C for 30 

sec, 50°C for 30 sec, 72°C for 1 min 30 sec;  and a final extension period of 72°C for 10 

min, based on Wahlberg et al. (2016). For wingless it was 95°C for 15 min, 35 cycles of 

94°C for 30 sec, 55°C for 90 sec, 72°C for 60 sec, with a final extension period of 72°C 

for 10 min, based on QIAGEN Multiplex PCR Kit protocols.  Gradients from 50ºC to 60ºC 

were used for the annealing stages to optimise the possibilities for successful 

amplification. 

 

PCR products were stained with 5x Green GoTaq Flexi Buffer.  They were then analysed 

through electrophoresis in 1.5% TAE agarose gel, coloured with SBYR DNA stain and 

accompanied by a Promega 1kb DNA ladder.  Products were visualised under ultra-

violet light in a Bio-Rad Gel Doc Imaging System to identify successful amplifications. 

 

Samples successfully amplified were purified and sequenced by Genewiz Europe, 

Takely, Essex, UK, using ABI Prism 3730xl DNA analysers. 

 
 
 
(iv) Sequence alignment  
 
Sequences were visualised and edited in Geneious version 9.1.5 (Kearse et al. 2012). 

Each fragment was aligned using ClustalW (Larkin et al. 2007) within Geneious and then 

checked by eye.  
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The sequences were then examined to determine haplotype groupings using DnaSP 5 

(Librado and Rozas 2009).  Subsequent work was carried out using single 

representatives of each haplotype.  In all cases trees were rooted using GenBank data 

from Y. cytheris’s nearest known relative, Y. inca (Simonsen 2006): GenBank voucher 

PE-22-2 (Table 5.2). 

 

Analyses were run on each of the genes COI, EF-1α and wingless individually. All three 

genes were also concatenated to form single 1596 bp data sets.  

 

(v) Selection of substitution models 
 
Possible substitution models for the nucleotide sequence data were considered through 

jModelTest 2.1.10 (Darriba et al. 2012). All potential models were assessed on Akaike 

and Bayesian information criteria, with the former adjusted for small data sets (AICc and 

BIC), and also using performance-based decision theory (DT).  In each case, BIC, AICc 

and DT produced different optimum models.   

 

The utility of selecting a range of models on the basis of model testing packages has 

been questioned (Ripplinger and Sullivan 2008, Abadi et al. 2019, Spielman 2020), with 

Abadi et al. suggesting that  the General Time Reversible model (Tavaré 1986), together 

with gamma distribution and invariant sites (GTR+Γ+I) produced an effective outcome in 

most cases.  

 

Gamma distribution was particularly important given the difficulty of potentially uneven 

evolutionary rates between mitochondrial and nuclear genes noted by Wahlberg (2006).  

GTR+Γ+I was accordingly assessed for all Maximum Likelihood and Bayesian analyses 

by considering its position under the various tests. It was also considered without 

invariant sites (GTR+Γ), given criticism of possible damage caused by the strong 

correlation between the proportion of invariable sites and the gamma shape parameter 

(Sullivan and Swofford 2001, Ren et al. 2005).  

 

Αs both GTR+Γ+I and GTR+Γ were in the 100% confidence intervals for all models for 

all data sets, and returned values in the middle of the pack for AICc, BIC and DT, GTR+Γ 

, given the concerns about GTR+Γ+I, was selected for all analyses. 
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(vi) Dendrograms and cladograms 
 
Sequence data were first analysed through a Bayesian approach. In each case the 

General Time Reversible method was used, together with gamma distribution 

(GTR+Γ+I). Bayesian analysis was carried out in Geneious 11.1.4 (Kearse et al. 2012) 

using the MrBayes 3.2.6 plugin (Ronquist et al. 2012). Four coupled chains were run at 

a temperature of 0.2 for 5,000,000 generations, with a sample frequency every 1000th 

generation.  The first 1,000,000 samples were discarded as burn-in. 

 

Maximum Likelihood and Maximum Parsimony analyses were also carried out in MEGA 

X (De Moya et al. 2017) to explore the sensitivity of the data to different evolutionary 

models. 1000 replicate bootstrap tests were used to determine the most parsimonious 

tree (Felsenstein 1985).   

 
Dendrograms and cladograms were produced in Geneious 11.1.4 (Kearse et al. 2012) 

and MEGA X (Kumar et al. 2018), then exported as Newick files to allow visualisation 

through FigTree 1.4.4 (Rambaut and Drummond 2012) and PDF Expert 2.4.2 (Readdle 

2019). 

 

(vii) Intraspecific genealogies 
The relationship between haplotypes was also considered through median joining 

networks, recognising that tokogenetic relationships are not hierarchical, and that events 

affecting populations, such as hybridization, recombination, or gene duplication and loss 

may not be best considered in a dendrogram (Posada and Buckley 2004, Huson and 

Bryant 2005, Huson and Scornavacca 2011).  Networks were visualised using PopArt 

(Leigh and Bryant 2015).  

 

(viii) Genetic distances 
The genetic distances between sampling sites were estimated through the fixation index 

(FST), using pairwise genetic differentiation in Arlequin 3.5 (Excoffier and Lischer 2010). 

Genetic variation of the concatenated genes between individual sites was mapped in 

QGIS 3.4 (QGIS Development Team 2018) using a base map from Bing Aerial, with pie 

charts drawn in R (R Core Team 2018) using the package ggplot2 (Wickham 2017). 
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5.3 Results 
 
5.3.1 COI 
 
The COI gene, with three segregation sites, did not show enough variation to allow clear 

separation of haplotypes (Figure 5.2). Bayesian analysis placed all four haplotypes as a 

single cluster, and the bootstrap values separating the haplotypes in the Maximum 

Likelihood approach were not high enough to support differentiation. There were no 

parsimony-informative sites to allow a Maximum Parsimony approach. 

 
Figure 5.2 COI  cladogram, based on (i) Bayesian and (ii) Maximum Likelihood approaches using the GTR+Γ 

model. The numbers in brackets represent, first, the Bayesian posterior probabilities for the node to the right 
of the brackets and second, the percentage of trees in which the associated taxa clustered together in a 

1000 replicate bootstrap test.  For Maximum Likelihood, the tree with the highest log likelihood, -979.89, was 

selected. The low bootstrap values suggest no significant distinction between the four haplotypes, which the 
Bayesian posterior had not differentiated between.  It was not possible to calculate a Maximum Parsimony 

tree as there were no parsimony-informative sites.  There were 644 positions in the final dataset. 

Haplotype 1 contained the greatest number of specimens (n = 27), from both Latin 

America and the Falklands, with all Falkland Island sites represented. It also had a wide 

geographic spread in Latin America, from Santiago in northern Chile to Puerto Williams 

in the south, a distance of around 2,400 km.  Haplotype 2 contained five samples from 

Bleaker and the Frying Pan; together with Haplotype 3, a single specimen from Sea Lion, 

they formed a distinct East Falkland, isolated site grouping. The only separate Latin 

American specimen was Haplotype 4, a single sample from Torres del Paine, which the 

Maximum Likelihood approach paired with Sea Lion. 

 
 
 
 
 

Haplotype 3 (n = 1) 
Falklands, Sea Lion (n = 1) 

Haplotype 4 (n = 1) 
Chile, Torres del Paine (n = 1) 

Haplotype 1 (n = 27) 
Falklands, Bleaker (n = 7) 
Falklands, Frying Pan (n = 4)  
Falklands, Roy Cove (n = 8) 
Falklands, Sea Lion (n = 3) 
Chile, Punta Arenas (n = 1) 
Chile, Puerto Williams (n = 1)  
Chile, Santiago (n = 1) 
Chile, CH-8A-3 (n = 1) 
Chile, CH-10B-3 (n = 1) 
 
Haplotype 2 (n = 5) 
Falklands, Bleaker (n = 4) 
Falklands, Frying Pan (n = 1) 

Outgroup: Yramea inca 
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A median joining network for COI  showed single mutations between Haplotyope 1 and 

Haplotypes 2, 3 and 4 respectively (Figure 5.3).   

 
● Bleaker    ● Frying Pan       ● Roy Cove     ● Sea Lion    ● Chile 

Figure 5.3  Median joining network of COI  Haplotypes 1 - 4. Haplotype disc colours represent sites.  Disc 

size reflects the number of samples, which are also noted in brackets under the corresponding Haplotype 
label. Hatch-marks on connecting lines represent the number of nucleotide substitutions.  

Pairwise FST analysis confirmed there were no significant differences between the 

sampling sites for COI  (Table 5.4). 

 
Table 5.4  Pairwise FST obtained for COI sequences. 

 Bleaker Frying Pan Roy Cove Sea Lion Chile  
Bleaker * 0.630 0.135 0.108 0.171 

p-value for 

pairwise 
FST 

Frying Pan 0.000 * 0.405 0.676 0.703 
Roy Cove 0.250 0.101 * 0.495 0.324 
Sea Lion 0.176 0.006 0.186 * 0.703 
Chile 0.185 0.003 0.051 0.019 * 
        pairwise FST  

The section below the diagonal shows pairwise FST values; the section above shows the p-value for each 
pairwise FST comparison.  Negative scores are shown as 0.000. There were no significant (p < 0.05) pairwise 

comparisons. 

5.3.2 EF-1α 
 
EF-1α, with seven segregation sites, showed a dominant haplotype, Haplotype 1 (n = 

26), with a comparable spread to that of Haplotype 1 for COI (Figure 5.4).  EF-1α 
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Haplotypes 2 and 3, like Haplotypes 2 and 3 in COI, came from isolated East Falkland 

sites. 

 

 

 
 
 
Figure 5.4 EF-1α cladogram, based on (i) Bayesian, (ii) Maximum Likelihood and (iii) Maximum Parsimony 
approaches using the GTR+Γ model. The first number in brackets shows the Bayesian posterior probability. 

The second and third numbers show the percentage of trees in which the associated haplotypes clustered, 

following a 1000 replicate bootstrap test, in the Maximum Likelihood and Maximum Parsimony methods 
respectively. The tree with the highest log likelihood, -979.89, was selected for Maximum Likelihood; the first 

of the three most parsimonious trees was selected for Maximum Parsimony. There was no Bayesian support 

for the separation of Haplotypes 1 and 3.   The three methods did not agree on the relative placements of 
Haplotypes 4, 5 and 6, although all split them from Haplotypes 1 - 3. There were 607 positions in the final 

data set. 

The two Chilean samples taken from GenBank, with origin only recorded at the country 

level, showed clear separation (a Bayesian posterior of 0.89) from Haplotypes 1-3, 

whereas they were placed in the largest haplotype in COI. Each was distinct from the 

EF1a Maximum Parsimony 
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other, as well as from the Torres del Paine sample, although each of the models placed 

them at different positions in the dendrogram. 

 

A median joining network for EF-1α (Figure 5.5) showed single nucleotide substitutions 

between Haplotyope 1 and Haplotypes 2 and 6 (with dependent lineages for Haplotypes 

4 and 5) respectively, and two substitutions between Haplotype 1 and Haplotype 3.  

 
 

● Bleaker    ● Frying Pan       ● Roy Cove     ● Sea Lion    ● Chile 

 
Figure 5.5 Median joining network of EF-1α  Haplotypes 1 - 6. Haplotype disc colours represent sites.  Disc 
size reflects the number of samples, which are also noted in brackets under the corresponding Haplotype 

label. Hatch-marks on connecting lines represent the number of nucleotide substitutions.  The black disc 

represents an inferred missing haplotype. 

 
Pairwise FST analysis confirmed that there were no significant differences between the the sampling sites 
for EF-1α  ( 

Table 5.5) 
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Table 5.5  Pairwise FST obtained for EF-1α sequences 

 Bleaker Frying Pan Roy Cove Sea Lion Chile  
Bleaker * 0.446 0.999 0.459 0.090 

p-value for 
pairwise 

FST 

Frying Pan 0.073 * 0.437 0.718 0.110 
Roy Cove 0.000 0.073 * 0.464 0.073 
Sea Lion 0.028 0.000 0.028 * 0.186 
Chile 0.233 0.147 0.233 0.160 * 
        pairwise FST  

The section below the diagonal shows pairwise FST values; the section above shows the p-value for each 

pairwise FST comparison.  Negative scores are shown as 0.000. There were no significant (p < 0.05) pairwise 

comparisons. 

 
5.3.3 wingless 
 
wingless, with four segregation sites, also showed a dominant haplotype, Haplotype 1 

(n = 25), which, as with COI and EF-1α, comprised Chilean and Falklands samples 

(Figure 5.6). Haplotypes 1 and 4 were paired, separately from Haplotypes 2 and 3, which 

each of the models placed differently in the tree. 

 
Figure 5.6  wingless cladogram, based on (i) Bayesian, (ii) Maximum Likelihood and (iii) Maximum 
Parsimony approaches using the GTR+Γ model. The first number in brackets shows the Bayesian posterior 

probability. The second and third numbers show the percentage of trees in which the associated haplotypes 

clustered, following a 1000 replicate bootstrap test, in the Maximum Likelihood and Maximum Parsimony 
methods respectively. The tree with the highest log likelihood, -546.5, was selected for Maximum Likelihood; 

the first of the three most parsimonious trees was selected for Maximum Parsimony.  The separation of 

Haplotypes 1 and 4 from Haplotypes 2 and 3 was supported by all three methods.  They did not, however, 
agree on the relative placements of Haplotypes 2 and 3.  The division shown was supported by the Bayesian 

approach; Maximum Likelihood had a node separating Haplotypes 1 and 4 from Haplotype 2, though with a 

bootstrap support of only 18%, while Maximum Parsimony had a node separating Haplotypes 1 and 4 from 

Haplotype 3, with a bootstrap support of 99%. There were 357 positions in the final dataset. 
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A median joining network for wingless (Figure 5.7) showed a single nucleotide 

substitution between Haplotyope 1 and Haplotypes 4, and two substitutions between 

Haplotyope 1 and Haplotype 2. Haplotype 3 was linked through missing inferred 

haplotypes to Haplotypes 1, 2 and 4.  

 
● Bleaker    ● Frying Pan       ● Roy Cove     ● Sea Lion    ● Chile 

Figure 5.7  Median joining network of wingless  Haplotypes 1 - 4. Haplotype disc colours represent sites.  

Disc size reflects the number of samples, which are also noted in brackets under the corresponding 

Haplotype label. Hatch-marks on connecting lines represent the number of nucleotide substitutions.  The 
black discs represent an inferred missing haplotype. 

Pairwise FST analysis showed significant differences for wingless between the Chilean 

populations and those of Roy Cove and Bleaker respectively (Table 5.6), although this 

is likely to be distorted by inadequate sampling size (numbers are shown in  the 

cladogram at Figure 5.6). 
 

Table 5.6  Pairwise FST obtained for wingless sequences 

 Bleaker Frying Pan Roy Cove Sea Lion Chile  
Bleaker * 0.999 0.999 0.999 0.048 

p-value for 

pairwise 
FST 

Frying Pan 0.000 * 0.999 0.999 0.165 
Roy Cove 0.000 0.000 * 0.999 0.043 
Sea Lion 0.000 0.000 0.000 * 0.165 
Chile 0.247 0.111 0.247 0.166 * 
        pairwise FST  

The section below the diagonal shows pairwise FST values; the section above shows the p-value for each 

pairwise FST comparison.  Negative scores are shown as 0.000. Numbers in bold show significant (p < 0.05) 
pairwise comparisons. 
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5.3.4 Concatenation 
 

Concatenation of all three genes confirmed the clustering of those haplotypes which 

included samples from the Falklands, with a clear separation from the Torres del Paine 

and two GenBank specimens (Figure 5.9). Haplotype 1, containing the largest number 

of specimens (n = 13) included samples from Punta Arenas and Puerto Williams with the 

Falklands specimens. The separation of Haplotypes 1 - 4 in Figure 5.9 derived from the 

Maximum Parsimony tree, although the Maximum Likelihood tree also separated them 

in a different order, with Haplotypes 3 and 4 paired (24% bootstrap value), then 2, 3 and 

4 clustered (21% bootstrap value), before the clustering of 1 - 4. 

 

 
Figure 5.8 distribution of Y.cytheris haplotypes for concatenated COI, EF-1α and wingless genes. H1 to H7 

correspond to Haplotypes 1 - 7 in Figure 5.9 and Figure 5.10. The discs show the haplotypes of samples 
from each site.  Numbers of samples for each haplotype are shown in the appropriate colour in each disc. 

The map shows the prevalence of Haplotype 1 in the Punta Arenas, Puerto Williams and Roy Cove triangle, 

and the increased haplotype variation away from it. 
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Table 1.4  Pairwise FST obtained for concatenated sequences 

 
 Bleaker Frying Pan Roy Cove Sea Lion Chile  
Bleaker * 0.999 0.437 0.557 0.134 

p-value for 
pairwise 
FST 

Frying Pan 0.000 * 0.138 0.791 0.086 
Roy Cove 0.062 0.062 * 0.239 0.168 
Sea Lion 0.111 0.000 0.474 * 0.466 
Chile 0.127 0.120 0.187 0.000 * 
       
 pairwise FST  

Negative scores are shown as 0.000. There were no significant (p < 0.05) pairwise comparisons 
 
 
 
 
 
 
 

Chile: unknown sites 

    Haplotypes of concatenated genes 
● H1 ● H2   ● H3 ● H4 ● H5  ● H6  ● H7  
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Figure 5.9 Concatenated COI, EF-1α and wingless  cladogram based on (i) Bayesian, (ii) Maximum 

Likelihood and (iii) Maximum Parsimony approaches using the GTR+Γ model. The first number in brackets 
shows the Bayesian posterior probability. The second and third numbers show the percentage of trees in 

which the associated haplotypes clustered, following a 1000 replicate bootstrap test, in the Maximum 

Likelihood and Maximum Parsimony methods respectively. The tree with the highest log likelihood, -
2520.88, was selected for Maximum Likelihood; the first of the 12 most parsimonious trees was selected for 

Maximum Parsimony. There was no Bayesian support for the separation of Haplotypes 1, 3 and 4, although 

there was a posterior probability of 1.0 for the separation of Haplotypes 1 - 4 from Haplotypes 5 - 7.   The 
three methods did not agree on the relative placements of Haplotypes 5 - 7, although all split them from 

Haplotypes 1 - 4. There were 1596 positions in the final dataset. 

 
 
A median joining network for the concatenated genes (Figure 5.10) showed Haplotypes 

5 - 7, each represented by a single Chilean sample, as a distinct group, with an inferred 

common haplotype two mutations from Haplotype 1. The East Falkland grouping of 
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Bleaker, Sea Lion and Frying Pan each showed at least one other haplotype alongside 

Haplotype 1, with the Frying Pan most diverse at three haplotypes overall. 

 

 
 

● Bleaker    ● Frying Pan       ● Roy Cove     ● Sea Lion    ● Chile 

 
Figure 5.10  Median joining network of Haplotypes 1 - 7 derived from concatenation of the COI, EF-1α and 
wingless  genes. Haplotype disc colours represent sites.  Disc size reflects the number of samples, which 

are also noted in brackets under the corresponding Haplotype label. Hatch-marks on connecting lines 

represent the number of nucleotide substitutions.  The black disc represents an inferred missing haplotype. 

 
Pairwise FST analysis (Table 5.7) confirmed that there were no significant differences 

between the the sampling sites for the concatenation of the three genes. 

 
Table 5.7  Pairwise FST obtained for concatenated COI, EF-1α and wingless sequences 

 Bleaker Frying Pan Roy Cove Sea Lion Chile  
Bleaker * 0.999 0.437 0.557 0.134  

p-value for 
pairwise FST 

Frying Pan 0.000 * 0.138 0.791 0.086 
Roy Cove 0.062 0.062 * 0.239 0.168 
Sea Lion 0.111 0.000 0.474 * 0.466 
Chile 0.127 0.120 0.187 0.000 * 
        pairwise FST  

The section below the diagonal shows pairwise FST values; the section above shows the p-value for each 
pairwise FST comparison.  Negative scores are shown as 0.000. There were no significant (p < 0.05) pairwise 

comparisons. 
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5.4 Discussion 
 
5.4.1 Genetic relationship between Falklands and Latin American populations 
 
 
(i) Findings 
 
The Falklands and Latin American populations were too close genetically to enable a 

clear distinction to be made between the two, with the most populated haplotype in each 

gene comprising specimens from both populations. 

 

(ii) Discussion 
 

The absence of clear genetic differentiation between the two populations suggested that 

the split of Y. cytheris into two subspecies was more an expression of geography than 

of biology (Mayr 1982, Phillimore and Owens 2006). There was, however, some 

evidence for divergence, in that, other than in the most common haplotype (85% of 

samples) none of the other haplotypes contained specimens from more than one 

population.  The median joining networks all showed uniquely Latin American haplotypes 

as directly connected either to the most common haplotype for each gene, or to each 

other (in the case of wingless and the three concatenated genes, through inferred 

missing haplotypes). In no case was a uniquely Latin American haplotype connected 

directly to a uniquely Falkland Islands one. 

 

The most common haplotype for each gene contained the two single specimens from 

Punta Arenas and Puerto Williams, the two nearest sites to the Falkland Islands. They 

are also upwind in the prevailing strong, westerly and southwesterly air flow (Figure 5.1), 

suggesting a climatic element to dispersal (Gatehouse 1997, Saastamoinen et al. 2018).  

Of the other Chilean specimens, that from Torres del Paine specimen was in a separate 

haplotype for each gene.  The two unattributed Chilean specimens were also in their 

own respective haplotypes, other than for COI, where they were part of the largest 

haplotype.  Perhaps less expectedly, given its geographic situation (1500 km to the north 

west), Santiago's two specimens were also in the most common haplotypes, one in COI, 

the other in EF-1α and wingless.  

 

This is an area that requires further investigation. The Latin American analysis was 

based on single samples from a limited number of sites, and GenBank samples, with 
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one exception, were only attributed at the country level. A wider range of Latin American 

samples should be collected and investigated, until which time it is necessary to be 

cautious about over-extrapolation. 

 
 
 
 
5.4.2 Genetics of Falkland Island populations 
 
 
(i) Findings 
The Falkland Island specimens showed a variety of haplotypes: three in both COI and 

EF-1α and four in the concatenated genes. Only wingless showed a single haplotype in 

the Falklands.  

 
(ii) Discussion 
 
Phillimore and Owens (2006) observed that the level of genetic distinctness among 

subspecies was higher on islands than on continents. Mayr (1963) had noted that 

populations on islands encountered a physical impediment to gene flow to and from other 

populations, and therefore could diverge in isolation. Phillimore and Owen concluded 

that, as island populations tended to be smaller than those on continents, they might 

show more rapid fixation of genes.  

 
There was some evidence of genetic variation between sites within the Falklands 

populations, which showed three haplotypes not found in Latin American samples. At 

the level of the three genes investigated, however, it was not possible to infer the nature 

of any relationships between Falkland Island sites. wingless, with its rapid rate of 

substitution in nymphalids (Cho et al. 1995, Brower and DeSalle 1998, Campbell et al. 

2000), was particularly uninformative, with all Falklands samples belonging to a single 

haplotype.   

 

 

The Roy Cove specimens were, in every case, members of the most common haplotype 

(Haplotype 1 in each gene, and in the concatenation).  Other sites showed more than 

one haplotype in a number of cases but other than the most populated for each gene, 

only one haplotype contained samples from more than one site: Haplotype 2 in COI, 

comprising four samples from Bleaker and one from the Frying Pan.  While four out of 

the 11 Bleaker specimens were from this haplotype, there was inadequate evidence to 
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suggest an emerging Bleaker genotype. Sea Lion, also a small, isolated population, 

showed a separate haplotype in each of the three genes, but from a small sample size.  

 

The Frying Pan population, with one specimen sharing a separate haplotype with 

Bleaker in COI and wingless, might have been augmented by Bleaker specimens blown 

in by the prevailing wind. If that was the case, a similar flow from Sea Lion to Bleaker 

might be expected, although no supporting evidence for this was found. 

 

Overall, however, the picture was that of a prevalent haplotype, accounting for 85% of 

all samples, found in all the Falklands study sites. With the single exception of a Sea 

Lion haplotype in EF-1α, which differed by two substitutions, all other Falkland Island 

haplotypes only differed from the most common haplotype by a single substitution. 

 

There was not enough evidence from the limited data to assess the genetic health of the 

Falklands population. The populations of Y. cytheris in the Falklands appeared small and 

scattered, and the butterfly itself was not mobile (Chapter 3). There is therefore a 

permanent risk of stochastic events causing local extinctions, whatever the genetic 

health of the butterfly.  

 
5.4.3 Conservation implications 
 
The existence of a widespread haplotype in the concatenated genes suggests that 

introductions or captive breeding, at least as far as genetics are concerned, can be 

considered. The most populated haplotype is found in all the Falkland sites, as well as 

in the Magallanes region of Chile, so there is a range of options in identifying potential 

donor populations.  If the Falklands population can be considered an insular part of the 

Latin American population, conservation measures in cooperation with Chile and 

Argentina, such as augmentation and reintroduction, become feasible.   

 

Anything other than tentative conclusions are hampered by the small sample sizes. 

Further work should begin with more non-lethal sampling, particularly of Latin American 

specimens, to allow a clearer picture of haplotype distribution, including the relationship 

of the Santiago population with that of the Magallanes region. This should be augmented 

by sampling museum specimens (Harper et al. 2006, Saarinen and Daniels 2012) to try 

to get a historical perspective, which would enable an understanding of the migratory 

processes.  
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While further work on COI, EF-1α and wingless genes might help elucidate the 

relationship between populations, to get a clearer picture of population relationships and 

history at a site level microsatellite analysis coupled with next generation sequencing will 

be necessary. There are challenges to genetic work on Lepidoptera. The difficulty in 

isolating microsatellites, and their low inter- and intra-specific transferability have been 

pointed out by e.g.  Meglecz et al. (2004); Zhang (2004) and Vandewoestijne et al. 

(2012). Thus, although primers from related species (Lamas and Grados 2004, 

Simonsen 2006) exist, such as Boloria acrocnema (Monroe et al. 2016), Boloria 

aquilonaris (Vandewoestijne et al. 2012) and Boloria eunomia (Legrand et al. 2014), it is 

likely that many will resist amplification, and only a small proportion of those that do will 

show polymorphic sites. 

  

Next generation sequencing offers a more promising approach through, for example, 

restriction site associated DNA genotyping, and analysis across the whole genome of 

single-nucleotide polymorphism markers (Saarinen and Austin 2010, Ekblom and 

Galindo 2011, Turlure et al. 2014, Richards and Murali 2015).  When supported by 

comparable developments in statistical analysis, it should make questions such as the 

origins of and relationships between individual populations, and their viability in terms of 

inbreeding and loss of genetic diversity, more tractable (Selkoe and Toonen 2006;  

Frankham 2010). 
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Chapter 6: Wings: function, shape and size 
 

6.1 Introduction 
 

Vallentin, in Boyson (1924), cited in the epigraph to this thesis, wondered how such an 

apparently delicate insect as Yramea cytheris could survive in such a windswept 

environment as the Falkland Islands This chapter, and the following chapter on claws, 

consider the extent to which shape is a factor.  

 

This chapter considers the extent to which wing size and shape are driven by 

biomechanical responses to flight patterns. Differences between sexes and populations 

are examined through responses to behaviours (breeding, nectaring, dispersal, 

signalling and predation), and to the environment (elevation, latitude, temperature and 

wind speed). 

 

Species, and populations, may reflect differing selection pressures (Shreeve et al. 2009).  

Le Roy et al (2019), in a study of the adaptive evolution of butterfly shape, pointed out 

that, even when correlations between wing shape and ecological factors could be 

established, the underlying selective processes were often unclear. Breuker et al. 

(2007), concluded that, to understand fully how factors such as dispersal were 

associated with wing shape, it would be necessary to identify all the different selection 

pressures in operation. An examination of the various factors shows how similar 

outcomes might be arrived at through a variety of routes. So shorter wings, with their 

weight nearer the body, might, for example, be a response to the need for 

manoeuvrability when faced with high levels of predation; the threat of being blown away 

by high winds in an island setting; or reduced larval development times at higher 

latitudes.  

 

6.1.1 Relationship between wing shape and behavioural patterns 
 
(i) Breeding 

 
Sexual size dimorphism (SSD) 
 
Teder and Tammaru (2005) found that, in over 80% of the insects they studied, females 

were bigger than males. This trait was confirmed in temperate zone butterfly species by 

Wiklund and Forsberg (1991) and Nève and Singer (2008). Two origins, not mutually 

exclusive, have been identified for sexual size dimorphism (SSD). Fecundity selection 



 
 
 

 223 

theory (Pincheira-Donoso and Hunt 2015) predicts a larger body for egg-carrying 

females. Protandry, in the sense of the eclosion of males before females, suggests 

shorter male larval developmental and pupal times resulting in smaller bodies (Fischer 

and Fiedler 2001, Nève and Singer 2008). As wing size in butterflies has been shown to 

be closely correlated with body size (Dudley 1990, Kingsolver 1999, Sullivan and Miller 

2007) larger bodies would be predicted to have larger wings within a species. 

 

Mating behaviour 
 
Males generally have one of two approaches in seeking a mate: perching or patrolling 

(Shreeve 1987, Berwaerts et al. 2002, Dudley 2002). A perching male typically waits on 

vegetation, taking off to inspect either a potential mate, or to fight off another male 

moving into its territory (Wickman 1992). This requires acceleration, manoeuvrability and 

speed, associated with a low first moment of area (r̂1 ) (Dennis and Shreeve 1988) and 

low wing aspect ratios (AR) (Jugovic et al. 2018). A patrolling male requires a more 

sustained flight at a lower speed. This might predict a high AR, but little evidence for this 

has been found (Dudley 1990, Wickman 1992, Shreeve et al. 2009). 

 

Oviposition 
 
Female butterflies in search of oviposition sites use a number of flight modes, 

characterised by slow, deliberate flight and hovering (Dudley 1990, 2002). This is a 

similar pattern to patrolling in males, and is associated with similar morphological traits, 

including a high value of the radius of r̂1.  Wings with high r̂1 values have their area 

distributed more distally than those with low r̂1 values. Wang et al. (2014) showed that 

an increased area of wing towards the wing tip led to more effective hovering. 

 
(ii) Nectaring and dispersal 
 
The relationship between wing shape and range is unclear. Sekar (2012), in a meta-

analysis of traits affecting dispersal, concluded that wingspan was directly correlated 

with dispersal ability, although Dennis and Hardy (2018) observed that to understand 

dispersal, other metrics, such as aspect ratio and wing loading needed to be taken into 

account. Prolonged fast flight, under experimental conditions, was linked to high AR and 

high r̂1 in the Malaysian butterfly Troides radamantus (Betts and Wootton 1988). Li et al. 

(2016) found that migratory monarchs Danaus plexippus had longer wings than 

non-migratory, although with no significant difference in AR. Breuker et al. (2007) found 

that variation in forewing shape in Melitaea cinxia was associated with dispersal in 
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females, which had a more rounded forewing, but not males; and that the sexes did not 

differ in dispersal rate despite sexual size and shape dimorphism. Against that, 

hoewever, Hill et al. (1999) found that colonising (as opposed to resident) specimens of 

Pararge aegeria tended towards wings with low AR, which might otherwise be linked 

with acceleration and manoeuvrabilty. The situation was further complicated by an 

underlying paradox identified by Singer and Hanski (2004): the fritillary Euphydryas 

editha had the physical capacity to fly long distances, but most individuals of most 

species failed to do so. A study by Viljur et al. (2019) of largely immobile butterflies on 

open land in Estonia recast the point: virtually all species in their landscapes 

represented, in their phrase, 'dispersal phenotypes'. 

 

Turning from the characteristics of mobile butterflies to those of sedentary ones, it  might 

be expected, following Darwin (1859) and MacArthur and Wilson (2001), that adaptation 

to an insular environment would lead to a loss of dispersal power, that is to say reduction 

in wing size (brachyptery), and possible flightlessness (aptery) (Heppner 1991). The 

evidence is mixed. Kotze (2008) found a significantly higher proportion of brachypterous 

carabid beetles on Baltic islands compared with the mainland; Roff (1990), however, 

found no significantly increased incidence of flightlessness in island populations, 

although observed an increase with elevation and latitude.  In this context it should be 

noted that while flightlessness and brachyptery is known in moths, including in the tussac 

moth Borkhausenia in the Falklands (Bradley 1965, Jones and Lewington 2004), there 

appears to be only one genus of butterflies to exhibit it, in the female Redonda, at 3000m 

in the Venezuelan Andes (Viloria et al. 2003, 2015), in cold and windy conditions.  There 

is some evidence of brachyptery at a local level in the populations of Plebejus argus 

caernensis and Hipparchia semele thyone on Great Orme's Head in North Wales, which, 

although now a headland, had long been an island (Dennis and Hardy 2018, Middlebrook 

et al. 2019). 

 

 

(iii) Signalling and mimicry 
 
Distinctive wing patterns can be driven by Batesian mimicry (Jones et al. 2013); Müllerian 

mimicry or aposematic colouration (Srygley 2007); or sexual signalling (Oliver et al. 

2009). For maximum visibility, a large colour patch at the end of a wing could select for 

a broad wing shape, with a greater r̂1 (Outomuro et al. 2013) than would be predicted for 

a more muted, or camouflaged, wing. Syrgley (2007) further suggested that wing motion 
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might also be a feature subject to mimicry, which would potentially have an impact on 

wing shape. 

 
(iv) Avoiding predation 
 
The ability to escape would be the last resort in the failure of a wing pattern either to act 

as camouflage or as a deterrent.  Evidence from other taxa suggests that, for those 

unable to outpace a potential predator, high turning acceleration, linked with high r̂1, 

which can enable zigzagging, can be effective. Howland (1974) provided a model, 

explored further, in relation to moths evading bats, by Corcoran and Conner (2016).  

Experimental removal of butterfly hind wings resulted in a sharp reduction in linear and 

turning acceleration, suggesting that a high ratio of hind wing area to total wing area 

gave an advantage in evading predation (Jantzen and Eisner 2008). It also showed that 

the butterfly could fly without hind wings, but not without forewings. 

 
6.1.2 Environmental responses 
 

(i) Elevation 
 
Sullivan and Miller (2007), investigating the relationship between body size and site 

elevation of macromoths in the Americas, observed that comparable studies of 

butterflies showed inconsistency, with size decreasing, increasing or switching erratically 

as elevation increased.  They concluded that intraspecific variability in body size showed 

numerous ramifications, ambiguities and inconsistencies in study methods. Hawkins and 

DeVries (1996), investigating Costa Rican butterflies, found that Pieridae wings were 

smaller as elevation increased.  Papilionidae, Nymphalidae and Riodinidae, however, 

showed some evidence, albeit irregular and not always statistically significant, of larger 

wings at greater elevations. Alves et al. (2016) found the Latin American fly Polietina 

orbitalis had broader wings below 900m, and narrower above. They suggested that the 

narrower wing could be an advantage at elevation because reduced air density could 

interfere with aerodynamic forces.  

 
(ii) Latitude 
Bergmann's rule (Bergmann 1847), that larger species within a genus are found in colder 

locations, has been viewed as having intra- as well as inter-specific applicability 

(Blackburn et al. 1999). Its applicability of the rule to ectotherms, however, is unclear 

(Partridge and Coyne 1997), and an inverse Bergmann's rule has also been observed 

(Ramírez-Delgado et al. 2016), with the suggestion that shorter season length, leaving 
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reduced time for larval development, might lead to smaller adults (Mousseau 1997). The 

findings of Sanzana et al. (2013), that females of the Nymphalid Auca coctei in Chile 

were smaller at higher latitudes, gives support to an inverse Bergmann's rule applying 

to butterflies. 

 
(iii) Temperature 
Hassall (2015), investigating AR in damsel flies, found that higher wing AR was 

associated with colder regions as they generated more lift. The pattern is less clear with 

butterflies (Betts and Wootton, 1988), where lower AR has also been found at lower 

temperatures (Vandewoestijne and Van Dyck, 2011).  

 
(iv) Wind speed 
The impact of wind on butterfly wings has principally been studied in relation to flight 

performance (Srygley and Thomas 2002, Park et al. 2010, Ortega Ancel et al. 2017) and 

is also related the propensity to disperse (Singer and Hanski 2004, DeVries et al. 2010, 

Rossato et al. 2018). High winds on islands are a potential threat to populations 

(MacArthur and Wilson 2001), and, as noted in 6.1.1(ii), are likely to be an element in 

diminished wing size in island populations (Dennis and Shreeve 1989, Dennis and Hardy 

2018).  

 
6.1.3 Application to Y. cytheris 
 
Y. cytheris's wing shape and size were explored for sexual dimorphism and differences 

between the Latin American and Falkland Island populations, with male wings predicted 

to be smaller than female (6.1.1 (i)), and Falkland butterflies, as island populations, 

expected to be smaller than Latin American (6.1.1 (ii)). Differences between Falkland 

Island populations were investigated to determine whether butterflies from windier sites 

had smaller wings (6.1.1 (ii)), or other attributes, such as a lower first moment of area 

(r̂1) or aspect ratio (AR) (6.1.4 (i)), which might benefit tenacity rather than dispersal 

ability. Differences in wings of Latin American populations were explored to assess any 

effects of latitude and elevation, which had produced varying responses in other taxa 

(6.1.2 (i) and (ii)). 

 

6.1.4 Analytical approach 
 
The basis of analysis was the planform, the two-dimensional projection of wing area 

(Dudley 1990). While further understanding might have been gained through body 

measurements, and particularly of thoracic weight (Chai and Srygley 1990, Dudley 1990, 
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Shreeve et al. 2009), forewing length has been found to be an adequate proxy (Nylin 

and Svard 1991, Sullivan and Miller 2007, Sekar 2012), with the caveat that there is a 

slight allometric trend, with comparatively lighter bodies at the largest body sizes and 

relatively heavier ones at the shortest body sizes (García-Barros 2015)  More widely, 

Dudley (1990), measuring 15 species of Panamanian butterfly, found that as body mass 

increased, so, isometrically, did wing span, wing length, body length, wing area, thoracic 

mass and wing mass, all significant at p <0.001.  

 

Two approaches were taken to analysis of the planform: traditional and geometric 

morphometrics. Traditional morphometrics, the analysis of measurements taken on a 

continuous scale, relies on the establishment of fixed points, or landmarks, as a basis 

for comparative measurement (Marcus 1990). Geometric morphometrics (Bookstein 

1982), also landmark-based, is the analysis of shape, defined through the placement of 

landmarks, from which the element of size has been removed.   

 

(i) Traditional morphometrics 
 
While traditional morphometrics relies on the establishment of fixed points, the process 

is complicated by a lack of either clarity or agreement on what those points should be, 

and how other metrics should be derived from them. This can make comparisons of 

studies by different investigators difficult.  

 

The measurements which underpin analyses in this chapter are wing length, width, base, 

area and angle. These are defined in relation to wing venation and described in the 

Methods section (6.2.5).  Two metrics, aspect ratio (AR) and the first moment of area (r̂1) 

need more detailed explanation. 

 

Aspect ratio AR 

 

AR has historically been used in aeronautics as the primary indicator of wing efficiency 

(Raymer 1989), and defined as R2 / S , where R is the wing span and S the wing area 

(Kermode et al. 2006, Breuker et al. 2007, Hassall 2015).  

 

A variety of other formulas have been used.  Le Roy et al. (2019) define AR as the ratio 

of wing span to mean wing width or chord, which would only produce the same result as 

R2 / S if the wing was square. Others combine measurements from both forewings, 

following a more conventional definition of wing span: 4R2/2S (Dudley 2002, Hamm et 
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al. 2009, Cespedes et al. 2015); 4R2/S (Betts and Wootton 1988, Lancaster and Downes 

2017).  These formulas do not include hind wings. Dudley (1990) suggested they should 

be incorporated  in the formula 4R2/S,  where S was the total area of all four wings. The 

difficulty with this is the use of combined area of forewing and overlapped hind wing.  At 

a practical level, as butterflies, unlike moths, have no frenulum connecting the wings, it 

is too dependent on the way in which wings are viewed, or museum specimens mounted.  

In theoretical terms, it only makes sense if both wings have essentially a dipteral function 

in flight, which, although the wings move in phase through amplexiform coupling (Dudley 

2002) is not the case. 

 

In this chapter forewings and hind wings are analysed singly and separately, with the AR 

of each calculated as R2 / S. 

 

First moment of area r̂1, 

 

AR has shortcomings in the description of insect wings, as it does not address the 

distribution of wing area along the wing's span (Betts and Wootton, 1988; Wang et al., 

2014). This is a potentially  important factor in behavioural flight strategies (6.1.1). Thus 

two imaginary triangular wings might have identical planforms, and therefore AR. As, 

however, they are attached by different points, they function differently, with the main 

area of the wing closer to the body in one, and closer to the tip in another (Figure 6.1) 

 

 
Figure 6.1  Aspect ratio (AR) compared with first moment of area ( r̂ 1) of a wing. Triangle ABC represents 

two possible wing shapes, one attached to the thorax at A, the other at B.  Point D represents  the centroid 

and AD the wing length, R,  of both shapes. The area of the triangle ABC is S.  AR, R2 / S, is the same for 
both wings. r̂1 , of each wing is different.  r̂ 1 is calculated as the distance from the attachment point to the 

centroid, divided by R.  Thus, for a wing attached at A, r̂ 1 is AD/R, and, for a wing attached at B, BD/R. A 

wing with its centre of area closer to the body therefore has an r̂ 1 smaller than a wing with its centre of area 
further away. 

A B

C

• D

R
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r̂1 is calculated as the distance between the proximal end of the wing and the spanwise 

position of the centroid (Ellington 1984, Betts and Wootton 1988, Dudley 1990, Wang et 

al. 2014). It is a measure of the concentration of wing area away from the thorax: thus 

two wings of identical shape and size but attached to the thorax by different ends of the 

main wing length would have the same AR, but a different r̂1. Thus, depending on the 

point of attachment, in Figure 6.1 it is either AD/R or BD/R.  Le Roy et al. (2019) use the 

second moment of area, r̂2, following Ellington (1984), for the same purpose. In this 

chapter r̂1  is used. 
 
Relationship between forewings and hind wings 
 
While considering forewings and hind wings as having a dipteral function is conceptually 

challenging, Dudley's (2002) characterisation of the wings moving in phase through 

amplexiform coupling is a reminder that forewings and hind wings neither operate, nor 

should therefore be analysed, in isolation. Each wing has a different function, therefore 

it is possible that the impact of behaviour and the environment may lead to differences 

in the size relationship between the two.  

 

(ii) Geometric morphometrics   
 
Geometric morphometrics, through landmarks calculated as Cartesian coordinates, 

enables the analysis of shape at a finer scale than traditional morphometrics, providing 

a quantitative method for making comparisons (Zelditch et al. 2012). It has a particular 

value in visualising differences between samples through principal component analysis 

and the application of Procrustes distances (the square root of squared distances 

between the corresponding landmarks of two shapes), and between groupings through 

canonical variate analysis and the application of Mahalanobis distances (the squared 

distance between the means of pre-allocated groups divided by pooled 

variance/covariance matrices) (Klingenberg and McIntyre 1998, Klingenberg and 

Monteiro 2005). 

 
6.1.5 Research questions  
 

RQ1: to what extent do Y. cytheris wings vary with sex, land mass or site? 

RQ2: to what extent can either behavioural or environmental factors explain any 

observed differences?  
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6.2 Materials and methods 
 
6.2.1 Ethics statement 
 

Research work in the Falklands was carried out under Licence R19/2015 from the 

Falkland Islands Government. Y. cytheris is a protected species in the Falkland Islands 

(Falkland Islands Government 1999) and lethal collection of specimens was limited by 

quota. In all cases research took place with the permission of land owners. 
 
6.2.2 Data set 
 
In addition to specimens collected in the Falkland Islands, data were collected from 

specimens in the collections of the British Museum of Natural History Museum, London 

(BMNH), and of the Oxford University Museum of Natural History (OUMNH). Alvaro 

Zúñiga-Reinoso also provided five Chilean specimens from his collection. The data set 

comprised 46 male and 53 female specimens, both forewing and hind wing, from the 

Falklands, and 30 female and 47 male forewings, together with 13 female and 26 male 

hind wings, from Latin America (Table 6.1). A more detailed table, giving sources of 

material, is at Appendix Table C.1). 

 
 

 
Figure 6.2  Sites of origin of wing samples. Falkland Island sites are shown on the inset map. Country and 

British Overseas Territory names are in italic font, principal settlements and capital cities are in bold.  
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Table 6.1  Sites of origin of wing data by sex and wing pair. Falkland Island data came from specimens 

collected during the 2016-2018 field visits, as well as from specimens in BMNH and OUMNH. Latin American 
data come from specimens in BMNH, OUMNH and the collection of Alvaro Zúñiga-Reinoso. 

land 

mass 

   elevation 

(m) 

forewing  hind wing 
site latitude longitude F M  F M 

FK Bleaker -52.2101 -58.8518     5   3   4    4   4 
FK Darwin -51.8069 -58.9592     0   5 12    5 12 
FK Frying Pan -51.8118 -58.3350     7   3   4    3   4 
FK North Arm -52.1165 -59.3689   12   5   5    5   4 
FK Roy Cove -51.5484 -60.3832   20   8   9    7 10 
FK San Carlos -51.5730 -59.0350   19   3   1    3   1 
FK Sea Lion -52.4250 -59.0767   14   2   2    2   2 
FK Shallow Bay -51.4230 -59.9980   19 17 16  17 16 
LA Bariloche, Chile -41.1335 -71.3103 893   0   2    0   0 
LA Chubut, Argentina -45.9340 -71.2731 604   9   9    5   4 
LA Isla Isabel, Chile -52.5500 -72.2330   47   2   0    2   0 
LA Panguipulli, Chile -39.6416 -72.3370 130   4   0    5   0 
LA Puerto Williams, Chile -54.9000 -67.6000   30   0   0    1   1 
LA Punta Arenas, Chile -53.1667 -70.9333   34   5   5    5   4 
LA Rio McClelland, Chile -53.3330 -68.6670   50   8 24    1 14 
LA Santiago, Chile -33.5500 -70.7700 538   2   0    2   0 
LA Torres del Paine, Chile -50.9000 -72.8000 175   0   1    0   1 
FK = Falkland Islands, LA = Latin America 

 

6.2.3 Image acquisition 
 

Wings from butterflies caught in the field were photographed between microscope slides, 

cemented together to mitigate against possible measurement error due to wing curvature 

or angle. Museum specimens were photographed individually, from both sides, on their 

original pins (a requirement of the loans).  They were positioned horizontally by eye using 

the lens's depth of field at wide aperture for critical adjustment.  All photographs included 

a scale, positioned at the same focal distance as the wing. Images were recorded using 

a Nikon D800 single lens reflex camera and Nikon 105mm AF Micro Nikkor lens and 

stored as lossless TIFF files.  

 
An additional set of forewing dorsal images of Latin American Y. cytheris was supplied 

by Geoff Martin of the BMNH. These had been photographed using the SatScan tray 

scanner system (Blagoderov et al. 2010), a method that Johnson et al (2013)  had found 

to be as accurate as photographing pinned specimens. They were calibrated against 

corresponding images taken under preceding protocols. A limitation of the whole tray 

scan was that hind wings were partially covered by forewings in setting and therefore 

could provide no relevant data. Further details of image acquisition and handling are in 

Appendix C.2 
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6.2.4 Image preparation for traditional morphometrics 
 
(i) Wing morphology and landmark setting 

 
Forewings 
 
Three landmarks were established on the forewings to enable measurement of length, 

width, base and forewing angle (Figure 6.3). These were (using the letters in the figure): 

A: the proximal end of the anal 1 vein;  

B: the distal end of the radius 4 vein;  

C: the distal end of the anal 1 vein.   

 

Landmarks B and C conformed with Bookstein's (1990, 1991) main criterion for the 

optimal, type 1, landmark, the discrete juxtaposition of tissues.  Both points were situated 

where the vein met the outer edge of the wing. Landmark A was more problematic. To 

enable a length measurement of the wing to be taken, a landmark was necessary where 

the wing joined the thorax. Although such a landmark would have met Bookstein's 

criteria, the difficulty was that there was no junction between the proximal ends of the 

anal, medial/cubital and radial veins which would have given a clearly visible reference 

point. The proximal end of the anal 2 vein was selected as the best approximation. 

 

 

Figure 6.3  The forewing of Yramea cytheris  showing venation and landmarks used for traditional 
morphometric measurements. The alphanumerics refer to the vein’s position in the wing’s wider structure: 

R = radius; M = media; Cu = cubitus; A = anal.  The larger letters A, B and C, in red, show the landmarks 

selected as a basis for measurements in the traditional morphometric analysis. Photograph by the author. 
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Hind wings 
 
Three major landmarks were established on the hind wings to enable measurement of 

length, width, base and hind wing angle (Figure 6.4). These were (using the letters in the 

figure): 

A:  the discal cell junction of the cubital and radial structures;  

B:  the distal end of the subcostal and radius 1 vein; 

C:  the distal end of the anal 1 + 2 vein. 

 

All three landmarks represented the discrete juxtaposition of tissues which corresponded 

with  Bookstein's (1990, 1991) optimal type 1 landmark. The discal cell junction of the 

cubital and radial structures provided the clear proximal landmark lacking in the forewing. 

 

 
 
Figure 6.4 The hind wing of a male Yramea cytheris  showing venation and landmarks for traditional 

morphometrics.  The alphanumerics refer to the vein’s position in the wing’s wider structure:  Sc = subcosta; 
R = radius; M = media; Cu = cubitus; A = anal.  The letters in red show the landmarks used in the traditional 

morphometric analysis. Photograph by the author. 
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6.2.5 Wing measurements 
 

(i) Measurements: size 
 
All straight line measurements were made with the straight line tool in FIJI (Schindelin et 

al. 2012), with the scale recalibrated for each image. 

 

Wing length (R) 

 
Forewing length R was measured from the proximal end of the anal 1 vein to the distal 

end of radial 4 (A and B in Figure 6.3). Hind wing length R was measured from the 

proximal end of the combined anal 1 and 2  vein, at its intersection with the disc, to the 

distal end of the combined subcosta and radial 1  (A and B in Figure 6.4). 

 

Wing area (S) 

 

Wing area was computed in FIJI. The freehand selection tool was used to produce an 

outline of the wing, with the Measurement tool set to calculate area automatically.  The 

outcome was used in the calculation of the wing’s AR. 

 

Wing width 

 
Forewing width was measured as the distance between the distal end of the radial 4 vein 

and the distal end of the anal 1, effectively the farthest points from the thorax on the 

wing’s leading and lower trailing edges (B and C in Figure 6.3). Hind wing width was 

measured as the distance between the distal end of the combined subcosta and radial 

1 vein and the distal end of the combined anal 1 and 2 vein, effectively the farthest points 

from the thorax on the wing’s leading and lower trailing edges (B and C in Figure 6.4). 

 
Wing base 

 
Wing base was measured as the length of the anal 1 vein for the forewing, and anal 1+2 

for the hind wing (A and C in Figure 6.3 and Figure 6.4) 
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Length as a proxy for size 
 
Dudley’s (1990) finding of a relationship between wing span, wing length and wing area, 

discussed at 6.1.4, was tested for both forewings and hind wings of Y.cytheris through 

correlation tests appropriate to the data.  Wing base was also considered for both wings.  

 

(ii) Wing angle 
 
The angle between the base and the length of both forewing and hind wing was 

measured as a potential index of shape in its own right.  

 

(iii) Aspect ratio (AR) 
Aspect ratio was measured as R2/S 

 
(iv) First moment of area (r̂1) 
r̂1 was calculated as the distance between the proximal end of the wing and the centroid, 

divided by R. The position of the centroid was calculated automatically using the 

measurement tool in FIJI as part of the wing area calculation. 

 

(v) The relationship between forewings and hind wings 
 
The proportion of total wing area made up by the hind wing was assessed for sex and 

land mass, whether Falkland Islands or Latin America.  This was followed up by an 

examination of correlation between forewing and hind wing lengths.  

 

6.2.6 Image preparation for geometric morphometrics 
 

(i) Image processing 
 

TIFF files were initially processed in the TPS suite of software (Rohlf 2015).  They were 

first read into a TPS file in tpsUtil 1.70x64. The resulting files were transferred to tpsDig 

ver.2.26, where the scale was set in accordance with the measurement scale 

incorporated in the images.  
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(ii) Wing structure and landmark selection 
 

Sets of landmarks were digitised on both forewings and hind wings (Figure 6.5 and 

Figure 6.6, Table 6.2).  Sites selected were either the intersections of veins, or the points 

where a vein met the edge of a wing. Both conform with Bookstein's (1991, cited in 

Zelditch et al., 2012) type 1 landmarks, those derived from the discrete juxtaposition of 

tissues.  

 

Forewing landmarks were generally registered on the dorsal surface. Hind wing venation 

was less clearly visible on the dorsal surface of hind wings, in which cases the ventral 

surface was used, with the dorsal only used when landmarks were obscured, for 

example by legs. If necessary, the image was adjusted using the left/right flip in tpsDig 

to ensure all images were oriented in the same way. 

 

The difficulty of identifying a type 1 landmark at the proximal end of the forewing was 

considered at  6.2.4(i). A number of geometric morphometric studies have, despite the 

difficulties, used as landmarks the points at which the radial or cubital veins join the 

thorax  (Benítez, 2013; Sanzana et al., 2013; Juhász et al., 2016; Zhong et al., 2016).  

While a landmark at the proximal end of the forewing was important for traditional 

morphometrics, it is arguably less so for geometric morphometrics as wing shape, in 

particular the relationship between the disc and the outer edges of the forewing, can be 

analysed using the type 1 landmarks.  

 

The problem does not arise with hindwings, where there is a clear junction on the disc 

between the cubital and radial vein structures (Figure 6.6: landmark 7).  
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Figure 6.5  Ventral side of the left forewing of Yramea cytheris showing landmarks for geometric 
morphometric analysis. The proximal ends of the anal, medial/cubital and radial veins, which do not provide 

a robust type 1 landmark, are circled. Photograph by the author. 

 
 

 
Figure 6.6  Ventral side of the left hindwing of Yramea cytheris showing landmarks digitised for geometric 
morphometric analysis. Photograph by the author. 
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Table 6.2  Landmarks of forewings and hindwings, following the Comstock - Needham system. 

forewing hind wing 
No. Location  No. Location  
  1 disc - radius (3-5) junction   1 disc - subcosta /  radius 1 junction 
  2 disc - medius 2 junction   2 disc - radial sector junction 
  3 disc - medius 3 junction   3 disc - medius 1 junction 
  4 disc - cubitus 1 junction   4 disc - medius 2 junction 
  5 disc - cubitus 2 junction   5 disc - cubitus 1 junction 
  6 radius 4 - radius 5 junction   6 disc - cubitus 2 junction 
  7 distal end of radius 3   7 discal junction of cubital and radial structures 
  8 distal end of radius 4   8 distal end of subcosta / radius 1 
  9 distal end of radius 5   9 distal end of radial sector 
10 distal end of medius 1 10 distal end of medius 1 
11 distal end of medius 2 11 distal end of medius 2 
12 distal end of medius 3 12 distal end of medius 3 
13 distal end of cubitus 1 13 distal end of cubitus 1 
14 distal end of cubitus 2 14 distal end of cubitus 2 
15 distal end of anal 1 15 distal end of anal 2 
  16 distal end of anal 3 

Numbers refer to landmarks shown at Figure 6.5 (forewing) and Figure 6.6 (hind wing) 

 

TPS files were read into MorphoJ 1.06d (Klingenberg 2011).  The landmark coordinates 

were then subjected to Procrustes superimposition (Klingenberg and McIntyre 1998). 

With all images oriented in the same direction, this process involves scaling images to 

unit centroid size, which removes variation due to scale and position. Centroids of all 

images are then superimposed upon each other, then those images are rotated around 

their centroid to produce the optimal fit.  

 

(iii) Warped outline drawings 
 

Shape changes are visualised in warped outline drawings.  As Klingenberg (2013) noted, 

human perception requires a shape as the context for making sense of shape change. 

Shape changes, moreover, are only interpretable in the context of the structure which 

holds them, and in conjuction with the shape of that structure.  

 

An outline file was made from a wing image with its landmarks marked.  Lines were 

constructed using a series of intermediate landmarks to delineate wing outlines and the 

major veins.  The file was then imported into MorphoJ as a basis for warped outline 

drawings, which show initial and target shapes of a shape variation using the information 

provided by the landmarks. 
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The theoretical basis for the warped outline drawing is the thin-plate spline (Bookstein 

1989). The frequent usage of a deformation grid, based on the spline, has not been 

followed here. The grid has underpinned much morphometric work since it was devised 

(as a transformation grid) by Thompson (1917).  It is, however, less relatable to an overall 

wing structure than a warped outline.  

 

It should be noted that the warped outline drawing is an aid to visualisation only.  While 

the original file follows a semi-landmark structure, none of the subsequent images does. 

Therefore, while the landmarks carry biological information, the warped outline drawings 

(as is also true of deformation grids) do not. 

 

(iv) PCAs and CVAs 
 
The main tool for distinguishing between individual specimens was the PCA. Separation 

was measured through Procrustes distances, with α set at 0.05. Predetermined 

groupings were analysed through CVAs using both Procrustes and Mahalanobis 

distances, with α for the latter set at 0.001 (Tabachnick and Fidell 2013). p-values for 

both distances were derived from 10,000 round permutation tests.  

PCs 1 and 2, and CVs 1 and 2, and their distributions, are shown as Figures in the results 

section. Other PCs and CVs contributing over 8 % to the overall analysis, and their 

distributions, are shown in Appendix D. 

 

6.2.7 Approach to RQs 
 
The approach to RQs 1 (6.1.5) utilised traditional and geometric morphometrics from the 

whole data set.  

 

The approach to RQ2 was dependent on RQ1, as it had to take into account any 

significant differences between female and male samples, as well as between those from 

the Falkland Islands and Latin America.  

 

Comparison of latitude and elevation was based on Latin American samples. These 

came from a range of latitudes from -54.9º to -33.5º, and elevations from 30m to 893m, 

whereas the Falklands range for latitude was only -52.4º to -51.4º, and, for elevation, 

sea level to 20m. 
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Elevation and latitude for the locations cited for Latin American samples were read from 

Bing Terrain maps at 1:1,000,000 accessed through XYZ tiles in QGIS 3.4 (QGIS 

Development Team, 2018). Wind speed was more complex, as butterfly habitats are 

potentially more sensitive to local geography, taking into account the effects of slope, 

aspect and shelter in relation to the prevailing wind (4.3.1). Data from Latin American 

meteorological stations were therefore not used, as being too broad-brush. Analysis of 

Falkland Island samples was based on data from the four study sites, using wind speeds 

at 30cm above the ground, an observed approximation to the butterfly's habitual 

patrolling height (4.2.3 (i)). 

 

6.2.8 Data analysis 
 
TIFF images for angle and chord measurement were processed in ImageJ using the FIJI 

platform (Schindelin et al. 2012, Schneider et al. 2012), with the aid of the macro bissect 

[sic] (Burri 2016). 

 
TIFF images for geometric morphometrics were processed in the tps software suite 

(Rohlf 2010, 2015). Initial grouping and importing were done in tpsUtil.  tpsDig2 was then 

used to produce landmark files. Subsequent processing of landmark files through 

Procrustes fits (Mitteroecker and Gunz 2009), the production of covariance matrices, 

PCAs  and CVAs was undertaken in MorphoJ (Klingenberg 2011, 2013). 

 
The majority of calculations were done in R (R Core Team 2018). The tidyverse package, 

in particular ggplot2 and dplyer (Wickham 2017), provided the principal resource for 

visualisations, supplemented through github (Makiyama 2018) and ggfortify (Tang and 

Horikoshi 2016).  ANOVAs, t-tests, correlations and regressions were carried out using 

elements of car (Fox and Weisberg 2018); corrplot (Wei and Simko 2017); effsize 

(Torchiano 2017); EnvStats (Millard 2013); Hmisc (Harrell 2019); lmerTest (Kuznetsova 

et al. 2017); lsr (Navarro 2015); multcomp and PerformanceAnalytics (Hothorn et al. 

2016);  and Psych (Revelle 2018). 

 
All mapping was done in QGIS 3.4  (QGIS Development Team 2018). 
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6.3 Results 
 
6.3.1 Forewings: traditional morphometrics 
 
(i) Comparison of forewing length, width, base and area 

 
Kolmogorov-Smirnov tests supported the assumption of normal distribution for the three 

direct measurements (length, width, base) as well as area. Pearson's product-moment 

correlation test was used to assess the relationship between forewing length and each 

of the other measurements to determine the extent to which it could be used as a proxy 

for size. The tests showed a very strong positive association between: length and width 

(r = 0.95, p < 0.001); length and base (r = 0.95, p < 0.001); and length and area 

(r = 0.98, p < 0.001). Accordingly, length was used as a proxy for forewing size. 

 
(ii) Forewing length 
 

A two-way ANOVA (Appendix Table C.2) showed that both land mass and sex were 

highly significant factors in forewing length, with a large effect size. The interaction 

between sex and land mass was not significant.  Visualisation of forewing length by land 

mass and sex (Figure 6.7), together with post-hoc t-tests (Table 6.3), showed that 

Falkland Island forewings were significantly shorter than Latin American, and that female 

forewings were significantly longer than male, both with a very large effect size. 

 

 
Figure 6.7 Forewing length compared by land mass and sex.  Numbers in brackets refer to female and male 

forewings respectively.   
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Table 6.3  t-test comparisons of forewing lengths by land mass by sex.  

factor n M SD df t p-value 95% CI d 
FK: F 46 17.30 1.11 97 7.78 <0.001 1.16,  1.96 1.57 
FK: M 53 15.74 0.88      
LA: F 30 19.15 1.58 75 5.40 <0.001 1.09,  2.37 1.26 
LA: M 47 17.41 1.23      
FK: F 46 17.30 1.11 74 -5.98 <0.001 -2.46, -1.23 1.40 
LA: F 30 19.15 1.58      
FK: M 53 15.74 0.88 98 -7.84 <0.001 -2.09, -1.25 1.57 
LA: M 47 17.41 1.23      
factors: FK = Falkland Islands, LA = Latin America; F = female, M = male. Significance at p < 0.05 and large 

effect size at d > 0.8 are shown in bold. 

 

(iii) Forewing angle 
 

A two-way ANOVA (Appendix Table C.3) showed that land mass was a significant factor 

in forewing angle, although with a small to medium effect size.  Sex and the interaction 

between sex and land mass were not significant.  Visualisation of forewing angle by land 

mass and sex (Figure 6.8), together with post-hoc t-tests (Table 6.4), showed that, in 

both females and males, Falkland Island forewing angles were significantly smaller than 

Latin American.  

 

 

 
Figure 6.8 Forewing angles compared by land mass and sex. 95% confidence intervals for the means of the 

two populations, with sex pooled, were added (orange bars).  Numbers in brackets refer to female and male 

forewings respectively.  
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Table 6.4  t-test comparisons of forewing angles by land mass and sex. 

factor n M SD df t p-value 95% CI d 
FK: F 46 35.64 1.81 74 -2.08 0.041 -1.72, -0.04 0.49 
LA: F 30 36.52 1.77      
FK: M 53 35.72 1.72 98 -2.49 0.014 -1.44, -0.16 0.50 
LA: M 47 36.53 1.47      

factors: FK = Falkland Islands, LA = Latin America; F = female, M = male.  Significance at < 0.05 is shown 
in bold. 

 

(iv) Forewing aspect ratio (AR) 
A two-way ANOVA (Appendix Table C.4) showed that land mass was a significant factor 

in forewing AR, with a medium effect size. Sex and the interaction between sex and land 

mass were not significant.  Visualisation of forewing AR by land mass and sex (Figure 

6.9), together with post-hoc t-tests, showed that forewings of Falkland Island specimens 

of both sexes had larger AR (for a given area, they were longer and narrower) than their 

Latin American counterparts (Table 6.5). 

 

 
Figure 6.9. Forewing AR compared by land mass and sex. 95% confidence intervals for the means of the 

two populations, with sex pooled, were added (orange bars).  Numbers in brackets refer to female and male 

forewings respectively.  
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Table 6.5  t-test comparisons of forewing AR by land mass and sex. 

factor n M SD df t p-value 95% CI d 
FK: F 46 2.95 0.11 74 2.70 0.009 0.02, 0.13 0.63 
LA: F 30 2.87 0.11      
FK: M 53 2.96 0.11 98 2.79 0.006 0.02, 0.11 0.56 
LA: M 47 2.89 0.12      

factors: FK = Falkland Islands, LA = Latin America; F = female, M = male. Significance at p < 0.05 is shown 

in bold. 

Correlation between angle and AR 
 
The correlation between angle and AR was tested, given that, with the close correlation 

of length, width, base and area, they should be testing the same aspect of wing area. 

Pearson's product moment showed that AR was strongly negatively correlated with 

forewing angle p < 0.001, 95% CI [-0.78, -0.64], r = -0.72. Angle was therefore not 

pursued further as a metric.  

 

(v) Forewing first moment of area (r̂ 1)    
 
A two-way ANOVA (Appendix Table C.5) showed that both land mass (Falkland Islands 

or Latin America) and sex were highly significant factors in forewing r̂1, but with only a 

small effect size. The interaction between sex and land mass was not significant. 

 
Visualisation of forewing r̂ 1 by land mass and sex (Figure 6.10), together with post-hoc 

t-tests (Table 6.6), showed that it  varied with a high degree of significance and a large 

effect size between Falkland Island and Latin American males and also between 

Falkland Island females and males; and significantly, with a medium effect size, between 

Latin American females and males. The only contrast not significant at p < 0.05 was 

between Falkland Island and Latin American females. 
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Figure 6.10. Forewing r̂ 1 compared by land mass and sex. Numbers in brackets refer to female and male 

forewings respectively.  

 
 
Table 6.6  t-test comparisons of r̂ 1 by land mass by sex.  

factor n M SD df t p-value 95% CI d 

FK: F 46 0.529 0.008 97  4.67 <0.001    0.005, 0.011 0.94 
FK: M 53 0.521 0.009      

LA: F 30 0.533 0.011 75  2.03 0.046   <0.001, 0.009 0.47 

LA: M 47 0.529 0.009      
FK: F 46 0.529 0.008 74 -1.82 0.072    -0.008, <0.001 0.42 

LA: F 30 0.533 0.011      

FK: M 53 0.521 0.009 98 -4.20 <0.001     -0.01, -0.004 0.84 
LA: M 47 0.529 0.009      

factors: FK = Falkland Islands, LA = Latin America; F = female, M = male.  p-values significant at < 0.05, 

and large effect sizes at d  > 0.8, are shown in bold font. 

 
 
 
6.3.2  Forewings: geometric morphometrics  
 
(i) Principal Component Analysis (PCA) of forewings 

 
A PCA of the forewings showed that the first two PCs contributed 41% to the analysis 

(Figure 6.11). The target shape of PC1 (25.7%) had a narrower wing, as between the 

distal ends of the veins radius 4 and anal 1A, but with longer medials 1, 2 and 3 and 

cubitals 1 and 2. There was a distinctive scalloping in the target shape linking the distal 
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ends of medial 2, medial 3 and cubital 1. PC2 (15.3%) had longer cubitals in the starting 

shape, with no distinctive angle in the target shape.   

 

 
Figure 6.11  PCA of forewings by land mass and sex.  95% confidence ellipses of means are shown in the 

colour of their respective combination of the two.  The warped outlines show, in blue, the target shape of the 
PC on each axis, compared with the mean shape, in orange. The first two PCs contributed 41% to the 

analysis.  

 

There was clustering along each of the first two PCs.  Females tended towards the 

target shape on PC1, and away from it on PC2, all in the direction of a narrower and 

more scalloped wing. Latin American wings, particularly female,tended towards the 

target shape on PC1.  

 

(ii) Canonical Variate Analysis (CVA) of forewings 
 
A CVA of the forewings showed that two CVs contributed 93.8% to the analysis (Figure 

6.12). The target shape of CV1 (60.4%) showed a narrower wing, with distinctive 

scalloping, while that of CV2 (33.4%) was broader, with an overall compression of 

landmarks around the discal cell (landmarks 1 - 5).  When plotted against CVs there was 

a clear separation of the four groups about the origin. Female forewings tended towards 

the target shape of CV1, with male forewings tending away from it; Falkland forewings 
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tended away from the target shape of CV2, with Latin American forewings tending 

towards it. 

 

 
Figure 6.12  CVA of forewings by land mass and sex.  95% confidence ellipses of means are shown in the 

colour of their respective combination of the two.  The warped outlines show, in blue, the target shape of the 

CV on each axis, compared with the mean shape, in orange. The first two CVs contributed 93.8% to the 
analysis.  

 
Both Mahalanobis and Procrustes distances (Appendix Table C.10) showed a high 

significance, at p ≤ 0.0001, between each contrast. 
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effect size (ηp
2 = 0.316).  The effect was not significant for females (F (7, 38) = 1.09, 

p = 0.391).  

 

Visualisation (Figure 6.13), together with post-hoc comparisons using the Tukey HSD 

test, showed that Bleaker male forewings (M = 14.4, SD = 1.11) were significantly 

shorter than those from Darwin (M = 16.1, SD = 0.52), p = 0.016 and Shallow Bay 

(M = 15.9, SD = 0.74), p = 0.035. 

 

 
Figure 6.13  Comparison between forewing lengths at Falkland Islands sites. Numbers in brackets refer to 
female and male forewings respectively.  

Aspect ratio (AR) 
 

 
Figure 6.14 Comparison between forewing AR at Falkland Islands sites. Numbers in brackets refer to female 
and male forewings respectively. 
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Analysis by one-way ANOVA of the response of forewing AR to site showed no 

significant effect for either Falkland Island females (F (7, 38) = 0.63, p = 0.729) or males 

(F (7, 45) = 1.1, p = 0.378).  Potentially significant contrasts, such as those involving Sea 

Lion (Figure 6.14), had insufficient data to support them.  No post-hoc testing was 

therefore undertaken. 

 

First moment of area (r̂1) 
 
Analysis by one-way ANOVA of the response of r̂1 to site showed a significant effect for 

Falkland Island females (F (7, 38) = 2.62, p = 0.026), with a large effect size 

(ηp
2 = 0.326).  The effect was not significant for males (F (7, 45) = 0.5, p = 0.827).  

 

Box plot visualisation (Figure 6.15), together with post-hoc comparisons using the Tukey 

HSD test, showed that North Arm female forewings (M = 0.539, SD = 0.01) had a 

significantly larger r̂1  than Frying Pan (M = 0.521, SD = 0.005), p = 0.049 and Roy Cove 

(M = 0.525, SD = 0.014), p = 0.048 

 

 
Figure 6.15 Comparison between forewing r̂1 at Falkland Islands sites. Numbers in brackets refer to female 

and male forewings respectively.  

 
Geometric morphometrics: female 
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showed a flattening of the distinctive female scalloping, with CV1 close to a straight line 

between landmarks 11 – 14.  
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Figure 6.16  CVA of Falkland Island female forewings by site. 95% confidence ellipses of means are shown 
in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 

axis, compared with the mean shape, in orange. The first two CVs contributed 64% to the analysis.  

 

Some separation was visible between the sites, particularly in CV2. Sea Lion, with a 

small sample size (n = 3) was a significant outlier towards the target shape in CV1.  An 

analysis of Mahalanobis and Procrustes distances (Appendix Table C.11) showed 

significant separation between 14 of the 28 possible pairings, with Shallow Bay in seven 

pairings, Sea Lion in five and Bleaker, Darwin and Roy Cove in three each.  
 
Geometric morphometrics: male 
 
A CVA of Falkland Island male forewings showed that the first two CVs contributed 

64.1% to the analysis (Figure 6.17). The target shapes of CV1 and CV2 showed a 

broader wing.  
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Figure 6.17  CVA of Falkland Island male forewings by site. 95% confidence ellipses of means are shown 

in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 
axis, compared with the mean shape, in orange. The first two CVs contributed 64.1% to the analysis.  

 
Some separation was visible between the sites, particularly in CVs 1 and 2 An analysis 

of Mahalanobis and Procrustes distances (Appendix Table C.12) showed significant 

separation of clusters in nine of the 28 possible pairings, with Shallow Bay and Darwin 

in four pairings, and North Arm and Roy Cove in three each. 

 
(ii) Latin American forewings 
 
Length 
 
Analysis by one-way ANOVA of the response of forewing length to site showed a 

significant effect for Latin American females (F (5, 24) = 2.74, p = 0.042), with a large 

effect size (ηp
2 = 0.364) and males (F (6, 40) = 6.37, p = 0.00009), also with a large effect 

size (ηp
2 = 0.489). 

 

Box plot visualisation (Figure 6.18), together with post-hoc comparisons using the Tukey 

HSD test, showed that Straits of Magellan female forewings (M = 21.5, SD = 1.34) were 

significantly longer than those from Punta Arenas (M = 17.5, SD = 1.51), p = 0.022. This 
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might be viewed with caution, as these two butterflies are very much an outlier in 

forewing size. 

 

Panguipulli male forewings (M = 17.3, SD = 0.94) were significantly longer than 

Bariloche (M = 14.8, SD = 0.05), p = 0.039, while Rio McClelland (M = 18.1, SD = 0.83) 

forewings were significantly longer than: Bariloche (M = 14.8, SD = 0.05), p = 0.0004; 

Chubut (M = 16.8, SD = 1.39), p = 0.02; and Punta Arenas (M = 16.6, SD = 0.42), 

p = 0.045. 

 

 
Figure 6.18  Comparison between forewing lengths at Latin American sites. Numbers in brackets refer to 

female and male forewings respectively.  
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Analysis by one-way ANOVA of the response of forewing AR to site showed a significant 

effect for Latin American females (F (5, 24) = 2.79, p = 0.04), with a large effect size 

(ηp
2 = 0.368) and males (F (6, 40) = 5.16, p = 0.0005), also with a large effect size 

(ηp
2 = 0.436). 

 

Box plot visualisation (Figure 6.19), together with post-hoc comparisons using the Tukey 

HSD test, did not, despite the ANOVA result, show any individual contrast in female 

forewing AR significant at p < 0. 05. 

 

Chubut male forewings (M = 3.00, SD = 0.12) had a significantly greater AR than 
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SD = 0.09) forewings had a significantly lower AR than: Chubut (M = 3.0, SD = 0.12), 

p = 0.003; and Punta Arenas (M = 3.00 SD = 0.10), p = 0.023. 

 
Figure 6.19  Comparison between forewing AR at Latin American sites. Numbers in brackets refer to female 
and male forewings respectively.  
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There was little contrast in forewing r̂1 between Latin American sites (Figure 6.20). A 

one-way ANOVA between the four sites gave a p-value of 0.365 for females, and 0.096 

for males. Analysis by one-way ANOVA of the response of forewing r̂1 to site showed no 

significant effect for either Latin American females (F (5, 24) = 0.64, p = 0.671) or males 

(F (6, 40) = 1.19, p = 0.329). No post-hoc testing was therefore undertaken. 

 

The significant contrast in r̂1 (p = 0.046) between Latin American female and male 

forewings, with female larger than male, seen at the land mass level (Figure 6.10, Table 

6.6), was more nuanced at site level. t-tests for four sites showed only one significant 

variation, with a large effect size, at Rio McClelland, p = 0.023, d = 0.98. 
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Figure 6.20 Comparison between forewing r̂1 at Latin American sites. Numbers in brackets refer to female 

and male forewings respectively.  

Geometric morphometrics: female 

 

A CVA of Latin American female forewings showed that the first two CVs contributed 

89.8% to the analysis (Figure 6.21)  The target shape of CV1 (71.2%) showed a slightly 

more scalloped wing with a more prominent wing tip with the movement of landmarks 

8-10.  That of CV2 (18.6%) showed a broader wing, with a larger discal cell.  

 
Figure 6.21  CVA of Latin American female forewings by site. 95% confidence ellipses of means are shown 

in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 
axis, compared with the mean shape, in orange. The first two CVs contributed 89.8% to the analysis.  
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Clear separation was visible between the sites for each of the CVs other than between 

Chubut and Panguipulli for CVs 1 and 2, and between Punta Arenas and Rio McClelland 

for CV 1. Chubut showed significant separation in Mahalanobis distance from Punta 

Arenas, Panguipulli and Rio McClelland, as did Punta Arenas from Rio McClelland 

(Appendix Table C.13). Only Panguipulli and Rio McClelland showed significant 

separation by Procrustes distance. 
 

Geometric morphometrics: male 

 

A CVA of Latin American male forewings showed that the first two CVs contributed 

71.2% to the analysis (Figure 6.22).  The target shape for CV1 (45.4%), showed a 

lengthened wing tip and a slight scalloping of the medial - cubital wing edge. CV2 

(25.8%) showed a narrowing of the wing, with a contraction of the discal cell.  

 
 Figure 6.22  CVA of Latin American male forewings by site. 95% confidence ellipses of means are shown 

in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 
axis, compared with the mean shape, in orange. The first two CVs contributed 71.2% to the analysis.  
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separation in Mahalanobis distance from Bariloche, Panguipulli and Rio McClelland;  Rio 

McClelland also showed clear separation from Bariloche, Punta Arenas and Panguipulli 

(Appendix Table C.14); Rio McClelland showed significant separation by Procrustes 

distance from Bariloche and Panguipulli.  

 

6.3.4 Hind wings: traditional morphometrics  
 
(i) Relationship between forewing and hind wing 
 
Ratio of area of hind wing to total area of wing pair 
 

Land mass, sex and the interaction of the two did not have a significant effect on the 

ratio of hind wing area to the total area of the wing pair (Table 6.7). There was a close 

correspondence of ratios between sexes and land masses (Figure 6.23). 

 
Table 6.7 The effect of land mass and sex on the ratio of area of hind wing to total area of wing pair. No 

factor was significant at p < 0.05. 

Factor df SS MS F-ratio p-value ηp
2 

land mass    1      3.1   3.06 0.603 0.439   0.004 
sex    1    <0.01 <0.01 0.001 0.982 <0.001 
land mass: sex    1    <0.01 <0.01 0.001 0.978 <0.001 
residuals 132  670.8   5.08    

Analysis using type II sum of squares.  p-values significant at < 0.05, and large effect sizes at ηp
2 > 0.14, are 

shown in bold font. 

 
 

 
Figure 6.23  The effect on the ratio of hind wing area to overall wing pair area of land mass and sex. There 
was little observable variation between land masses or sexes.  
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Correlation between forewing and hind wing length 
 
Kolmogorov-Smirnov tests supported the assumption of normal distribution for forewing 

and hind wing length. A scatterplot showed a strong association between the forewing 

length and hind wing length (Figure 6.24), confirmed by Pearson's product-moment 

correlation test (r = 0.86, 95% CI [ 0.81, 00.90], df = 134, p < 0.001).  

 
 

 
Figure 6.24 Comparison between forewing and hind wing lengths for a combined data set of Falkland and 

Latin American specimens. 

 
(ii) Comparison of hind wing length, width, base and area 
 
Kolmogorov-Smirnov tests supported the assumption of normal distribution for the three 

direct measurements (length, width, base) as well as area. Pearson's product-moment 

correlation test was used to assess the relationship between hind wing length and each 

of the other measurements to determine the extent to which it could be used as a proxy 

for size. The tests showed a very strong positive association between: length and width 

(r = 0.92, p < 0.001); length and base (r = 0.92, p < 0.001); and length and area 

(r = 0.95, p < 0.001). Accordingly, length was used as a proxy for hind wing size. 

 

(iii) Hind wing length 
 

A two-way ANOVA (Appendix Table C.6) showed that both land mass and sex were 

highly significant factors in hind wing length, with a large effect size. The interaction 

between sex and land mass was not significant.  Visualisation of hind wing length by 
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Falkland Island hind wings were significantly shorter than Latin American, and that 

female hind wings were significantly longer than male, both with a very large effect size  

 

 
Figure 6.25. Hind wing lengths compared by land mass and sex. Numbers in brackets refer to female and 

male hind wings respectively. 

 
 
Table 6.8  t-test comparisons of hind wing lengths. Contrasts are land mass by sex, and sex by land mass. 

 n M SD df t p-value 95% CI d 

FK: F 46 10.07 0.63 97 10.44 <0.001  1.00,   1.47 2.10 
FK: M 53   8.84 0.55      
LA: F 15 10.92 1.00 37 2.55  0.015  0.16,   1.40 0.84 
LA: M 24 10.14 0.88      
FK: F 46 10.07 0.63 59 -3.88 <0.001 -1.28,  -0.41 1.15 
LA: F 15 10.92 1.00      
FK: M 53   8.84 0.55 75 -7.90 <0.001 -1.63,  -0.97 1.94 
LA: M 24 10.14 0.88      

FK = Falkland Islands, LA = Latin America; F = female, M = male. Significance at p < 0.05, and large effect 

size at d > 0.8, are shown in bold. 

 
(iv) Hind wing angle  
 
A two-way ANOVA (Appendix Table C.7) and a visualisation (Figure 6.26) showed that 

neither land mass nor sex had a significant effect on the hind wing angle.  
 

 

8

9

10

11

12

 
Falkland Islands

n = 99 (46, 53)
 
Latin America

n = 39 (15, 24)

hi
nd

 w
in

g 
le

ng
th

 (m
m

) 

female male



 
 
 

 259 

 
Figure 6.26 Hind wing angles compared by land mass and sex. 95% confidence intervals for the means of 
the two populations, with sex pooled, were added (orange bars).  Numbers in brackets refer to female and 

male hind wings respectively.  

 
(v) Hind wing AR 
 

A two-way ANOVA (Appendix Table C.8) showed that sex was a significant factor in hind 

wing AR, with a medium effect size. Land mass and the interaction between sex and 

land mass were not significant. Visualisation of hind wing AR by land mass and sex 

(Figure 6.27), together with post-hoc t-tests (Table 6.9), showed that female hind wings 

from both the Falkland Islands and Latin America had larger AR (for a given area, they 

were longer and narrower) than male. 

 

 
Figure 6.27  Hind wing AR compared by land mass and sex. Numbers in brackets refer to female and male 

hind wings respectively.  
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Table 6.9  t-test comparisons of hind wing AR by land mass and sex. 

factor n M SD df t p-value 95% CI d 

FK: F 46 0.92 0.05 97 3.57 <0.001 0.02, 0.06 0.72 
FK: M 53 0.88 0.06      

LA: F 15 0.92 0.05 37 2.49   0.017 0.92, 0.88 0.82 
LA: M 24 0.88 0.05      

factors: FK = Falkland Islands, LA = Latin America; F = female, M = male.  Significance at p < 0.05 and large 
effect size at d > 0.8 are shown in bold. 

 
 
(vi) Hind wing r̂1 
 

A two-way ANOVA (Appendix Table C.9) showed that land mass and sex were not 

significant factors in hind wing r̂1. Visualisation of r̂1 by land mass and sex (Figure 6.28) 

suggested a possible contrast between female and male Latin American specimens.  

This was explored with a t-test and found not significant: female (M = 0.586, SD = 0.018) 

and male (M = 0.574, SD = 0.025)   df = 37, t = 1.65, p = 0.108, 95% CI [-0.003, 0.03], 

d = 0.54. 

 

 
Figure 6.28  Hind wing r̂1 compared by land mass and sex. 95% confidence intervals for the means of the 
two populations, with sex pooled, were added (orange bars).  Numbers in brackets refer to female and male 

hind wings respectively.  
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6.3.5 Hind wings: geometric morphometrics  
 
(i) Principal Component Analysis (PCA) of hind wings 
 

A CVA of hind wings showed that the first two PCs contributed 45.5% to the analysis 

(Figure 6.29).  PC1 (26.1%) showed a wider wing in the initial shape than in the target 

shape, as between the distal ends of subcosta/radius1 and anal 1+2 but with shorter 

medias 1and 2. PC2 (19.4%) had longer cubitals in the initial shape.  

 

 
Figure 6.29  PCA of hind wings by land mass and sex.  95% confidence ellipses of means are shown in the 

colour of their respective combination of the two.  The warped outlines show, in blue, the target shape of the 

PC on each axis, compared with the mean shape, in orange. The first two PCs contributed 45.5% to the 
analysis.  

 
There was clustering against each of the first two PCs. Females tended towards the 

target shape in PC1, and away from it in PC2. Falkland Islands specimens, particularly 

male, tended towards the target shape in PC1, Latin American specimens away from it. 
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A CVA of hind wings showed that the first two CVs contributed 91.9% to the analysis 
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long medials 1 and 2 (landmarks 10 and 11). The target shape of CV2 (35.2%) was 

broader, with a larger discal cell.  

 
Figure 6.30  CVA of hind wings by land mass and sex.  95% confidence ellipses of means are shown in the 
colour of their respective combination of the two.  The warped outlines show, in blue, the target shape of the 

CV on each axis, compared with the mean shape, in orange. The first two CVs contributed 91.9% to the 

analysis.  

 

When plotted against CVs 1 and 2 there was a clear separation of the four groups about 

the origin. Female hind wings tended towards the target shape of CV1, with male tending 

away from it.  Falklands hind wings tended towards the target shape of CV2, with Latin 

American forewings tending away from it.  
 

An analysis of Mahalanobis and Procrustes distances (Appendix Table C.15) confirmed 

the significance of all contrasts at p ≤ 0.0001 other than for the Procrustes distance 

between Latin American and Falkland females (p = 0.034, with α = 0.05). 
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6.3.6 Hind wing contrasts at site level 
 
(i) Falkland Island hind wings 

 
Length 
 
Analysis by one-way ANOVA of the response of hind wing length to site showed a 

significant effect for Falkland Island males (F (7, 45) = 2.52, p = 0.028), with a large 

effect size (ηp
2 = 0.281).  The effect was not significant for females (F (7, 38) = 1.93, 

p = 0.091).  

 

Box plot visualisation (Figure 6.13), together with post-hoc comparisons using the Tukey 

HSD test, showed that North Arm male hind wings (M = 8.24, SD = 0.54) were 

significantly shorter than those from Darwin (M = 9.16, SD = 0.41), p = 0.048, but that 

other contrasts were not significant at p < 0.05. 

 

 
Figure 6.31  Comparison between hind wing lengths at Falkland Islands sites. Numbers in brackets refer to 
female and male forewings respectively.  

 
Aspect ratio (AR) 
 
Analysis by one-way ANOVA of the response of hind wing AR to site showed a significant 

effect for Falkland Island males (F (7, 45) = 2.48, p = 0.03), with a large effect size 

(ηp
2 = 0.278).  The effect was not significant for females (F (7, 38) = 0.4, p = 0.894).  

 
Box plot visualisation (Figure 6.13), together with post-hoc comparisons using the Tukey 

HSD test, showed that no contrasts between sites were significant at p < 0.05. 
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The larger AR  in female, compared with male, hind wings, seen at the land mass level 

(Figure 6.27, Table 6.9), was also seen at site level (Figure 6.32). Female/male t-tests 

showed significant variation with large effect sizes for Frying Pan, p = 0.025, d = 2.4 and 

Shallow Bay, p = 0.013, d = 0.92. 

 

 
Figure 6.32 AR for hind wings from Falkland Island sites. Numbers in brackets refer to female and male 

forewings respectively.  

 
First moment of area (r̂1) 

 

Analysis by one-way ANOVA of the response of hind wing r̂1   to site showed a significant 

effect for Falkland Island females (F (7, 38) = 5.97, p = 0.0001), with a large effect size 

(ηp
2 = 0.523) and for males (F (7, 45) = 6.58, p = 0.00002), also with a large effect size 

(ηp
2 = 0.278).  

 

Box plot visualisation (Figure 6.33), together with post-hoc comparisons using the Tukey 

HSD test, showed that Darwin females (M = 0.6, SD = 0.02) had a significantly higher r̂1  

than Bleaker (M = 0.54, SD = 0.04; p = 0.003), Frying Pan (M = 0.53, SD = 0.02; p = 

0.003) and Sea Lion (M = 0.54, SD = 0.03; p = 0.019); and Shallow Bay (M = 0.59, 

SD = 0.02) than Bleaker (M = 0.54, SD = 0.04; p = 0.006), and Frying Pan (M = 0.53, 

SD = 0.02; p = 0.007). 

 

Shallow Bay males (M = 0.6, SD = 0.02) had a significantly higher r̂1 than Bleaker 

(M = 0.56, SD = 0.02; p = 0.005); Frying Pan (M = 0.55, SD = 0.01; p  = 0.00008); Roy 

Cove (M = 0.58, SD = 0.02; p = 0.027); and Sea Lion (M = 0.55, SD = 0.01; p = 0.018); 

and North Arm (M = 0.59, SD = 0.02) than Frying Pan (M = 0.55, SD = 0.01; p  = 0.037). 
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The absence of significant contrast in r̂1 between female and male hind wings, seen at 

the land mass level (Figure 6.28), was reflected at site level (Figure 6.33), with the 

exception of Shallow Bay, where male r̂1 was significantly greater than female at 

p = 0.019, with a large effect size d = 0.86. In all cases, other than Darwin, male r̂1 was 

also greater than female at low levels of significance.  In Darwin female r̂1 was greater 

than female, albeit at p = 0.108, but with a large effect size, d = 0.91. 

 

 
Figure 6.33 r̂1 for hind wings from Falkland Island sites. Numbers in brackets refer to female and male 

forewings respectively.  

 Geometric morphometrics: female 
 

A CVA of Falkland Island female hind wings showed that the first two CVs contributed 

61% to the analysis (Figure 6.34).  The target shape of CV1 (37.3%) showed a smaller 

discal cell, with an inflection at the proximal end of medial 1 (landmark 3), and a proximal 

movement of the tornus landmarks (15 and 16). CV2 (23.7%) showed a proximal 

movement of the radial sector and medials 1 and 2 (landmarks 9 – 11). 
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Figure 6.34  CVA of Falkland Island female hind wings by site. 95% confidence ellipses of means are shown 
in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 

axis, compared with the mean shape, in orange. The first two CVs contributed 61% to the analysis.  

 

 
The CVs showed some clear clustering, with Frying Pan and Sea Lion, with small sample 

sizes, as outliers at the extremes of the target shapes for CVs 1 and 2.  An analysis of 

Mahalanobis and Procrustes distances (Appendix Table C.16) showed significant 

separation of clusters in 11 of the 28 possible pairings.  
 

Geometric morphometrics: male 
 

A CVA of Falkland Island male hind wings showed that the first two CVs contributed 61% 

to the analysis (Figure 6.35).  The target shape of CV1 (40.4%) showed a larger discal 

cell, with the wing shape weighted away from the termen (landmarks 9 - 13) towards the 

tornus (landmarks 14 - 15). CV2 (22.8%) showed a proximal movement of the tornus 

landmarks 14 - 16.  
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Figure 6.35  CVA of Falkland Island male hind wings by site.  95% confidence ellipses of means are shown 

in the colour of their respective sites.  The warped outlines show, in blue, the target shape of the CV on each 
axis, compared with the mean shape, in orange. The first two CVs contributed 61% to the analysis.  

 

 
CVs 1 - 3 showed some clear separations of sites, with North Arm, Darwin, Roy Cove 

and the single sample from San Carlos at the extremes of target shapes. An analysis of 

Mahalanobis and Procrustes distances (Appendix Table C.17) showed significant 

separation of clusters in 11 of the 28 possible pairings.  
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6.3.7 Summaries of results 
 
 
(i) Traditional morphometric analysis of wings by sex and land mass 
 
Wing size - as forewing and hind wing length - provided the main contrasts between 

sexes and locations, with AR and r̂1 in forewings, and AR in hind wings, also showing 

significant variations (Table 6.10). 

 
Table 6.10  Summary of t-test comparisons of (a) forewing and (b) hind wing length, angle, AR and r̂1 . by 

land mass and sex. Comparisons are made, in pairs of rows with the same greyscale shading, between 

female and male in the Falklands and Latin America respectively, then between Falklands and Latin 
American females and males respectively. 

(a)  forewing 

 n length angle AR r̂1 

Falkland Islands: female 46      17.3 ***   35.6ns     2.95ns     0.53*** 

                      male 53 15.7 35.7  2.96 0.52 

Latin America:     female 30     19.1***   36.5ns    2.87ns  0.53* 
                            male 47 17.4 36.5  2.89 0.53 

female:    Falkland Islands 46     17.3***  35.6*     2.95**    0.53ns 

                Latin America  30 19.1 36.5  2.87 0.53 
male:       Falkland Islands 53     15.7***  35.7*     2.96**     0.52*** 

                Latin America  47 17.4 36.5  2.89 0.53 

 (b)  hind wing 

 n length angle AR r̂1 

Falkland Islands: female 46     10.1 *** ns     0.92*** ns 
                            male 53  8.8 ns 0.88 ns 

Latin America:     female 15     10.9*** ns   0.92* ns 

                            male 24 10.1 ns 0.88 ns 
female:    Falkland Islands 46     10.1*** ns ns ns 

                Latin America  15 10.9 ns ns ns 

male:       Falkland Islands 53       8.8*** ns ns ns 

                Latin America  24 10.1 ns ns ns 

significant contrasts are marked: * significant at p < 0.05; ** significant at p < 0.01; *** significant at 

p < 0.001. Contrasts shown to be non-significant at p < 0.05 are marked ns, if not explored after a non-

significant ANOVA, and with a superscript ns for non-significant contrasts in t-tests. 
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(ii) Site level analysis of wings by traditional and geometric morphometrics 

 
While sample size was, in most cases, small, the site level analyses in 6.3.3 and 6.3.6 

showed some significant contrasts, summarised in Table 6.11 and Table 6.12. 

 
Table 6.11 Summary of Falkland Island forewing and hind wing contrasts between sites.  Comparisons of 
forewings and hind wings are by both traditional and geometric morphometrics. Traditional morphometric 

results show sex, wing and the measurement used; geometric morphometrics show sex and wing.  

site BL DA FP NO RC SC SL SW  

BL - M: R 
F: r̂1 ns ns ns ns ns 

M: R 
F: r̂1 
M: r̂1 

 
 
 
 
 
 
 
 
 

traditional 
morphometrics 

DA M - F: r̂1 M: R ns ns F: r̂1 ns 

FP ns M 
M - F: r̂1 

M: r̂1 ns ns ns 
F: r̂1 
M: r̂1 

 

NO ns M 
F, M ns - F: r̂1 ns ns ns 

RC M 
F, M 

M 
M M F, M 

F, M - ns ns M: r̂1 
 

SC ns F ns ns ns - ns ns 

SL F F 
F ns F M F - M: r̂1 

 

SW F, M 
F, M 

F, M 
F, M 

F, M 
F, M 

F, M 
F, M 

F 
F, M 

F 
F, M 

F 
F, M - 

 
                                   geometric morphometrics 

BL = Bleaker; DA = Darwin; FP = Frying Pan; NO = North Arm; RC = Roy Cove; SC = San Carlos; SL = Sea 

Lion; SW = Shallow Bay. Forewing characters are in orange, hind wing in blue. F = female, M = male. 

Traditional morphometrics summarise contrasts significant at p < 0.05, Geometric morphometrics those with 
Mahalanobis distances < 0.001. Non-significant contrasts are marked ns. 
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Table 6.12 Summary of Latin American forewing contrasts between sites. Comparisons are by both 

traditional and geometric morphometrics. Traditional morphometric results show sex and the measurement 
used, geometric morphometrics show sex. 

site Bariloche Chubut Panguipulli Punta 
Arenas 

Rio 
McClelland 

 

Bariloche - ns M: R ns M: R 

traditional 
morphometrics 

Chubut ns - ns M: AR       M: R 
   M: AR 

Panguipulli ns F, M - ns ns 

Punta Arenas ns F, M ns -       M: R 
   M: AR 

Rio McClelland M F, M M F, M - 

F = female, M = male. Traditional morphometrics summarise contrasts significant at p < 0.05, Geometric 

morphometrics those with Mahalanobis distances < 0.001. Non-significant contrasts are marked ns. 

 
6.3.8 Effect of elevation and latitude on forewings 
 
(i) Length 

 
Linear regressions showed that Latin American male forewings were shorter at higher 

elevations, p = 0.013, with a medium effect size, ηp
2 = 0.134 (Figure 6.36a, Appendix 

Table C.19), with no clear difference in length attributable to latitude (p = 0.435) (Figure 

6.36b). Elevation, latitude or the interaction of both had no significant effect on Latin 

American female forewing length (Appendix Table C.18).  

 

● — female     ● — male 
Figure 6.36  effect on forewing length of (a) elevation and (b) latitude in Latin American Y. cytheris.  The 

grey areas represent the standard error of the fitted regression line after loess smoothing.  
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(ii) Aspect ratio (AR) 
 
Linear regressions showed that forewing aspect ratios for both females (p = 0.027, 

ηp
2 = 0.174) and males (p = 0.003, ηp

2 = 0.190) were significantly higher, with a large 

effect size, at higher elevations (Figure 6.37a, Appendix Table C.20). The effect of 

latitude was not significant at p < 0.05 for either sex (Figure 6.37b, and C.21).  

 

● — female     ● — male 
Figure 6.37  effect on forewing AR of (a) elevation and (b) latitude in Latin American Y. cytheris.  The grey 

areas represent the standard error of the fitted regression line after loess smoothing.  

(iii) First moment of area (r̂1)   
 
Linear regressions showed that r̂1, in male forewings was significantly higher, albeit with 

a medium effect size, at higher elevations (p = 0.032, ηp
2 = 0.032). Female forewing r̂1 

differences were not significant at p < 0.05 (Figure 6.38a, Appendix Table C.22) The 

effect of latitude was not significant at p < 0.05 for either sex (Figure 6.38b, Appendix 

Table C.23).  

 

 
● — female     ● — male 

Figure 6.38  effect on forewing r̂1 of (a) elevation and (b) latitude in Latin American Y. cytheris. The grey 

areas represent the standard error of the fitted regression line after loess smoothing.  
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6.3.9 Effect of wind speed on forewings  
 
Linear regressions for length, AR and r̂1 did not show any significant effects of wind 

speed at the butterflies’ flying height at the four Falkland Island sites (Appendix Table 

C.24). Plots of the regressions (Figure 6.39), however, suggested further exploration 

with a larger data set might clarify the extent of an apparent inverse relationship between 

wind speed and forewing length. 

 

 

● — female     ● — male 
Figure 6.39 effect on (a) forewing length, (b) AR, and (c) r̂1  of wind speed on Y. cytheris  at the four Falkland 
Island study sites. The grey areas represent the standard error of the fitted regression line after loess 

smoothing.   
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6.4 Discussion 
 
6.4.1 Wing variation by sex and population 
 
(i) Findings 
Female forewings and hind wings were longer than male, with very large effect sizes. 

Female forewing r̂1 and hind wing AR were higher than male. Falkland Island butterflies 

were smaller than Latin American, with a higher forewing AR. The Falklands male had a 

lower r̂1 than the Latin American.  

 

Variation was also apparent in the geometric morphometric analyses.  Female forewings 

were proportionally narrower, with clear scalloping between the second medial and 

second cubital veins, although AR did not vary significantly between the sexes. Female 

hind wings narrowed towards the proximal end, with a marked lengthening in the second 

medial, producing a clear angle between the distal end and the distal ends of the first 

and third medials. This narrowing and lengthening was reflected by their higher AR. Latin 

American butterflies showed a more scalloped shape for both sexes in the forewing. 

Hindwing shapes reflected the difference in AR, with the Latin American population being 

narrower and longer. 

 
(ii) Discussion 
 
The larger wings of the female are consistent with sexual size dimorphism (Wiklund and 

Forsberg 1991, Teder and Tammaru 2005). Higher r̂1  and AR are consistent with slow, 

deliberate flight in seeking out oviposition locations, although the contrast between the 

sexes would be expected to be greater if the male adopted a perching strategy in seeking 

a mate (Dennis and Shreeve 1988, Jugovic et al. 2018). This was not the case in the 

Falklands, where no evidence was found of male territoriality, and it was not found 

possible to distinguish between the sexes by flight. 

 

The contrast between shorter Falkland Islands forewings and hind wings, both female 

and male, than their Latin American counterparts provides some support for island 

species having shorter wings than mainland (Kotze 2008, Dennis and Hardy 2018). In 

the absence of comparative Latin American data it is not possible to establish whether  

the Falklands population has smaller wings because it is more sedentary (Sekar 2012) 

or because of a response to high winds (Dennis and Shreeve 1989, Dennis and Hardy 

2018). The shorter forewings of Y. cytheris populations on the windiest islands, Bleaker 
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and Sea Lion, suggested (albeit with a small sample size) that wind might be a factor, 

particularly as it was linked in both cases to a low r̂1. The response to wind of claw shape 

in these populations is considered further in Chapter 7. 

 
Y. cytheris does not have a distinctive wing pattern, in the sense that one pattern element 

is prominent, either for mimicry or sexual signalling, therefore wing shape is not affected 

by the high, possibly exaggerated, r̂1  and AR which those traits would entail (Outomuro 

et al. 2013). No predation of butterflies was seen on the field visits, therefore no evidence 

was found of Y. cytheris's escape and evasion tactics which might be a factor in wing 

shape (Corcoran and Conner 2016). The ratio of hind wing area to total wing area was 

also consistent across sex and population, which did not suggest that any particular 

combination of the two might be subject to increased predation (Jantzen and Eisner 

2008). 

 
6.4.2 Wing variation at site level 
 
(i) Findings 
 
CVAs showed distinctive and significant groupings of sites in the Falklands and Latin 

America. In the Falklands, there was generally clear separation for male and female, 

forewing and hind wing, for Darwin, North Arm, Shallow Bay and Roy Cove, with Bleaker 

and the Frying Pan showing wider confidence ellipses. In Latin America, all CVA 

groupings for forewings were clearly separated, with the exception of Chubut and 

Panguipulli for females, and Chubut and Punta Arenas for males.  

 
(ii) Discussion 
 

Differentiation between sites was hampered by low sample size, but CVAs showed 

significant Mahalanobis distances between most. Traditional morphometrics proved to 

be less helpful in distinguishing between populations, although a number of Falkland 

sites, notably Shallow Bay, could be differentiated from others by wing length and r̂1, 

while in Latin America Rio McClelland was notable for male forewings which were long 

and had high aspect ratios. It is difficult to reach any conclusions, however tentative, 

which relate morphological development in wings to environmental factors at the site 

level. Because of the conservation listing of the butterfly, only a few samples could be 

taken from the study sites.  Most specimens were from museums, with no clarity about 

where samples were taken, or the habitat in which they were caught.  Even in the case 
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of the Falklands, the sites described as Darwin, San Carlos and Shallow Bay could cover 

a variety of different habitats. 

 
6.4.3 Wing variation attributable to environmental factors 
 
(i) Findings 
 
Latin American male wings varied in response to elevation and latitude. Males had 

shorter wings, higher AR and higher r̂1 at higher elevations and latitudes. Linear 

regression showed elevation to be the most significant factor, based on ηp
2 values.  For 

females, only AR showed a significant effect, being higher at higher elevations. 

 
(ii) Discussion 
 

Analysis of morphometric response to wind was hampered by the small data set. Linear 

regressions showed no significant effects, although fitted regression lines on scatter 

plots showed potential negative correlation between wing size and wind speed at the 

butterflies' patrolling height in the Falklands, and positive correlation between r̂1 and wind 

speed. Shorter wings, with resultant lower dispersal power, might be expected from 

resident populations in windy areas. r̂1 is less clear: higher r̂1  is associated with dispersal, 

but for other factors, such as temperature, the evidence is contradictory.   

 
6.4.4 Conservation implications 
 
The significant size difference in wing size, of both sexes, between Falklands and Latin 

American populations is of potential importance in any restoration efforts. The evidence 

from Bleaker and Sea Lion suggests small wing size might be a response to strong wind; 

therefore a degree of caution in any reintroduction should be exercised, in accordance 

with IUCN guidelines (IUCN Wildlife Health Specialist Group 2013). Aardema et al. 

(2011) made clear the importance of ensuring that reintroductions to augment a declining 

population, or replace an extinct one, needed to take into account adaptations to local 

conditions. Schultz et al. (2009), in considering conservation measures for the Puget 

blue Icaricia icarioides blackmorei, noted that specialisation was common among 

endangered butterflies and often hindered restoration efforts. The nature of adaptation 

is important in this context: it is not possible, with the present data, to show whether the 

variation in wing shape is genetic or an example of phenotypic plasticity (Fusco and 

Minelli 2010, Kelly et al. 2012). As a precaution, in case of an urgent need of 

reintroduction, a Falklands donor population should be considered first. A captive 
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breeding programme for Falkland butterflies, to ascertain whether, in windless 

conditions, their wings grow closer in length to the Latin American, would be informative. 

 
6.4.5 Methodology 
 
Wing length has long been used as a proxy for size (Dudley 1990, Kingsolver 1999, 

Sullivan and Miller 2007, Sekar 2012), particularly in investigating mobility and migration. 

As, however, Dennis and Hardy (2018) observed, in the context of establishing migration 

capacity and colonisation ability, comparisons of wing span were not enough. Suitable 

metrics for further work on wings were investigated in this chapter, with the exception of 

wing loading, for which sample size was too low. 

 

Wing length was retained as it was an element of the derived metrics AR and r̂1 and as 

a readily understood way of comparing size.  Length and width of wing base were 

strongly correlated and so were dropped.  Wing angle and area were correlated with, but 

less informative than, AR and r̂1. The former were therefore dropped, and the latter 

retained. Traditional morphometrics focused on these three measurements.  

Comparative studies, important in exploring the underlying forces behind wing shape, 

were hampered by lack of agreement on how AR and r̂1 should be calculated, and by 

lack of clarity on landmarks used (Van Hook et al. 2012). The metrics used in this chapter 

were selected as being readily replicable and straightforward to analyse, and are 

recommended for future investigations. 
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Chapter 7: Claw shape and size: variation and wind 
 

7.1 Introduction 
 
Duplouy and Hanski (2013), addressing the question of how the Glanville fritillary, 

Melitaea cinxia, survived on the windswept Baltic island of Pikku-Tytärsaari, found its 

claws were more sharply curved, and provided a better grip, than those on more 

sheltered mainland sites. To assess the extent to which claw shape might similarly 

answer Vallentin’s question (6.1), Yramea cytheris claws from Falkland Island sites with 

varying mean wind speeds were compared with each other, and then compared with the 

contrasts provided by Duplouy and Hanski's M. cinxia data set. While claws from seven 

specimens from the Magallanes region of Chile were used for morphometric comparison 

between Falkland and Latin American specimens of Y. cytheris, the only data on their 

origins were place names. These were inadequate to link them to any usable wind data.  

 

7.1.1 Claw studies: function, shape and size 

 
Claw studies  across taxa have sought to identify and define shapes associated with a 

range of activities such as climbing, grooming, extracting larvae from tree cavities and 

catching prey (Cartmill 1974, Milliken et al. 1991, Soligo and Müller 1999, Zani 2000, 

Birn-Jeffery et al. 2012, Fowler et al. 2009).  The potential predictive ability of these 

studies has been used in palaeobiology, where bird claws were analysed to determine 

whether Archaeopteryx was a ground or tree dweller (Peters and Görgner 1992, 

Feduccia 1993), and mammal claws to determine the functions of claws in 

Therizinosaurus (Lautenschlager 2014). 

 

A way of characterising claw shape was necessary to enable comparisons. Early studies 

were verbally rather than mathematically descriptive: thus Miller, in a paper delivered in 

1916 (Brakefield and Frankino 2009), contrasted the "strongly curved claw" of a climbing 

bird with the "relatively straight claw" of a non-climbing bird.  The question became how 

best to describe and define curvature, ideally by a single angle.  Approaches included 

measuring the curve as part of a spiral (Richardson 1942); as part of a parabola (Peters 

and Görgner 1992), and, most simply, as the arc described by the inner edge of the claw, 

occasionally supplemented with a comparable measurement of the dorsal curve 

(Cartmill 1974, Zani 2000,  Csermely and Rossi, 2006, Fowler et al. 2009, Burnham et 

al 2011, Csermely et al 2012). This latter approach was formalised by Feduccia (1993), 
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most elegantly defined by Pike and Maitland (2004) as the angle subtended by radii 

extending to each end of the arc described by the inner edge of the claw. 

 

Tinius and Russell (2017) compared the various approaches, finding a modified version 

of Feduccia's formula (Zani 2000) most powerful in describing the claw curve. They 

nevertheless concluded that the traditional morphometric approach, definable as the 

direct measurement of linear distance and angles (Adams et al. 2004, Mitteroecker and 

Gunz 2009), was not adequate for prediction.  They advocated instead a geometric 

morphometric approach, analysing the relationship between sets of morphological 

landmarks (Rohlf and Marcus 1993); for a review, see Adams et al. (2013).  

 

7.1.2 Insect claws: structure and function 

 
The main areas of focus for insect claw studies have been predation and substrate grip.  

Predation has generally involved the development of foreclaws to aid seizing and holding 

prey in e.g. scorpion flies (Mecoptera)  (Bornemissza  1966); water bugs (Nepomorpha) 

(Gorb 1995); the beetle Philonthus marginatus  (Betz and Mumm 2001); and water bugs 

and mantises (Mantodea)  (Petie and Muller 2007). 

 

Substrate grip can involve the entire tarsal structure, including the arolium.  Bräuer et al 

(2017), investigating the attachment of honey bees and greenbottle flies to petals when 

pollinating, noted the role of adhesive pads on the pretarsi of both study species; Gladun 

and Gorb (2007), considering insect attachment to thin stems from ten species across a 

range of orders (Orthoptera, Heteroptera, Coleoptera and Hymenoptera), again noted 

the varying use of adhesive pads as well as the flexibility of the arolium and flexion of 

tarsal claws. Zurek et al. (2017), investigating the beetle Gastrophysa viridula focused 

on the role of the arolium and adhesion, while Pattrick et al. (2018), investigating 

cockroaches, a stick insect and a leaf cutter ant, looked principally at claw sharpness, 

raising the question of the interrelation between claw sharpness and other factors in 

gripping, and the consequent effects of claw morphology on habitat or niche selection. 

Leaf surfaces, for example, affected tenacity for the bug Dicyphus errans, which 

demonstrated a better grip on hairy leaf surfaces than on smooth or waxy. 

 

There have been few studies of form and function in claws of Lepidoptera.  As butterflies 

and moths are not predatory, claws are likely to assist in the range of functions requiring 

substrate grip: as an aid to locomotion, for example the female moving on a leaf to 

identify an oviposition site, or either sex moving into the plant substrate for protection; 
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for basking, whether on plant, rock, gravel or sand substrate; or for attachment to plant 

substrate while nectaring or mating. The claw itself appears to be the provider of grip. 

Betz and Kölsch (2004) found no evidence of adhesive mechanisms in lepidopteral tarsal 

structures, although Al Bitar et al. (2009), in a study of the codling moth Cydia pomonella, 

found that its smooth and flexible arolium helped provide grip under experimental 

conditions. Duplouy and Hanski (2013) were the first to try to quantify grip by moving a 

source of air - in this case a hairdryer on the cold setting - towards the butterfly, recording 

when its grip failed.  They showed that butterflies on a windswept island were able to 

grip longer than those from more sheltered locations and observed that their claws were 

more curved. 

 
7.1.3 Research questions    
 

RQ1: what are the key features of the claw morphology of Y. cytheris, and do they have 

implications for wider morphological analysis of butterflies? 

RQ2: to what extent does claw morphology differ between populations of Y. cytheris?  

RQ3: does Y. cytheris claw morphology support the hypothesis that claws are more 

curved in locations with high winds? 

RQ4: what are the implications of claw morphology for conservation management of Y. 

cytheris?  
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7.2 Materials and methods 
 

7.2.1 Study populations 
 
The principal analyses were carried out on samples from the four Falkland Islands study 

sites: Bleaker Island, the Frying Pan, Roy Cove and Sea Lion Island, with additional 

material from Latin America (Table 7.1,Table 7.2, Figure 7.1). 

 

 
Figure 7.1 Falkland Islands study sites relative to Latin America. Punta Arenas, the source of claws used for 

the broad comparison of the continental samples of Yramea cytheris with the insular, is approximately 600 
km from the nearest part of the Falklands archipelago; the shortest distance between Latin America (Isla de 

los Estados, Argentina) and the Falkland Islands is approximately 400 km.  

 

7.2.2 Claw data sets 
 

(i) Yramea cytheris 

 
The Falkland Islands Government’s Conservation Committee allowed eight butterflies to 

be taken, with no more than two from an individual site, during the first field visit (January-

February 2016), and twelve, again with no more than two from a site, during the second 

(December 2016- February 2017) and third (January -February 2018) visits respectively. 

The committee gave permission for the removal of one leg from any individual butterfly 
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during the second and third visits to enable analysis of claw curvature and for 

subsequent DNA work.  

 

Sample claws were also taken from five Latin American specimens in the British Museum 

of Natural History, London (BMNH).  These were representative of the Magallanes region 

of Chile, centred on Punta Arenas, the nearest continental populations to the Falkland 

Islands. Two further specimens from Punta Arenas were kindly supplied by Alvaro 

Zúñiga-Reinoso from his own collection.  A field visit to Punta Arenas to try to capture 

further samples, 3-8 February 2018, was unsuccessful. The combined data set 

comprised 112 claws (Table 7.1).  

 
Table 7.1. Combined data set of Y. cytheris claws by population, sex and leg pair. Falkland Island samples 
from Bleaker Island, the Frying Pan, Roy Cove and Sea Lion Island were collected during the 2016-2018 

field visits; North Arm and San Carlos specimens were from the BMNH. Punta Arenas (Chile) and other 

Magallanes specimens were from BMNH or were provided by Alvaro Zúñiga-Reinoso. 

 female  male   
site hind middle  hind middle  total 
Bleaker   7 12    3   7    29 
Darwin   0   0    1   1      2 
Frying Pan   4   6    5 10    25 
North Arm   1   1    1   2      5 
Roy Cove   6   7    4   7    24 
San Carlos   1   1    0   0      2 
Sea Lion   3   3    2   2    10 
Punta Arenas   2   3    1   2      8 
other Magallanes   2   2    1   2      7 
total 26 35  18 33  112 

 

(ii) Comparative data: Melitaea cinxia  
 
Duplouy and Hanski's (2013) data set (Table 7.2) comprised claw surface area and 

width, together with chord length and curvature (the internal claw angle), both taken from 

the ventral side. This enabled a comparison of responses of Y. cytheris and M. cinxia 

claw shapes to site wind speeds.  

 
Table 7.2.  M. Cinxia samples, listed by site, in supplementary material to Duplouy and Hanski (2013). No 
differentiation was made between hind and middle leg pairs, or distal and proximal claws. 

site female male total 
Åland  22  27 49 
Pikku -Tytärsaari  21  21 42 
Saaremaa  11 10 21 
Uppland    7   8 15 
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7.2.3 Meteorological data sets 
 

(i) Falkland Islands  
 

Wind direction and speed data were taken from the WMO weather stations nearest to 

each of the four study sites (Table 7.3, Figure 7.2). The exception was Bleaker Island, 

which has a non-WMO weather station, a MetPak II (Gill Instruments, Lymington, Hants, 

UK) using PC200W software (Campbell Scientific, UT, USA). WMO weather station data 

were accessed from the OGIMET website (Valor and López 2017). Bleaker data were 

supplied by the landowner, Mike Rendell.  

 

Data covered Y. cytheris's flying season, taken as the four summer months of November 

to February, covering the period from November 2013 to February 2018, with the 

exception of Mount Byron for which only the period from November 2014 to February 

2018 was available. 

 
Figure 7.2 Map of the Falkland Islands showing the four Y. cytheris study sites and their associated weather 

stations. Meteorological data for the Frying Pan were taken from Mount Pleasant; Roy Cove data were taken 
from Mount Byron; Sea Lion and Bleaker Islands had their own weather stations, which were adjacent to 

the study sites. 

 

Local wind and other environmental readings were taken during the three field visits with 

a Kestrel 4500 Pocket Weather Tracker (Nielsen-Kellerman, Boothwyn, PA, USA). There 

were no detailed location records for specimens from Punta Arenas or the surrounding 

Magallanes Region. As that meant that elevation and the distance between station and 

site could not be calculated, and that therefore data would be too coarse-grained, no 

wind data were used from the Punta Arenas weather station (WMO station ID 85934). 
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(ii) Baltic sites 
  

Duplouy and Hanski (2013) correlated their claw measurement data with June wind 

speeds from Baltic weather stations, contrasting the mainland locations, Jomala 

Jomalaby and Kumlinge, with the isolated island sites of Lemland Nyhamn, Loviisa 

Orrengrund and Kotka Haapasaari.  To enable comparisons to be made with Falkland 

Islands, data sets were drawn up from two of those stations. Jomala Jomalaby (WMO 

ID 02741) on Åland, represented the mainland and large island sites, and Kotka 

Haapasaari (WMO ID 02967), a small island, represented Pikku-Tytärsaari, which lies 

54 km to its south. Data sets covered the period May to August over the five years from 

2014 to 2018. 

 
Table 7.3.  Falkland Island sites for which Y. cytheris claw data were available, together with the nearest 
weather station. Weather station IDs are represented by WMO indices.  

site weather station 
station 

ID 

station location elevation (m) station 

/site (km) 

(km) 

latitude longitude station site 

Bleaker Bleaker NA  -52.20912  -58.85009   15 10   0.2 
Frying Pan Mount Pleasant 88889  -51.82000  -58.44806   74 10   7.9 
Roy Cove Mount Byron 88870  -51.42389  -60.56389 480 50 18.7 
Sea Lion Sea Lion 88897  -52.43333  -59.08333   15 10   0.5 
Åland Jomala Jomalaby 02741   60.17830   19.98640   14 NA  NA 
P.Tytärsaari Kotka Haapasaari 02967   60.28640   27.18500     4    5 54.5 

 

(iii) The relationship between weather station and site data 
 

The effect of wind gradient, the variation of wind speed with elevation, has to be taken 

into account when applying weather station data to study sites. A particular concern for 

Falkland sites was the 430m difference in elevation between Roy Cove and Mount Byron 

(Table 7.3) There is no wind speed equivalent of the lapse rate adjustment in 

temperature based on the International Civil Aviation Organization's standard 

atmosphere (International Civil Aviation Organization 1993). While logarithmic models 

have been used to model wind gradient over the sea in the South Atlantic (Sachs 2004, 

Wakefield 2009), they become more difficult to develop for land-based sites as wind 

shear is affected by terrain (Ray et al. 2006).  

 

To investigate further the difference in wind speed between Roy Cove and Mount Byron 

data were recorded hourly using the Kestrel 4500 set up at Roy Cove from 1 to 13 and 

22 to 26 January 2017.  The data were compared with hourly data from Mount Byron. It 
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was not possible to make a similar comparison between Frying Pan and Mount Pleasant, 

with a 64m difference, because of the risk of leaving the Kestrel unattended in an area 

of high public footfall. 

 

(iv) Meteorological data sets: study sites 
 

Wind speed measurements were taken at 150cm, approximating to the maximum 

observed flying height above ground level of Y. cytheris; 30cm, approximating to the 

observed patrolling height; and 3 cm, approximating to the mean height of oviposition 

locations.  All measurements were taken when the wind was blowing consistently from 

the prevailing direction.  These were the same measurements used in habitat analysis 

(4.2.3, 4.3.2) as the butterfly's flying area closely matched oviposition locations (3.2.3, 

3.3.3). 

 

An initial reading was taken at each study site, from a high central point with no 

topographic obstructions. The Kestrel 4500 was held at shoulder height until the 

measurement of mean wind speed stabilised. This was recorded as the site speed. The 

150cm, 30 cm and 3cm measurements were taken at larval host-plant locations, and 

measurements were recorded as a proportion of the site speed.  To enable comparisons 

between sites and locations, the data set was rebased to a site measurement of 8.11 

ms-1, the mean wind speed of the flying periods 2013-2018. Location proportions were 

applied to the normalised site measurement to produce a data set of derived wind 

speeds, assuming a linear relationship between site and location measurements.   

 

7.2.4 Claw measurement 

 
Both traditional and geometric morphometrics were used in this chapter. Traditional 

morphometrics enabled comparison between Y. cytheris and Duplouy and Hanski's 

(2013) M. cinxia data, for which no geometric data were available. They also allowed 

comparison by size, by definition excluded from geometric morphometrics, to be made. 

 

(i) Image acquisition 
 

To minimise the possibility of measurement error, all specimens were photographed, 

under identical conditions, with the built-in camera of a Keyence VHX-600 microscope 
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at 200x magnification. Images were saved as lossless TIFF files. The process is 

described in more detail at Appendix D.1   

 

(ii) Image analysis: traditional morphometrics 
 

Three points were fixed on each claw: the tip, and the points on the dorsal and ventral 

curves at their tarsal end where there was a slight outward inflection in the curve (Figure 

7.3). These subsequently served as the fixed landmarks in geometric morphometric 

analysis. 

 

Lines were constructed between the fixed points, envisaged as chords of a circle. These 

are shown in Figure 7.3 as AB, the ventral chord, and BE, the dorsal. Chord length 

served as proxy for claw size. The angles which subtended these chords were then 

constructed following Feduccia (1993). These are shown as angles ACB (ventral) and 

EFB (dorsal). Duplouy and Hanski (2013) used mathematical variants of these, ADB 

EGB where, if Feduccia's angle is aº and Duplouy and Hanski's bº, then b=360-2a. 

Feduccia's angle was used in this chapter, and Duplouy and Hanski's converted 

accordingly. 

 

The process is described in more detail at Appendix D.2.1. 

 

  
Figure 7.3. Methods of measuring ventral and dorsal angles and chords. (a) shows the ventral angle ACB 

and chord AB, and (b) the dorsal angle EFB and chord EB. The points A, B and E are the fixed landmarks 

used for geometric morphometric analysis. The angle subtending the ventral chord, the basis of Feduccia's 
(1993) shape analysis, is at ACB. The angle used by Duplouy and Hanski  (2013) is at ADB. Photographs 

by the author 

a b
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(iii) Image analysis: geometric morphometrics 
 
The fixed landmarks used in traditional morphometrics (Figure 7.3) formed the basis for 

geometric morphometric analysis (Figure 7.4). No points on the claw conformed to 

Bookstein’s (1991) preferred type 1 landmarks, that is the discrete juxtaposition of 

tissues (see also Zelditch et al. 2012). The three landmarks selected conformed with his 

type 2, locally defined, and part of geometric constructs, and served to anchor the shape 

of the claw. 

 
Figure 7.4.  Placement of landmarks on the claw. The large red points represent the fixed landmarks. The 

sliding landmarks applied to the dorsal curve, after resampling, are shown as small red points. The blue line 

without points follows the resampled sliding landmarks on the ventral curve. Photograph by the author. 

Sliding landmarks were then added between the fixed landmarks of their respective 

tarsal junctions and the claw tip. The curve was then resampled, and the number of 

landmarks reduced to 30 equidistant from each other.  Each data set was saved as a 

single set of landmarks. These were subsequently handled as if they were permanent 

landmarks (as in Tinius and Russell 2017), and combined into data sets of 59 landmarks 

(those at the tip from each data set being identical) to enable analysis of the overall 

shape of the claw. The process is described in more detail at Appendix D.2.2. 

 

7.2.5 Y. cytheris claw morphology 

 
RQs 2-4 (7.1.3) require analysis of study populations, in which, to avoid the pitfall of 

pseudoreplication, sensu Hurlbert (2013), the single experimental unit is the individual 

butterfly.  It is therefore necessary to determine whether an individual can be represented 

by any one of its claws, the approach of Duplouy and Hanski (2013), or whether there 
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are significant differences, relevant to RQ1, which require subsetting. In studying 

populations it is also necessary to test for significant sexual dimorphism. 

 
Both sexes of Y. cytheris have four pairs of claws, two on each leg, on the hind and 

middle leg pairs. The front leg pair are much reduced, and clawless, hence the 

Nymphalidae's  informal name of brush-footed butterflies (Ford 1957, Wolfe et al. 2011, 

Moreira et al. 2017). The claws on the pretarsus of the hind and middle legs of Y. cytheris 

are separated by the arolium (Figure 7.5), from which they slightly curve outwards.  

 

Each claw pair comprises a distal claw, further from the butterfly's body on a given 

pretarsus, and a proximal, nearer to the body.  Given that the middle leg pair points 

forwards and the rear backwards, it can be seen that, absent any information other than 

its curvature, the top claw in Figure 7.5 could be the right middle proximal (looking at the 

butterfly from the dorsal side), the left middle distal, the right hind distal or the left hind 

proximal.  

 

Analysis of Y. cytheris's claw morphology explored differences attributable to sex, to leg 

pair and to position on the tarsus recognising that different claws might have different 

functions, for example in basking, feeding or mating, and that shapes might differ 

accordingly (Burnham et al. 2011). It did not consider bilateral symmetry as the sample 

size was inadequate. 

 

 
Figure 7.5  Structure of the pretarsus of Y. cytheris showing the arolium and the claws and claw sheaths 

either side of it. Photographed with the built-in camera of a Keyence VHX-600 microscope, using focus 
stacking. Photograph by the author. 

Pretarsus

Claw Arolium

Claw sheath
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To assess the various contrasts between claws a data subset was drawn up from those 

Falkland Island butterflies for which both distal and proximal claws in a tarsal pair were 

available. This comprised samples from 46 leg pairs: 25 female (11 hind, 14 middle) and 

21 male (6 hind, 15 middle). It was used to test the effect of the independent variables 

of tarsal claw pair, leg pair and sex on the dependent variables of, respectively, chord 

(for size) and angle (for shape).   

 

7.2.6 Comparative data: M. cinxia in the Baltic 
 

Duplouy and Hanski's (2013) experimental approach to analysing M. cinxia's ability to 

grip (7.1.2) was not suitable for Y. cytheris for practical as well as legal reasons. 

Comparisons between Y. cytheris and M. cinxia were therefore restricted to claw data. 

M. cinxia claw angles and chords were first compared by site, then by Duplouy and 

Hanski's groupings of small and large islands. Y. cytheris data were grouped in the same 

way, to assess whether they supported a similar division. The small number of Latin 

American samples were considered at the same time. This helped address RQ2: to what 

extent does claw morphology differ between populations of Y. cytheris?  

 

7.2.7 Claw shape, landscape and wind 

 
The comparative data from the Baltic (Duplouy and Hanski 2013) and the Falklands were 

tested for correlation with site wind speeds. Wind speeds at three heights at oviposition 

sites were also compared for the Falklands. This helped address RQ3: does Y. cytheris 

claw morphology support the hypothesis that claws are more curved in locations with 

high winds? 

 
7.2.8 Data analysis 

 
Measurement error was assessed by calculating the intra-class correlation coefficient 

(Lessells and Boag 1987, Bailey and Byrnes 1990) in the R package ICC (Wolak et al. 

2012). The scores were not low enough to give concerns about repeatability. Details are 

given in Appendix D.3.  

 

TIFF images for angle and chord measurement were processed in ImageJ using the FIJI 

platform (Schindelin et al. 2012, Schneider et al. 2012), with the aid of the macro bissect 

[sic] (Burri 2016). 
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TIFF images for geometric morphometrics were processed in the tps software suite 

(Rohlf 2010, 2015). Initial grouping and importing were done in tpsUtil.  tpsDig2 was then 

used to produce landmark files. Subsequent processing of landmark files through 

Procrustes fits (Mitteroecker and Gunz 2009), the production of covariance matrices, 

PCAs  and CVAs was undertaken in MorphoJ (Klingenberg 2011, 2013). 

 

The majority of calculations were done in R (R Core Team 2018). The tidyverse package, 

in particular ggplot2 and dplyer (Wickham 2017), provided the principal resource for 

visualisations, supplemented through github (Makiyama 2018).  ANOVAs, t-tests, 

correlations and regressions were carried out using elements of car (Fox and Weisberg 

2018); corrplot (Wei and Simko 2017); effsize (Torchiano 2017); EnvStats (Millard 2013); 

Hmisc (Harrell 2019); lmerTest (Kuznetsova et al. 2017); lsr (Navarro 2015); multcomp 

and PerformanceAnalytics (Hothorn et al. 2016);  and Psych (Revelle 2018). 

 
All mapping was done in QGIS 3.4  (QGIS Development Team 2018). 
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7.3 Results 
 
7.3.1 Y. cytheris claw morphology: chord length 
 

There were significant contrasts in dorsal and ventral chord length between leg pairs, 

sexes and claw positions on the tarsus (Figure 7.6). As Shapiro-Wilk and Levene's tests 

showed no violation of the assumption of normality or unequal variances, these were 

investigated through three-way ANOVAs, with only two-way interactions tested, and 

dorsal and ventral chord lengths (Figure 7.3) considered separately.  

 

 

 
Figure 7.6  Comparison of (a) dorsal and (b) ventral chord length of Y. cytheris claws by leg pair, sex and 

tarsal position. Numbers in brackets refer to distal and proximal claws respectively. There were equal 
numbers of distal and proximal claws for each combination of claw pair and sex. The orange bars represent 

the 95% CI.  Note the differing y-axis values. 

(i) Dorsal chords 
 

Female dorsal chords were significantly longer than the male, with a large effect size 

(F = 21.07, p < 0.001, ηp
2 = 0.212); the proximal claw dorsal chord was significantly 

longer than the distal, though with only a medium effect size (F = 9.61, p = 0.003, 

ηp
2 = 0.1).  There was no significant difference in length attributable to claw pair (F = 

2.43, p = 0.122, ηp
2 = 0.028) (Figure 7.6 (a), Appendix Table D.1 (a)). 

 

(ii) Ventral chords 
 

The patterns for ventral chords were similar to those for dorsal chords, although the 

effect size was, in all cases, small. Female ventral chords were significantly longer than 

male, (F = 5.13, p = 0.026, ηp
2 = 0.074); the proximal claw ventral chord was significantly 
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longer than the distal, (F = 5.04, p = 0.027, ηp
2 = 0.056) and again there was no significant 

difference in length attributable to claw pair (F = 4.82, p = 0.031, ηp
2 = 0.054) (Appendix 

Table D.2 (b), Figure 7.6(b)). 
 

(iii) Correlation between chord length and forewing length  
 
The simplest explanation for the variation between male and female claw length - that 

bigger butterflies have bigger claws - was tested using forewing length (6.3.1(ii)) as proxy 

for butterfly size (Dudley 1990, Kingsolver 1999, Sullivan and Miller 2007). Female Y. 

cytheris forewings, (M = 17.77, SD = 1.38) were longer than male (M = 16.45, SD = 1.4), 

t(138) = 5.56, p < 0.001, 95% CI [0.85, 1.79], d = 0.94.  Forewing length for both sexes 

was plotted against chord length to investigate any isometric relationship (Figure 7.7).   

 

 
Figure 7.7 Correlation between forewing length and chord length. Forewing length was compared with the 
lengths of: (a) hind dorsal chord; (b) middle dorsal chord; (c) hind ventral chord; and (d) middle ventral chord 

for both females and males. 

 
A Spearman rank order test showed forewing length was moderately correlated with 

ventral chords for both the hind leg pairs (ρ = 0.57, S = 988, p = 0.004), and the middle 

(ρ = 0.45, S = 1438, p = 0.026); and with dorsal chords for both the hind leg pairs 

(ρ = 0.66, S = 682, p < 0.001) and the middle (ρ = 0.52, S = 1098, p = 0.01). This 
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suggested that chord length was correlated with butterfly size, as represented by 

forewing length, with no evidence that female claws were larger for the butterfly's size 

than male. 

 
(iv) Practical implications for later analyses 
 

Contrasts showing a significance at p < 0.05 suggested that any chord data should be 

subsetted by: sex (dorsal and ventral chords); tarsal pair (middle claw pair, dorsal and 

ventral chords, although middle female could be pooled); and leg pair (ventral chord, 

although the effect size was small). 

 

The correlation between chord length and forewing size suggested that chord length 

could also be used as a proxy for butterfly size. In this case, however, the data set was 

small, and the need to subset for the female/male contrast diminished already low 

statistical power beyond utility. Chord length was therefore not considered further in 

addressing Falkland Island study sites.  It was, however, used in comparisons with the 

M. cinxia data set in Duplouy and Hanski (2013), (7.3.5 (ii)) where no distinction was 

made between claw positions. 

 

7.3.2  Y. cytheris claw morphology: angle 
 

Visualisation of dorsal and ventral angles by leg pair, sex and claw position on the tarsus 

(Figure 7.8) suggested there were significant contrasts. Levene’s tests enabled 

homogeneity of variances to be assumed. A Shapiro-Wilk test showed a violation of the 

assumption of normality for the ventral angle (W = 0.971, p = 0.038).  Mardia's tests 

subsequently measured skewness for the ventral angle at -0.59 and kurtosis at 0.028, 

which were moderate. As ANOVAs are robust to moderate skewness and kurtosis (Glass 

et al. 1972, Spencer et al. 2017), three-way ANOVAs were used in the same way as for 

chords.  
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Figure 7.8  Comparison of (a) dorsal and (b) ventral claw angles by leg pair, sex and tarsal position. Numbers 

in brackets refer to distal and proximal claws respectively. There were equal numbers of distal and proximal 
claws for each combination of claw pair and sex. The orange bars represent the 95% CI.  Note the differing 

y-axis values. 

 

(i) Dorsal angle  
Hind claw dorsal angles were significantly greater than middle, with a large effect size 

(p < 0.001, ηp
2 = 0.27). There was no significant difference in angle attributable to sex or 

claw position (Appendix Table D.2 (a)). This suggested that hind and middle claws 

should be treated separately in any subsequent analysis of dorsal angles. 

 

(ii) Ventral angle 
Hind claw ventral angles were, like dorsal angles, significantly greater than middle, with 

a large effect size (p < 0.001, ηp
2 = 0.145). Unlike the dorsal angles, however, female 

middle claw ventral angles were significantly greater than male, though with a small to 

medium effect size (F = 8.78, p = 0.004, ηp
2 = 0.059). There was no significant difference 

in ventral angle attributable to claw position on the tarsus (Appendix Table D.2 (b)). 

 

A post-hoc Mann-Whitney U test, used because the assumption of normality had been 

violated for ventral angles, supported the ANOVA results (p < 0.001 for the leg pair and 

p = 0.003 for sex). A post-hoc Tukey HSD test showed significant contrasts between the 

middle male claw and (i) the hind female, p < 0.001, 95% CI [-19.27, -5.38], and (ii) the 

hind male, p = 0.008, 95% CI [-19.07, -2.17].  The contrast between middle male and 

middle female claw angles was not significant (p = 0.062, 95% CI [-12.78, 0.22]).  

 

(iii) Practical implications for subsequent analysis 
 
Contrasts showing a significance at p < 0.05 suggested that any angle data should be 

subsetted by sex (ventral angle, although the effect size was small) and leg pair (dorsal 
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and ventral angles). The variation between proximal and distal claws was principally of 

size, as represented by chord length, rather than shape, as represented by angle, 

suggesting that claws developed isometrically.  As the Procrustes fit removed 

consideration of size, no sub-setting based on claw position was necessary for geometric 

morphometric work. 

  

7.3.3 Y. cytheris claw morphology: shape (geometric morphometrics) 
 

(i) Claw position 
 

PCs 1 and 2, contributing 69.4% to the PCA, showed no significant difference in shape 

between distal and proximal claws (Figure 7.9), with the two 95% confidence ellipses of 

means centred on the origin. The data sets for subsequent analyses were therefore 

adjusted so that, where data for both distal and proximal claws from the same tarsus 

were available, the leg was represented by the mean of the two. 

 

 

 

 

• —   distal claws (n = 73)      • —  proximal claws (n = 69) 
 

Figure 7.9   PCA of shape variation associated with distal and proximal claws.  The percentage of the 
analysis contributed by each PC is recorded on the appropriate axis. 95% confidence ellipses of means are 

shown in the colour of their respective claw positions.  
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(ii) Leg pair 
 

PCs 1 and 2, contributing 70.3% to the PCA, showed significant variation between hind 

and middle claw pairs (Figure 7.10). Middle claws tended towards the target shape of 

both PC1 (45.3%), a slight narrowing of the ventral surface and thinning towards the 

distal end of the claw, and PC2 (25.0%), an overall flatter shape, with a less curved 

ventral surface.  

 

 
 

Figure 7.10  PCA of shape variation associated with leg pair (hind or middle). The percentage of the analysis 
contributed by each PC is recorded on the appropriate axis. Sex was pooled. 95% confidence ellipses of 

means are shown in the colour of their respective claw pairs. The wire frame diagrams of claws show, in 

blue, the target shape of the PC on each axis, compared with the mean shape, in orange. 

 
(iii) Sex 
 

PCs 1 and 2, contributing 71.7% to the PCA, showed no clear variation between female 

and male hind claws (Figure 7.11), with the two 95% confidence ellipses of means 

overlapping on the origin.  There was a similar pattern for middle claws (Figure 7.12), 

with PCs 1 and 2, contributing 68.1% to the PCA, again showing no clear variation 

between male and female. 
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Figure 7.11  PCA of shape variation between female and male hind claws.  The percentage of the analysis 

contributed by each PC is recorded on the appropriate axis. Claw position on the tarsus was pooled. 95% 
confidence ellipses of means are shown in the colour of their respective sexes. The wire frame diagrams of 

claws show, in blue, the target shape of the PC on each axis, compared with the mean shape, in orange. 

 
Figure 7.12  PCA of shape variation between female and male middle claws.  The percentage of the analysis 

contributed by each PC is recorded on the appropriate axis. Claw position on the tarsus was pooled. 95% 

confidence ellipses of means are shown in the colour of their respective sexes. The wire frame diagrams of 
claws show, in blue, the target shape of the PC on each axis, compared with the mean shape, in orange. 
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(iv) CVA of leg pair and sex 

 

To better understand the contrasts in shape attributable to sex and leg pair, the four 

possible combinations were subjected to a CVA.  CVs 1 and 2, contributing 84.8% to the 

CVA, showed clear separation between the combinations (Figure 7.13).  Male hind claws 

tended very strongly towards the target shape of CV1 (62.9%), a slightly more hooked 

shape with a raised dorsal curve, with the other three combinations tending away from 

the target shape towards being more open. Both female and male middle claws tended 

slightly towards the target shape of CV2 (21.9%), a more open claw without pronounced 

dorsal or ventral curves in the middle section; male hind claws tended strongly away 

from it.  Mahalanobis distances between all combinations were significant at p < 0.0001, 

Procrustes distances were significant at p < 0.05 for all contrasts other than between 

female and male claws from either leg pair (Appendix Table D.3). 

 

 
Figure 7.13  CVA of claw shape variation by sex and claw pair. The percentage of the analysis contributed 

by each CV is recorded on the appropriate axis. A mean was used in cases where two claws were from the 
same tarsus.  95% confidence ellipses of means are shown in the colour of their respective sexes. The wire 

frame diagrams of claws show, in blue, the target shape of the CV on each axis, compared with the mean 

shape, in orange. 
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7.3.4 Variation in Y. cytheris claws in Falkland Islands sites 

(i) Angles 
 
A between-sites analysis of both dorsal and ventral claw angles showed similar patterns 

(Figure 7.14 (a) and (b)).  Male and female samples were pooled in both cases. The 

significant difference in middle claw ventral angles (7.3.2(ii)), albeit with a small effect 

size (ηp
2 = 0.059), means those results should be treated with caution.  

 

 

 
 
Figure 7.14  Claw angles of Y. cytheris in the Falkland Islands by site. For both dorsal (a) and ventral (b) 

angles, hind and middle claws were analysed separately, with females and males pooled. Numbers in 
brackets refer to hind and middle claws respectively. Note the differing y-axes. 

 
One-way between-groups ANOVAs, however, showed that only one contrast was 

significant at p < 0.05. That was for the ventral angle of the hind claw, F (3, 27) = 3.85, 

p = 0.02, with a very large effect size, ηp
2 = 0.299. Post-hoc comparison using the Tukey 

HSD test showed that Sea Lion (161.09, 95% CI [156.09, 165.28]) had a greater angle 

than Frying Pan (148.75, 95% CI [141.92, 155.58]), p = 0.014. 

 

(ii) Geometric morphometrics 
 

CVAs of hind and middle claws showed clear separation between the four Falkland study 

sites. 
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Hind claw pair 
 
Bleaker and Sea Lion tended towards the target shape for CV1 (Figure 7.15) a more 

inwardly-curved ventral surface, with the Sea Lion samples particularly advanced along 

that axis. Frying Pan and Roy Cove tended away from the target shape. Frying Pan 

tending towards the target shape, a flatter claw, in CV2.   

 

Mahalanobis separations were significant at p < 0.001 (Tabachnick and Fidell 2013) 

between Sea Lion and each of the other sites, and at p = 0.001 between Bleaker and 

Frying Pan. No Procrustes distances were significant at p < 0.05 (Appendix Table D.4). 

 
Figure 7.15  CVA results of hind claws from the four Falkland Islands study sites.  Sex was pooled.  95% 
confidence ellipses of means are shown in the colour of their respective sites. 

 
Middle claw pair 
 
Sea Lion claws tended strongly towards the target shape of CV1 (Figure 7.16), a more 

hooked shape at the distal end, and a thickening at the proximal end.  Bleaker claws 

tended away from the target shape of CV1, though, like Sea Lion claws, they tended 

towards the target shape of CV2 (28.5%), a very curved claw.  Frying Pan claws were 

centred on the origin, while Roy Cove claws tended strongly away from the hooked 

shape of CV2. All Mahalanobis contrasts were significant at p < 0.001, although no 

Procrustes distances were significant at p < 0.05 (Appendix Table D.5). 
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Figure 7.16  CVA results of middle claws from the four Falkland Islands study sites.  Sex was pooled.  95% 
confidence ellipses of means are shown in the colour of their respective sites. 

 

7.3.5 Baltic comparison: Melitaea cinxia  

 
Duplouy and Hanski (2013) compared M. cinxia data from a small island population, 

Pikku-Tytärsaari, with three other populations from mainland or large island sites, Åland, 

Saaremaa and Uppland.  They further compared Pikku-Tytärsaari, as an isolated island, 

with the data from the other three sites pooled as mainland sites. They drew no 

distinction between hind and middle leg pairs.  They also drew no distinction between 

male and female, but their supplementary data, used in this analysis, allowed for 

separation by sex. 

 

(i) M. cinxia at the site level 
 
Size 
 

Duplouy and Hanski (2013), considering the ventral chord length of a pooled male and 

female sample, found no significant difference between the populations.   

 

A reanalysis of their data, taking into account sex, showed that the female ventral chord 

was, on average, significantly longer than male, with a medium effect size  (F = 8.09,  
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p =  0.005, ηp
2 = 0.067). This showed the same relationship with forewing length as did 

the Falkland samples: the mean forewing length for M. cinxia has been measured at 

16.2 mm for a female, and 14.5 mm for a male (Breuker et al. 2007).The contrast for site 

was significant, with a large effect size (F = 6.3,  p < 0.001, ηp
2 = 0.145) (Figure 7.17, 

Appendix Table D.6).   

 

  
Figure 7.17  Comparison of ventral claw chord length of M. cinxia by sex and site.  Data are from the 

supplementary material to Duplouy and Hanski (2013), and do not distinguish between hind and middle 
claws. The orange bars represent the 95% CI. Numbers in brackets refer to female and male claws 

respectively. 

 

A Tukey HSD test showed significant differences between Saaremaa and Åland 

(p = 0.001); Uppland and Åland (p = 0.025) and Saaremaa and Pikku-Tytärsaari 

(p = 0.027).  When the data was subset by sex to account for the observed difference in 

chord length, there was no significant difference at p < 0.05 between sites for female 

claws, but there was between males in the same pairings: Saaremaa and Åland 

(p = 0.009); Uppland and Åland (p = 0.009) and Saaremaa and Pikku-Tytärsaari 

(p = 0.041).  

 

Angle 

 

A plot of the ventral angle, redrawn from Duplouy and Hanski (2013), showed a 

significant variation in angle size, with medium effect, attributable to site (F = 3.89, 

p = 0.011, ηp2 = 0.097). There was no significant difference in angle attributable to sex 
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or the interaction of site and sex (Appendix Table D.7). Post-hoc comparison using the 

Tukey HSD test showed a significant difference in the ventral angle between specimens 

from Pikku-Tytärsaari and Åland (p = 0.01) (Figure 7.18); no other differences were 

significant. 

 

 

 
Figure 7.18  Ventral claw angles of M. cinxia by site and sex.  Redrawn from Duplouy and Hanski (2013), 

following their pooling of hind and middle claws. Angle calculations follow Feduccia (1993). The orange bars 
represent the 95% CI. Numbers in brackets refer to female and male claws respectively. 

 

 

(ii)  Claw morphology of Y. cytheris and M. cinxia compared at the landscape 
level 
 

Duplouy and Hanski (2013) distinguished between M. cinxia claws from small island 

sites, represented by Pikku-Tytärsaari, and mainland or large island sites, represented 

by Åland, Saaremaa and Uppland. 

 

In this reanalysis Y. cytheris data were compared with M. cinxia data at the landscape 

level to assess their support for such a classification. Bleaker and Sea Lion were 

selected as small island sites, Frying Pan and Roy Cove as large (Chapter 2). The small 

number of samples from the Magallanes region were also included in case they showed 
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a significant divergence: that not being the case, they are included in Figure 7.19 and 

Figure 7.20, but not considered further. 

 

Size 

 

The significant contrasts in the Falklands data set for each of sex, tarsal position and leg 

pair, combined with a limited sample size, made it difficult to draw inferences from chord 

size.  While such contrasts might not apply to M. cinxia, they suggested at least a degree 

of caution, given that the Duplouy and Hanski data set did not take tarsal position or leg 

pair into account. 

 

A one-way ANOVA  showed that  female M. cinxia  chords (M = 236.3, SD = 26.2) were, 

on average, larger than male (M = 224.1, SD = 24.9); F (1, 119) = 6.88, p = 0.01, 

95% CI [-21.42, -2.99], although with a small effect (d = 0.478), a similar pattern to that 

for Y. cytheris  (Appendix Table D.10). 

 
Figure 7.19.   Comparison of ventral claw chords of M. cinxia in the Baltic with Y. cytheris in the Falklands 

and Latin America. Blt = Baltic populations of M. cinxia, Flk = Falkland Island populations of Y. cytheris, LA 
= Latin American (in this case Magallanes) population of Y. cytheris. L = mainland or large islands; S = 

isolated or small islands.  H = hind leg pair, M = middle leg pair. Numbers in brackets refer to female and 

male claws respectively. Small islands in the Baltic were represented by Pikku-Tytärsaari, and in the 
Falklands by Bleaker and Sea Lion. 
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small islands in the Falklands were shorter than those on larger sites, although a 

subsequent ANOVA did not find the difference significant F (1, 12) = 3.9, p = 0.072, 95% 

CI [-24.48, 1.2]. 

 

Shape 

 

Duplouy and Hanski found a significant difference between the ventral claw angles of 

small islands and mainland landscapes (Figure 7.20). A one-way ANOVA using their 

data showed that angles for Pikku-Tytärsaari samples (M = 131.3, SD = 2.61) were, on 

average, larger than those for the mainland (M = 128.8, SD = 3.88) at a high level of 

significance, F (1, 119) = 13.06, p = 0.0004, 95% CI [1.11, 3.8], though at only a medium 

effect size, d = 0.698 (Appendix Table D.9).  Sex was pooled, as the distinction between 

male and female claws was not significant at p < 0.05. 

 

 
Figure 7.20.   Comparison of ventral claw angles of M. cinxia in the Baltic with Y. cytheris on the Falklands 

and in Punta Arenas. Blt = Baltic populations of M. cinxia, Flk = Falkland Island populations of Y. cytheris, 

LA = Latin American (in this case Punta Arenas) specimens of Y. cytheris. L = mainland or large islands; S 
= isolated or small islands.  H = hind leg pair, M = middle leg pair. Numbers in brackets refer to female and 

male claws respectively. Small islands in the Baltic were represented by Pikku-Tytärsaari, and in the 

Falklands by Bleaker and Sea Lion. 

 

The distinction between small islands and the two larger islands in the Falklands was 

not significant at p < 0.05 for either hind or middle claws. While the data set for Latin 
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America was too small to be informative, it provided no evidence for anything 

unexpected. 

 

7.3.6 Relationship between wind speeds and claw shape 
 

(i) Wind speeds: Falkland Island weather stations 
 

Wind speed data from Falkland Island weather stations (Figure 7.21(a)) showed 

considerable variation. Mean wind speeds over the November - February flying season 

were: Bleaker 6.85 ms-1 (SD = 2.13); Mount Byron 9.35 ms-1 (SD = 2.88), Mount Pleasant 

8.38 ms-1 (SD = 2.44), Sea Lion 7.47 ms-1 (SD = 2.78). 

 
 
Figure 7.21  Mean weekly wind speeds during Y. cytheris's flying season. This was taken as November-
February. Initial data (a) were from daily readings at 1200 from the four weather stations nearest to the 

Falkland Island study sites (Mount Pleasant for Frying Pan, Mount Byron for Roy Cove).  Wind speeds were 

then adjusted (b). Mount Byron data were multiplied by 0.47, reflecting the wind shear effect on Roy Cove, 
430m lower. Data from Mount Pleasant were omitted as the effect of wind shear on the Frying Pan could 

not be calculated.  The grey shaded areas represent the standard error of the fitted regression line after 

loess smoothing.  

 

These data did not take wind gradient into account. Hourly data for Roy Cove for 1-13 

and 22-26 January 2017, was compared with equivalent data from Mount Byron.  A 

Shapiro-Wilk test showed that in each case the assumption of normality was violated 

(Roy Cove W = 0.985, p = 0.002; Mount Byron W = 0.965, p < 0.001), therefore 

Spearman's rank order was used to test for correlation. Spearman's ρ, at 0.44, showed 

a medium correlation, p < 0.001.   A comparison of medians, to take account of the non-
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parametric distribution, showed Mount Byron had a median wind speed of 8.75 ms-1 (IQR 

= 3.62), and Roy Cove 4.16 ms-1 (IQR = 2.32). Field data were not taken over a long 

enough time period to enable comparison of Frying Pan with Mount Pleasant. 

 

To visualise adjusted wind speeds, (Figure 7.21 (b)), Mount Byron data were multiplied 

by 0.47 (the median of Roy Cove divided by the median of Mount Byron). Frying Pan 

and Mount Pleasant data were removed. 

 

(ii) Wind speeds: oviposition sites 
 

Visualisation of site wind speed data at the four Falkland Island sites, based on a site 

measurement of  8.11 ms-1  (7.2.3(iv)), showed a wide range of medians, with Bleaker 

and Sea Lion having particularly high winds (although Sea Lion's sample size was very 

small). 

 

Levene's test showed violation of homogeneity of variance at 150cm. Accordingly, the 

Kruskal Wallis test was used to consider differences between sites. This showed 

significant variance at 150cm (χ2 = 13.23, df = 3, p = 0.004) and 30cm (χ2 = 14.63, df = 

3, p = 0.002), although not at 3cm (χ2 = 1.55, df = 3, p = 0.67). 

 

Given the uneven number of samples, Dunn's test was used post-hoc to identify 

significant between-site variation (Zar 2013), and  Bonferroni's correction was applied to 

control the familywise error rate. Using the adjusted p-values, at 150cm the differences 

between Bleaker and Frying Pan were significant at p = 0.027, and between Sea Lion 

and Frying Pan at p = 0.014. At 30cm the differences between Bleaker and Frying Pan 

were significant at p = 0.008, and between Sea Lion and Frying Pan at p = 0.019.  
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Figure 7.22  Wind speeds at oviposition locations, measured at the butterfly’s perceived ceiling, patrolling 

and oviposition heights. Wind speeds were measured against a normalised site speed of 8.11 ms-1, the 
mean noon wind speed for November-February for the four Falkland Island weather stations over the five 

flying seasons 2013 - 2018  

 
(iii) Relationship between claw angle and wind speed 
 
The mean claw angle at each of the four Falkland sites was compared with the mean 

wind speed for each of the parameters.  A larger claw angle, that is to say a more curved 

claw, was positively correlated with higher wind speeds at ceiling and patrol level 

(Appendix Table D.8). For the ventral angle, the measurement used in Hanski and 

Duplouy (2013), the hind claw correlation at ceiling height was t(2) = 15.10, r = 0.996, 

95% CI [0.80, 1.0], p = 0.004 and the middle claw t(2) = 6.79, r = 0.979, 95% CI [0.30, 

1.0], p = 0.021.  At patrolling height, the hind claw correlation was t(2) = 13.71, r = 0.995, 

95% CI [0.76, 1.0], p = 0.005 and the middle claw t(2) = 8.23, r = 0.98, 95% CI [0.46, 

1.0], p = 0.014. There was no correlation at 3 cm.  A comparison between Figure 7.14 

and Figure 7.22 shows the similarities more graphically. 

 
(iv) Wind speeds: comparison between Falkland and Baltic sites 
 
Wind speed data from Kotka Haapasaari, representing Pikku-Tytärsaari, and Jomala 

Jomalaby, representing mainland sites, were compared for the May to August flying 

period over 2014-2018. Data from both weather stations were used by Duplouy and 

Hanski (2013).  Their respective daily means were plotted and compared with the mean 
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midday daily wind speeds of all Falkland Island weather stations for the Y. cytheris 

November to February flying period from 2013 to 2018. 

 

The Falklands had consistently higher wind speeds (8.11 ms-1, SD = 2.72) than Kotka 

Haapasaari (5.43 ms-1, SD = 2) (Figure 7.23). The Åland site of Jomala Jomalaby 

(3.49 ms-1, SD = 1.18) had consistently lower wind speeds than Kotka Haapassari. 

These findings were comparable with those used by Duplouy and Hanski over a different 

period of time, of 5.61 ms-1 and 3.92 ms-1. 

 

 
Figure 7.23  Comparison of daily wind speeds over a four month flying period for Falkland Island and Baltic 

sites. The flying period was taken as November - February for the Falklands, and May - August for the Baltic 

sites. The Falkland Islands were represented by the mean of daily readings at 1200 from Bleaker, Mount 
Byron, Mount Pleasant and Sea Lion from 2013 to 2018.  The data sets for Jomala Jomalaby, on Åland, and 

Kotka Haapasaari, taken by Duplouy and Hanski as the nearest reference point for Pikku-Tytärsaari, cover 

2014 to 2018. 
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7.4 Discussion 
 
Yramea cytheris claws showed a number of significant variations. There were contrasts 

in size and shape related to sex, leg pair and position on the tarsus, which are considered 

here as functional aspects of the butterfly's structure. There were also contrasts in shape 

between comparable claws related to geographical origin, which are considered as a 

response to environmental conditions, specifically wind.  It was not possible to say 

whether variation was genetic or based on phenotypic plasticity, but any restoration 

efforts which involve reintroductions need to consider its implications.  

 

7.4.1 Claw variation based on function 
 

(i) Findings 
 
Female claws from both the hind and middle leg pairs were larger than male.  Proximal 

claws were larger than distal in the tarsal pairs from both the hind and middle legs. Hind 

claws in both sexes were more sharply curved than middle claws, and female middle 

claws were more curved than male. 

 
(ii) Discussion  
 
No studies were found which described differences in claw shape or size in a single 

insect species based on claw position or the insect's sex. Duplouy and Hanski's (2013) 

investigation of claw grip in Melitaea cinxia was the first to consider variation in claw 

shape as a response to environmental conditions, in their case wind, although without 

considering sex and claw position. The two principal functions of insect claws, discussed 

in 7.1.2 are predation and substrate grip. As Y. cytheris is not predatory, investigation of 

variation focused on how individual claws might function in providing grip in whatever 

circumstances it was required.   

  

The variation between female and male claw size, however, fell outside this approach, 

as it appeared to reflect sexual size dimorphism (SSD) rather than a differing 

requirement for grip (other than that bigger butterflies might benefit from bigger claws).  

Females, taking forewing length as proxy for body size (Dudley 1990, Kingsolver 1999, 

Sullivan and Miller 2007), were larger than males, something Teder and Tammaru 

(2005), in their investigation of SDD in insects, noted in over 80% of the species they 

studied. The correlation between claw and forewing size suggested that claws grew 
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isometrically with the butterfly, irrespective of sex. SSD is considered more widely, in 

connection with wings, in Chapter 6. 

 
Analyses of other contrasts are less straightforward.  Claw function is an aspect of the 

function of legs as a whole; these are an integral part of the insect's flight mechanism, 

as shown by the termination of some flight muscles within the first and second leg 

segments (Dudley 2002). The development of legs and wings as an aspect of a 

butterfly's Bauplan (Gould and Lewontin 1979) was explored by Heers and Dial (2015), 

who showed that there was a developmental trade-off between legs and wings in birds 

in response to different environments. So, for example, ground dwelling pheasant 

pigeons had stronger legs, but weaker wings, than long-distance flying rock doves. Their 

findings, that in circumstances where trade-offs could be harmful they could be offset by 

cooperative use of legs and wings, suggest a way in to the analysis of butterfly claws. 

 

Stoneflies and mayflies have been shown to use legs and wings cooperatively in their 

flight pattern, the surface skimming of water (Marden and Kramer 1994, Marden et al. 

2000). But even the process of getting airborne, with legs forcing the insect into the air 

while wings gradually took over, requires cooperation, as shown in the study by Bimbard 

et al. (2013). of the butterfly Pieris rapae. The opposite challenge, that of avoiding getting 

airborne inadvertently, is equally likely to require legs and wings to be used 

cooperatively. Laminar air flow over wings can be expected to help keep butterflies on 

the substrate when facing into the wind. Facing away from the wind, airflow over the 

trailing edges of wings is likely to make the butterfly more unstable. Therefore, the finding 

that hind claws, which would help anchor a butterfly in a tailwind, were more curved than 

middle claws, would be a predictable aspect of a butterfly Bauplan, with the potential for 

adaptation in response to windier environments (Shreeve et al. 2009, Van Dyck and 

Windig 2009).  This might be investigated further by considering the role of the leg as a 

whole in providing stability, as grip is provided by the entire tarsal (Dai et al. 2002) and 

leg (Spilman 1966) structure, rather than just the claw. The identification of potential key 

points on legs, and then tracking them on camera (Bimbard et al. 2013) would be a 

helpful first step. 

 

Understanding of the remaining contrasts would also benefit from video recording. The 

larger size (although with the same shape) of the proximal claw on the tarsus suggests 

it has a greater role in gripping than the distal, but how it is deployed is unknown. 

Contrasts based on sex, here the more curved nature of the female claw, suggest that 

even with a focus solely on substrate grip, limbs might have varied functions based on 
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the requirements of different activities such as basking, feeding or mating (Burnham et 

al. 2011). The major differences in sexual behaviour in butterflies relate to mate-seeking, 

mating and ovipositing (Shreeve 1987, Berwaerts et al. 2002, Dudley 2002), although as 

both male and female Y. cytheris are patrollers (see Chapter 3), morphological variation 

based on a male perching strategy does not apply. It might be that the process of 

ovipositing requires a greater grip from the middle claws than is necessary for other 

activities which females and males have in common, but evidence is lacking. 

 

Two points emerge from this consideration of form and function.  The first is procedural: 

it is unsafe to make comparisons based on random claws. Data sets need to be drawn 

up which recognise differences between claw shape and size based on sex and position. 

This means, assuming non-lethal sampling, identifying and collecting the single leg best 

able to address a particular hypothesis. The second is that the evolutionary and 

developmental linkages between wings and legs, and their role in butterfly locomotion, 

deserve more attention than they have so far been given.  

 

7.4.2 Claw variation attributable to environmental factors 
 
(i) Findings 
 
Y. cytheris claws, like those of M. cinxia, were more sharply curved at windier sites. Wind 

data from weather stations in the Falklands were, however, at too coarse a level of detail 

to investigate this and the pattern only became clear when wind readings were taken at 

the study sites at Y. cytheris's patrolling and maximum flying heights. 

 

(ii) Discussion  
 
The analysis of Y. cytheris claws was motivated by Duplouy and Hanski's (2013) 

ground-breaking analysis, before which there had been little consideration of butterfly 

tarsal claws and their function. On the basis of mean wind speeds at the nearest weather 

stations, they found that claws at the windiest site, Pikku-Tytärsaari, were more curved 

than at other sites.  

 

Falkland Island sites could not be investigated on the same basis, as the nearest weather 

stations to the mainland sites were situated at higher elevations than the sites.  This was 

particularly the case for Roy Cove, with the study site at 50 m, compared with the 

weather station, Mount Byron, at 480 m. Wind speeds, due to wind gradient, are 
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generally higher at altitude, but, unlike the lapse rate for temperatures, there is no 

standard method of deriving data at one altitude from those at another. Weather stations 

in the Baltic were at elevations of < 20 m, comparable with the elevation of the study 

sites, which made comparisons more reliable.  The important point, however, is the same 

as that in Chapter 4: meaningful metrics for butterflies need to be taken at a microhabitat 

scale.  If there is claw adaptation, it will be because of wind speeds at the flying height 

of butterflies at the habitat in question, not because of wind speeds at the most open 

available position at a different altitude. 

 

Data from field measurements at 30 cm and 150 cm, representing the butterfly's 

observed patrolling and ceiling heights, showed that Y. cytheris claws, in line with the 

M. cinxia findings, were more curved at those sites with higher wind speeds. A 

comparison of the profiles of the wind speeds shown at Figure 7.22  with the claw angles 

at Figure 7.14, enables a visualisation of the very strong correlations at site level. Both 

Bleaker and Sea Lion showed greater claw angles than Frying Pan and Roy Cove, 

although only one contrast, between the ventral angles of hind claws from Sea Lion and 

Roy Cove, was significant at p < 0.05. CVAs showed the extent to which Sea Lion claws, 

both middle and hind, differed from those of other sites, with a much more curved shape, 

particularly visible in CVs 1 and 2 for middle claws.  

 

These findings suggest adaptation in Y.cytheris in response to a major environmental 

challenge, coping with wind, although caution is necessary, as there may be confounding 

factors. The difference in substrate, for example, between the stony raised beach of 

Bleaker compared with the sand, bog and penguin burrows of Sea Lion, suggests that 

shape might not be simply a response to wind alone but to surface. The possibility of 

other factors was recognised by Duplouy and Hanski (2013), who suggested that the 

improved grip of M. cinxia on Pikku-Tytärsaari might be a response not simply to 

reducing emigration loss, but also to the demands of nectar feeding in wind conditions.  

It might be envisaged that sites where nectaring mainly occurred on groundsel, Senecio 

vulgaris, in loose stands 40 cm high, would pose different gripping challenges from those 

with the much more tightly packed and low-lying Christmas bush Baccharis magellanica.  

There is considerable scope for research in this area: understanding of variation in claw 

shape requires much more detailed analysis of substrate use, particularly in varying wind 

conditions. 

 

There is also scope, not simply for investigation into conspecific variation in claw length, 

but much more widely. Figure 7.20 shows that M. cinxia claws are less curved than 
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Y. cytheris. Pooling all claws, M. cinxia shows a mean angle of (degrees) 129.7 ±3.7, 

compared with Y. cytheris's 149.0 ±4.1.  It would be instructive to understand the extent 

to which claw angles varied to investigate the reasons across butterfly species.  

 

7.4.3 Conservation implications 
 

The distinct variation in claw curvature seen in Y. cytheris should be taken into account 

in any planning for reintroduction, in accordance with IUCN guidelines (IUCN Wildlife 

Health Specialist Group 2013). As with wing size (Chapter 6) the nature of adaptation is 

important: it is not possible, with the present data, to show whether the variation in claw 

shape is genetic or an example of phenotypic plasticity. Further investigation of claw use 

in varied substrates, for different activities, in varying weather conditions, is also 

necessary before a clear linkage between claw shape and wind can be made. The 

evidence, however, which supports the findings by Duplouy and Hanski (2013), suggests 

that in exposed, small island sites such as Bleaker and Sea Lion, any reintroduction 

should be of butterflies with sharply curved claws. For other sites, even Latin American 

specimens might be introduced successfully, were it not for the significant differences in 

wing size. This is another example of the benefits that an investigative captive breeding 

programme would bring.  
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Chapter 8: General discussion  
 
8.1 Thesis overview 
 

It is particularly challenging to work on a conservation plan for a butterfly, the Falkland 

fritillary, Yramea cytheris, which everyone in the Falklands knows about, but which few 

have seen, and about which very little is known. The collection of very basic information 

has to go hand in hand with the necessary fine-grain detail of genetic and ecological 

work on which planning and recommendations need to be based. 

 

This thesis builds up a picture of a butterfly living in small colonies, with generally fewer 

than ten adults flying on a given day, coextensive with a habitat patch of Viola spp, 

usually the common violet, Viola maculata. It does not fly far - the average recorded flight 

was 26 m - and probably does not, as a rule, move from its own colony. It has a very 

long flying season, from mid-November to early March.  Females have an apparent 

survival of  5.5 days , with a daily apparent survival probability (φ) of 0.78; for males it is  

3.3 days, with a φ of 0.68  (Chapter 3).   

 

A typical habitat patch comprises a mosaic of grass, bare ground and dwarf shrub heath, 

with Viola scattered in small clusters. It prefers a north-east facing slope, which shelters 

it from the strong prevailing westerly winds, and enables it to benefit from the morning 

sun, which is important as it is most active in the morning. Eggs are found singly, usually 

on the underside of the warmer leaves of medium-sized Viola plants.  The oviposition 

plants are in warmer parts of the patch than general, often with higher chlorophyll levels 

(Chapter 4). 

 

The butterfly has two described subspecies, Y. c cytheris in the Falkland Islands, and 

Y. c.siga in Latin America. They could not readily be separated through analysis of COI, 

EF-1α or wingless genes. Although, from a low number of samples, particularly from 

Latin America, there were haplotypes which were only found in Falklands specimens, 

and others only in Latin American, they differed by a maximum of four base pairs, 

whereas 85% of samples analysed, whether from the Falklands or Latin America, 

represented one haplotype (Chapter 5). 
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The Falklands butterfly has shown some adaptation to a windy climate. It can find 

suitable patches in a variety of environments, as long as there are Viola plants. The 

study sites represent the range of vegetation and topographies occupied, from a raised 

beach through cliffs and a sandy island to grazed slopes (Chapters 2 and 4). It has also 

adapted morphologically, showing more sharply curved claws in windier locations 

(Chapter 7).  Its wing size, much smaller than that of the Latin American subspecies, 

might also reflect an adaptation to wind, making it easier to withstand being dislodged 

from the substrate, although other factors, such as diminished mobility as part of an 

island population, need to be considered. (Chapter 6). 

 

This chapter considers the implications of this thesis's findings for conservation planning; 

it considers what further knowledge gaps need to be addressed; it considers the 

importance of the butterfly in the Falklands, and how clarity about its life cycle and its 

taxonomic status might help conservation efforts; and it makes recommendations about 

approaching conservation in the current economic climate, which include a draft Species 

Action Plan. 

 

8.2 Discussion 
 
8.2.1 Implications of thesis findings 
 
There are many positive points about the status of Y. cytheris in the Falklands. The 

populations have a wide geographic spread, as do their larval host plants, Viola spp. 

They have coped with the strong winds of the Falklands by adaptations in claw shape 

and wing size and shape. A variety of sites, from exposed raised beaches to grazed 

pasture, are able to produce the conditions which meet its habitat requirements.The 

Latin American population, indistinguishable genetically, is widespread, with a 1700 km 

range in latitude, and is found from sea level to 890 m, at sites with maximum 

temperatures ranging from 15º C to 29º C.  But it is instructive to remember that the 

passenger pigeon Ectopistes migratorius (Bucher 1992) and the Rocky Mountain locust 

Melanoplus spretus (Lockwood 2010) went from being two of the most common species 

in the world to extinction within a few decades, and to look for danger signs. 

 

The danger signs are there. The sub-Antarctic is particularly sensitive to climate change 

(Pendlebury and Barnes-Keoghan 2007, Terauds et al. 2012, Chown and Convey 2016), 

with a predicted rise in mean temperature on the islands of 1.8°C between 1990 and 

2080 (Jones et al. 2013). Maritime warming threatens a change in the Antarctic 
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Circumpolar Current, leading to a rise in sea level and an increase in storms (Pendlebury 

and Barnes-Keoghan 2007). There is a risk of tsunamis (Regnauld et al. 2008, Nicholson 

et al. 2020). All of these threaten a species with oviposition sites near to the shoreline. 

 

While these threats are not capable of local mitigation, threats caused by changing land 

use are. Y. cytheris's habitat preferences appear now to be most commonly met by a 

grazed environment, which affords the mosaic of grass, bare patches, dwarf shrub heath 

and Viola in which most oviposition sites are found, even if this is only a product of the 

last two hundred years (4.1.1 (ii)). Any proposals for changed land use should ensure 

that these mosaics continue to exist, whether through grazing or through land 

management: the choking of Viola by rank grass, with observable (though 

uninvestigated) reduction in Viola and butterfly numbers seen on Sea Lion a cause for 

concern. 

 

Y. cytheris, while having distinct habitat preferences, is able to have these met by a wider 

range of environments than grazed dwarf shrub heath and grazed pasture mosaics, as 

the variation in the study sites demonstrates. These give it scope to respond to climate 

change by moving to cooler microhabitats, whether at higher elevations or more 

sheltered from solar radiation. The maintenance of this range of environments, through 

ensuring a range of vegetation types and management regimes, to enable it to meet its 

resource and microclimate needs, is likely to be the key to conserving the species. 

 
 
8.2.2 Knowledge gaps 
 
(i) Y. cytheris 
 

The history of the Y. cytheris population in the Falkland Islands, and its relationship with 

the Latin American populations, is still to be clarified. The processes underlying island 

colonisation have been intensively studied, particularly within the field of island 

biogeography, as have the relationships between genetic and geographical distance 

(Slatkin 1993, Nève 2009). The ability to model the processes has developed in parallel 

(Matzke 2014, for a review see Fenderson et al. 2020).  But the investigation is at an 

early stage with Yramea cytheris, and further molecular analysis, with wider sampling, 

will be necessary before it can be determined whether the Falklands populations are a 

product of a single founder event or several, or for that matter, regular migrations. 
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There is still much to be understood about Y. cytheris's autecology: the timings of the 

larva's instars; the stage at which the diapause is entered into; diapause duration;  

process, duration and location of pupation; and overall phenology, with clarity about the 

number of generations over the four month flying period.  No work has been done on 

biological threats to the butterfly, whether from predators such as birds and spiders, from 

parasitoids, or from bacteria such as Wolbachia (Salunkhe et al. 2014: Y. cytheris was 

not tested, although there was no evidence of male-female balance in the Falklands).  

 

Y. cytheris's  distribution on the islands is still not well enough known: there is no real 

base line, therefore, for assessing its conservation status. Where it has been found, while 

apparent survival probability and probability of capture rates have been calculated, 

population sizes remain unclear.  If there is to be meaningful monitoring of populations 

through, for example, transect walking (Pollard and Yates 1994), the relationship 

between numbers seen and estimated population numbers needs to be established 

(Harker and Shreeve 2008). The extent to which populations of patches on the same 

site are connected is also unknown. There is inadequate evidence at present for or 

against mobility between patches, and therefore for or against a group of patches 

functioning as a metapopulation (Hanski 1991, 2010, Gyllenberg and Hanski 1992), but 

this is an area which would benefit from further investigation, both in terms of butterfly 

movement and of genetics (5.4.3). 

 

The final set of known unknowns relate to the Latin American population, which has not 

been studied in any depth. An investigation would provide valuable comparative 

material, particularly in terms of robustness and adaptability, and, perhaps more 

importantly, help identify suitable donor populations in the event of widespread 

extinctions in the Falklands (Seddon et al. 2007).  

 

(ii) Viola spp. 
 

For Y. cytheris to survive on the Falklands, it is necessary to ensure that Viola spp., 

particularly V. maculata, continue to flourish. The distribution of Viola has been recorded 

by Falklands Conservation, but it needs to be updated, to ensure a baseline for 

monitoring the overall population health exists.  The tolerance of Viola spp. for a range 

of temperatures and potential habitats is not known, but, as with the butterfly, is 

fundamental in predicting response to climate change.  
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The impact of changes in land use on Viola have also not been analysed, particularly of 

decreased grazing, or even the removal of grazing.  The mechanism by which Viola 

spread is also unknown, including whether sheep have a role to play through 

endozoochorous dispersal. 

8.2.3 A question of identity 
 

(i) The importance of species 
 

One of the overall Research Questions (1.6) asked whether Y. c. cytheris and Y. c. siga 

were subspecies of the same species.  This opens up a longstanding debate. Agapow 

et al. (2004) observed that species were the currency of biology, at least in the way that 

discussion of conservation priorities operated. Hence the research question was not 

simply a matter of classification: if the Falklands butterfly proved to be an endemic 

species, for example, even if only cryptic, the discovery might have attracted 

considerable attention as happened with the discovery of a cryptic species of wood white 

butterfly, Leptidea reali, in 1988 (Réal 1988, cited in Cupedo and Hoen 2006) which 

subsequently became a model for the study of speciation (Dincă et al. 2011).   

 

Considerable attention, when misplaced, can be disruptive: witness the need for secrecy 

about the sites used for the reintroduction of the large blue, Maculinea arion, to the UK 

(Thomas et al. 2009). But publicity can be an enabler in conservation, the downside of 

which Dennis (1997) saw as a trend to promote local populations to species status, 

which, while giving publicity to the taxon concerned, raised the global conservation load, 

particularly if rarity and endemism were equated with threat of extinction.   

 

(ii) Subspecies, evolutionarily sigificant units and a sense of place 
 

Although the International Code of Zoological Nomenclature (International Commission 

on Zoological Nomenclature 1999) set out the basic naming principles, the subject 

remained contentious, particularly at the level of subspecies. The question of circularity, 

particularly on the relationship between subspeciation and geographical limitation, 

became prominent. Wilson and Brown (1953), in describing the subspecies concept as 

"the most critical and disorderly area of modern systematic theory", added, "in its 

unassumed function as a formal means of registering geographical variation within the 

species it tends to be both illusory and superfluous". 
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Braby et al. (2012) shared Wilson's and Brown's reservations. They found the 

subspecies concept hampered by inconsistencies in its conceptual definition, lacking 

objective criteria or properties to delimit its boundaries, and frequently failing to reflect 

distinct evolutionary units according to population genetic structure. They proposed a 

clear definition: "Subspecies comprise evolving populations that represent partially 

isolated lineages of a species that are allopatric, phenotypically distinct, have at least 

one fixed diagnosable character state, and that these character differences are, or are 

assumed to be, correlated with evolutionary independence according to population 

genetic structure".  

 

At the same time a parallel proposal was emerging, for the Evolutionarily Significant Unit 

(ESU) (Ryder 1986). This similarly attracted a variety of definitions, summarised by Funk 

et al. (2012), but had the clear practical aim of identifying populations that warranted 

separate management, or priority for conservation, because of their high genetic and 

ecological distinctiveness (Fraser and Bernatchez 2001). The practical intent was 

recognised by governments, including those of USA, Canada and Australia, recognising 

intraspecific units as a basis for legal protection. 

 

The emphasis on geographical limitations in both subspecies and ESU debates is not 

surprising.  A sense of place (Tuan 1979, Stedman 2002) is an important factor in 

conservation (Masterson et al. 2017), as local ownership of a particular taxon is a major 

driver to conserving it. This was seen, for example, in community engagement with the 

Eltham copper, Paralucia pyrodiscus lucida (Roitman et al. 2017) and the Karner blue, 

Lycaeides melissa samuelis (Oberhauser and Guiney 2009).  As community structures 

develop, the role of the threatened species can move on: P. p. lucida became a symbol 

of welcome to refugees who were being settled in the Melbourne suburb of Eltham 

(Calligeros 2016); L. m. samuelis became a focal point for wider conservation 

awareness, including a summer festival, in Black Fall Rivers, Wisconsin (Oberhauser 

and Guiney 2009). The butterflies, while remaining a conservation challenge, had 

become more than that.  

 

(iii) What should the status of the Falkland fritillary be? 
 
This thesis has shown that it is not possible to allocate a specimen of Y. cytheris to either 

Y. c. cytheris or Y. c. siga on the basis of its COI, EF-1α or wingless genes, or a 

concatenation of all three, thus it fails one test for subspecies (Braby et al. 2012) and 

ESU status (Fraser and Bernatchez 2001). But its isolation, 400 km east of the nearest 
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Latin American population, and evidence for local adaptations in wing size and shape, 

together with claw curvature, argue for its inclusion in both categories, as measurement 

of forewing length and evaluation of forewing shape, should enable correct classification. 

The original split between subspecies, made on the basis of wing colour (Watkins 1924), 

might also be determinative. It was not pursued in this thesis, as the majority of samples 

were museum specimens over 100 years old, and no Latin American specimen was 

more recent than 2003, which made it difficult to assess levels of fading or deterioration 

in pigmentation. 

 

In a sense, neither of these classifications is particularly important. Y. cytheris is the only 

resident butterfly on a group of islands 400 km away from the Latin American coast. That 

defines its status, and, in a sentence, the importance of its conservation.  

 
8.2.4 Flagship species 
 

(i) The role of flagship species 
 
The position of Y. cytheris as the only resident butterfly in the Falkland Islands suggests 

that it could be a candidate for a flagship species (Smith and Sutton 2008, Barua et al. 

2011 and Jepson and Barua 2015). Flagship species serve to raise public awareness, 

support interventions, and to raise funding, principally for their own conservation (Caro 

et al. 2004). They tend to be popular and charismatic: a flagship invertebrate, therefore, 

is more likely to be a butterfly than a slug (Barua et al. 2012). This is a potential problem: 

as Small (2011) observed, most of the world's species at risk of extinction are neither 

particularly attractive nor obviously useful, and consequently lack conservation support. 

Veríssimo et al. (2011) defined a flagship species as "the focus of a broader conservation 

marketing campaign based on its possession of one or more traits that appeal to the 

target audience". This moved the concept on, with the explicit mention of, and indeed 

language of, marketing, and its need to identify the target audience. The examples of P. 

p. lucida and L. m. samuelis show that charisma is not dependent on whether a taxon is 

a species or a subspecies.  There is a prima facie case for Y. c. cytheris's filling a similar 

role in the Falkland Islands. 

 

(ii)  The Falkland fritillary as a potential flagship species 
 
The Falkland Islands are rich in popular and charismatic species, particularly birds, 

including five species of penguin and six species of albatross, which attract many tourists 
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to the islands. It is a crowded field, and introducing a butterfly as the islands' first formal 

flagship species may appear counterintuitive.  But there are potential advantages. The 

islands' birds are already well known and heavily studied, whereas their insects are not, 

with only Jones and Lewington's (2004) guide as an introduction. The guide was the 

outcome of a three-year project to study the islands' terrestrial vertebrates, which was 

well received and introduced the study of insects to a large number of people on the 

islands, although it ultimately failed to find traction. With the growing in strength of 

Falklands Conservation, and the establishment of SAERI, in the intervening years, the 

conservation landscape has improved considerably. 

 

The butterfly benefits from being distinctive, as a bright orange insect flying across dull 

green heathland, and relatively easy to photograph. It is the nominate subspecies, and 

meets the criteria for both sub-species and ESU. Making it a flagship species would raise 

awareness, of the butterfly itself, and provide a basis for getting support, including 

financial, for steps to secure its continued existence on the Falklands.  Producing a 

species action plan to engage stakeholders in the process, would be the starting point.  

It might then be used to reenergise work on Falkland terrestrial invertebrates in general. 

Jones and Lewington (2004), for example, identify endemic species of Noctuid moth 

(Pareuxonia falklandica), tussac moth (Borkhausenia falklandensis), water beetle 

(Lancetes falklandicus) and camel cricket (Parudenus falklandicus), none of which has 

been studied. Nor have any insects been assessed for IUCN Red List status. Y.c. 

cytheris would also serve as a flagship for the dwarf shrub heath habitat, possible threats 

to the existence of which were noted in Chapter 4.   

 

There are various audiences for a flagship project in the Falklands: landowners; other 

Falkland Islanders, especially children; visitors, particularly wildlife tourists; academic 

researchers; conservationists; and bodies with an interest, actual or potential, in 

Falklands conservation work, including possible partners in the United Kingdom. The 

Islanders themselves are the primary audience, however, as the butterfly relies on their 

stewardship. They have pride in the name Falkland fritillary: there is even some 

preference for the term Queen of the Falklands fritillary, reflecting the Islands' 

relationship with the UK Crown. Getting their backing for a Species Action Plan would 

be a valuable step in starting the conservation process and engaging further 

stakeholders. A suggested Species Action Plan, for discussion with stakeholders, is at 

Appendix E. 
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8.2.5 The political context: a difficult time for conservation 
 

Conservation does not take place in a vacuum. As this paragraph is being finalised, the 

world is on the verge of a recession owing to the impact of COVID-19 on the global 

economy (McKibbin and Fernando 2020). While the economic and social value of 

biodiversity might be accepted internationally (Pearce and Moran 1994, Seddon et al. 

2016), a case for the conservation of a single species not in immediate danger of 

extinction is a difficult one to make at a time of intense competition amongst priorities for 

scarce resources (Ando and Langpap 2018, Carwardine et al. 2019).  

 

The responsibility, in terms of international law, for environmental issues in UK Overseas 

Territories, such as the Falkland Islands, lies with the United Kingdom (House of 

Commons Environmental Audit Committee 2013), although in practice it is devolved to 

the territories themselves (DEFRA 2012, Foreign and Commonwealth Office 2012). The 

Falkland Islands Government (FIG) have a strong commitment to managing the Islands' 

environment and wildlife (FIG Environmental Planning Department 2018a, 2018b), 

working closely with two NGOs, the South Atlantic Environmental Research Institute and 

Falklands Conservation. Their approach is prioritisation of key species and habitats: at 

this stage, neither Y. cytheris nor V. maculata, their protected status notwithstanding, is 

seen as a priority, and dwarf shrub heath is not seen as a key habitat. With no funding 

from the UK, and a difficult financial environment for the Falkland Islands, the case for 

direct FIG action on the Falkland fritillary does not seem compelling. This is perhaps the 

strongest reason to look at community action, based on a Species Action Plan. 
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APPENDICES 
 

Appendix A Supplementary material for chapter 3, 
population dynamics and behavioural patterns 
 

 

A.1 Mark, release and recapture data 
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Appendix Table A.1  Numbers of Y. cytheris caught at the four Falkland study sites over the period 2016-

2019 

   all captures marked recaptures 
visit days

s 

date total F M F M F M 
SL01 1 16/01/2016 6 4 2 4 2 0 0 
BL01 2 17/01/2016 10 5 5 5 5 0 0 
  20/01/2016 21 18 3 18 3 0 0 
RC01 1 23/01/2016 12 7 5 7 5 0 0 
FP01 3 29/01/2016 0 0 0 0 0 0 0 
  01/02/2016 0 0 0 0 0 0 0 
  02/02/2016 2 2 0 2 0 0 0 
SL11 4 14/12/2016 19 4 15 4 15 0 0 
  15/12/2016 23 12 11 11 8 1 3 
  16/12/2016 28 11 17 8 13 3 4 
  17/12/2016 8 6 2 4 1 2 1 
BL11 4 18/12/2016 22 7 15 7 15 0 0 
  19/12/2016 37 11 26 8 23 3 3 
  20/12/2016 44 21 23 17 11 4 12 
  22/12/2016 28 17 11 10 7 7 4 
FP11 1 27/12/2016 5 0 5 0 5 0 0 
RC11 6 01/01/2017 12 7 5 7 5 0 0 
  02/01/2017 8 8 0 6 0 2 0 
  03/01/2017 1 0 1 0 1 0 0 
  04/01/2017 9 9 0 3 0 6 0 
  05/01/2017 5 5 0 2 0 3 0 
  07/01/2017 9 6 3 5 2 1 1 
RC12 1 13/01/2017 7 1 6 1 6 0 0 
BL12 2 19/01/2017 13 9 4 9 4 0 0 
  20/01/2017 12 8 4 3 3 5 1 
RC13 3 22/01/2017 2 2 0 2 0 0 0 
  25/01/2017 6 5 1 5 1 0 0 
  26/01/2017 2 2 0 2 0 0 0 
FP12 1 01/02/2017 2 2 0 2 0 0 0 
RC21 7 09/01/2018 5 4 1 4 1 0 0 
  10/01/2018 2 0 2 0 2 0 0 
  11/01/2018 2 0 2 0 1 0 1 
  13/01/2018 1 1 0 1 0 0 0 
  14/01/2018 1 0 1 0 0 0 1 
  15/01/2018 1 0 1 0 1 0 0 
  16/01/2018 2 1 1 1 0 0 1 

SL21 2 19/01/2018 0 0 0 0 0 0 0 
  20/01/2018 0 0 0 0 0 0 0 
BL21 7 21/01/2018 6 2 4 2 4 0 0 
  22/01/2018 5 1 4 1 2 0 2 
  23/01/2018 5 2 3 0 1 2 2 
  24/01/2018 1 0 1 0 0 0 1 
  25/01/2018 3 2 1 0 0 2 1 
  26/01/2018 1 0 1 0 1 0 0 
  27/01/2018 2 2 0 1 0 1 0 
FP21 4 28/01/2018 4 3 1 3 1 0 0 
  30/01/2018 1 1 0 0 0 1 0 
  01/02/2018 1 1 0 0 0 1 0 
  02/02/2018 7 1 6 1 6 0 0 
          totals 49  403 210 193 166 155 44 38 

 
BL = Bleaker, FP = Frying Pan, RC = Roy Cove and SL = Sea Lion. The following digits combine the season 

number (0 = 2015-2016, 1 = 2016-2017 and 2 = 2017-2018) and the visit number within that season (1-3). 

Days = the number of days on which MRR was undertaken. Marked = the number of individuals marked for 
the first time in a visit; recaptures = the number of individuals recaptured on subsequent days in total, 

irrespective of the number of times any individual was recaptured. F and M refer to female and male.   
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Appendix Table A.2  Jolly-Seber analysis of MRR data from seven events of four days or more. 

  M n φ pent 
site i M SE N SE 95% CI φ SE 95% CI B SE 95% CI 
BL1 1      0.70 0.21 0.29, 1.12    
 2 15.5   4.2   84.1 31.8   21.8, 146 0.81 0.30 0.21, 1.40 37.6 31 -23.2,98.4 
 3 37.5 13.4 105.5 40.7   25.6, 185 0.16      
(5) 4 11.0    11.0         
             
BL3 1      0.58 0.28 0.04, 1.13    
 2   3.5   1.1     7.0   2.6      1.8, 2.2 0.61 0.22 0.19, 1.04 0.7 1.4    -2.0, 3.4 
 3   4.0   0.0     5.0   0.0      5.0, 5.0 0.60 0.22 0.17, 1.03 0.0 0.0     0.0, 0.0 
 4   3.0   0.0     3.0   0.0      3.0, 3.0 1.00 0.00 1.00, 1.00 0.0 0.0     0.0, 0.0 
 5   3.0   0.0     3.0   0.0      3.0, 3.0 0.67      
(7) 6   2.0      4.0         
             
FP1 1      0.25      
 2   1.0      1.0   1.00   0.0   
 3   1.0   0.0     1.0   0.0      1.0, 1.0 1.00   0.0   
 4   1.0      1.0   1.00   0.0   
(6) 5   1.0      1.0      0.0   
             
RC1 1      0.22 0.12 0.00, 0.45    
 2   3.1   0.5     8.4   2.1    4.3, 12.5 0.86   -0.2   
 3   7.0      7.0   1.21   3.6   
 4   8.5   2.5   12.1   3.7    5.0, 19.3 0.52 0.42 -0.31,1.35 2.7 3.0    -3.1, 8.5 
 5   6.0   4.4     9.0   6.5   -3.8, 21.8 0.25   -0.2   
(7) 6   2.0      2.0         
             
RC2 1      0.0      
 2   0.0      0.0         
 3   0.0      0.0         
(5) 4   0.0      3.0         
             
RC3 1      0.00      
 2   0.0   0.0     3.0   0.33 0.27 -0.2, 0.87 0.0   
 3   1.0   0.0     1.0   0.0  1.0, 1.0 1.00   0.0   
 4   1.0      1.0   2.00   2.0   
 5   2.0      4.0   0.33   -0.3   
 6   1.0   0.0     1.0   0.0  1.0, 1.0 2.00   2.0   
(8) 7   2.0      4.0         
             
SL1 1      0.63 0.35 -0.47,1.31    
 2 12.0   6.2   57.6 34.6  -10.3,125 0.22 0.09 0.05, 0.40 15.0 6.7   1.9, 28.1 
(4) 3   7.0   0.0   28.0   0.0  28.0, 28.0       

The bracketed numbers in the site column show the total number of days over which MRR was conducted, 

the last day of which is not included in the Jolly-Seber analysis. φ represents the probability of survival from 
one day to the next, pent  the probability of entry into the population, including eclosion, between the 

sampling periods. 
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Appendix B Supplementary material for chapter 4, 
habitat requirements 
 
B.1 Habitat factors in the selection of oviposition locations 
 

Appendix Table B.1  Oviposition in relation to wind shade at each site.  

site oviposition n M SD df t p-value 95% CI d 
Bleaker no    1     5.00    NA 3 -0.58   0.602 -52.28,  36.16   0.65 
 yes    4   13.06 12.43      
Frying Pan no    5   24.44 20.09 22 -1.55   0.135 -35.33,    5.09   0.78 
 yes  19   39.56   4.82      
Roy Cove no  32   17.76   7.93 48 -1.43   0.160 -10.08,   -1.71   0.42 
 yes  18   21.95 12.85      
Sea Lion no    4   29.72 10.48 4  0.12   0.910 -40.19,  43.82   0.10 
 yes    2   27.91 29.86      

Units are percentages, per circular image, of black pixels in the four azimuth bins centred on the prevailing 

wind direction. There was no significance at p < 0.05, or large effect size at d > 0.8 

 

 
Appendix Table B.2  Oviposition in relation to openness at each site. 

site ov n M SD df t p-value 95% CI d 
Bleaker no   1   95.00   NA 3 0.75 0.507 -18.87,  30.53   0.84 
 yes   4   89.17   6.94      
Frying Pan no   5   80.16   7.69 22 1.19 0.247   -3.84,  14.16   0.60 
 yes 19   74.99   8.83      
Roy Cove no 32   81.38   4.83 48 -1.43 0.055   -0.07,    6.54   0.58 
 yes 18   78.14   6.73      
Sea Lion no   4   69.81   6.05 4 0.78 0.480   -9.17,  16.31   0.67 
 yes   2   66.24   1.63      

Units are percentages of white pixels per circular image. ov = oviposition site. There was no significance at 
p < 0.05, Large effect size (while not informative, given the high p-value ) at d > 0.8 is shown in bold. 
 
 

Appendix Table B.3  Oviposition in relation to direct radiation at each site. 

site oviposition n M SD df t p-value 95% CI d 
Bleaker no   1   23.10    NA      3 0.45   0.685 -0.05,  0.06   0.50 
 yes   4   23.09   0.02      
Frying Pan no   5   22.33   1.44    22 0.69   0.490 -1.12,  2.25   0.35 
 yes 19   21.77   1.65      
Roy Cove no 32   22.99   0.33    48 1.50   0.140  -0.7,   0.47   0.44 
 yes 18   22.79   0.64      
Sea Lion no   4   19.22   4.73      4 0.20   0.852 -9.86, 11.38   0.17 
 yes   2   18.45   3.29      

Units are mean moles per square metre per day over the November - February flying season. There was 
no significance at p < 0.05, or large effect size at d > 0.8 



 
 
 

 347 

Appendix Table B.4  Mean wind speeds at oviposition and non-oviposition locations. t-tests of wind speeds 

at three heights, 150cm (ceiling: the highest observed flight), 30cm (flight: the observed flying height) and 
3cm (oviposition: oviposition height).  Wind speeds were recorded as proportions of the wind speed at a site 

when measurements were taken, and applied to a base 8.11 ms-1, the mean wind speed of the weather 

stations nearest to the four study sites over November-February, 2013-2018. 

height oviposition n M SD df t p-value 95% CI d 
150 cm no 61 5.81 2.19 96 2.96 0.004 0.45,  2.30 0.62 
(ceiling) yes 37 4.44 2.29      
30 cm no 61 4.04 1.74 96 3.05 0.003 0.40,  1.89 0.63 
(flight) yes 37 2.90 1.90      
3 cm no 61 1.08 0.70 96 2.87 0.005 0.12,  0.65 0.60 
(oviposition) yes 37 0.70 0.53      

Significance at p < 0.05 is shown in bold. Wind speed is measured in ms-1. 

 
Appendix Table B.5  Comparison of illustrative wind speeds at oviposition and non-oviposition locations at 

the four study sites.  Welch two sample t-tests.  Ceiling (150cm) and flight (30cm) heights are compared; 

there was no clear variation at oviposition level. Wind speeds were recorded as proportions of the wind 
speed at a site when measurements were taken, and applied to a base 8.11 ms-1, the mean wind speed of 

the weather stations nearest to the four study sites over November-February, 2013-2018. 

height site ov n M SD df t p-value 95% CI d 
ceiling Bleaker N 7 5.62 0.71 12.63 0.007 0.994 -0.74, 0.75 0.003 
  Y 10 5.62 0.68      
 Frying Pan N 6 4.65 2.72 7.48 1.73 0.125 -0.75, 5.03 1.01 
  Y 9 2.51 1.65      
 Roy Cove N 44 5.92 2.29 24.45 2.13 0.044 0.05, 3.02 0.65 
  Y 16 4.39 2.53      
 Sea Lion N 4 6.73 1.93 3.30 -0.86 0.446 -3.58, 2.14 0.51 
  Y 2 7.58 0.32      
flight Bleaker N 7 4.17 0.83 11.11 0.53 0.607 -0.63, 1.03 0.27 
  Y 10 3.97 0.67      
 Frying Pan N 6 2.36 2.19 5.89 1.29 0.244 -1.09, 3.50 0.81 
  Y 9 1.15 0.8      
 Roy Cove N 44 4.24 1.73 23.68 2.53 0.018 0.26, 2.59 0.79 
  Y 16 2.81 2.00      
 Sea Lion N 4 4.18 1.37 1.74 -1.38 0.318 -8.60, 4.86 1.29 
  Y 2 6.04 1.65      
Significance at p < 0.05 and large effect size at d > 0.8 are shown in bold. ov = oviposition site: N = no, Y = 

yes. 
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Appendix Table B.6  Temperatures at oviposition and non-oviposition locations. Temperatures from data 

loggers covering 24hrs, day (1000 - 1600) and night (2200 - 0400) were recorded as proportions of the mean 
temperature of each site. Those proportions were transformed by mean combined temperatures for 24 hrs 

(14.93º), day (21.35º) and night (9.55º) to enable comparisons of data taken from different sites at different 

times. Comparisons are t-tests. 

time oviposition n M SD df t p-value 95% CI d 

24 hrs no 30 14.37 1.44 50 -3.32 0.002 -2.13, -0.52 0.93 
 yes 22 15.70 1.41      

day no 30 20.29 2.70 50 -3.17 0.003 -4.07, -0.91 0.89 
 yes 22 22.79 2.93      
night no 30   9.48 1.03 50 -0.68 0.501 -0.73, 0.36 0.19 

 yes 22   9.66 0.86      

Significance at p < 0.05 and large effect size at d > 0.8 are shown in bold. Temperature is measured in ºC. 

 
Appendix Table B.7  Comparison of illustrative temperatures at oviposition and non-oviposition locations at 
the four study sites.  Welch two sample t-tests . Temperatures from data loggers covering 24hrs, day 

(1000-1600) and night (2200-0400) were recorded as proportions of the mean temperature of each site. 

Those proportions were transformed by mean combined temperatures for 24 hrs (14.93º), day (21.35º) and 
night (9.55º) to enable comparisons of data taken from different sites at different times. 

time site ov n M SD df t p-value 95% CI d 
day Bleaker N   3 19.00 3.01 3.45 -1.67 0.182 -9.03, 2.60 1.22 
  Y   7 22.35 2.67      
 Frying Pan N   2 20.79 4.62 2.36 -0.21 0.847 -16.93, 15.08 0.19 
  Y   3 21.72 4.84      
 Roy Cove N 22 20.27 2.74 19.9 -3.17 0.005 -5.36, -1.10 1.18 
  Y 11 23.51 2.77      
 Sea Lion N   3 21.44 1.62 NA NA NA NA NA 
  Y   1 21.11 NA      
24 hr Bleaker N   3 14.20 0.81 6.39 -1.52 0.176 -2.70, 0.61 0.86 
  Y   7 15.24 1.33      
 Frying Pan N   2 14.44 1.42 2.73 -0.55 0.621 -5.69, 4.08 0.48 
  Y   3 15.25 1.81      
 Roy Cove N 22 14.43 1.57 22.9 -2.86 0.009 -2.61, -0.42 1.00 
  Y 11 15.94 1.36      
 Sea Lion N   3 14.05 1.49 NA NA NA NA NA 
  Y   1 17.60 NA      
night Bleaker N   3 9.82 0.65 3.08 0.92 0.424 -0.93, 1.70 0.71 
  Y   7 9.43 0.50      
 Frying Pan N   2 9.23 0.05 2.02 -1.15 0.367 -2.53, 1.45 0.81 
  Y   3 9.77 0.81      
 Roy Cove N 22 9.42 1.08 20.15 -1.04 0.310 -1.24, 0.41 0.38 
  Y 11 9.83 1.08      
 Sea Lion N   3 9.73 1.55 NA NA NA NA NA 
  Y   1 9.02 NA      
Significance at p < 0.05 and large effect size at d > 0.8 are shown in bold. 
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Appendix Table B.8  The contrast between non-oviposition and oviposition locations for six types of ground 

cover.  Analysis by t-test was based on percentage cover in  50x50 cm quadrats, and covered the four main 
study sites.  

cover ov n M SD df t p-value 95% CI d 

Viola N 105   6.94 10.87 129.20 -1.96   0.052   -6.82, 0.02 0.31 

 Y   62 10.34 10.75      

bare ground N 105 14.40 15.92   93.96 -3.67 <0.001 -19.16, -5.72 0.65 
 Y   62 26.84 23.69      

litter N 105 11.33 13.46   93.72 -3.83 <0.001 -16.69, -5.29 0.68 

 Y   62 22.32 20.10      
dwarf shrub N 105 30.95 31.71 160.56  3.88 <0.001    7.95, 24.40 0.57 

 Y   62 14.76 22.03      

grass N 105 18.64 23.37 146.53  0.97   0.333   -3.38, 9.92 0.15 
 Y   62 15.37 19.50      

other N 105 17.73 21.44 164.44  2.73   0.007    2.04, 12.69 0.39 

 Y   62 10.37 13.39      

Significance at p < 0.05 is shown in bold. Levene's test showed equal variances could not be assumed, 
therefore the Welch two sample t-test was used. ov = oviposition location, values are Y = yes, N = no. 
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Appendix C Supplementary material for chapter 6,  
wings: function, shape and size 
 
C.1 Sources of Y. cytheris wing samples  
Appendix Table C.1  Sources of Y. cytheris wing samples analysed in this chapter. 

land 
mass 

    

forewings 

 hind 

wings 

site label  (attribution) source year collected  F M  F M 

FK Bleaker Island field visit 2016, 2017, 2018  3 4  4 4 
FK Darwin field visit 2017  0 1  0 1 
FK (Darwin) BMNH, Reid 1909  2 1  2 1 
FK Darwin OUMNH,Reid 1908-1909  3 10  3 10 
FK Frying Pan field visit 2016, 2017, 2018  3 4  3 4 
FK (North Arm) BMNH, Elliott 1934  5 5  5 5 
FK San Carlos BMNH, Bonner 1935  3 1  3 1 
FK Sea Lion Island field visit 2016, 2017  2 2  2 2 
FK Roy Cove field visit 2016, 2017, 2018  3 5  3 5 
FK (Roy Cove) BMNH, Vallentin 1904  4 5  4 5 
FK Shallow Bay OUMNH,Vallentin 1910-1911  17 16  4 5 
LA Bariloche, Chile BMNH, Edwards 1926  0 2  0 0 
LA Isla Isabel, Chile BMNH, Coppinger 1879  2 0  2 0 
LA Panguipulli, Chile BMNH,Fay 1928  4 5  0 0 
LA Pto. Williams, Chile Zúñiga collection 2002  0 1  0 1 
LA Punta Arenas, Chile BMNH, Walker 1915  4 3  4 3 
LA Punta Arenas, Chile BMNH, Nicoll 1903  0 1  0 1 
LA Punta Arenas, Chile Zúñiga collection 2002  1 0  1 0 
LA Rio McClelland, Chile BMNH, Crawshay 1904  7 11  0 1 
LA Rio McClelland, Chile OUMNH, Crawshay 1904  1 14  1 14 
LA Torres del Paine, Chile Zúñiga collection 2003  0 1  0 1 
LA Santiago, Chile Zúñiga collection 2000  2 0  2 0 
LA Chubut, Argentina BMNH NK  5 5  0 0 
LA Chubut, Argentina OUMNH, Rosenberg before 1904  5 4  5 4 

FK = Falkland Islands, LA = Latin America; OUMNH = Oxford University Museum of Natural History, BMNH 

= British Museum of Natural History; F = female, M = male. Attribution: to Darwin of BMNH specimens 

collected by Reid is Boyson (1924), and by association with the OUMNH specimens; to Roy Cove of those 
collected by Vallentin is Vallentin (1904); to North Arm of those collected by Elliott is Elliott (1927). The date 

of the BMNH Chubut specimens, marked NK, is not known. 
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C.2 Image acquisition and handling 
C.2.1 Images acquired using predetermined protocols  

 
Images were recorded using a Nikon D800 single lens reflex camera and Nikon 105mm 

AF Micro Nikkor lens. They were stored in TIFF files, a lossless digital format usable by 

most morphometric software. File size in each instance was approximately 110MB. 

 

Butterflies taken in the field were dissected in the laboratory. Their wings were removed 

and placed between microscope slides which were then cemented together.  This 

eliminated possible measurement error due to wing curvature or angle, and allowed them 

to be photographed from both the ventral and dorsal sides. The camera was mounted 

on a tripod, with the specimen at a distance of 33.5 cm from the focal plane. This enabled 

an entire butterfly to be photographed in a single frame. Exposures were in diffused 

natural light with an aperture of f32 at ISO 640 for 1/2 second. A ruler marked in 1mm 

divisions was included in each photograph in the same plane as the wing to enable 

measurements to be included in the digitisation. 

 

Specimens from museum collections were photographed individually on their original 

pins.  To enable specimens’ undersides (whether dorsal or ventral, depending on how 

the specimen was mounted) to be photographed, the pins were inverted and their heads 

pushed into mounting putty.  Unlike slide-mounted wings, those of museum specimens 

can show curvature or be angled, so careful positioning was necessary to ensure they 

appeared in the same plane as a measuring gauge marked in 0.5 mm divisions (BMNH) 

or a reference length of 10mm (OUMNH). This was checked by ensuring both wings and 

gauges were in focus at the open aperture of f2.8, which gives a working depth of field 

of 1.2 mm at 33.5 cm (Greenleaf 1950).   

 

Exposures were made at varying distances between 30 cm and 35 cm with an aperture 

of f32, giving a depth of field range of 1.02 cm at 30 cm and 2.06 cm at 35 cm (Greenleaf 

1950).  This allowed much of the butterfly other than the wings to be in focus, which 

meant the images could be of wider use. 

 

Exposures were at ISO 640 for 1/4 -1/5 second (BMNH) and 1/25 second (OUMNH), 

using integrated lightbox and camera stands supplied by the museums.  
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C.2.2 Images supplied by others 

 
An additional set of forewing dorsal images of Latin American Yramea cytheris was 

supplied by Geoff Martin of the BMNH. These had been photographed using the SatScan 

tray scanner system (Blagoderov et al. 2010), a method that Johnson et al (2013)  had 

found to be as accurate as photographing pinned specimens. As some of the supplied 

images had also been photographed under the preceding protocols, it was possible to 

cross-refer and make comparisons which showed close correspondence of 

measurements. Accordingly the samples were used alongside others.  

 

A limitation of the whole tray scan was that it was not possible to use hind wings, as they 

were partially covered by forewings in setting, and ventral images were not available. 

 

C.2.3 Image processing 

 

TIFF files were initially processed in the TPS suite of software (Rohlf 2015).  They were 

first read into a TPS file in tpsUtil 1.70x64 . The resulting files were transferred to tpsDig 

ver.2.26, where the scale was set in accordance with the measurement gauge included 

in the images.  

 

C.2.4 Wing structure and landmark selection 

 
Landmarks were selected for digitisation on both fore and hind wings. Sites chosen were 

either the intersections of veins, or the points where a vein met the edge of a wing.  

 

Forewing landmarks were generally registered on the dorsal surface. Hindwing venation 

was less clearly visible on the dorsal surface of hindwings, in which cases the ventral 

surface was used, with the dorsal only used when landmarks were obscured, for 

example by legs. If necessary, the image was adjusted using the left/right flip in tpsDig 

to ensure all images were oriented in the same way. 

 

The TPS files were read into MorphoJ 1.06d (Klingenberg 2011).  The landmark 

coordinates were then subjected to Procrustes superimposition (Klingenberg and 

McIntyre 1998).  
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C.2.5 Warped outline drawings 

 

Shape changes were visualised in warped outline drawings. An outline file was made 

from a wing image with its landmarks marked.  Lines were then constructed using a 

series of intermediate landmarks to show wing outlines and the major veins.  The file 

was then imported into MorphoJ as a basis for warped outline drawings. These show 

initial and target shapes of a shape variation using the information provided by the 

landmarks. 

 

It should be noted that the warped outline drawing is an aid to visualisation only.  While 

the original file follows a semi-landmark structure, none of the subsequent images does. 

Therefore, while the landmarks carry biological information, the warped outline drawings 

(as is also true of deformation grids) carry no biological information. 

 
C.3  Additional statistical material   
 
C.3.1 The effects of land mass and sex on wing metrics 
 
Appendix Table C.2  The effect on forewing length of land mass and sex.   

Factor df SS MS F-ratio p-value ηp
2 

land mass    1 130.8 130.8 94.48 <0.001 0.355 
sex    1 114.7 114.7 82.83 <0.001 0.325 
land mass: sex    1    0.3    0.3   0.23   0.632 0.001 
residuals 172 238.1    1.4    

Two-way ANOVA using type II sum of squares.  Significance at p < 0.05 and large effect size at ηp
2 > 0.14, 

are shown in bold.  

 

Appendix Table C.3  The effect on forewing angle of land mass and sex.   

factor df SS MS F-ratio p-value ηp
2 

land mass     1   30.1  30.5 10.49 0.001    0.057 
sex     1     0.1    0.1   0.04 0.840  <0.001 
land mass: sex     1     0.1    0.1   0.02 0.887  <0.001 
residuals 172 493.2    2.9    
Two-way ANOVA using type II sum of squares.  Significance at p < 0.05 is shown in bold.  

 

Appendix Table C.4  The effect on forewing AR of land mass and sex.    

factor df SS MS F-ratio p-value ηp
2 

land mass    1 0.2 0.2 14.97    < 0.001   0.080 
sex    1 0.0 0.0 0.70       0.404   0.004 
land mass: sex    1 0.0 0.0 0.04       0.843 <0.001 
residuals 172 2.4 0.0    

Two-way ANOVA using type II sum of squares.  Significance at p < 0.05 is shown in bold. 
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Appendix Table C.5  The effect on forewing r̂1 of land mass and sex 

factor df SS MS F-ratio p-value ηp
2 

land mass     1 <0.01 <0.01 15.82 <0.001 0.098 
sex     1 <0.01 <0.01 22.43 <0.001 0.115 
land mass: sex     1 <0.01 <0.01   0.24   0.237 0.008 
residuals 172 0.01 <0.01    

Two-way ANOVA using type II sum of squares.  Significance at < 0.05 is shown in bold. 

 
Appendix Table C.6  The effect on hind wing length of land mass and sex.   

factor df SS MS F-ratio p-value ηp
2 

land mass     1   34.6   29.5 71.00 <0.001 0.346 
sex     1   41.8   41.8 85.59 <0.001 0.390 
land mass: sex     1     1.4     1.4    2.84    0.094  0.021 
residuals 134 65.4 0.5    

Two-way ANOVA using type II sum of squares.  Significance at p < 0.05 and large effect size at ηp
2 > 0.14, 

are shown in bold. 

 
Appendix Table C.7  The effect on hind wing angle of land mass and sex.   

factor df SS MS F-ratio p-value ηp
2 

land mass     1   5.9    5.9        0.84 0.361   0.006 
sex     1 18.3  18.3        2.60 0.109   0.019 
land mass: sex     1   0.3     0.3        0.04    0.834    <0.001 
residuals 134  940.5        7.0         

Two-way ANOVA using type II sum of squares. There was no significance at p < 0.05, or large effect size 

at ηp
2 > 0.14 

 

Appendix Table C.8  The effect on hind wing AR of land mass and sex.    

factor df SS MS F-ratio p-value ηp
2 

land mass     1 <0.01 <0.01   0.31     0.580   0.002 
sex     1    0.05     0.05     18.66   <0.001   0.122   
land mass: sex     1   <0.01   <0.01   <0.01     0.976 <0.001 
residuals 136        0.38      <0.01           

Two-way ANOVA using type II sum of squares.  Significance at p < 0.05 is shown in bold. 

 

Appendix Table C.9  The effect on hind wing r̂1 of land mass and sex 

factor df SS MS F-ratio p-value ηp
2 

land mass     1 <0.01 <0.01 0.009   0.923 <0.001 
sex     1 <0.01 <0.01 0.001   0.970 <0.001 
land mass: sex     1 <0.01   <0.01   3.001   0.085   0.021 
residuals 134     0.09     <0.01           

Two-way ANOVA using type II sum of squares.  There was no significance at p < 0.05, or large effect size 

at ηp
2 > 0.14 
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C.3.2 Geometric morphometric analysis of differences in wing shapes between sites 

 
Appendix Table C.10  Mahalanobis and Procrustes distances between female and male, Falklands and 

Latin America forewing shapes following CVA.   

  n Falklands, 
female 

Falklands, 
male 

Latin America, 
female 

Latin America, 
male 

 

Falklands, female 48 - 3.31 
(<0.0001) 

2.50 
(<0.0001) 

4.17 
(<0.0001) 

Mahalanobis 
distance 
(p-values) 

Falklands, male 52 0.031 
(<0.0001) - 3.74 

(<0.0001) 
2.84 

(<0.0001) 
Latin America, female 30 0.019 

(0.0001) 
0.039 

(<0.0001) - 3.30 
(<0.0001) 

Latin America, male 48 0.030 
(<0.0001) 

0.022 
(<0.0001) 

0.027 
(<0.0001) - 

Procrustes distance  (p-values) 
Mahalanobis distances significant at p < 0.001, and Procrustes distances significant at p < 0.05 are in bold.  

 
Appendix Table C.11  Mahalanobis and Procrustes distances between female forewings from eight Falkland 
Island sites following CVA.   

site n BL DA FP NO RC SC SL SW  

BL 4 - 5.21 
(0.002) 

6.4 
(0.025) 

5.02 
(0.018) 

5.07 
(0.001) 

4.72 
(0.036) 

8.6 
(0.0005) 

4.71 
(<.0001) 

Mahala- 
nobis 
distance 
(p-values) 

DA 6 0.026 
(0.348) - 5.34 

(0.010) 
5.41 

(0.010) 
3.91 

(0.002) 
5.11 

(0.0004) 
8.42 

(0.0005) 
4.73 

(<.0001) 

FP 3 0.033 
(0.117) 

0.024 
(0.544) - 6.51 

(0.007) 
4.37 

(0.036) 
6.75 

(0.085) 
9.98 

(0.099) 
4.68 

(<.0001) 

NO 4 0.031 
(0.257) 

0.022 
(0.700) 

0.033 
(0.082) - 5.49 

(0.0005) 
6.53 

(0.005) 
10.57 

(<.0001) 
4.74 

(0.0001) 

RC 8 0.033 
(0.038) 

0.019 
(0.551) 

0.021 
(0.549) 

0.029 
(0.118) - 4.92 

(0.002) 
9.21 

(0.004) 
3.14 

(<.0001) 

SC 3 0.034 
(0.153) 

0.031 
(0.142) 

0.028 
(<.0001) 

0.034 
(0.164) 

0.022 
(0.604) - 8.3 

(<.0001) 
5.27 

(0.0001) 

SL 3 0.030 
(0.470) 

0.026 
(0.653) 

0.027 
(0.703) 

0.034 
(0.324) 

0.028 
(0.239) 

0.029 
(0.605) - 10.37 

(0.0004) 

SW 17 0.025 
(0.066) 

0.022 
(0.072) 

0.020 
(0.412) 

0.031 
(0.003) 

0.019 
(0.067) 

0.027 
(0.071) 

0.031 
(0.027) - 

  Procrustes distance  (p-values) 
BL = Bleaker; DA = Darwin; FP = Frying Pan; NO = North Arm; RC = Roy Cove; SC = San Carlos; SL = Sea 
Lion; SW = Shallow Bay.  Mahalanobis distances significant at p < 0.001, and Procrustes distances 

significant at p < 0.05 are shown in bold.  
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Appendix Table C.12  Mahalanobis and Procrustes distances between male forewings from eight Falkland 

Island sites following CVA.   

site n BL DA FP NO RC SC SL SW  

BL   4 - 7.21 
(0.0006) 

5.31 
(0.024) 

8.38 
(0.003) 

5.17 
(0.0005) 

11.39 
(0.069) 

10.12 
(0.0831) 

6.60 
(0.0001) 

Mahala- 
nobis 
distance 
(p-values) 

DA 11 0.027 
(0.076) - 5.28 

(<.0001) 
6.21 

(<.0001) 
4.65 

(<.0001) 
10.37 

(0.023) 
11.71 

(0.061) 
3.52 

(<.0001) 

FP   4 0.022 
(0.500) 

0.026 
(0.131) - 7.68 

(0.0009) 
2.83 

(0.871) 
11.63 

(0.085) 
10.49 

(0.137) 
4.74 

(0.0001) 

NO   6 0.028 
(0.277) 

0.020 
(0.427) 

0.033 
(0.121) - 6.46 

(0.0001) 
8.72 

(0.097) 
13.82 

(0.081) 
4.43 

(<.0001) 

RC   9 0.021 
(0.621) 

0.017 
(0.470) 

0.017 
(0.809) 

0.021 
(0.478) - 10.71 

(0.056) 
10.64 

(0.040) 
3.55 

(0.015) 

SC   1 0.054 
(0.153) 

0.054 
(0.035) 

0.063 
(0.192) 

0.052 
(0.296) 

0.056 
(0.082) - 17.12 

(0.063) 
9.53 

(0.054) 

SL   1 0.040 
(0.067) 

0.040 
(0.428) 

0.039 
(0.282) 

0.048 
(0.283) 

0.040 
(0.452) 

0.063 
(1.000) - 11.74 

(0.037) 

SW 16 0.026 
(0.060) 

0.023 
(0.806) 

0.023 
(0.156) 

0.023 
(0.093) 

0.015 
(0.404) 

0.054 
(0.021) 

0.037 
(0.249) - 

  Procrustes distance  (p-values) 
BL = Bleaker; DA = Darwin; FP = Frying Pan; NO = North Arm; RC = Roy Cove; SC = San Carlos; SL = Sea 

Lion; SW = Shallow Bay.  Mahalanobis distances significant at p <  0.001, and Procrustes distances 
significant at p < 0.05  are shown in bold. 

 
 
Appendix Table C.13  Mahalanobis and Procrustes distances between female forewings from four Latin 
American sites following CVA.   

 n Chubut Punta Arenas Panguipulli Rio McClelland  

Chubut 10 - 
9.48 

(<0.0001) 

5.07 

(0.0003) 

9.37 

(<0.0001) 

 

 
Mahalanobis 

distance 

(p-values) 

Punta Arenas     5 
0.026 

(0.354) 
- 

10.55 

(0.002) 

6.73 

(0.0002) 

Panguipulli   4 
0.028 
(0.253) 

0.035 
(0.153) 

- 
10.28 
(0.002) 

Rio 

McClelland 
  7 

0.029 

(0.060) 

0.023 

(0.540) 

0.039 

(0.031) 
- 

                              Procrustes distance  (p-values) 

Mahalanobis distances significant at p <  0.001, and Procrustes distances significant at p < 0.05  are shown 

in bold. 
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Appendix Table C.14  Mahalanobis and Procrustes distances between male forewings from five Latin 
American sites following CVA.  

 n Bariloche Chubut Punta Arenas Panguipulli Rio McClelland  

Bariloche   2 - 11.5 
(0.008) 

12.75 
(0.012) 

12.70 
(0.013) 

13.02 
(0.001)  

Chubut   9 0.037 
(0.298) - 7.19 

(0.0004) 
6.93 

(0.0004) 
4.24 

(<0.0001) 
Mahalanobis 
distance 
(p-values) 

Punta Arenas     4 0.031 
(0.891) 

0.021 
(0.832) - 8.94 

(0.006) 
6.19 

(0.0001) 
Panguipulli   5 0.047 

(0.341) 
0.034 

(0.094) 
0.037 

(0.325) - 7.00 
(0.0001) 

Rio McClelland 26 0.042 
(0.019) 

0.018 
(0.159) 

0.026 
(0.139) 

0.040 
(0.0001) - 

 Procrustes distance  (p-values) 
Mahalanobis distances significant at p < 0.001, and Procrustes distances significant at p < 0.05 are in bold 

font. 

 
Appendix Table C.15  Mahalanobis and Procrustes distances between Falklands and Latin American female 

and male hind wing shapes following CVA.   

  n Falklands, 
female 

Falklands, 
male 

Latin America, 
female 

Latin America, 
male 

 

Falklands, female 48 - 2.47 
(<0.0001) 

2.62 
(<0.0001) 

4.14 
(<0.0001) 

Mahalanobis 
distance 
(p-values) 

Falklands, male 52 0.027 
(<0.0001) - 3.75 

(<0.0001) 
3.22 

(<0.0001) 
Latin America, female 30 0.021 

(0.0099) 
0.040 

(<0.0001) - 4.04 
(<0.0001) 

Latin America, male 48 0.034 
(<0.0001) 

0.028 
(<0.0001) 

0.038 
(<0.0001) - 

Procrustes distance  (p-values) 
Mahalanobis distances significant at p < 0.001, and Procrustes distances significant at p < 0.05 are in bold.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 358 

Appendix Table C.16  Mahalanobis and Procrustes distances between female hind wings from eight 

Falkland Island sites following CVA.   

site n BL DA FP NO RC SC SL SW  

BL   4 - 6.40 
(0.003) 

7.20 
(0.017) 

8.64 
(0.002) 

6.99 
(0.001) 

9.62 
(0.023) 

7.69 
(0.051) 

6.56 
(<.0001) 

Mahala- 
nobis 
distance 
(p-values) 

DA   5 0.031 
(0.590) - 8.74 

(0.007) 
7.79 

(0.0002) 
4.33 

(0.004) 
8.41 

(0.016) 
6.89 

(0.0005) 
5.16 

(<.0001) 

FP   3 0.021 
(0.978) 

0.035 
(0.401) - 7.87 

(0.004) 
8.56 

(0.005) 
11.01 

(0.081) 
6.92 

(0.035) 
9.72 

(<.0001) 

NO   5 0.030 
(0.517) 

0.037 
(0.086) 

0.023 
(0.858) - 6.01 

(0.001) 
9.00 

(0.019) 
9.42 

(0.005) 
7.17 

(<.0001) 

RC   8 0.032 
(0.224) 

0.023 
(0.437) 

0.029 
(0.294) 

0.026 
(0.108) - 6.41 

(0.004) 
7.99 

(0.022) 
4.90 

(<.0001) 

SC   3 0.043 
(0.251) 

0.055 
(0.037) 

0.035 
(0.428) 

0.030 
(0.327) 

0.043 
(0.010) - 10.73 

(0.098) 
8.90 

(0.0006) 

SL   2 0.032 
(0.795) 

0.041 
(0.257) 

0.030 
(0.899) 

0.035 
(0.155) 

0.036 
(0.081) 

0.036 
(0.164) - 9.94 

(0.0001) 

SW 17 0.031 
(0.102) 

0.016 
(0.728) 

0.033 
(0.081) 

0.034 
(0.004) 

0.021 
(0.070) 

0.053 
(0.0002) 

0.044 
(0.011) - 

  Procrustes distance  (p-values) 
BL = Bleaker; DA = Darwin; FP = Frying Pan; NO = North Arm; RC = Roy Cove; SC = San Carlos; SL = Sea 

Lion; SW = Shallow Bay.  Mahalanobis distances significant at p < 0.001, and Procrustes distances 
significant at p < 0.05 are in bold. 
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Appendix Table C.17  Mahalanobis and Procrustes distances between male hind wings from eight Falkland 
Island sites following CVA.  

site n BL DA FP NO RC SC SL SW  

BL   4 - 7.25 
(0.0009) 

5.06 
(0.016) 

6.82 
(0.005) 

5.35 
(0.0007) 

11.80 
(0.136) 

7.60 
(0.037) 

6.71 
(<.0001) 

Mahala- 
nobis 
distance 
(p-values) 

DA 11 0.033 
(0.300) - 7.85 

(0.0006) 
8.62 

(0.0002) 
4.71 

(<.0001) 
9.74 

(0.012) 
9.16 

(0.0092) 
3.75 

(<.0001) 

FP   4 0.040 
(0.053) 

0.023 
(0.699) - 8.58 

(0.003) 
6.56 

(0.0002) 
13.77 

(0.134) 
8.05 

(0.046) 
7.10 

(<.0001) 

NO   5 0.035 
(0.595) 

0.053 
(0.014) 

0.063 
(0.018) - 6.77 

(0.0005) 
10.44 

(0.014) 
7.44 

(0.006) 
8.27 

(<.0001) 

RC 10 0.030 
(0.314) 

0.021 
(0.478) 

0.032 
(0.182) 

0.050 
(0.011) - 11.26 

(0.008) 
7.77 

(0.0005) 
4.59 

(<.0001) 

SC   1 0.051 
(0.518) 

0.049 
(0.446) 

0.061 
(0.203) 

0.047 
(0.841) 

0.052 
(0.402) - 12.96 

(0.331) 
9.95 

(0.035) 

SL   2 0.041 
(0.384) 

0.042 
(0.372) 

0.048 
(0.068) 

0.050 
(0.390) 

0.043 
(0.253) 

0.053 
(1.000) - 7.51 

(0.003) 

SW 16 0.039 
(0.017) 

0.017 
(0.536) 

0.025 
(0.278) 

0.059 
(0.0005) 

0.022 
(0.165) 

0.051 
(0.225) 

0.044 
(0.094) - 

  Procrustes distance  (p-values) 
BL = Bleaker; DA = Darwin; FP = Frying Pan; NO = North Arm; RC = Roy Cove; SC = San Carlos; SL = Sea 

Lion; SW = Shallow Bay.  Mahalanobis distances significant at p < 0.001, and Procrustes distances 

significant at p < 0.05 are in bold font. 
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C.3.3 The effects of elevation and altitude on wing shape 

 
Appendix Table C.18  The effect on female forewing length of elevation and latitude, and the interaction of 
the two.   

factor df SS MS F-ratio p-value ηp
2 

elevation    1     0.66 0.66 0.24   0.629   0.009 
latitude    1     0.19 0.19 0.07   0.793   0.003 
elevation:latitude    1     0.02 0.02 0.01   0.924 <0.001 
residuals 26   71.50 2.75    

Linear model with Type II sums of squares 

 
Appendix Table C.19  The effect on male forewing length of elevation and latitude, and the interaction of the 
two.      

factor df SS MS F-ratio p-value ηp
2 

elevation     1   7.51 7.51 6.66   0.013 0.134 
latitude     1   0.70 0.70 0.62   0.435 0.014 
elevation:latitude     1   2.66 2.66 2.36   0.131 0.052 
residuals   43 48.46 1.13    

Linear model with Type II sums of squares. Significance at < 0.05 is shown in bold.  

 

Appendix Table C.20  The effect on female forewing AR of elevation and latitude, and the interaction 
between the two.   

factor df SS MS F-ratio p-value ηp
2 

elevation    1       0.06   0.06 5.51   0.027   0.174 
latitude    1       0.04   0.04 4.10   0.053   0.136 
elevation:latitude    1     <0.01 <0.01 0.27   0.606   0.272 
residuals 26       0.27   0.01    

Linear model with Type II sums of squares. Significance at p < 0.05 and large effect size at ηp
2 > 0.14, are 

shown in bold. 

 
Appendix Table C.21  The effect on male forewing AR of elevation and latitude, and the interaction between 
the two.   

factor df SS MS F-ratio p-value ηp
2 

elevation     1   0.12   0.12 10.09   0.003 0.190 
latitude     1   0.01   0.01 0.90   0.348 0.020 
elevation:latitude     1   0.01   0.01 0.77   0.384 0.018 
residuals   43   0.53   0.01    

Linear model with Type II sums of squares. Significance at p < 0.05 and large effect size at ηp
2 > 0.14, are 

shown in bold. 
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Appendix Table C.22  The effect on female forewing r̂1   of elevation and latitude, and the interaction 

between the two.   

factor df SS MS F-ratio p-value ηp
2 

elevation    1      <0.01      <0.01 0.59   0.450   0.022 
latitude    1      <0.01      <0.01 0.11   0.744   0.004 
elevation:latitude    1      <0.01      <0.01 0.04   0.834   0.002 
residuals 26 <0.01 <0.01    

Linear model with Type II sums of squares 

 
Appendix Table C.23  The effect on male forewing r̂1  of elevation and latitude, and the interaction between 

the two.   

factor df SS MS F-ratio p-value ηp
2 

elevation     1      <0.01      <0.01 4.93   0.032 0.102 
latitude     1      <0.01      <0.01 0.36   0.552 0.008 
elevation:latitude     1      <0.01      <0.01 0.75   0.391 0.017 
residuals   43      <0.01      <0.01    

Linear model with Type II sums of squares. Significance at < 0.05 is shown in bold.  

 
Appendix Table C.24  The effect of wind speed at 30cm on forewing length, AR and r̂1  

factor df SS MS F-ratio p-value 
length, female    1,14      2.323      2.323 1.87   0.193 
length, male     1,17      1.162      1.161 1.13   0.302 
AR, female    1,14      0.025      0.025 1.40   0.257 
AR, male    1,17 0.001 0.001 0.10   0.756 
r̂1,female    1,14    <0.001    <0.001 0.35   0.566 
r̂1, male    1,17    <0.001    <0.001 0.26   0.614 

Linear model with Type II sums of squares 
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Appendix D Supplementary material for chapter 7, 
claw shape and size: variation and wind 
 
D.1 Image acquisition 
 
Legs were removed in the field using forceps and were stored in Eppendorf tubes 

marked with identification numbers, leg side (left or right) and leg pair (hind or middle). 

hypertension Whole butterflies were initially stored in glassine envelopes. Their legs 

were subsequently removed in the laboratory and stored the same way as those in the 

field.  Samples from the BMNH were removed at the museum, and stored in the marked 

tubes which the museum provided.   

 

Claws were separated from the tarsus under a Leica S8 Apo microscope. They were 

placed on single cavity microscope slides, to avoid crushing, and covered with 

coverslips. The butterfly’s ID and sex were recorded, together with the side of the body 

the leg was taken from and the leg pair, whether middle or hind.  

 

Each claw was marked either A or B, depending on whether it was the left or right claw 

looking at the face of the arolium. As hind legs were backward-facing, and middle legs 

forward-facing, the distal claw on the middle right leg was, for example, initially recorded 

as A, and on the hind right leg as B.  

 

The majority of legs collected were from the right side of the butterfly as seen from the 

dorsal side. There was not enough material to enable direct comparison between the left 

and right sides, although it is conventional to assume bilateral symmetry in butterflies. 

Thus no distinction was made between left and right legs within a leg pair, other than to 

ensure the correct identification of distal and proximal claws.  

 

Each claw was photographed from both sides of the slide through a Keyence VHX-600 

microscope at 200x magnification, using the microscope’s inbuilt camera and 100 µm 

scale. Images were saved in the lossless format TIFF.  

 

To minimise the possibility of measurement error, all photographs were taken under 

identical conditions.  
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D.2 Image processing  
 
D.2.1 Traditional morphometrics 

 

The TIFF images were processed in ImageJ using the FIJI platform (Schindelin et al. 

2012, Schneider et al. 2012).   

 

Three points were fixed on each claw. These subsequently served as the fixed 

landmarks in geometric morphometric analysis. 

 

Lines were constructed between the fixed points, from the claw tip to, respectively, the 

ventral and dorsal inflections.  These were envisaged as chords of a circle.  

 

Chords were bisected using the macro “bissect” (sic) (Burri 2016). The chords from 

which the two angles were constructed were also measured to determine variation in 

claw size between populations.  

 

The angles which were subtended by these chords were then constructed and 

measured, following the approach set out in Feduccia (1993). Duplouy and Hanski 

(2013) used a directly mathematically related variant of this where, if Feduccia's angle 

is aº and Duplouy and Hanski's bº, then b=360-2a. For comparisons, Feduccia's angle 

was used, and Duplouy and Hanski's converted accordingly. 

 

The greater the Feduccia angle, the more sharply curved was the claw.  While the angle 

measurement this produced might appear counter-intuitive, it was retained here in 

accordance with past practice.  

 
D.2.2 Geometric morphometrics 

 
TIFF images were processed in the tps software suite (Rohlf 2010, 2015).  

 

Images were grouped and imported into tpsUtil, where files were created for processing 

in tpsDig2. Images were flipped in tpsDig2 where necessary to ensure all images had 

the same orientation.  Three fixed landmarks were then applied to each image, at the 

point where the dorsal curve met the tarsus; at the claw’s tip; and at the point where the 

ventral curve met the tarsus.  
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Sliding landmarks were then added on dorsal and ventral curves between the fixed 

landmarks of their respective tarsal junctions and the claw tip.  

 

As a first step, as many landmarks were applied (typically 30-40), using the curve tool, 

as would give the most accurate rendition of the curve. The curve was then resampled, 

and the number of landmarks reduced to 30, by length: that is to say, they were aligned 

equidistant from each other.   

 

Each data set was saved as a single set of landmarks, which were subsequently handled 

as if they were permanent landmarks (as in Tinius and Russell 2017).  The data sets 

were then combined into data sets of 59 landmarks (those at the tip from each data set 

being identical) to enable analysis of the overall shape of the claw. 

 
The tps files were processed in MorphoJ (Klingenberg 2011, 2013). They were subjected 

to a Procrustes fit, followed by the generation of covariance matrices.  On the basis of 

these, two analyses were undertaken: 

• Principal Component Analysis (PCA), to investigate the differences between 

individuals, and to visualise the main components of claw shape in individuals;  

• Canonical Variate Analysis (CVA), to investigate the relationship between data 

from pre-assigned groups, based on both Mahalanobis and Procrustes 

distances. 
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D.3 Measurement error  
 
Measurement error was assessed through a subset of 17 claws, 6 from the middle pair 

and 11 from the hind pair, collected during the first two field trips.  Each surface of each 

claw was measured five times. It was calculated by the intra-class correlation coefficient  

represented by the equation:     
 
ICC =                 S2

A____ 

              S2
A  +  S2

W         
 

where S2
A   is the variance between groups, and S2

W  the variance within groups (Lessells 

and Boag 1987, Bailey and Byrnes 1990, Wolak et al. 2012).  

 

The ICC scores were not low enough to give concerns about repeatability: 

hind claw ventral angle: ICC 0.86, 95% CI[0.71 - 0.95], VW = 7.12, VA  = 42.28; middle 

claw ventral angle: ICC 0.96 95% CI[0.88 - 0.99], VW =  7.62, VA = 176.61; hind claw 

ventral chord: ICC 0.96,  95% CI[0.91 - 0.99], VW =  10.18, VA = 241.45; middle claw 

ventral chord: ICC 0.98, 95% CI[0.95 - 1.00], VW =  3.71, VA = 227.80.  
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D.4 Additional statistical material on claw size and shape 
 
Appendix Table D.1  The effect of sex (female, male), leg pair (hind, middle) and tarsal claw position (distal, 

proximal) on chord length. Three-way ANOVA, allowing only two-way interactions. 

(a) dorsal chords 

factor df SS MS F-ratio p-value ηp
2 

sex   1   7188.3   7188.3   21.07 <0.001 0.212 
pair   1     830.8     830.8     2.43   0.122 0.028 
position   1   3280.6   3280.6     9.61   0.003 0.102 
sex:pair   1     315.5     315.5     0.92   0.339 0.011 
sex:position   1       51.7       51.7     0.70   0.698 0.001 
pair:position   1     170.3     170.3     0.50   0.499 0.006 
residuals 85 29001.7       70.4    

 

(b) ventral chords 

factor df SS MS F-ratio p-value ηp
2 

sex   1     949.4    949.4     5.16 0.026 0.073 
pair   1     890.7    890.7     4.84 0.030 0.053 
position   1     932.6    932.6     5.07 0.027 0.056 
sex:pair   1     252.6    252.6     1.37 0.244 0.015 
sex:position   1       40.4      40.4     0.22 0.641 0.001 
pair:position   1     140.0    140.0     0.76 0.385 0.009 
residuals 85 15637.8    184.0    

Significance at p < 0.05  and large effect size, ηp
2 > 0.14 are shown in bold. 

 
Appendix Table D.2  The effect of sex (female, male), leg pair (hind, middle) and claw position (distal, 

proximal) on claw angle. A three-way ANOVA was used, allowing only two-way interactions.  

(a)  dorsal angles 

factor df SS MS F - ratio p -value ηp
2 

sex   1      118.3      118.3   1.68   0.198 0.002 
pair   1    2213.4    2213.4 31.45 <0.001 0.270 
position   1        43.4        43.4   0.62   0.435 0.007 
sex:pair   1        62.9        62.9   0.89   0.347 0.010 
sex:position   1        51.6        51.6   0.73   0.394 0.007 
pair:position   1        24.4        24.4   0.35   0.557 0.004 
residuals 85    5981.1        70.4    

 

(b)  ventral angles 

factor df SS MS F - ratio p -value ηp
2 

sex 1    795.2    795.2 8.78      0.004 0.059 
pair 1  1311.8  1311.8     14.49    <0.001 0.145 
position 1    112.1    112.1 1.24 0.269 0.014 
sex:pair 1    106.0    106.0 1.17 0.282 0.013 
sex:position 1      39.3      39.3 0.43 0.511    <0.004 
pair:position 1      13.8      13.8 0.15 0.696    <0.002 
residuals      85  7693.3      90.5    

Significance at p < 0.05 and large effect size, ηp
2 > 0.14, are shown in bold. 
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Appendix Table D.3  Mahalanobis and Procrustes distances between female and male, hind and middle 

claw shapes following CVA.   

  n female hind female middle male hind male middle  
female hind 25 - 6.49 

(<0.0001) 
10.34 

(<0.0001) 
6.14 

(<0.0001) 
Mahalanobis 
distance 
(p-values) 

female middle 31 0.028 
(0.016) - 11.46 

(<0.0001) 
5.13 

(<0.0001) 
male hind 16 0.020 

(0.176) 
0.041 

(<0.001) - 11.36 
(<0.0001) 

male middle 28 0.025 
(0.029) 

0.019 
(0.110) 

0.038 
(<0.001) - 

Procrustes distance  (p-values) 
Significance at p < 0.001 for Mahalanobis distances, and p < 0.05 for Procrustes distances, are shown in 
bold. p-values are derived from 10,000 round permutation tests.   

 
Appendix Table D.4  Mahalanobis and Procrustes distances between the four Falkland Islands study sites 
following a CVA of hind claws.   

 n Bleaker Frying Pan Roy Cove Sea Lion  

Bleaker      10 - 
3.31 

(0.001) 
2.38 

(0.810) 
5.29 

(0.0005) 

Mahalanobis 

distance 

(p-values) 

Frying Pan        9 
0.029 

(0.247) 
- 

2.66 

(0.093) 

7.05 

(0.0005) 

Roy Cove      10 
0.014 

(0.764) 

0.032 

(0.113) 
- 

6.43 

(0.0002) 

Sea Lion        5 
0.024 

(0.454) 

0.042 

(0.105) 

0.024 

(0.255) 
- 

Procrustes distance  (p-values) 

Significance at p < 0.001 for Mahalanobis distances, and p < 0.05 for Procrustes distances, are shown in 

bold. p-values are derived from 10,000 round permutation tests.   

 
 
Appendix Table D.5  Mahalanobis and Procrustes distances between the four Falkland Islands study sites 

following a CVA of middle claws.  All Mahalanobis distances were significant at p < 0.001. 

 n Bleaker Frying Pan Roy Cove Sea Lion  

Bleaker 19 - 
3.07 

(< 0.0001) 
3.41 

(< 0.0001) 
5.69 

(0.0001) 

Mahalanobis 

distance 

( p-values) 

Frying Pan 16 
0.020 

(0.141) 
- 

3.12 

(0.0001) 
5.07 

(<0.0001) 

Roy Cove 15 
0.021 

(0.226) 

0.011 

(0.852) 
- 

5.07 

(0.0004) 

Sea Lion 5 
0.037 

(0.056) 
0.030 

(0.098) 
0.041 

(0.090) 
- 

Procrustes distance  (p-values) 

Significance at p < 0.001 for Mahalanobis distances, and p < 0.05 for Procrustes distances, are shown in 

bold. p-values are derived from 10,000 round permutation tests.   
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Appendix Table D.6  The effect of sex and site on ventral chord length for M. cinxia in the Baltic. Two way 

ANOVA.  

factor df SS MS F-ratio p-value ηp
2 

site     3     10827     3609       6.30        <0.001       0.145 
sex     1       4635     4635       8.09          0.005       0.067 
site:sex     3       1841       614       1.07          0.364       0.028 
residuals 113     64709       573    

Significance at p < 0.05  and large effect size, ηp
2 > 0.14 are shown in bold. 

 

 
Appendix Table D.7  The effect of sex and site on ventral angles for M. cinxia in the Baltic. Two-way ANOVA 

factor df SS MS F-ratio p-value ηp
2 

site     3       2383       794       3.89           0.011        0.097 
sex     1         227       227       1.11           0.294        0.010 
site:sex     3         632       210       1.03           0.382        0.027 
residuals 113     23093       204      

Significance at p < 0.05 is shown in bold. 

 
Appendix Table D.8  Correlation between claw angles and wind speeds at the four Falkland Island study 
sites (Pearson's r) 

wind speeds at: claw angle 
 hind, dorsal middle, dorsal hind, ventral middle, ventral 

ceiling (150 cm) 1.00 0.95 1.00 0.98 
patrol (30 cm) 1.00 0.95 0.99 0.99 
oviposition (3cm) 0.56 0.31 0.67 0.46 
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Appendix Table D.9  Comparison of claw angles between small island (Bleaker and Sea Lion) and large 

island (Frying Pan and Roy Cove) sites.  

a = angle, p = claw pair, s = sex, l = landscape; d = dorsal, v = ventral; h = hind, m = middle; f = female, 
m = male; i = small Falklands, m = other Falklands.  Significance at p < 0.05 and d > 0.8 are shown in bold. 

 
 
  

a p s l n M SD df SS MS F p 95% CI d 

d h  i 15 132.3   6.68 1, 28 165.5 165.5 4.56 0.042   -9.21,-0.19 0.78 

   m 15 127.7   5.30        

d m  i 22 121.2   6.63 1, 45 156.9 156.9 3.18 0.081   -7.79, 0.48 0.52 

   m 25 117.6   7.36        

d h f i 10 130.3   6.65 1, 15   38.4   38.4 1.08 0.314   -9.30, 3.19 0.51 

   m   7 127.3   4.69        

d h m i   5 136.4   5.01 1, 11 219.2 219.2 6.72 0.025 -15.61,-1.27 1.48 
   m   8 128.0   6.08        

d m f i 14 121.3   6.53 1, 21 139.2 139.2 2.23 0.150 -12.05, 1.97 0.63 

   m   9 116.3   9.71        

d m m i   8 121.0   7.25 1, 22   39.9   39.9 0.99 0.332   -8.45, 2.98 0.42 

   m 16 118.3   5.9        

v h f i 10 157.2   7.21 1, 16 103.7 103.7 1.73 0.207 -12.61, 2.95 0.62 

   m   8 152.3   8.36        

v h m i   5 158.3   3.10 1, 11 193.0 193.0 5.37 0.041 -15.44,-0.40 1.32 
   m   8 150.4   7.14        

v m f i 14 149.9   6.47 1, 23   87.1   87.1 1.45 0.241 -10.22, 2.70 0.48 

   m 11 146.2   9.15        

v m m i   8 146.8   7.02 1, 22   99.8   99.8 1.07 0.312 -13.00, 4.35 0.45 

   m 16 142.5 10.67        
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Appendix Table D.10   Comparison of claw chords between small islands (Bleaker and Sea Lion) and other 

Falklands (Frying Pan and Roy Cove) sites. 

ch= chord, p = claw pair, s = sex, c = claw, ld = landscape d = dorsal, v = ventral; h = hind, m = middle; f = 

female, m = male; d = distal, p = proximal; i = small island, m = other Falklands. Significance at p < 0.05 and  

d > 0.8 are shown in bold. 

 

 
  

ch p s c l n M SD df SS MS F p 95% CI d 

d h f d i   7 284.8 22.95 1, 10     1.0     0.5 0.001 0.973 -26.51, 27.35 0.02 

    m   5 285.2 16.58        

d h f p i   7 274.1 23.13 1, 11 103.0 103.0 0.26 0.620 -13.09, 18.84 0.38 

    m   6 279.7 15.12        

d h m d i   4 261.2   9.30 1, 6   16.5   16.5 0.19 0.675 -13.10, 18.84 0.31 

    m   4 264.1   9.16        

d h m p i   4 257.5 22.39 1, 9 419.6 419.6 1.21 0.299 -13.51, 39.19 0.69 

    m   7 270.3 16.36        

d m f d i   8 280.1 22.36 1, 15   41.0   41.1 0.12 0.736 -16.26, 22.49 0.17 

    m   9 283.2 14.79        

d m f p i 10 278.4 30.07 1, 16 362.0 361.5 0.53 0.476 -17.16, 35.20 0.35 

    m   8 287.4 19.67        

d m m d i   6 266.5 24.80 1, 17   39.0   38.6 0.09 0.765 -24.35, 18.22 0.15 

    m 13 263.4 18.32        

d m m p i   8 278.1   9.83 1, 18   58.0   58.2 0.15 0.703 -22.37, 5.41 0.18 

    m 12 274.6 23.95        

v h f d i   7 209.8 15.32 1, 10     0.5     0.5 0.003 0.961 -18.20, 19.04 0.03 

    m   5 210.2 12.54        

v h f p i   7 203.7 18.20 1, 11   98.3   98.3 0.49 0.498 -11.82, 22.85 0.38 

    m   6 209.2   6.60        

v h m d i   4 190.7   7.64 1, 6 446.0 446.0 9.43 0.022    3.03, 26.83 2.17 
    m   4 205.6   6.02        

v h m p i   4 193.0 11.75 1, 10 636.5 636.5 6.84 0.026    2.28, 28.62 1.60 
    m   8 208.5   8.60        

v m f d i   8 208.4 14.36 1, 15   86.5   86.5 0.50 0.489   -9.06, 18.09 0.34 

    m   9 212.9 11.91        

v m f p i 10 204.6 17.59 1, 17 721.0 721.2 3.04 0.099   -2.59, 27.27 0.80 
    m   9 217.0 12.49        

v m m d i   6 207.0 21.35 1, 17 198.0 197.7 0.85 0.370 -22.82, 8.89 0.45 

    m 13 200.1 11.82        

v m m p i   8 211.0   8.36 1, 18     2.2     2.2 0.01 0.906 -11.16, 12.52 0.05 

    m 12 211.7 14.32        
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This species action plan has been written to meet the requirements of the Falkland 

Islands Biodiversity Strategy (Falkland Islands Government 2008) for basic action 

plans for a number of species identified in the Falkland Islands State of the 

Environment Report (Otley et al. 2008).  It follows the format adopted by Butterfly 

Conservation, the UK butterfly and moth conservation organisation. 
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Summary 
 

• The Falkland fritillary, Yramea cytheris cytheris, also known as the Queen of 

the Falklands fritillary, is the Falkland Islands' only resident butterfly. It is listed 

by the Falkland Islands Government as a potentially threatened species and is 

protected under the Conservation of Wildlife and Nature Bill 1999. 

• The implementation of this plan is given a medium priority, to ensure the 

continued presence of the Falkland fritillary in the islands. 

• the Falkland fritillary is found on mosaics of grassland, dwarf shrub heath and 

bare ground which hold the larval host plant, Viola spp, principally Viola 

maculata. 

• The main threats to the Falkland fritillary are climate change, stochastic events 

such as the inundation of oviposition sites, and changing land use. Broader 

conservation projects should take into account possible benefits to the butterfly 

of sites grazed by sheep, and nectaring plants with long flowering seasons, 

such as the invasive groundsel Senecio vulgaris. 

• The main objective of the plan is to ensure a broad network of sites around the 

islands where the often small and isolated populations can flourish. It identifies 

the need for further research on the butterfly's life cycle; its population 

structures, including investigation of possible metapopulations; an investigation 

of the relationship between sheep grazing and host plant density, including 

sheep as a possible dispersal mechanisms; and of the genetic relationship of 

the various populations, including the Latin American sub-species. 

• The objectives of the plan will only be met with wider awareness of the 

butterfly's requirements through stakeholder engagement, including 

government, conservation organisations and landowners.  

• In the longer term, plans should be drawn up to identify donor populations to 

address local extinctions, and consideration should be given to developing 

captive-breeding expertise on the islands in case of wider extinctions. 

• The Falkland fritillary's future would be more assured through greater public 

awareness beyond the Falklands. The elaboration of joint projects with Latin 

American researchers would be highly desirable, particularly in the context of 

donor populations. More widely, Yramea cytheris, through the Latin American 

sub-species, is a strong contender for the world's most southerly butterfly, a 
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potentially valuable study species in itself, but also helpful for comparative work 

with fritillary model species such as the Granville fritillary Melitaea cinxia and 

Edith's checkerspot, Euphydryas editha. 

• The action plan covers the next ten years. It will be reviewed annually, and 

amended as necessary.  

Part 1:   Overview 
 

1.1 PRIORITY  STATEMENT 
 

The Falkland Islands State of the Environment Report (Otley et al 2008) included the 

Falkland fritillary as a potential threatened species due to its apparent rarity in the 

islands. Subsequent research suggests that the butterfly is distributed throughout the 

Falklands, but in small, isolated populations, which are at risk from both climate change 

and changing land use. Based on current knowledge, a medium priority should be 

afforded to conservation action to protect and increase the number of Falkland fritillary 

colonies in the Falklands. 

 

1.2 BROAD OBJECTIVES 
 

The broad objectives of this plan are to: 

 

• maintain a viable network of populations throughout the Falkland Islands; 

• conduct further research on the life cycle, ecology and distribution of the 

species to help develop conservation policies; 

• develop a system for monitoring population sizes to identify threats of local 

extinction;  

• ensure plans for changing land use, including development of conservation 

areas, takes into account potential impact on the butterfly's habitat; 

• develop stakeholder engagement on conservation, both in the islands and 

more widely, particularly in Latin America. 
 

1.3 LEGAL STATUS 
 
The Falkland fritillary is protected under The Conservation of Wildlife and Nature Bill 

1999 (Falkland Islands Government 1999), as is its larval food plant Viola maculata. 
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1.4 STATUS AND LEVEL OF BIOLOGICAL KNOWLEDGE 
 
 
 
Population: size Promising. Individuals and colonies have been found 

throughout the islands, although overall numbers, 

and the number and size of colonies, are unknown. 

 trend: numbers Unknown. Baselines and protocols for monitoring are 

urgently needed 

 trend: range Unknown. Early records were mainly from West 

Falkland, but sightings now come from both West 

and East, as well as outer islands.  It is difficult to 

know whether this represents an increase in range. 

Reports are anecdotal, from sparsely populated 

areas, and lack of any systematic records hampers 

assessment. 

Knowledge of: status No data. Location and size of colonies need to be 

established.  

 trends No data. 

 conservation 

requirements 

Improving. Habitat preferences, including larval host 

plants, are known.  Further work is needed to 

establish: life cycle, particularly of pupal stage; 

population sizes; mobility between colonies; and 

appropriate monitoring methods. 
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Part 2: Biological Assessment 
 
2.1 INTRODUCTION 
Yramea cytheris comprises two subspecies, Y. c. cytheris, the Falkland fritillary 

(Figure 1), and Y.c.siga, known in South America as ana del sur. The initial distinction 

between the two was based on colour (Watkins 1924), with Y. c. cytheris  females 

having pink and purple underwing tones compared with the ochre and brown of Y. c. 

siga , and both sexes having whiter underwing markings.  

 

The Falklands butterfly is smaller, the female Y. c. cytheris has a mean forewing length 

of 17.3 mm, compared with Y. c. siga's 19.1 mm, while the male Y. c. cytheris has a 

mean forewing length of 15.7 mm, compared with Y. c. siga's 17.4 mm.  The two sub-

species are, however, genetically indistinguishable, with Latin America sharing the 

most common Falklands haplotype.  

 

 

Figure 1: The Falkland fritillary, Yramea cytheris cytheris, on a patch of wild celery, Apium australe on 

Bleaker Island. 
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Yramea .cytheris is sexually dimorphic.  Females are bigger than males, with a striking 

difference between the undersides of their respective hind wings (Figure 2). 

 

 

    

Figure 2: Ventral surfaces of the right hind wing of Yramea cytheris cytheris showing sexual dimorphism. 

The female is on the left, the male on the right. 

 

The Falklands fritillary is found in sunny, sheltered areas, particularly on grassland and 

dwarf shrub heath, where its larval host plants, Viola spp., especially the common 

violet, Viola maculata, occur in small patches.  

 
2.2 ECOLOGY 
 
2.2.1 Life Cycle 
 
Yramea cytheris is on the wing from November to the beginning of March, with most 

records from December and January.  The adult stage is of four or five days for the 

female, slightly less for the male.  Butterflies are usually only seen in ones or twos, the 

exception being when there is an abundance of nectaring plants in flower, particularly 

the native Christmas bush Baccharis magellanica and the introduced groundsel 

Senecio vulgaris.  Both females and males show little evidence of mobility, restricting 

themselves to a home patch and adopting an apparently aimless patrolling pattern, 

making flights of a few metres between pauses for nectaring, basking or resting.  

 

Eggs are laid on the leaves of Viola spp. (Figure 3), usually singly on the underside of 

the leaf.  On the rare occasions that more than one egg is found on a leaf there is no 

clustering. The main larval host plant is the common violet, V. maculata, although V. 

magellanica, is utilised on Sea Lion Island. Benyamini (Benyamini in preparation) 
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recorded that eggs had been found in Stanley on V. tricolor, and that in Latin America, 

the main larval food plant for Y. c. siga  was V. reichei.  

 

 

 

Figure 3: Y.c. cytheris egg on underside of V. maculata leaf  

 

The larvae feed on both sides of the Viola leaf, in a distinctive pattern which effectively 

strips the flesh on each side from the skeleton (Figure 4).  It is probable that, like many 

fritillaries, it enters diapause as a larva, although no records have been found of either 

larvae in diapause or pupae. 

 

 
Figure 4: Larval feeding pattern. The larva eats the fleshy part of the leaf from each side, giving the leaf 

a diagnostic filleted appearance. 
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2.2.2 Habitat 
 
The key habitat requirement for Y. cytheris is the presence of Viola, usually the 

common violet, V. maculata, which is widespread throughout the islands (Figure 5), 

generally on dry coastal heathland or dry sandy slopes (Broughton and McAdam 2005, 

Liddle 2007). Unpublished records held by Falklands Conservation show that most 

Viola sites are coastal, although they have been found at elevations of up to 600 m. 

Patches of Viola are most commonly found in a mosaic of acid grassland, bare ground 

and dwarf shrub heath, although this is not invariable: V. magellanica on Sea Lion 

Island grows amongst often dense grass on boggy ground; V. maculata at the Frying 

Pan grows in small clusters on gravel, as well as in thick stands of Christmas bush 

Baccharis magellanica; and at Bleaker Island on a raised beach on amongst large 

patches of flat stones. Each of these sites has colonies of Falkland fritillary.  

 

 

 

 

Figure 5: Map of Falkland Island sites for Viola spp. Data supplied by Rebecca Upson of Falklands 
Conservation. Most of the sites were around the coast, but all five species were found at elevations of up 

to 600m. 

 

Y. cytheris shows a preference for medium-sized Viola, with a higher level of 

chlorophyll than neighbouring plants, for oviposition. It favours warm, sheltered sites 
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particularly on north-east facing slopes which are protected from the prevailing winds 

and get the morning sun, helping speed eclosion. 

 

 

2.3 DISTRIBUTION AND POPULATION 
 
Carstairs (1990) concluded that the Falkland fritillary had been reliably reported from 

12 locations in ten 10 km squares.  A reappraisal of historical records, together with 

later observations, suggest a further nine sites hold, or have held, the Falkland fritillary 

(Figure 4). 

 

Figure 4:  Map of Falkland Island records of Yramea cytheris. Records included museum specimens; the 

results of literature searches; personal communications and personal observations. They were divided 

into those found before 1935; between 1935 and 1990, drawing on Carstairs; and after 1990 

 

 

There has been no systematic attempt to map colonies. In most years there are reports 

of sightings at a number of locations.  Bleaker and Sea Lion feature prominently, but 

they have long tourist seasons with visitors who mostly have an interest in natural 

history, so that might be expected.  

 

There is no long term data on population size.  Mark-release-recapture studies suggest 

that, at most sites, fewer than ten adults are on the wing at any one time. When there 

are a lot of nectar plants in flower, particularly Christmas bush, Baccharis magellanica, 

���������

��	
�����

��
���	




 
 
 

 382 

 
 

 

 12 

and groundsel, Senecio vulgaris, up to 100 individuals have been recorded in a single 

day.  There is an urgent need of a long-term count at one or two sites, on the basis of 

which a formula can be drawn up to allow population size to be estimated from a 

transect count. 

 

2.4 LIMITING FACTORS 
 
2.4.1 Historical 
 
Since the Islands were permanently settled in 1833, the mixture of dwarf shrub heath, 

bare ground and grass which provides suitable habitat for Viola, Y. cytheris's larval 

host plant, has been the product of grazing, mainly by sheep. While no study of the 

relationship between sheep and Viola has been undertaken, it is noticeable that plants 

in grazed, sheltered areas are more likely to have Y. cytheris eggs laid on them than 

those in more overgrown environments. Any change in grazing patterns, or the 

cessation of grazing altogether, risks altering the nature of Viola growth, and thence 

the nature of the butterfly's present habitat. 

 

2.4.1 Current and Future Limiting Factors 
 
Possible concerns are any changes in farming patterns; industrialisation and increased 

population in camp and climate change. Work on conservation activity, such as the 

restoration of tussac, needs to take account of possible implications for both Y. cytheris  

and its larval host plant. 

 

2.5 CONSERVATION TO DATE 
 
The Conservation of Wildlife and Nature Bill 1999 (Falkland Islands Government 1999) 

lists as protected animals under Schedule 2 Part I “All species of butterflies 

(Rhopalocera)”.  This affords Y. cytheris a considerable degree of protection. Part II 

Section 4 of the Bill makes illegal deliberately to capture or kill animals protected under 

this Schedule; to take or destroy their eggs; or to damage or destroy their breeding 

sites or resting places. It furthermore applies to all stages of life of those protected.  

The Bill makes clear, however, that a licence can be granted by the Governor, which 

would allow otherwise prohibited actions in certain cases, such as scientific or 

educational purposes, or conservation.  
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The Falkland fritillary’s larval food plant, V. maculata, was also given protected status 

“not because it is rare or endangered, but because it is thought to be the larval food 

plant of the Queen-of-the-Falklands Fritillary (Issoria cytheris) a nationally rare butterfly 

and protected wild animal” (Rendell n.d.) 

 

Beyond legal protection, however, little has been done to conserve Y. cytheris.  There 

have been attempts to collect data on distribution through appeals in the media, but 

these have produced few tangible results.  Work, effectively, needs to start from 

scratch. 
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Part 3: Actions and Work Programme 
 
Actions are given a low, medium or high priority. Lead organisations for each action 

are suggested. 

 

 LEAD 
 

3.1 POLICY AND LEGISLATIVE 
 
Action 1  PRIORITY: MEDIUM 
Consider potential damage to Falkland fritillary habitat when addressing 

planning and land use issues, and seek to mitigate. 

FIG 

 

3.2 SITE SAFEGUARD AND ACQUISITION 
 

Action 2  PRIORITY: MEDIUM 
Designate two or three sites, ideally already conservation areas, such as 

Bleaker and Sea Lion, as centres for appropriate research and 

management.  

FIG, FC, 

Landowners 

 

3.3 LAND MANAGEMENT 
 

Action 3  PRIORITY: HIGH 
Ensure management plans for any protected areas with Falkland fritillary 

colonies incorporate appropriate conservation measures, identifying and 

resolving conflicting priorities (see action 6). 

FIG, FC 

 

    
 

    
  

  

 

FIG, FC, 

SAERI 

Action 5  PRIORITY: MEDIUM 
Conduct trial introductions into networks of suitable habitat, and monitor. 

FC, SAERI 

 

 

 

 

 

 

 

 

 

3.4 SPECIES PROTECTION AND LICENSING

 Action 4 PRIORITY: MEDIUM

 Instate captive breeding programme both for research purposes and to

 provide stock for reintroduction.
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3.5  ADVISORY 
 

Action 6  PRIORITY: MEDIUM 
Advise conservation organisations and landowners on practical 

management for the Falkland fritillary, and how to fit this in with other 

priorities. 

 

FIG, FC, 

SAERI 

Action 7  PRIORITY: MEDIUM 
Produce brief, practical guide on habitat management for the Falkland 

fritillary, aimed at landowners, coordinating this with management of other 

species. 

FIG, FC, 

SAERI 

 

3.6  INTERNATIONAL 
 

Action 8  PRIORITY: MEDIUM 
Form strategic partnership with Chilean institutions to coordinate and 

encourage research on the two sub-species of Y. cytheris. 

 

FC, SAERI 

Action 9  PRIORITY: HIGH 
Open informal discussions with potential NGO and academic partners to 

identify areas of possible cooperation in research and practical 

conservation. 

FC, SAERI 

 

3.7  FUTURE RESEARCH, SURVEY AND MONITORING 
 

Action 10  PRIORITY: HIGH  
Collate all records of Falkland fritillary and Viola spp.; create national 

distribution map; determine sites for further investigation. 

 

FC, SAERI 

Action 11  PRIORITY URGENT 
Investigate autecology of Viola maculata, with particular attention to 

impact of sheep grazing, and possible role of sheep in dispersal. 

 

FC, SAERI 

Action 12  PRIORITY: HIGH 
Identify colonies, particularly in proximity with each other, to form a 

network of study sites for future fieldwork. 

 

 

 

FC, SAERI 
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ACTION 13  PRIORITY: HIGH 
Undertake wider MRR work over a full flying season to establish size of 

colonies.  Devise methodology for assessing size of colony through 

indices drawn up from monitoring data. 

 

FC, SAERI 

ACTION 14  PRIORITY: HIGH 
Devise and implement method for calculating annual index to compare 

trends on selected sites. 

 

FC, SAERI 

ACTION 15  PRIORITY LOW 
Conduct genetic research on historical museum specimens to clarify 

pattern of colonisation, whether a single founder event, or a series of 

immigrations.  

 

 

ACTION 16  PRIORITY: MEDIUM 
Investigate genetic variation between sites to help establish existence and 

extent of dispersals. 

 

FC, SAERI 

ACTION 17  PRIORITY: HIGH 
Establish life-cycle of Falkland fritillary through combination of captive 

breeding and on-site investigation.  

 

FC, SAERI 

ACTION 18  PRIORITY:  MEDIUM 
Identify areas of suitable, but unpopulated, habitat with the potential for 

(re-)introductions. 

 

FC, SAERI 

ACTION 19  PRIORITY: MEDIUM 
Establish phenology of Falkland fritillary as part of annual monitoring 

process.  Seek to establish causes of any variation.. 

 

FC, SAERI 

ACTION 20  PRIORITY: HIGH 
Establish population viability index, or other appropriate measure of 

identifying a colony in terminal decline. 

 

 

 

FC, SAERI 
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ACTION 21  PRIORITY: MEDIUM 
Conduct research on threats to Y. cytheris  from predation, parasitoids 

and bacteria such as Wolbachia. 

 

FC, SAERI 

 

 

 

3.8 COMMUNICATIONS AND PUBLICITY 
 

ACTION 22  PRIORITY: HIGH 
Consult widely on this action plan; draft a full action plan, to be agreed by 

the Environmental Committee and publicise it, ideally as a published 

document. 

  

FC, SAERI, 

FIG 

ACTION 23  PRIORITY: MEDIUM 
Plan steps needed to determine IUCN Red List status, implement and 

publicise. 

 

FC, SAERI 

 

3.9  REVIEW 
 

Action 24  PRIORITY: HIGH 
Review this action plan (or its successor) annually, and rewrite in five 

years.  

FC, SAERI, 

FIG 

 

 

Key to abbreviations 
 
FC  = Falklands Conservation 

FIG  = Falkland Islands Government 

SAERI = South Atlantic Environmental Research Institute 
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