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Abstract

A System of Systems (SoS) is a set of independent systems that interoperate to

achieve capabilities that none of the separate systems can achieve independently.

The component systems may be independently operated or managed, and this

may cause control problems. An area of particular concern is managing security of

the large complex system that is the SoS, because development and operation of

component systems may be done independently. Security vulnerabilities may arise

at the SoS level that are not present or cannot be determined at the component

system level. Security design and management processes typically operate only at

component system level.

Within this thesis, the problem of security risk assessment at the SoS level is

examined by identifying factors specific to SoSs, formulating a framework through

which it can be managed, and creating a process with visualisation to support risk

managers and security experts in making assessment of security risks for a SoS.

Humans must be considered as part of the SoS and feature in risks associated with

security.

A broadly qualitative methodology has been adopted using interviews, case

studies, and a scenario method in which prototype framework elements were tested.

Two SoS examples, including the Afghan Mission Network (AMN) as a SoS, and a

SmartPowerchair SoS were used to identify, combine, and apply relevant elements in

a SoS context towards addressing the research problem. For the AMN, this included

interviews and focus groups with stakeholders experienced in NATO security, risk,

and network-based roles. Whereas, the SmartPowerchair SoS was based on

interviews and on-going communication with a single stakeholder representative as

the owner and user of the SoS.

Based on the findings, OASoSIS has been developed as a framework combining

the use of OCTAVE Allegro and CAIRIS to model and assess Information Security



x

risk in the SoS context. The process for applying OASoSIS is detailed within the

thesis. The first contribution of OASoSIS introduces a SoS characterisation process

to support a SoS security risk assessment. The second contribution modifies a

version of the OCTAVE Allegro Information Security risk assessment process to

align with the SoS context. Risk data captured during a first-stage assessment

then provides input for a third contribution that integrates concepts, models, and

techniques with tool-support from CAIRIS to model the SoS information security

risks.

Two case studies relating to a Military Medical Evacuation SoS and a Canadian

Emergency Response SoS were used to apply and validate the contributions. These

were validated through input from expert Military Medical stakeholders experienced

in NATO operations, and key Emergency Response SoS stakeholders with further

input from an expert Emergency Management stakeholder. To further strengthen

the validity of the end-to-end application of OASoSIS in future work, it would benefit

from being implemented within the SoS design process for other SoS scenarios.
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Chapter 1

Introduction

In this Chapter, the research problem, motivation, and objectives towards addressing

certain research gaps are introduced. Three research questions are presented

as a means to address problem areas. These aimed to identify the needs and

requirements towards the problem situated within a System of Systems (SoS)

context, and the identification of elements, concepts, and techniques suitable for

application towards assessing information security risks and related human factor

concerns within the problem domain. In support of the thesis claim, an integrated

approach is proposed towards addressing the problem and research gaps. The

thesis structure to address the research gaps is summarised to detail the related

research applied towards this problem.

1.1 Thesis Motivation

Throughout society and industry, technological evolution has increased the reliance

placed upon the inter-connected worldwide networks to facilitate diverse technical

and social system integrations, thus creating challenges and opportunities towards

meeting these socio-technical needs. These may arise due the continuing supply

and demand needs of consumers, businesses, critical infrastructure, or military and

defence, who themselves are in a constant state of evolution exploring new ways of

interacting to achieve new and different purposes. However, whilst integrating people

with evolving processes and emerging technologies, a number of risks are created

by related challenges associated with these socio-technical systems, for example,
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accounting for security needs and its related human factors within the context of

the System-of-Interest (SoI) - The system whose life cycle is under consideration

(International Council of Systems Engineering 2007).

There are many different types of systems that are designed and created by

people, then used or exploited by people in varying contexts of application. People

and culture becomes more applicable when traversing across geographical and

environmental boundaries. Regulatory and legal requirements also play a factor in

determining operational requirements, trust boundaries, and potential risks when in-

tegrating technology with people and a process of activities. Human factors therefore

play a central role in most systems where there is a joining of social and technical

interaction, and thus there is a need towards identifying those dependencies and

implications.

In some scenarios, systems may choose to collaborate in new ways, in addition

to or extending from their originally designed purpose, or what could be considered

as their day-job. This creates and interdependency between independent systems

to achieve a common goal, meaning a reliance and dependency is placed upon

the collaborative activities for the ability to achieve the goal. For example, in a

disaster scenario, an emergency response unit has a need to interoperate with the

police, fire, ambulance, coastguard, or other critical services. Each of these entities

may be considered as an independent system with its own purpose, operational

capacity, and systems integrating people, processes, and technology. Each of these

independent systems collaborates and interoperates with other emergency response

unit stakeholders to collectively meet the emergency response mission objectives.

This example of systems, with a day-job, coming together for a greater interaction

collaborating with the emergency response unit could, therefore, be described as

being a SoS. Many examples of SoSs exist, but the term has become a source

of confusion across domains. Moreover, there are few illustrative SoS examples

demonstrating their initial classification and structure. Different examples of indepen-

dent system collaborations converging to form a SoS may be less or more complex,

or have different needs and goals, with differing levels of management and oversight.

Many examples of SoSs are further challenged by geographical, organisational,

safety, security, and human factors considerations affecting risk within the SoS as a

whole.



1.1 Thesis Motivation 3

Previous emergency and disaster scenarios such as the July 7th attacks in

London have shown the potential need for independent systems coming together in a

SoS context, and the challenges experienced between emergency services in which

to efficiently interoperate with each other as a whole (Dogan et al. 2011). In addition

to failings related to interoperability and the ability for services to communicate and

co-ordinate with each other, there was a further failure to explicitly address the

needs and priorities of the people involved, including responders, casualties, and

the general public affected by the events that unfolded (London Assembly 2006).

Because these considerations are typically greater than that of a single system,

the interactions and interdependencies between entities can increase risks for

independent systems, and the SoS as a whole. Therefore, the required interactions

and interdependencies to achieve SoS goals that would inherently bring greater risks

for independent systems, need to be accounted for to identify the impact to the SoS

as a whole. Threats in a SoS are also likely to differ at different system levels, some

of which are likely to posses different degrees of dependency and control compared

to that of a SoS level.

Security risks are exacerbated by the differing requirements needs of independent

systems, their goals, trust boundaries, and overall levels of assurance provided.

Furthermore, security goals at one level, may be greater or lesser at the SoS

level, presenting obstacles that need to be identified at an early stage. This further

implies a need for SoSs to integrate ongoing feedback-loops to promote situational

awareness and real-time information in which to evaluate and apply applicable

security risk mitigation towards areas of uncertainty in a SoS context.

However, assessing security risk would be challenged by the level of centralised

management and control within the SoS, specifically towards risk-based decision

making, and from what or whose view within the SoS risk is being assessed. The

emergency response unit could, for example, provide management towards the SoS

interaction, but may have limited operational control of independent systems, and

therefore an ability to assess its operations. The SoS may be assessed from the

emergency response unit point of view to form the SoS with independent systems.

Alternatively, the police may assess SoS integration with other systems and the

emergency response unit, independently or as a whole.
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In either case, a challenge for SoSs is where each entity may only know or have

access to limited amounts of information about each system in which to assess

security risk as a whole. In which case, security and risk should still be assessed at a

SoS level, but may need to be done at a system level if there is a weak collaboration

with limited or no useful information to support security risk assessment. Moreover,

some risk may be unknown or may not exist until the coming together of the SoS,

and can be created from emergent behaviour occurring through the evolution of the

SoS.

The dynamics of SoSs often depend upon the type and level of management and

collaboration from independent systems, their sub-systems, with varying degrees

and dynamics of trust. Identifying the SoS context is, therefore, vital to security risk

assessment if we are to appreciate the SoS mission and complexities. In some sce-

narios, there may be a weak collaboration from decentralised control, thus providing

limited information. Having detailed information of the SoS interactions as a whole

may, therefore, not be available or achievable in some SoS scenarios, yet we need

to understand the given SoS scenario if we are to identify security risks and mitigat-

ing requirements. Therefore, identifying the minimum level of detail to adequately

assess SoS security risk is a challenge, certainly towards bridging operational needs

of independent systems to SoS Requirements Engineering (SoSRE), meeting the

criticality of the independent requirements accurately reflecting interdependent users’

needs crucial to the success of RE for the SoS (Ncube et al. 2013, AlhajHassan

et al. 2016).

Despite this motivation towards the needs of SoSRE, research covering the broad

topic of SoSs exists, but appears to lack in relevant approaches towards assessing

security risk, and its human factors concerns within a SoS context, with suitable case

studies to support the ideation of security risk assessment in SoSs. While there are

many approaches for engineering of systems, less exist for SoSRE. Although some

engineering methods are applied towards SoS engineering, e.g. Office of the Deputy

Under Secretary of Defense, for Acquisition and Technology, Systems and Software

Engineering (2008), International Council of Systems Engineering (2007), Ross et al.

(2016), research indicates that further work is required towards how we may assess

and model information security risk whilst capturing related human factors concerns

in the context of a SoS. In particular, aligning the assessment of security risk to the
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SoS under consideration, and identifying suitable concepts, models, and techniques

that can be applied within a risk assessment and modelling process to inform SoSRE

and risk-based decision making stakeholders.

There appears to be no SoS focused security risk approach or tool-support that

demonstrates modelling and visualisation of risks, people, process and technology in

a SoS context. Current approaches tend to focus on a single system or organisation,

its operations and impacts, but not the wider impacts from the bottom-up collaboration

in a SoS, and the resulting effects towards interoperability and the satisfaction of

SoS goals. Most current tools or approaches appear to be designed with a single

system or organisation in mind, or there is no clear guidance provided to inform how

different approaches may be integrated towards capturing and assessing a SoS in

context.

A method of assessing, modelling, and visualising SoS information security risks

whilst capturing related human factor concerns could, however, increase consistency

to this process across the SoS as a whole, helping to bridge the communication gap

between operational needs and SoSRE. This should extend to the identification of

new approaches towards formulating an information security risk assessment for

SoSs, applying research to consider the challenges associated with SoSs, such as

the dependency towards interoperability of systems, sub-systems and components,

assurance and accountability, integrated with human and system interactions to

achieve their SoS goals.

It is therefore argued, that identifying suitable techniques appropriate to help

with modelling and visualising these interactions would be useful as a means for

assessing and demonstrating the wider risks in a SoS context. This would be

applied towards the SoS operational needs, informing the RE of security, system

and software engineering needs to meet the operational mission goals of a SoS.

A tool-supported framework to assist the modelling of risk would explore available

and accessible tools for visualising security risk in SoSs. Furthermore, identify an

alignment of SoS factors and concepts suitable for eliciting, analysing, validating

risks within the SoS context to support the process of risk-based decision making.

However, where tools exist and appear to be designed with a single system

context or organisation in mind, scaling-up to a SoS context and scenario, some-

times of which could be quite complex requiring many designs, is a challenge. It
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may require combinations of tools, techniques, and models, or an integrated de-

sign tool with the ability to combine different concepts to approach this challenge.

Therefore, identifying and testing a combination of these approaches would provide

useful research contributions towards closing the research gaps. When combined,

these contributions would aim to support an end-to-end information security risk

assessment and modelling process to assist risk-based decision making in SoSRE.

1.2 Research Questions

SoS decision making often consists of independent decisions, meaning there is a

multiplicity of decision making processes with varying degrees of coupling. Because

of this, it is argued that when assessing then modelling information security risks

with associated human factors concerns, tools need a common way of working to

model, visualise and analyse the impacts of security risks in a SoS context. The

output should help to inform decision makers by providing a better understanding

of risks to the SoS, and required mitigations towards the SoS achieving its goals.

Moreover, the end-point for integrated tools is to realise how the output of a first-stage

risk assessment can support or feed into tool-support for security, risk, design and

operational decision making, and what type of information is useful to support this

process for modelling and visualising the SoS in context.

Taking account of the motivations towards the research problem, the aim of the

research is focused towards identifying challenges for SoSs and how information

security risk and associated human factor concerns may be assessed in this context.

Furthermore, how the security risk assessment process can align SoS factors and

concepts suitable for eliciting, analysing, and validating risks with the use of tool-

support. This would aim to provide a means for assessing SoS information security

risks, whilst capturing human factors concerns in the SoS context, the output of

which would support risk-based decision makers and SoSRE activities. To achieve

this, research questions were devised to focus on three core areas of consideration.

The following indicates each research question (RQ) considered to address three

main areas of focus:
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RQ1 What SoSs factors contribute to challenges of security risk assessment of

SoSs?

RQ2 What concepts are suitable to support a framework for security risk assessment

with requirements elicitation in SoSs?

RQ3 How can the newly developed SoS security risk assessment framework be

extended using modelling and visualisation software tools to assist the SoS

security risk and requirements process?

Based on findings from addressing the RQs, three contributions were provided to

address the research gaps and formulated into an end-to-end process. In particular,

research indicated a need for a SoS characterisation process that could then inform

an information security risk assessment process suitable for addressing a SoS con-

text. Its output is aligned and integrated with tool-support for modelling, visualisation,

and analysis in the SoS context.

Therefore, in support of the thesis, OASoSIS (Oasis) provides an alignment of

SoS factors and modelling concepts suitable for eliciting, analysing, and validating

SoS information security risks and associated human factors. Although parts of

OASoSIS can be used in a standalone nature, as a whole, the thesis claims OASo-

SIS represents an end-to-end information security risk assessment and modelling

process to assist risk-based decision making in SoSRE.

The scope of the research problem to be addressed has, therefore, provided a

focus for research to first understand how the coming together as a SoS presents

challenges and opportunities towards system interactions. Accounting for the context

of the SoS then provides a focus towards identifying related challenges towards

security risk assessment in SoSs, and the different degrees of ownership, trust,

and dependency upon assets and interoperability within a SoS. This includes the

identification of processes required to capture then model important SoS goals,

activities, and interactions to inform related information security considerations. The

output would aim to support risk-based decision making towards the secure design

and operation of a SoS, informing towards risk mitigating controls and requirements

for SoSRE.

The intended users of OASoSIS would therefore be aimed towards roles related

to SoSRE and organisational system entities responsible for assessing risk within
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the SoS. Typical roles applying OASoSIS would, for example, be risk assessors

or security analysts, requirements, systems, software, and security engineers, or

a combination of these roles supported by input from other SoS stakeholders and

subject-matter experts. The output would then be aimed towards supporting stake-

holder roles of SoSRE and organisational system entities with risk-based decision

making responsibilities towards the assessed SoS.

1.3 Thesis Structure

When considering the research problem, motivation, and aims, the derived RQ’s

are explored in Chapters 4 and 5, whilst grounded in literature detailed in Chapter

2. Chapter 6 introduces OASoSIS representing an end-to-end information security

risk assessment and modelling process, whilst Chapters 7 an 8 demonstrate its

contributions and application, further supporting RQs. This concludes with Chapter

9 and discusses future directions towards related work.

In Chapter 2, the review of related literature considers the concept of Informa-

tion Security and risk-based decision making processes towards managing and

assessing information security risk. The concept of SoSs is reviewed considering the

different aspects and challenges of SoSs that sets them apart from single systems

and related approaches, whilst considering the role of RE for SoS to ensure SoS

needs have been considered to satisfy its goals. Related modelling techniques

are identified, whilst considering the benefits or drawbacks of model integration

using tool-support to help model and visualise information security risks and their

associated human factors concerns in SoSs.

In Chapter 3, research methods are considered towards addressing the RQs

detailed, with examples of how methods would be applied to achieve elements of

the research contributing to the thesis. This begins in Chapter 4 where research

considers a means of characterising the candidate SoS towards formulating a SoS

characterisation process to support a SoS security risk assessment. The SoS

example is also used to identify its SoS challenges, concepts, and factors applicable

for consideration within a SoS security risk assessment framework.

Chapter 5 continues to identify challenges, concepts, and factors applicable for

consideration within a SoS. This chapter introduces an existing example of a SoS,
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with a primary focus of considering implications towards security, risk, and human

factors within the example SoS, and how this may be assessed and modelled in a

SoS context.

Building upon the findings of Chapters 4 and 5, related literature reviews, and

stakeholder feedback and validation, Chapter 6 introduces the three contributions

towards OASoSIS representing an end-to-end information security risk assessment

and modelling process to assist risk-based decision making in SoSRE.

These contributions include:

A SoS characterisation process to support the information security risk assess-

ment process by providing the relevant SoS context.

This aligns with a modified information security risk assessment approach

using OCTAVE Allegro in the SoS context.

The output of this first-stage assessment would then be modelled in tool-

support for further analysis using a goal-driven approach towards SoS informa-

tion security risk, capturing related human factors.

Details of the steps to be taken within the refined process in Chapter 6, provide

direction and considerations for each step to be taken throughout the process.

How the three contributing components of OASoSIS have been applied, tested,

and validated with a SoS case study and related stakeholders is discussed in Chapter

7. Then, Chapter 8 presents a final SoS case study, addressing a real-world problem

and intervention. Building upon previous findings, this chapter applies a refined

process of OASoSIS to test the end-to-end information security risk assessment

and modelling process to assist risk-based decision making in SoSRE. Based on

lessons learned from this application, models were also enhanced to close an

identified gap within the modelling process towards accountability. The application of

OASoSIS described in this chapter received further stakeholder validation towards

the contributions, concepts, models, and techniques that represents an end-to-end

information security risk assessment and modelling process to assist risk-based

decision making in SoSRE.

Chapter 9 draws on overall findings, challenges, and observations from research

reviewed. Then, concludes with continuing areas of focus towards future work. For

example, this would continue to consider the implications of information security



10 Introduction

risks, whilst capturing their related human factor concerns in SoSs, and further

applying OASoSIS to different types of SoSs. Moreover, considering how models

may be further enhanced in tool-support adding clarity to a model’s context to support

analysts, engineers, and risk-based decision makers in SoSs and RE.

1.4 Related Publications

Overview

In support of this research project, four conference and workshop papers were

published, and work introducing the research areas of focus was published and

presented at a Doctoral Symposium. How these are applicable to related research

and peer review is indicated within Chapter Summaries of Chapters 4, 5, and 7.

Conference / Workshop Proceedings

1. Ki-Aries, D., Faily, S., Dogan, H., and Williams, C. Assessing System of

Systems Security Risk and Requirements with OASoSIS. Proceedings of

5th International Workshop on Evolving Security & Privacy Requirements

Engineering at 26th International Requirements Engineering Conference 20-

24 August 2018, Banff, Canada. IEEE.

2. Ki-Aries, D., Faily, S., Dogan, H., and Williams, C. System of Systems Charac-

terisation assisting Security Risk Assessment. IEEE 13th System of Systems

Engineering Conference 19-22 June 2018, Paris, France. IEEE.

3. Ki-Aries, D., Dogan, H., Faily, S., Whittington, P.,and Williams, C. From Require-

ments to Operation: Components for Risk Assessment in a Pervasive System

of Systems. Proceedings of 4th International Workshop on Evolving Secu-

rity & Privacy Requirements Engineering at 25th International Requirements

Engineering Conference 4-8 September 2017 Lisbon, Portugal.

4. Ki-Aries, D., Faily, S., Dogan, H., and Williams, C. Re-framing “The AMN”: A

Case Study Eliciting and Modelling a System of Systems using the Afghan
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Mission Network. 11th IEEE International Conference on Research Challenges

in Information Science 10-12 May 2017 Brighton, UK.

Doctoral Symposium

1. Ki-Aries, D. Assessing Security Risk and Requirements for Systems of Systems.

26th International Requirements Engineering Conference (RE’18) Doctoral

Symposium 20-24 August 2018, Banff, Canada. IEEE.





Chapter 2

Literature Review

In this Chapter, the review of related literature first explores the concept of Information

Security and how related risk may be assessed, with an early indication of how

approaches may be considered towards the SoS context. The concept of SoSs is

reviewed considering the different aspects and challenges of SoSs that sets them

apart from single systems and related approaches. This includes the dependence

on available and interoperable systems, where emergent behaviours may also occur.

Further challenges for SoSs are explored by considering the role of SoS engi-

neering and the criticality of the requirements engineering process to ensure SoS

needs have been considered to satisfy its goals. How this may translate into a range

of typical engineering models is reviewed, whilst considering related benefits or

drawbacks, including the integration of models using tool-support that would aim to

help model and visualise security risk and human factors in a SoS context.

2.1 Risk and Security

The meaning and definitions of risk have evolved through different concepts and

explanations, often relating to a decision making process and a propensity to take

a risk towards a possibility of reward over the uncertainty of loss (Bernstein 1996,

Adams 1999). Risk and uncertainty can be attributed to a number of contexts that

could include examples such as weather and environmental concerns, stock markets

and financial systems, or safety related cases. Risk in a security context can be

defined as “the effect of uncertainty on objectives” (British Standards Institution



14 Literature Review

2011). For example, this can relate to assets being used securely to achieve a

purpose to meet objectives.

Risk in security combines various elements in which to account for risks to

security. These include:

- An Asset is anything that has value to the organisation (British Standards

Institution 2011);

- A Vulnerability is a weakness in system security procedures, design, implemen-

tation, or internal controls that could result in a security breach or a violation

(Kissel 2013);

- A Threat is a potential for a threat-source to accidentally trigger or intentionally

exploit a specific vulnerability (Kissel 2013);

- A Threat Source, synonymous with Threat Agent, has the intent and method

targeted at the intentional exploitation of a vulnerability or a situation and

method that may accidentally trigger a vulnerability (Kissel 2013);

- Security is a condition that results from the establishment and maintenance of

protective measures that enable an enterprise to perform its mission or critical

functions despite risks posed by threats to its use of information systems.

Protective measures may involve a combination of deterrence, avoidance,

prevention, detection, recovery, and correction that should form part of the

enterprise’s risk management approach (Kissel 2013).

Security is primarily concerned about the protection of these assets from potential

threats and vulnerabilities, and the application of security controls to reduce or

mitigate the risks (Von Solms and Van Niekerk 2013). To understand the related

elements and estimate the level of risk towards security, the probability and impact of

a threat-source intentionally or accidentally exploiting a system or information asset

vulnerability is considered (Stoneburner et al. 2002).

The risks presented are likely to have an impact in different ways. For example,

immediate impacts may be towards the Confidentiality, Integrity, and Availability. This

would be due to unauthorised disclosure, modification, or destruction of information,

resulting from unintentional errors, omissions, a failure to exercise due care and

diligence in the implementation and operation, or disruptions due to natural or man-

made disasters (Stoneburner et al. 2002). The effects of these impacts usually

result in further consequential impacts, for example, where customer data may be
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disclosed to unauthorised entities, causing further customer and business related

impacts, losses, or fines because of the data breach.

Accounting for people, their asset interactions and dependencies are an important

aspect of the risk equation, given the potential impacts to people resulting from the

effect uncertainty, or the risk-based decisions made in relation to risk. Systems

and processes are designed by and for people, creating a dependency towards

a need where a loss may create a negative effect to people, businesses, society,

and continents. Security is, therefore, an important aspect to ensure the continued

protection of assets to support functional ability where there is a dependency and

reliance by people, groups, and organisations to achieve a positive outcome.

2.1.1 Information Security

Information Security takes a broad approach to security, considering the protection

of information assets and the related systems and people responsible for the storage,

processing, and transportation or transmission of data or information. The aim of

Information Security is to protect print, electronic, or any other form of confidential,

private and sensitive information or data from unauthorised access, use, disclosure,

disruption, modification, or destruction in order to achieve security goals of confi-

dentiality, integrity, and availability, accountability, and assurance (Stoneburner et al.

2002, Kissel 2013, SANS 2015).

The term Cyber Security is often used in place of Information Security. However,

cyber security has a particular focus towards the electronic and digital domain (British

Standards Institution 2012), whereas information security also considers people

and physical security elements, such as the use of paper-based information, or

knowledge held and verbally communicated. Information security is therefore the

whole within which cyber security aims to protect or defend the use of cyberspace

from cyber-attacks, where Cyberspace refers to a global information environment

consisting of the interdependent network of information systems infrastructures and

their data flows. For example, the Internet, telecommunications networks, computer

systems, and embedded processors and controllers (Kissel 2013).

As a whole, information security encapsulates the concepts of physical, computer,

application, network, and data security, where the primary focus is towards the use

and protection of information assets. The focus towards data and security is critically
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important in most contexts where entities such as people, groups, or organisations

are dependent upon the information flows of which the entities and their operations

are built around. This would include accounting for the different needs of data-related

stakeholders, e.g. data owners, custodians, and users, and the individual security

goals and requirements for where data may be at rest, in process, or in transit

between these entities (Whitman and Mattord 2011).

Given the different layers in which information security may be concerned, this

drives the need for more holistic approaches towards managing and assessing

security and risk, taking into account the user, analyst, defender, and attacker, and

the impacts beyond the system itself (Henshel et al. 2015). For example, the concept

of Defense in Depth is a widely recognised holistic approach towards asset protection,

interconnections, dependencies, and available resources, providing strategic layers

of defence supporting the monitoring, protection, and decision making processes to

manage and reduce security risks (Bass and Robichaux 2001, Coole et al. 2012,

Homeland Security 2016a). The important aspect of this focus is, however, ensuring

security risks and controls are considered and applied at different levels, rather than

relying upon a single line of analysis and defence.

2.1.2 Managing Information Security Risk

Risk Management (RM) is defined as being “co-ordinated activities to direct and

control an organisation with regard to risk” (British Standards Institution 2011).

RM for information security is the process of identifying, controlling, and mitigating

information system risks. A common RM approach such as ISO 31000 (International

Organization for Standardization 2018) is designed to provide a basic framework

and process for risk management as illustrated in Figure 2.1. This approach is also

adopted in the ISO 27005 standard for Information technology - Security techniques

- Information security risk management (British Standards Institution 2011), and is a

point-of-reference for RM and security related approaches.

Approaches may include standards and guidelines for information security risk

management in an organisation, such as from the ISO 27001 to 27005 (British

Standards Institution 2011 2013), or could include a range of NIST security related

Special Publications from the SP 800 collection (NIST 2017). Examples such as

these provide a wide range of security techniques, controls, and considerations
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Fig. 2.1 The Process of Risk Management (British Standards Institution 2011)

towards approaching and applying information security risk management and as-

sessment.

Risk-based Decision Making (RBDM) is defined as “a process that organises

information about the possibility for one or more unwanted outcomes into a broad,

orderly structure that helps decision makers make more informed management

choices”. It is a process that should aim to be simple and practical, whilst considering

a range of factors that combined, provide necessary information helping decision

makers to make more informed decisions (Myers 2002). RBDM as a process

may be supported by Risk-informed Decision Making (RIDM) that focuses towards

performance measures and the human element of decision making, acknowledging

that reliance on technical information alone cannot be the sole basis for decision

making (Dezfuli et al. 2010). Together, these play an intrinsic role towards the

process of Risk Management.

2.1.3 Assessing Information Security Risk

Before any risk assessment begins, it must be supported with information pertaining

to the context of use, mission goals, boundaries, relevant stakeholders, scope, and

considerations to the risk criteria parameters. Critical resources must be identified

to gain an accurate account of the potential for risks propagating from compromised
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resources and functional dependencies (Shameli-Sendi et al. 2016). This includes

the effectiveness and efficiency of resources, and the impact upon the goals and

constraints towards policy, regulatory and legal requirements (Stoneburner et al.

2002).

To achieve this, a range of risk approaches may be used for a given context. A

chosen approach should be repeatable, measureable, auditable, and integrate the

use of modelling (Jones 2007) for traceability and accountability that is important

for a robust end-to-end risk process. These elements should be incorporated within

the risk assessment to ensure a clear and consistent articulation of risk that helps

risk-based decision makers to identify possible adverse effects (Böröcz 2016).

Literature demonstrates that risk assessment generally entails three key process

steps, as illustrated in Figure 2.1. As described by ISO 27005 (British Standards

Institution 2011), these process steps are:

Risk Identification develops an in-depth understanding of the system structure

and assets. To identify the risks present within the system environment, it

then identifies threat-sources and vulnerable system elements, controls and

potential consequences;

Risk Analysis determines the likelihood and severity of consequences from

identified risks impacting on the system element, and individual systems;

Risk Evaluation considers the risk criteria and context, controls, and regulatory

requirements to make risk-based decisions for future operation. High or un-

acceptable risks identified are prioritised with potential risk reduction controls

considered ahead of risk treatment.

2.1.4 Approaching Information Security Risk and Assessment

There are many differing approaches to risk and how it can be managed and

assessed, some of which extend security with other concepts. For example, towards,

privacy, safety, or specific legal and regulatory requirements. In an organisational

context, addressing security risk is often considered as a technical responsibility

residing in the IT department. However, security needs are also linked with privacy

needs, despite privacy being a topic that usually resides with legal and compliance

functions (O’Brien 2016).
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Approaches may apply different methods towards risk estimation, for example,

some identify all possible attack scenarios and estimate all their risks, but this can

be costly. Alternatively, some use a set of factors for estimating the risks of the

threats grouped into classes using specific logic, such as those found within the

OCTAVE family of risk approaches. However, most would benefit from ensuring

analysis of potential attacker capabilities is considered to help reduce the uncertainty

in estimating the potential ease in which an attacker is actually likely exploit a

weakness, and therefore the risk exposure estimates (ben Othmane et al. 2015, The

CERT Division 2017).

In a typical scenario, it is likely owners will be assigned within other departments

to manage risk for which they are associated with, e.g. people and processes, but an

organisation’s owners and senior managers would be accountable and responsible

for driving their risk management activities and setting the risk criteria, given their

legal and regulatory obligations amongst others. Successful risk and cost-benefit

estimation is reliant upon transparency, and experts providing a knowledge base of

known misuse cases and countermeasures applicable to the organisational system

and context of operation (Herrmann and Paech 2009).

Performing a risk assessment is therefore dependent upon a level of expertise

towards risk, and an understanding of the environmental context to which the as-

sessment would be conducted. In some cases, this responsibility may fall upon

the roles of a Risk or Security Manager, or Security and Requirements engineers.

In either case, the role would be required to possess sufficient skills to identify

potential concerns, analyse and evaluate the potential threats, vulnerabilities, and

their potential impacts using quantitative or qualitative means independently and

with other stakeholders where required. These roles may provide some level of

expert opinion, and rely on other roles to provide input and expert opinion towards

the analysis, evaluation, and other subsequent RBDM.

Consequently, opinions may be subjective, and could be open to bias. For

example, Rhee et al. (2012) argues that executives who perform risk assessments

are more likely to exhibit optimism bias in comparison to other roles considered.

Executives perceive their information security risk to be significantly lower, indicating

an understanding towards the actual reality of ‘information security risk’. However,



20 Literature Review

they can be overly optimistic in their analysis, evaluation, or subsequent RBDM, as

they do not seem to associate that same reality with themselves.

Although the inputs of a risk assessment are dependent upon it’s quality and

quantity, the output can be dependent upon the applied level of expertise and

subjectivity. Moreover, consistency of how risk assessments are performed, in

particular, across the different systems of a SoS becomes an important factor. In the

context of a SoS, there would be a dependency between each of the organisational

systems in which to manage and communicate their risks, specifically risks that

would directly or indirectly impact upon the SoS achieving its goals.

Towards the SoS context, there is a need for a robust approach for managing,

assessing, and communicating the implications towards information security and

risk, not simply to a system or organisation, but in relation to a SoS as a whole. To

address the research problem, it would also be useful if an assessment process had

the ability to align with further modelling and analysis of security risks and related

human factor concerns in greater detail, to better inform RBDM towards related

information security risk mitigation requirements for the SoS.

Quantitative and Qualitative Risk Assessment

Approaches to RM may be classified as being asset or service driven, quantitative,

qualitative or a combination of either. A quantitative approach may, for example,

consider factors such as Single Loss Expectancy (SLE) and Annual Loss Expectancy

(ALE), whereas a qualitative approach may use risk matrices to categorise and

prioritise levels of risk, e.g. high, medium, low (Shameli-Sendi et al. 2016).

Comparative research, e.g. (Syalim et al. 2009, Behnia et al. 2012, Shameli-

Sendi et al. 2016), has detailed the advantages and disadvantages of different

approaches. In most scenarios though, it is the context to which they are to be

applied that is the important decision making factor for the type of approach required.

Component-driven or System-driven Risk Assessment

Risk approaches may also be considered as being component-driven or system-

driven, and therefore address different aspects of security and risk. The National

Cyber Security Centre (NCSC) (NCSC 2018) consider the main differences as:
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Component-Driven Methods

- Analysing the risks faced by individual technical components;

- De-constructing less complex systems, with well understood connections be-

tween component parts;

- Working at levels of abstraction where a system’s physical function has already

been agreed amongst stakeholders.

System-Driven Methods

- Exploring security breaches that emerge out of the complex interaction of many

parts of the system;

- Establishing system security requirements before it is decided on the systems

exact physical design;

- Bringing together multiple stakeholders’ views of what a system should and

should not do (e.g. safety, security, legal views);

- Analysing security breaches that cannot be tracked back to a single point of

failure.

The distinctions between component-driven and system-driven are also aligned

with an abstraction hierarchy representing the many interactions and relationships at

different levels of complex systems. This provides reasoning for decision makers to-

wards functional and component properties across several levels of abstraction along

the means-end dimension (Rasmussen 1985). For example system-driven assess-

ments are conceptual, considering goals of the system, balances, flows, governing

principles, processes, and interaction of components. Whereas component-driven

assessment focuses towards dimensions, locations, physical properties, capabilities,

equipment, and components (NCSC 2018).

Best Practices and Industry Standards

It is not uncommon to only rely upon the use of best practices (Laracy and Leveson

2007), certainly for smaller organisations, groups, or independent entities. At a basic

organisational level, Cyber Essentials and the Ten Steps to Cyber Security may also

be considered. These encourage a focus towards cyber risks of information risk

management, secure configuration, network security, managing user privileges, mal-

ware prevention, monitoring, removable media controls, home and mobile working
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(Gov.UK 2015). Other larger more established organisations may need to implement

standards and guides such as from the ISO 27001 to 27005 (British Standards

Institution 2011 2013) or NIST Special Publications from the SP 800 collection (NIST

2017).

For some, implementing these controls and approaches is mandatory, as a

minimum, suggesting more controls may be required given the context. However, for

others, the costs and expertise required towards implementing these approaches or

controls are aspirational. Security approaches and protection mechanisms should

be proportionately affordable, be reasonably easy to integrate, use, access, and

maintain, whilst providing user convenience without sacrificing security (Strawser

and Joy Jr 2015). This should also consider needs of training and awareness,

physical security, and due diligence on third parties and contractual management,

and data privacy requirements (O’Brien 2016).

As a further consideration, given the range of stakeholders involved in a typical

process of risk management and assessment, the communication and documenta-

tion of risk should be written in business-friendly language rather than endless detail

of overly complex technical jargon, and clearly note potential impacts on operations

(Everett 2011). The detail and traceability should still be captured, although it is

likely certain audiences and in particular, risk-based decision makers, may require

different levels of detail in which to base decisions upon. By clearly illustrating and

communicating elements of risk and its effects, this output should aim to minimise

negative impact upon the organisation, supported by robust decision-making when

implementing a risk management process (Unuakhalu 2014).

The Generally Accepted System Security Principles (GAISP) has historically

been adopted throughout many sectors, focusing towards the premise of account-

ability, awareness, ethics, multidisciplinary interaction, proportionality, integration,

timeliness, reassessment, and democracy (Swanson and Guttman 1996). In an

engineering or architectural context, integrated business RM frameworks such as

the Sherwood Applied Business Security Architecture (SABSA) approach is said to

be useful for large-scale systems (Szwed and Skrzyński 2014).
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Government, Critical Infrastructures, and Defence

As identified through related interviews and research, British Government, military

and defence adopt the Risk Management Accreditation Document Set (RMADS)

within their security policy framework, originally using the now deprecated HMG

Information Assurance Standard 1 & 2 for Information Risk Management (CESG

2012) that still serves a useful purpose. These standards may also assist national

healthcare environments, although historically healthcare are likely to implement the

Information Governance (IG) toolkit. Developed by the Health and Social Care Infor-

mation Centre (HSCIC), this provides a means to assess how organisations process

or handle their information, and a single standard set of information governance

requirements aligned with certain standards and regulations (NHS 2017). This may

incorporate the need for Data Protection Impact Assessments (DPIA) required under

various data protection regulations, including the General Data Protection Regula-

tion (GDPR), captured as part of the organisational and security risk management

processes (Böröcz 2016).

RM approaches are also supported by different processes towards risk assess-

ment, ranging across a number of areas and contexts, e.g. organisations, Customs,

Critical Infrastructure, or developmental areas including the NATO acquisition pro-

cess (Howard and Lipner 2006, Giannopoulos et al. 2012, Karabacak and Sogukpinar

2005, Dillard et al. 2006, CESG 2012, U.S. Customs and Border Protection 2014,

North Atlantic Treaty Organization 2012). A benefit of many of these approaches

is that they generally relate to a specific area or context, however, none directly

address the SoS context. Moreover, some approaches are likely to require area or

sector-specific knowledge and training for use, or may require a number of stake-

holder interactions to complete the assessment of security and risk. Therefore, this

means they may not be compatible with the needs of a SoS focused security risk

assessment, where system information and stakeholder interaction may be limited.

The US Customs five-step approach did, however, provide an interesting ap-

proach towards different perspectives of typical stakeholder views that would need

to account for risk. For example, importers, brokers, consolidators, highway carriers,

foreign manufacturers, and US exporters. Considering stakeholder types and views

could be a useful concept for SoSs, but would likely be difficult to implement given the

many different types of system configurations and stakeholders interacting as SoSs.
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An assessment process would however need to align with a range of stakeholder

needs from an operational perspective, as well as security design and requirements

engineering.

Elements applied in the Microsoft Security Development Life-cycle (Howard

and Lipner 2006) approach that is applicable in many sectors, do however align

with security design and requirements engineering, and support the elaboration of

modelling data flows and performing threat assessments to capture and consider

the potential for risks from a more technical perspective. Although, in a SoS context,

other models would need to be introduced to account for other organisational and

socio-technical perspectives, data for which would also need to be captured within

the security risk assessment, which is beyond the current scope in Howard and

Lipner (2006).

Considering OCTAVE

Considering there are a number of approaches available, this becomes a challenge

for different organisations or during stages of the development life-cycle, where

differing risk assessment approaches may be used to achieve the same goal. Many

of these approaches are also designed and specified towards a single system or

organisational context, and therefore when applied in a SoS context, will potentially

scale poorly given the collaborative complexities of SoSs. RM should also consider

factors such as program complexity and available resources for all systems and

interactions (Rebovich Jr. and Authors 2014).

Moreover, asset identification is rarely performed reliably and consistently (Stephen-

son 2004) at a system level, which could then create further issues at a SoS level

when accounting for risk. Assets are, however, central to a security risks assess-

ment, meaning it is important to capture the human and system interactions with

resulting dependencies to account for potential risks to assets, and the resulting

effect towards the SoS reliance placed upon assets and interoperability to achieve

its SoS goals. How these approaches may be aligned and applied in a SoS context

therefore requires further consideration and testing.

An approach that has been used across many areas supporting RM is the

Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) risk

assessment approach that caters for differing levels of skill and application. For
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example, OCTAVE has been developed in three stages. OCTAVE was originally

designed for large organisations, whereas OCTAVE-S was developed as a focused

version to support smaller businesses (The CERT Division 2017). OCTAVE Allegro

(OA) is further refined and is perhaps the most flexible version that is specifically

suitable for assessing information security risk (Caralli et al. 2007).

In comparison to other versions, OA reduces the need for workshops calling for

participation by employees from all organisational levels, producing more robust

results without the need for extensive risk assessment knowledge (Alberts and

Dorofee 2002, Caralli et al. 2007), which would suit some of the challenges towards

stakeholder interactions during a SoS security risk assessment. Some larger-scaled

assessments introduced in previous sections including OCTAVE may also require

a deeper focus towards vulnerability scanning and penetration testing to identify

weaknesses, e.g. in software systems or networks. This expectation is unlikely to be

effective or even applicable in an information security risk assessment for different

types of SoSs, and would instead be encouraged as part of independent systems’

ongoing risk monitoring activities, if applicable, but should nevertheless inform a

SoS information security risk assessment when performed.

2.2 Systems of Systems

The term System of Systems is used to describe an arrangement of independent and

interdependent systems, collectively coming together to deliver higher capabilities

and performance (Baldwin and Sauser 2009). According to Maier (1996), to be de-

fined as a SoS, it must have a majority presence of five characteristics present within

its formulation. These are considered to be operational independence, managerial

independence, geographical distribution, evolutionary development, and emergent

behaviour (Maier 1996) from combined system interactions in ways not intended by

the original single system designers. The coming together provides a set of systems

for a task that none of the systems can accomplish on their own (Director of Systems

Engineering 2010), and thus drives the need for a SoS collaboration, different to that

of a traditional single monolithic system.

Boardman and Sauser (2006) believe the difference between a system and

SoS lies in its composition, and is based on how the parts and relationships are
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gathered together, and therefore in the nature of the emergent whole. A system

may be defined as being a functionally, physically, and behaviourally related group

of regularly interacting or interdependent elements; that group of elements forming a

unified whole (Office of the Deputy Under Secretary of Defense, for Acquisition and

Technology, Systems and Software Engineering 2008).

Systems are composed of parts or elements with relationships between other

elements of the system (Sommerville 2015). However, the arrangement of the

whole must be understood to appreciate how it forms as a system (Staker 2001).

For example, a system within a SoS can be considered as an organisation or its

sub-division, a group, or social system, people networks, digital networks, manual

or physical systems, computerised systems, or as is often perceived some form of

software and hardware combination.

Each SoS can be composed of these different socio-technical combinations

resulting from the collaborative interactions between independent systems and

related sub-systems. The systems integrate to achieve new SoS goals under

complex situations with intrinsic social and technical components (Kovacic et al.

2008). This intrinsic complexity is created by the multi-dimensional interactions

between components, adding to the challenges posed by SoS configurations under

different ownership and control (Sommerville et al. 2012). A SoS can, therefore,

be considered as being a socio-technical system, involving both complex physical-

technical systems, and networks of interdependent stakeholders (De Bruijn and

Herder 2009) integrating directly and indirectly with other organisational systems,

processes, and people to achieve the SoS goals.

2.2.1 Examples of Systems of Systems

Research has found that the context, application, or general concept of SoSs often

means different things to different people. For example, when considering a military

and defence context, SoSs will likely include configurable sets of constituent-systems

in dynamic communication infrastructures (Lane and Epstein 2013). In a typical

organisational context, the SoS may be considered as the enterprise-wide sharing of

core business services and information with other geographically distributed organi-

sational systems. This is again quite different to a typical stakeholder interacting with

a cyber-physical system or an Internet of Things (IoT) set of systems. Nevertheless,
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in each of these contexts, there is a continued need for SoS techniques to be aligned

to the design and operation of these increasingly complex systems (Henshaw 2016).

Many IoT systems are likely to be considered as SoSs (Maia et al. 2014, Alkhab-

bas et al. 2016), where strategic principles are required for design and operation

(Homeland Security 2016b). The Internet, which IoT is based around, can be con-

sidered as being a global computer-to-computer network of a Collaborative SoS,

where its elements are themselves computer networks and major computer sites

(Maier 1996). Making further use of the Internet are software applications on smart-

phones and smart devices connecting to other smart systems such as home security,

communications systems, or assistive technology (Whittington and Dogan 2016).

Other examples could include a combination of general business information

systems, sensor networks, space and earth observation systems, defense and

national security systems (Baldwin et al. 2011, Lane and Epstein 2013). Emergency

response systems are considered as SoSs with their independently owned and

managed systems and services such as fire, police, ambulance, hospitals and other

facilities collaborating to deliver a service on which reliance is placed to achieve the

SoS level objective or mission (Dogan et al. 2011, Nielsen et al. 2015).

Further reliance is placed upon the over-arching role of Critical Infrastructure. For

example, where the health infrastructure on a national level has a operational and

managerial dependence upon hospitals, medical centres, communication systems,

power systems and networks, transportation, health insurance and finance networks

to operate as a complex inter-connected infrastructure (Branagan et al. 2006). More-

over, supporting power grid technology, transport systems, and production systems

(Nielsen et al. 2015), highlighting the criticality of stakeholders understanding how

these systems who have their own objectives and risks, also need to come together

at differing levels, thus evolving into SoSs for a new purpose, goal or objective.

2.2.2 Characteristics of Systems of Systems

A SoS is a system that contains two or more independently managed elements

(Sommerville 2015), regardless of scale. When analysing a SoS, focus toward

the SoI frames the SoS and its aspects of interest, and considers the life-cycle

dimensions that contribute to emergent behaviour from the combined interactions

(Kinder et al. 2012). In a SoS, the SoI elements are themselves systems interacting
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to achieve one or more purposes, although, a system in one context can also be

a SoS in another. Therefore, in a SoS context and where other SoSs may exist,

there is a further consideration towards the SoS SoI, which is defined as being

“The system of systems whose life cycle is under consideration described by all

dimensions that contribute to the resultant emergent behaviour ” (Kinder et al. 2012).

Many SoSs consist of multiple, heterogeneous, operationally, distributed systems,

embedded into multi-level networks of complex systems with different degrees of

autonomy and which evolve over time (DeLaurentis 2007, Chiprianov et al. 2014,

Harvey and Stanton 2014). Independent systems of the SoS generally retain their

own identities. For example, in addition to the SoS interaction, they have a day-

job, along with their own authorities, responsibilities, goals, and resources, whilst

adapting to meet SoS goals to support its current and evolving user needs, design,

engineering, and operational needs (Director of Systems Engineering 2010, Baldwin

et al. 2011).

As a result, this suggests that accounting for interoperability needs and required

actions to achieve SoS goals can only be predicted through analysis considering the

SoS as a whole (Dyson 2012). This is because all system components and their

relationships need to be thoroughly and continually understood as the complexity

increases throughout the system evolution (Sommerville et al. 2012), and thus

becomes important to the success of the SoS and its process of systems’ integration.

This can, for example, be defined as “a process that combines system elements to

form complete or partial system configurations in order to create a product specified

in the system requirements” International Organization for Standardization (2008).

Interoperability is defined as being “the ability of two or more systems or compo-

nents to exchange information and to use the information that has been exchanged”

(International Organization for Standardization 2010). Where Interoperability relies

upon the ability of two or more systems or elements to use and exchange infor-

mation (Institute of Electrical and Electronics Engineers (IEEE) 1990), overcoming

the complexity resulting from interoperability needs across systems towards infor-

mation sharing becomes a critical success factor for a SoS (Dogan et al. 2011).

Point-to-point interoperability can be directed towards specific systems, but may fail

to fully facilitate interoperation between other systems, e.g. legacy systems with
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compatibility issues or new systems added during the SoS evolution (Morris et al.

2004).

Interoperability is the key to a system’s success, yet fully achieving interoperabil-

ity can often be problematic for component systems, and consequently presents

challenges towards safety and security in the SoS (Kinder et al. 2012, Harvey and

Stanton 2014). Moreover, the Network Centric Operations Industry Consortium

(NCOIC) indicates that interoperability within and across domains is better achieved

when considering and addressing all dimensions, including technology, mission, busi-

ness value, policies and regulations, culture and people (NCOIC 2019b). However,

there is a need for better decisions taking a wider perspective in order to achieve

cross-domain interoperability (NCOIC 2019a).

Interoperation between constituent systems requires stakeholders at system and

SoS levels to play a greater role in determining policies that make goals of the SoS

and the constituent systems achievable (AlhajHassan et al. 2016). It is important

for stakeholders to determine the amount of effort required to improve and expand

SoS capabilities (Lane and Valerdi 2007). Although, it should be considered that

sole reliance upon standards, architectural frameworks, or striving for compatible

technology does not always guarantee achievement of required interoperability, as

technology, people, and organisational integration all need to be aligned to achieve

interoperability (Chiprianov et al. 2014, Homeland Security 2017). However, where a

SoS may have been dynamically composed through rapid evolution, and may quickly

dissolve, the overall governance policy will be difficult to implement, yet there will

be a continued need to demonstrate ownership and accountability towards the SoS

(Morris et al. 2006).

Boardman and Sauser (2006) identified characteristics in Table 2.1 showing a

comparison between the focus towards a system and a SoS context, distinguishing

some of the specific characteristics found in SoSs. A distinction from the term

gathering together is derived by two opposing forces, which are said to be present

in a SoS but entirely lacking for a system. Legacy is a driving force from the parts

perspective, and Mystery acts upon the whole (Boardman and Sauser 2006).

Because SoSs are composed of independent systems and sub-systems, coming

together in ways elements may not have originally been designed for, this can

increase the possibility of emergence, and thus increase risks for independent
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Table 2.1 Differentiating a System from a System of Systems (Boardman and Sauser 2006)

Element System SoS

Autonomy Autonomy is ceded by parts in order
to grant autonomy to the system.

Autonomy is exercised by con-
stituent systems in order to fulfil the
purpose of the SoS.

Belonging Parts are akin to family members;
they did not choose themselves but
came from parents. Belonging of
parts is in their nature.

Constituent systems choose to be-
long on a cost/benefits basis; also
in order to cause greater fulfilment
of their own purposes, and because
of belief in the SoS supra purpose.

Connectivity Prescient design, along with parts,
with high connectivity hidden in el-
ements, and minimum connectivity
among major subsystems.

Dynamically supplied by constituent
systems with every possibility of
myriad connections between con-
stituent systems, possibly via a
net-centric architecture, to enhance
SoS capability.

Diversity Managed, reduced or minimised by
modular hierarchy; parts’ diversity
encapsulated to create a known dis-
crete module whose nature is to
project simplicity into the next level
of the hierarchy.

Increased diversity in SoS capabil-
ity achieved by released autonomy,
committed belonging, and open
connectivity.

Emergence Foreseen, both good and bad be-
haviour, and designed in or tested
out as appropriate.

Enhanced by deliberately not being
foreseen, though its crucial impor-
tance is, and by creating an emer-
gence capability climate, that will
support early detection and elimina-
tion of bad behaviours.

systems and the SoS as a whole if left unaccounted for. Emergence is defined

as being “the principle that entities exhibit properties which are meaningful only

when attributed to the whole, not to its parts” (Checkland 1999). Emergence can

be described as relating to the formation of new behaviours due to development or

evolutionary processes and coming together (Chiprianov et al. 2014).

When designing for the SoS, it is suggested that emergent behaviours must

be carefully planned, tested, and managed (Office of the Deputy Under Secretary

of Defense, for Acquisition and Technology, Systems and Software Engineering

2008). Emergence may occur at different levels, however, emergent behaviour is

consequently often an unplanned occurrence, evolving through the interactions and

collaborations within the SoS (Maier 1996). This occurrence is described as being
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strong emergence, where unexpected emergence is not observed until the system is

simulated, tested, or implemented into operation a situation that was not anticipated

during design and development (SEBoK Authors 2019). This would include the

varied interactions between sub-systems, groups and individuals contributing to

emergent behaviour that in most cases cannot be predicted due to individual sub-

systems isolation (Harvey and Stanton 2014). The challenge, therefore, is to learn

how to maintain interoperability and systems’ availability as the SoS evolves, allowing

emergence to flourish, whilst retaining the agility to quickly detect and defend against

unintended behaviours (Boardman and Sauser 2006).

2.2.3 Classification of System of Systems Types

Maier (2005) argues that interconnected systems are formed of substantially inde-

pendently operated elements. These elements do not solely contribute to an overall

purpose or set of functions, but rather individually fulfil useful purposes. Therefore,

in order to be classified as being a SoS, the system should correspond with the

following parameters described by Maier (2005):

- The elements of the system are themselves sufficiently complex to be consid-

ered systems;

- Operating together, the elements produce functions and fulfil purposes not

produced or fulfilled by the elements alone;

- Each element possess operational independence and fulfils useful purposes

whether or not connected to the assemblage. If disconnected, the element

continues to fulfil useful purposes;

- Each element possess managerial independence, and managed, at least in

part, for its own purposes rather than the purposes of the collective;

- A SoS is typically geographically distributed such that its elements exchange

only information rather than mass or energy;

- A SoS typically evolves over time and space. It does not have a unique

configuration, but rather evolves and changes.

There are many different combinations where independent systems with multiple

stakeholders have a dependency towards other systems, driving a need for a SoS

collaboration. A broad definition of the SoS objective should be provided and framed
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in terms of improved capabilities and not a well specified technical performance

objective (Dahmann and Baldwin 2008). The level of interaction is also dependent

upon the collaborative nature of the system stakeholders, where loose coupling

becomes a requirement for systems over tight coupling and inflexibility.

Nevertheless, stakeholder interaction is likely to be driven by the design and

purpose as a SoS, and its needs for interoperable interactions. For example, when

considering design and SoS Engineering (SoSE) needs, identifying the characteris-

tics, type, and classification of SoS becomes important step towards understanding

the correct context of the SoS, its needs, owners, and conflicts. Stakeholder interac-

tion therefore becomes essential to the SoS and its collaborative interoperation.

To support the classification of SoSs, Maier (2005) describes the levels of system

interactions as being:

Closed - Where the collaborative nature of the assemblage is under central

design control. This is the typical situation where a single agency acquires the

SoS and there is a lead system integrator, but the designers make a conscious

choice to design with operational and managerial independence. That is, the

designers choose to distribute control to the elements of the system;

Open - Where a central design group exists, but does not have full control.

The design choices of the central group are advisory on the elements. All

integrated operation of the integrated SoS is a voluntary act on the part of the

elements, but a central body exists to coordinate purposes and design choices;

Virtual - Where no central governing body exists. The assemblage’s purposes

and configuration emerge from the undirected interactions of the elements.

Given these differences, it becomes evident that centralised control of SoSs

is not always possible, presenting wider challenges for SoSs where the degrees

of decentralisation are greater, which creates limitations towards assessing and

managing SoS security risks as a whole. Maier (1996) further defines SoSs by

certain combinations related to managerial and operational independence and

control within the SoS. These are defined as being Directed, Collaborative and

Virtual (Maier 1996).

However, Sommerville (2015) claims these classifications fail to reflect the dis-

tinctions between different types of SoSs. For example, when considering systems
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as Virtual, this is confusing given the term is also used to describe something that is

usually implemented by software, e.g. virtual machines (Sommerville 2015). The

term Directed could also be misleading as this may imply a top-down authority,

whereas a single organisation still has the need to maintain good working relation-

ships between the people involved, which means that governance is agreed rather

than imposed (Sommerville 2015).

Additionally, Dahmann and Baldwin (2008) introduce a fourth definition of an

Acknowledged SoS. These have an amount of increased centralised management

control and resources to support the SoS, possessing qualities of Directed and

Collaborative SoSs (Dahmann and Baldwin 2008).

The difference in all cases is that independent systems of a SoS have a day-

job and were designed for a different purpose, that as a result will collectively

have ensuing conflicts and limitations towards the SoS collaboration that must

be accounted for to assist the success and dependability of the SoS. Each SoS

collaboration integrates within rapidly evolving contexts in continuous and often

disconnected execution of multiple life-cycle phases (Software Engineering Institute

2016). Who has managerial and operational control of the SoS is, however, the most

important aspect of the SoS. This is particularly important towards to understanding

the ensuing risks and complexities of shared control between different owners, whilst

ensuring adequate authority is in place to manage and mitigate risks across the

SoS.

The differences between the four main types of SoSs can be described as:

Directed SoSs

These are built and managed to fulfil specific purposes; they are centrally man-

aged during long-term operation to continue to fulfil and evolve those purposes.

Component systems maintain an ability to operate independently, but their normal

operational mode is subordinated to the central managed purpose (Maier 1996).

Acknowledged SoSs

These have recognised objectives, a designated manager, and resources for the

SoS, but constituent systems retain their independent ownership, objectives, funding,



34 Literature Review

as well as development and sustainment approaches. Changes to systems are

based on collaboration between the SoS and systems (Dahmann and Baldwin 2008).

Collaborative SoSs

These are distinct from Directed SoSs in that the central management organisation

does not have coercive power to run the system. The component systems must,

more or less, voluntarily collaborate to fulfil the agreed upon central purposes (Maier

1996).

Virtual SoSs

These lack both central management authority and centrally agreed upon purposes,

may exist deliberately or accidentally, and large-scale behaviour emerges, which

may be desirable (Maier 1996). Participants informally collaborate and manage their

own systems to maintain the system as a whole (Sommerville 2015).

While SoSs generally align with one of these categories, the distinction is not

always clear. For example, a Collaborative SoS may need to formulate into an

Acknowledged SoS due to the importance or complexities of the missions supported

by the SoS (Lane and Epstein 2013), or an Acknowledged SoS with very little or

ineffective managerial control may be regarded as a Collaborative SoS. Moreover,

since much of the early SoS research began, the context of SoSs has changed

considerably. For example, early research (Ackoff 1971, Jackson and Keys 1984)

focused on more mechanical-based machines, or machines with low computational

capabilities. As researched progressed with Maier, Dahmann and Baldwin (Maier

1996, Dahmann and Baldwin 2008) who provide the main four SoS categories that

hold today, the concept of Smart internet-connected everything, rapid evolution, and

now common place geographical distribution of technology and people was not as

prevalent of a factor as it is today.

The four types of SoSs are still applicable, however, the lines between types of

SoSs become wider and more blurred, with an increasing potential for different SoSs

existing within a SoS. Nevertheless, a Directed SoS is the strongest formulation,

whereas the interactions within Acknowledged and Collaborative begin to depend
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more on the collaboration and trust equations to achieve its goals. Virtual coalitions

of SoSs are considered to be where there are no formal governance mechanisms,

but where the organisations involved informally collaborate and manage their own

systems to maintain the system as a whole. This also means there is no governance

at the organisational level, but informal collaboration at the management level (Som-

merville 2015). National economies can be thought of as Virtual SoSs where there

are conscious attempts to architect these systems through politics. Although, the

long-term nature is determined by highly distributed, partially invisible mechanisms,

and the purposes expressed by the system emerge only through the collective

actions of the systems participants (Maier 1996).

Virtual SoS are therefore perhaps the greatest challenge in terms of control, but

the most likely to take a single system approach where an independent system is

at least in control of their own destiny, and where reliance upon trust mechanisms

may not be an option. Furthermore, a Directed SoS could at least in part take a

single system approach with a greater reliance on trusted mechanisms, given the

centralised control of most aspects that make it a Directed SoS. For a Directed

SoS, the centralised control would also provide for more co-ordinated decision

making towards the SoS’s risks, and the implementation of unified processes and

risk mitigations towards achieving its goals. However, where centralised governance

and control is reduced across other types of SoS, although there is a sense of unity

towards achieving a common goal, co-ordinating stakeholders with differing degrees

of authority, accountability, and conflicting goals creates challenges for the RBDM as

a whole.

2.2.4 Stakeholders in Systems of Systems

It is imperative to consider all stakeholders, needs, boundaries, and resulting chal-

lenges between inter-connections of the SoS. This includes, the ownership and

operation of constituent systems and related assets within a SoS by independent

stakeholders to overcome limitations on the exchange of information (Nielsen et al.

2015). Socio-technical systems combine different actors each with differing suc-

cess criteria for the SoS design or integration (Ottens et al. 2005). However, when

stakeholders contribute data towards risk activities, they are likely to value particular

assets over others (Faily et al. 2012), meaning conflicts may arise between their own
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independent needs, or with other independent systems of the SoS. Security risks

will likely increase where stakeholders are not always recognised across the SoS, or

stakeholders of individual systems provide minimal input and interaction, or conflicts

are not addressed (Office of the Deputy Under Secretary of Defense, for Acquisition

and Technology, Systems and Software Engineering 2008).

Success can only be achieved if the stakeholder engagement is conducted cor-

rectly with all relevant stakeholders (Böröcz 2016) throughout the SoS life-cycle. A

concise knowledge of stakeholders’ needs, preferences, and alternative solutions

is required, and subject matter experts may be consulted when knowledge gath-

ering (Staker 2001). SoS projects, large and small, may engage a diverse group

of stakeholders, with limited expertise in specific areas. However, all stakeholders

should be valued and recognised as being unique individuals assisting in the dis-

covery of socio-technical and psychological factors relevant to project requirements

(Cleland-Huang 2016).

Stakeholder interactions would be considered throughout the system life-cycle

stages of engineering, development, transfer for production or use, logistics and

maintenance, operation, and disposal (SEBoK Authors 2016). The Systems Security

Engineering Guide (Ross et al. 2016) in the context of identifying the stakeholders

who have a security interest in the system throughout its life-cycle, define stakehold-

ers as being:

Stakeholders include persons, groups, and organisations (or a designated

delegate thereof) that impact the system or are impacted by the system,

including the protection aspects of the system;

Key stakeholders are those stakeholders that have decision-making respon-

sibility associated with life-cycle concepts, program planning, control, and

execution; acquisition and life-cycle milestones, engineering trades, risk man-

agement, system acceptance, and trustworthiness;

Key stakeholders and their associated decision-making authority are correlated

to each of the engineering activities performed in each life-cycle stage;

Stakeholders are identified, including their security interest and specific roles

and responsibilities relative to the systems engineering effort.
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The design, engineering, and operation of SoSs is largely driven by stakeholders’

goals and needs, and involves more stakeholders than typical single-system focused

systems engineering activity. For example, stakeholders at the system and SoS level

each have their own needs and objectives, and competing stakeholders’ interests

and goals (AlhajHassan et al. 2016). However, it is also true that through limited

interaction, some stakeholders needs or specific technicalities for secure interoper-

ability may not be available and captured as part of a security risk assessment or

engineering activities.

2.3 Engineering for Systems of Systems

Systems Engineering is an integration of disciplines, e.g. software and security

engineering, design and testing, forming a structured development process from

concept to production, back to operation where the need and requirements began.

As an interdisciplinary process, systems engineering has a focus towards managing

the design of the complex engineering project life-cycles, that addresses business

and technical needs of customers, with the goal of meeting user needs (Sommerville

et al. 2012, Frank 2014).

Because usual engineering methods are applied towards a single system context,

these rarely scale reliably when applied to the context of SoSs (Henson et al. 2013).

This creates a continuing need for the SoSE community to grow and understand the

discipline and approaches required to engineer SoSs, extending beyond a single

system framework towards a class of complex systems whose constituents are them-

selves complex (Valerdi et al. 2007, Dahmann and Baldwin 2008, Jamshidi 2011).

Systems are becoming more complex and closely interconnected with the human

social environment, therefore understanding organisational and environmental goals

is a necessity (AlhajHassan et al. 2016).

Capability suppliers must integrate many new technical and organisational sys-

tems with older legacy systems, within and beyond their own organisational boundary

(Dogan et al. 2011). Each individual system’s technical and organisational context

and constraints should be considered when identifying viable options to address

SoSs needs and objectives (Dahmann et al. 2008a). Difficulty may increase with the

ensuing complexity of multiple independently managed systems and requirements
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that need to be co-ordinated in order to achieve the SoS objectives (Chiprianov et al.

2014).

Requirements applicable to the design and engineering of the SoS are important

aspects that also need to evolve from a single system context. There is a need to

identify the essential characteristics of systems which ensures established objectives

can be achieved (Keating et al. 2008) within the context of a SoS as a whole towards

achieving its goals, rather than each independent system’s alone. RE communities

have motivated the need for a greater focus towards engineering for SoSs and their

security needs. New approaches for SoSRE should continue to evolve existing

RE capabilities to align with SoSs, taking into account their complex collaborative

interactions. For example, this should include multi-level modelling techniques and

security requirements frameworks for SoSs (Ncube 2011, Ncube et al. 2013, Ncube

and Lim 2018).

When eliciting SoS requirements, we cannot simply focus on elements such

as software or network architecture. The context of the SoS and how it comes

together as a whole should be identified, and how each type of system along with

their interrelated SoS roles, responsibilities, processes, and information flows are

dependent upon each other to achieve SoS goals. This includes manual or physical

interactions, as well as computerised activities, and perhaps most importantly the

related humans activities, needs, and dependencies. This becomes a complex task

to ensure security risks are addressed with applicable requirements and related

implementation and communication strategies. Requirements may therefore need to

support a number of stakeholder needs at different stages of the life-cycle.

For example, early requirements should support and inform the SoS design and

architecture stages to address the operation of systems, internal and external func-

tions, relationships and dependencies, and end-to-end functionality, data flow and

communications requirements critical to the SoS (Dahmann et al. 2008a). Architec-

tural design involves selecting the systems to be included in the SoS, assessing how

these systems will interoperate, and designing mechanisms that facilitate interac-

tion, considering data management, redundancy and communications (Sommerville

2015). Therefore, identifying how and why systems and people would need to inter-

operate at different levels would be critical towards the assessment and reduction of

security risks within the SoS and its life-cycle.
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Other engineering life-cycle stages include integration, verification, validation,

and building on the processes and activities of the systems operation, where risks

relating to the SoS and its mission and objectives are identified. It is key for the

systems engineer to understand the individual systems and their technical and

organisational context, constraints, boundaries and interfaces. The behaviour and

performance of constituent systems is critical to the SoS achieving its processes

and data flow through combined interactions (Dahmann et al. 2008a).

Open systems and loose coupling provides advantages to SoS design, providing

for maximum flexibility to address changing needs and technology opportunities.

One example that adopts this concept is Service Orientated Architecture (SoA) that

is said to offer a technical approach to address some of the organisational and

governance issues, responding to the loosely coupled architectural needs of a SoS

(Dahmann et al. 2009).

Engineering models include the various iterations of the V-Model for requirements

and systems engineering, or the Double-V model for SoSE, providing means in which

to apply the development life-cycle with various stages of verification, validation and

testing (Clark 2009, Dahmann et al. 2008b, Weilkiens et al. 2015). The Ministry of

Defence and Department of Defense Architectural Frameworks DODAF and MODAF

can also be applied within these approaches. For example, MODAF is framework

providing a means to model, understand, analyse and specify capabilities, systems,

SoS and related business processes of an enterprise architecture (MODAF Partners

2005).

Other useful examples may include those detailed within the Systems and SoS

engineering guides (International Council of Systems Engineering 2007, International

Organization for Standardization 2006, Director of Systems Engineering 2010),

security and requirements engineering approaches (Dahmann et al. 2013, Ross

et al. 2016, Mead and Stehney 2005, Firesmith 2003) or a range of other context-

specific engineering and operational approaches. For example, the Wave model

addresses major steps in the application of SoS security engineering where SoS

risks and required mitigations are addressed throughout the process, focusing on

desired capabilities and undesirable emergent behaviours (Dahmann et al. 2013).
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2.3.1 Systems of Systems Security and Risk

Research suggests the bridge between operational and engineering environments

is essential for the analysis and communication of security and other critical aspects

to increase end-to-end SoS security, reducing risk to mission outcomes. Security

risk mitigations are addressed throughout the evolution of the SoS as a result of

the interactions between constituent systems (Dahmann et al. 2014). Directed

SoSs are more likely to apply an amount of top-down identification of security risk,

whereas Collaborative SoSs who voluntarily collaborate to fulfil the agreed upon

central purposes act in a more bottom-up capacity. However, given there is a need

to achieve combined SoS goals, capturing security risks from the bottom up could

be considered a benefit towards the understanding of how risks at different parts

or levels of the SoS can affect different systems’ goals, thus ultimately affecting the

SoS as a whole and beyond.

It becomes imperative that these interactions between systems, data flows, and

people are accounted for early in the development life-cycle and carried through to

meet operational needs. Yet, for SoSs with reduced centralised governance and

control, this can be a challenge to account for all interactions and stakeholder needs

at different levels, and therefore required protections towards the secure operation of

the SoS. Nevertheless, a fundamental principle of engineering is that systems should

be built to withstand failure. However, SoSs with independently managed elements

and negotiated requirements, it is increasingly impractical to completely avoid failure

(Sommerville et al. 2012), but strengthens the need to engage stakeholders and

reduce bounded rationality by capturing suitable detail of the SoS interactions in

which to adequately assess and mitigate the SoS risks throughout its life-cycle.

The Systems Development Life-cycle (SDLC) has five main phases of initiation,

development or acquisition, implementation, operation or maintenance, and disposal.

Tending to risk is an iterative process that can be performed during each major phase

of the SDLC (Stoneburner et al. 2002). Information security and the assessment

of risks must be integrated throughout the SDLC to ensure the required security

protection needs are integrated towards the information, and the systems and people

that store, process, or transport the information. Furthermore, there is a need to

consider how people may be accessing, using or sharing data outside of the original
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scope of the system or SoS (Lee 2012), including any other security-related aspects

of communications between systems and the external world (Zhou et al. 2010).

Supply chain risk is also considered an area of concern towards business continu-

ity and should be accounted for throughout risk management (Christopher and Peck

2004). For example, this is evident where military, civil, and intelligence capabilities

have increased software assurance concerns, such as emergent behaviour of the

integrated components or defects sufficient enough to compromise a system (Ellison

et al. 2010). Supply chain risks and assurance of security must therefore begin to

be addressed during acquisition of the development life-cycle (Boyson 2014).

Critical infrastructures and complex systems present a major challenge to risk

analysis, often from tight coupling. Identifying threat sources is complicated by

system complexities and the barriers to sensitive security information data flows

between autonomous managed systems (Branagan et al. 2006). Context-based

policy often drives data sharing while the number of recipients or their identities may

not be known in advance. Independent systems may also be reluctant to disclose

sensitive data to other entities, requiring extra measures such as policy-based data

encryption techniques in some scenarios (Chiprianov et al. 2014).

When a security risk assessment is performed with an operational focus, this

should inform the needs and requirements to be carried through to the development

life-cycle, therefore capturing required security requirements should begin with asset

analysis and the context in which they are in (Firesmith 2003). This should be

supported by a continual focus on related human factors and interoperability critical

for the SoS operation. Context of interaction among the socio-technical elements

and surrounding objects should be identified and analysed to anticipate possible

emerging activities, properties, and behaviours (Boy 2017).

This should account for roles critical to the interoperation of systems, assets,

and people, where processes, tasks, and goals need to be performed, achieved, or

maintained. For example, identifying who is accountable, responsible, or should be

consulted or informed (RACI). The RACI approach may be considered by risk-based

decision makers to understand where elements of risk may be present, and which

roles are required to make decisions with an aim of mitigating the risk and maximising

opportunities. Although, it is suggested that where high trust relationships are in

place with a good understanding towards the organisational interactions, needs, and
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goals, the decision making process may have less barriers and be more rapid by

comparison to rigidly relying upon RACI matrices (Kesler et al. 2016). Assigning

roles of responsibility is an important factor for the process of RE towards the system-

to-be achieving its objectives, whilst accounting for constraints related to the systems,

software, and people (Van Lamsweerde 2009).

The output of the RBDM process should ensure socio-technical protective mea-

sures have been considered and deployed across the SoS to protect against external

adversaries, and to secure the human vulnerabilities associated with system use.

Early identification of these types of security threats, vulnerabilities and appropriate

mitigations can lower the long-term cost of security control and mitigation (Lee 2012,

Unuakhalu 2014). Security protection mechanisms should be proportionately afford-

able, be reasonably easy to integrate, use, access, and maintain, whilst providing

user convenience without sacrificing security (Strawser and Joy Jr 2015). This

should also consider needs of training and awareness, physical security, and due dili-

gence on third parties and contractual management, and data privacy requirements

(O’Brien 2016).

A positive security risk posture provides the initial characterisation of the threat

environment and security risk tolerance, supported by ongoing analysis to identify

emergent properties of the SoS (Dahmann et al. 2013). A challenge to achieving this

results from the likelihood that many systems within SoS may not have gone through

the same risk or security engineering processes, presenting the potential for new

vulnerabilities and threats, and thus new risks to the end-to-end SoS (Chiprianov

et al. 2014).

SoSs risks and mitigations focus on desired capabilities and undesirable emer-

gent behaviours of the SoS. Capabilities provide resources for technical and organ-

isational elements, although may have dependences with other capabilities (Lock

and Sommerville 2010). SoS capability security may be impacted by operational use

or change over time. Independent system changes to meet individual needs of con-

stituent system stakeholders may change risk equations that might go unidentified

unless specific focus is given to detect a threats or vulnerabilities susceptible within

inter-system relationships (Dahmann et al. 2013).

Applying security to systems in isolation or applying inconsistent security policies

may also lead to incorrect areas of focus for effective security, potentially consuming
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needed resources, and can lead to unidentified areas of threat (Baldwin et al. 2011,

O’Brien 2016). An incorrect process or flaw in one system may result in severe

consequences for the entire composed system (Zhou et al. 2010), or indeed SoS.

Security must, therefore, be designed into the systems with a concious aspect

towards how it is operated in the system and SoS context (Laracy and Leveson

2007). Cyber resilience should also be built-in to cyber resources to enable the SoS

to anticipate, withstand, recover and evolve its business missions, functions and

supporting cyber capabilities to minimise adverse impacts from attacks (Bodeau and

Graubart 2011).

Additional risks are likely to arise from the complex human interaction across

the collaborating services in addition to other process, technology or interoperability

constraints (Dogan et al. 2011). With a greater interaction between technology,

organisational and working environments, and human behaviour, security is also

challenged by feedback, temporal change, time delays, soft factors, and interdisci-

plinary aspects (Gonzalez and Sawicka 2002). Human behaviour tends to conform

to certain patterns, therefore understanding these patterns can signify where further

protective measures should be deployed (Lee 2012).

Considering Ownership and Authority

An Owner is someone or something that owns a something that belongs to or is

carried out by someone or something. An owner may be a person or a larger entity

such as a group or an organisation with the authority for control, but is the single

entity accountable for its level of authority to what is owned. Ownership therefore

refers to the agency with authority over the system elements and its evolution. This

includes the different levels of possession, authority, and control that exist over

systems and processes necessary for the interoperation between those systems.

For example, an asset that is physically owned and used by someone, a document

or process that needs to be maintained, or a goal to be achieved.

Users and stakeholders may be attributed to an owner, but may themselves

not be considered owned, and are instead likely to be regarded as accountable

and responsible to the owner. They can also be associated as the owners of risks,

systems, goals, tasks, processes, information, hardware, and software (Carney et al.

2005). Although, where a copy of the software may be considered bought and paid
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for, and therefore owned as an asset by an organisation or person, it is more likely

the case that organisation or person is instead only granted a license for use of the

software.

This is also similar to the perception of information ownership, whereby a busi-

ness may own their information, but where personal information is concerned, a

data subject is theoretically the owner of that information. However, when a data

subject provides personal data for business use with consent, the business will

often become the owner permitted to use the information, in accordance with data

protection regulations. Therefore, the owner may not always have full property rights

to the asset e.g. software or information, but has responsibility and accountability for

its production, development, maintenance, use, and security. The owners, including

risk owners holding accountability and authority to manage risk must therefore be

identified as part of the SoS governance in accordance with supporting Risk Man-

agement frameworks (British Standards Institution 2011, International Organization

for Standardization 2018).

In a SoS, the perception or understanding regarding ownership of each relation-

ship between all systems may be ambiguous, or become implicit rather than explicit.

This presents challenges for SoSs where co-operation by mutual understanding is

required to understand what the others are doing, why, when and how, in order to

anticipate their own actions (Boy and Grote 2011) if the SoS is to achieve its goals,

securely.

Where ownership in the context of interoperability requires an understanding

and agreement between individual owners about applicable authority, relationships,

and accountability between independent systems, the challenge becomes much

greater due to the complexity of SoSs. For example, where certain degrees of

authority may not be clear due to a lack of centralised collaboration or control,

in particular within a Virtual SoS, potentially leading to perceptions of apparent

authority, rather than clear actual authority. Without this clear line of authority and

responsibility, security risks may therefore increase or be perceived as greater

given the uncertainty from reduced information and assurances towards the secure,

dependable and interoperable systems and interactions between entities.
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Considering Responsibility and Authority

Consequential responsibility is usually assigned to an organisation, a role, or a

person, and is aligned towards who gets the blame in a negative event, and is

therefore primarily accountable. Different strategies for responsibility discharge are

applied, e.g. rule-based, experience-based, and knowledge-based. Whereas, a

casual responsibility which has an obligation to its related authority has a different

focus towards actions, e.g. doing, monitoring, avoiding. Both responsibilities do

however remain accountable to their authority, but in different capacities (Sommerville

2007a).

For example, a person or role may be trusted and accountable to their authority

for ensuring data is secured during their work, but if this was not achieved, this

could amount to a data breach. This means there would likely be consequences

for the person who was accountable and responsible for performing the task, but

the organisation as the principal authority would ultimately be accountable for the

data, and subsequent fines and losses. However, where accountability for the level

of authority extends to blameworthiness towards consequences as a result of the

data breach, liability and culpability would represent both a legal element towards

their responsibility and to the extent blame may be applied towards a negative effect

of the responsibility, e.g. not being achieved or maintained.

Where SoSs are built upon collaboration, understanding where accountability

resides across all systems and stakeholders becomes a challenge, but is important

for maintaining the resilience, dependability, and continued interoperability of the SoS.

It is therefore important for stakeholders to address and maintain interoperability

at different levels, e.g. people, process/procedures, software/hardware, to ensure

operability and availability across each of the levels depended upon within the SoS,

which is important towards meeting its security needs.

When discharging responsibilities, these may be framed based on defined pro-

cess and procedures, or the agent assigned the responsibility may have the flexibility

to decide how to discharge that responsibility based on their knowledge and experi-

ence of the environment and scenario. Having a degree of authority involves both

control over humans and system elements, and the consequent responsibility and

accountability for fulfilment, where transparency, predictability, and sufficient ability

to fulfil responsibilities are a prerequisite (Boy and Grote 2011). The agent holding
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the responsibility is accountable to some authority for their actions (Sommerville

et al. 2009), but should themselves be provided adequate authority in which to assist

the ability to perform those actions.

Ability can also be considered towards the independent system’s day-job and

its originally designed purpose against its ability to meet the SoS needs and goals.

When an independent system owner delegates an element of control and authority,

this should not exceed the independent system’s level of ability, control, or authority,

but this may increase the delegatee’s ability, control, or authority, and accountability in

the SoS context. The assigned level of control afforded to a responsibility should not,

however, exceed the level of control for which authority is granted towards sufficient

ability to fulfil the responsibility, e.g. necessary competence, skills, resources, time,

tools or personnel to execute control (Flemisch et al. 2012).

2.3.2 Human Factors in Systems of Systems

An important aspect for SoSRE are the people central to SoS activities, decision

making processes, design, and operation of the SoS, providing varied input and

output to its needs and dependencies. Human-Computer Interaction (HCI) and

Human-Centred Design (HCD) approaches consider human factors in organisations,

computing systems, software and hardware, and people’s activities (Boy 2017).

Accounting for the human factor at different stages can be addressed using a range

of different approaches to address human factors in systems (Neumann 2007).

How this may be achieved for SoSs requires the human factors community to

identify new ways of addressing information overload resulting from the complex

interaction between SoSs, and provide ways to ensure a flow of interoperability and

situational awareness (SA) (Dogan et al. 2011). This reliance on ensuring human

factors are accounted for is demonstrated in emergency scenarios (Dogan et al.

2011). Moreover, in military operations where the lives of end-users in-theatre were

dependent upon user-friendly designed systems that were easy to administer and

operate, whilst providing reliable and timely communication information systems and

SA in emergency scenarios (Veit 2011).

Further encapsulating human factors is the Human Systems Integration (HSI)

approach that can be implemented early in the design stage and maintained at

operational level. HSI considers relevant roles, responsibilities and relationships of
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manpower and personnel, ownership, stakeholder interaction, training, safety and

other factors (National Research Council and others 2007). For example, NASA

use HSI early in system development and acquisition to acknowledge hardware,

software, and human interactions and elements needed to operate and maintain the

system within an environment. However, successful HSI depends upon integration

and collaboration of multiple domains (Zumbado 2015).

Similarly, Human Factors Integration (HFI) considers similar factors identifying

and managing human-related risk, but considers other social and organisational

factors. HFI can be integrated at an operational level, or included within RE or

other elements of systems engineering to address the underlying philosophy and

application of the human views throughout the development life-cycle into operations

(Bruseberg 2008, Tadros 2013). HFI has, for example, been widely incorporated into

defence and healthcare environments where safety is a priority (Hignett et al. 2017).

As SoSs come together combining new technology in different ways, enabling

the integration of new systems performing new tasks, there is a lack of user and

design experience or knowledge, meaning these systems will occasionally fail in

ways designers failed to predict (Lee 2012). Given both the complexity of SoSs and

the socio-technical interactions that may impact upon security, there is a need to

incorporate HCD into approaches when engineering SoSs. Accounting for human

factors is an important aspect that can reduce unwarranted assumptions or pre-

conceptions about the human activities applicable to the system design, or to

minimise latent errors from occurring, potentially from conflicting requirements, such

as those that may be captured as part of CONOPS - the Concept of Operations

documentation, as detailed by Rebovich Jr. and Authors (2014). CONOPS would

generally be applied in a systems engineering context, but also accounts for other

business and software engineering requirements, inputs, and outputs.

Supporting these approaches, graphical representations such as the Business

Process Model and Notation (BPMN) or others can be used to account for the

business processes of technical and human interactions (Altuhhova et al. 2012),

or Responsibility and Capability modelling can be used to focus on a relatively

abstract model of the socio-technical system (Lock and Sommerville 2010). People

interaction within or across systems and sub-systems works on many different levels,

each of which enables varied opportunities of interaction (Faily and Fléchais 2010b),
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but may create greater areas of risk that needs to be accounted for. Task analysis is

a common technique for understanding how people should use the system under

design or evaluation (Diaper and Stanton 2004), and could be related with use cases

and misuse cases to capture elements of steps performed or that may be at risk

(Sindre and Opdahl 2005).

A suitable approach for SoSRE towards task analysis can incorporate the use

of scenarios to describe a shared story that puts the system in context (Go and

Carroll 2004). User research on the participants within the narratives can be used to

provide grounded human descriptions with scenario-based tasks. HCD tools such

as personas can be used for a range analysis needs to identify user needs and

goals. Personas represent archetypical descriptions of users that can, for example,

embody the goals of business users offering insights into threats, vulnerabilities

and likely areas of risk that may otherwise be overlooked (Cooper 1999, Faily and

Fléchais 2010a, Atzeni et al. 2011, Cooper et al. 2014, Ki-Aries and Faily 2017).

The integration of personas at the start of a project has been shown to be useful

towards RE, assisting with user stories, and scenarios in which personas are situated

within (Cleland-Huang 2013). In the same way that misuse cases can be used to

behavioural model attacks,

Attacker Personas (Atzeni et al. 2011) or Personae non Gratae (PnG) (Cleland-

Huang 2014) can also be used to analyse the negative intentions of a bad actor.

Through analysis, sometimes aligned with misuse cases, this can inform risk-based

decision making towards suitable requirements to address the identified threats

(Mead et al. 2017). Personas may also assist assessors to identify potential security

risk perceptions based on important human aspects, e.g. heuristics, biases, mental

models, and distributed cognition models (Parsons et al. 2010, M’manga et al. 2017b

a).

Also of consideration towards the human element, is where people have differing

perceptions towards understanding security threats or risks, and users are often seen

as the weakest link (Schneier 2011, Öğütçü et al. 2016). Security and usability is a

factor that considers perceived usefulness and the ease of use against the propensity

to take risks, for example with smart device application’s data and communication

security (Yoon and Occeña 2014, Lee et al. 2015). Perceptions towards security
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and risk become a learned experience, but perceptions could also become highly

engrained and difficult to change (Workman et al. 2012).

When two entities have different levels of knowledge or understanding towards

risk, their perceptions of risk are likely to differ. This would be applicable both

during the assessment of risk with bias and subjectivity, and towards changing

security behaviours to reduce risks. For example, it was found that IT personnel

were more confident towards security, and therefore were more security risk tolerant

in comparison to general staff who were more adverse of taking risks, yet presented

better less risky behaviours by comparison to the IT personnel (Ki-Aries and Faily

2017). In addition to other controls, communication and awareness can address

this disparity to some degree, but must use clear jargon-free user friendly language

(Harkins 2012), tailored to the audience and context. When implementing security

functions for the human interaction, they need to be meaningful, understandable,

and should not reduce performance, but should make the user feel more protected

(Furnell 2005).

Schneier (2011) believes that when people believe technology can solve all

of their security problems, then they don’t understand the problems. It is also a

people problem. For example, there is a natural assumption information security is

a technological problem, derived from a reliance on interconnecting with systems.

However, most data and security breaches are a result of human error, sometimes

due to lack of training or awareness (O’Brien 2016).

A distinction can, however, be made between violations and human error. Vio-

lations are usually considered to be intentional and sometimes malicious. These

are usually performed by disgruntled insiders, former employees, contractors, or

business partners. This may incorporate the misuse of authorised levels of access

with the intention of harming a specific individual, the organisation, its data, systems,

network, and business operations (Cappelli et al. 2009). Privacy breach incidents

due to both slips and mistakes have steadily increased relative to malicious attacks in

public firms (Liginlal et al. 2009). Human error may lead to mistakes from inadequate

planning, or something not going to plan through slips and lapses at an execution

stage (Reason 1990). Studies demonstrate the inherent risks in computer and

information system security from accidental and intentional causes, or internal and

external threats with related consequences (Kraemer and Carayon 2007).
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Design principles from Saltzer and Schroeder (1975) continue to remain applica-

ble to the modern day of computing and its users to help alleviate potential security

concerns. Saltzer and Schroeder (1975) state that when designing for protection,

this should apply:

- Economy of mechanism: Keep the design as simple and small as possible;

- Fail-safe defaults: Base access decisions on permission rather than exclusion;

- Complete mediation: Every access to every object must be checked for author-

ity. This principle, when systematically applied, is the primary underpinning of

the protection system;

- Open design: The design should not be secret. The mechanisms should not

depend on the ignorance of potential attackers;

- Separation of privilege: Where feasible, a protection mechanism that requires

two keys to unlock it is more robust and flexible than one that allows access to

the presenter of only a single key;

- Least privilege: Every program and every user of the system should operate

using the least set of privileges necessary to complete the job.

Although it is generally assumed systems rely on people behaving securely,

assurance mechanisms still need to be applied (Fléchais et al. 2005), but should

balance realistic needs and goals for design and operation in the context of the socio-

technical SoS. Therefore, the people interaction factor needs focused consideration,

along with other cultural and environmental factors, risk and security.

Where people can accurately perceive and identify risks that may impact towards

information security, they are more likely to act appropriately. It is therefore neces-

sary to identify and analyse those factors creating barriers preventing an accurate

risk perception (Parsons et al. 2010). Trade-off’s, social norms and internal inter-

actions may also influence an individuals understanding of risks and requirements

(Albrechtsen 2007).

2.3.3 Systems of Systems and Trust

At human and system levels, the notion of trust and assurance are important factors

for stakeholders towards achieving SoS goals, and play a continuing role when

addressing security, risk, and mitigating requirements as SoSs evolve (Ncube and
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Lim 2018). This need and its challenges are exacerbated by the complexities of

SoSs and their differing degrees of ownership and control. In order for the SoS to

remain dependable, technical and social countermeasures are necessary for risk

reduction that depend on a level of attained trust between entities, signalled and

verified through a trust relationship (Fléchais et al. 2005).

Different assumptions, perceptions, expectations, and risk appetite will be present

across systems, and requires active participation of transparency and trust focused

towards related systems of the SoS as a whole to achieve its mission (Dahmann et al.

2009). Moreover, in security risk assessment and design, assumptions about the

trust assumptions may need to be made by the analyst to explicitly limit the scope

of the analysis to the context of the domain being analysed. This also means any

security requirements to be satisfied depends on the design and trust assumptions

identified by the requirements engineer in the context of the problem (Haley et al.

2004).

Capturing requirements that accurately reflect users’ needs is crucial to the

success of software engineering and its role in the system development process

(AlhajHassan et al. 2016), and its success towards reducing the potential of security-

related risk and its level of impact across a SoS. Unfortunately, where the notion of

trust is an important factor for society, safety, privacy, and security, it is often a target

area of exploitation from threat actors. However, although the notion of trust can

be considered as a vulnerability, achieving and maintaining trust can under certain

conditions reduce risks, but increase dependencies.

Trust is nevertheless something that can be hard to gain and require time, but can

be quickly and easily lost. Trust is a belief by a Trustor that a Trustee will perform

to an acceptable level as expected in a given scenario as depended upon. This

Trustum is the encapsulating cycle in which the trust relationship is formed, thus

trust can be considered as the willingness to be vulnerable, based on the positive

expectations about the actions of others (Zand 1972).

Where there is an interaction or potential for interaction between two or more

entities, a Trust Relationship is formed, implicitly then explicitly through verification or

acceptance enabling the interaction with a degree of trust. This may range from no

or low trust, to a higher more bounded level of trust that may increase or decrease

overtime, thus increasing or decreasing the potential of a risk. Trust is, however, a
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Fig. 2.2 Simple Trust Decision

two-way relationship where there will likely be more than one objective. For example,

the (User) Trustor trusts the Trustee (Service Provider) to provide access to a system,

but equally an expectation by the trustee is that the user/trustor will use the system

correctly, meaning the roles of trust can be asymmetric.

Where trust is the likelihood of a positive action being performed, e.g. within a

task, it is from the input and output of this belief that a decision making process

considers whether a risk of the interaction should be accepted to achieve the desired

goal. As in Figure 2.2, this continues with a further decision made to permit the

expected action by others - or not, and re-evaluated based on continued interactions,

and consistency of overall behaviour with positive outcomes aligning with risks.

Establishing trust relies on and number of direct and indirect approaches, policy,

and protocols by which the parties negotiate and exchange the evidence and cre-

dentials, which are needed for evaluating trust in order to define a trust relationship

(Grandison and Sloman 2003). There have been many ways identified towards how

we may compare and determine different levels of trust and context (McKnight and

Chervany 1996). In most cases, this relates to where an individual has reliance on

another party under conditions of dependency and risk (Currall and Judge 1995),

and therefore require measures in which to attribute degrees of trust warranting

properties to determine and maintain trust. For example, this may consider the

competence, honesty, security and dependability of a trustee (Haley et al. 2004),

and be supported by policy to assess reputation, recommendation, and competence

to be considered trusted in a related context (Alcalde et al. 2009).
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The trust warranting properties within a relationship shown in Figure 2.3 extends

the Riegelsberger et al. (2005) trust model considering this instead as a two-way

interaction. This relationship and interactions can be described as having Contextual

and Intrinsic properties, where Intrinsic properties are attributes of a trustee that lead

to trustworthy behaviour. For example, internal factors to the trustor and trustee, such

as the propensity to take risks, versus the benefits or drawbacks of the interaction.

Contextual properties are attributes of the context or scenario that provide motivation

for trustworthy behaviour, such as external actors, law enforcement, expectations of

future interactions or reputation.

Moreover, contextual properties align with temporal, social, and institutional em-

beddedness, and intrinsic properties align with ability, and motivation by internalised

norms and benevolence (Riegelsberger et al. 2005). Trust trade-off’s may be ob-

served from the context and distinction between these properties. Trust relationships

are dynamic, may change over time, and can span across multiple systems, loca-

tions, boundaries, organisations, and people, meaning the frequency of change

within a SoS is a critical factor (Sommerville et al. 2012, Kinder et al. 2012), yet

identifying the changes is critical towards reducing risks and maintaining the SoS’s

security needs at different levels.

Trust can therefore be considered holistically where at the most common level,

trust interactions between a trustor and trustee are at a human-to-human level,

although in human-to-machine interactions, the belief or sense of trust is different

and may require alternative signals and cues. Trust may be arrived at through

informal exchanges, however, technology changes the interaction, perceptions, and

trust variables, meaning traditional trust elements or signals through the trustor-

trustee relationship may not exist when required (Riegelsberger et al. 2005).

Trust can also be considered as a confidence towards interacting with software

and hardware systems or services that will function as expected (Henshel et al.

2015). Lack of confidence in the understanding, usability, or application of human-to-

machine interactions may not create a sense of trust, but may lead to human error

consequently increasing risk. That said, error detection and prevention for users

could potentially reduce risk and increase trust.
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Fig. 2.3 Trustor and Trustee - Simple Two-Way Trust Equation, extended from Riegelsberger et al. (2005)
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User interactions are also dependent upon machine-to-machine interactions

outside of their control, for example, background services or networks working

together in the process of sending and receiving data. However, it is likely humans-

in-the-loop are dependent upon this trust and interaction, relying upon the output to

be returned through the machine-to-human interaction, and that the trustum was as

expected.

In this example alone, we can consider an overall trust relationship, with multiple

sub-relations to fulfil individual interactions between trust relations. Descending

from the top level, the trust relationship is formed between two organisations, who

each have trust relationships with their accountable employees to carry out functions.

These functions include human and machine trust-based interactions that are per-

formed to send and receive data, which is itself trusted towards the data’s integrity,

availability, and confidentiality.

Across each of these trust levels, a trust relationship becomes a dependency

relationship, but the level of determined trust is one measure, and level of depen-

dency on the interaction is another. In this context, a level of trust may be similar to

the level in which we determine how much an entity may be depended upon to fulfil

as expected. Whereas, the level in which the relationship interaction is depended

upon to achieve its goal is a separate measure. In both cases, an increase in

dependencies could, however, contribute to the increase of security risks across the

SoS. For example, where there are weaknesses towards the performance of the

expected dependability, in particular, where issues go unidentified or communicated

across less-centrally managed and controlled SoSs, and which could potentially

have a knock-on effect towards the SoS achieving and maintaining its goals securely.

This would suggest that when considering risk and mitigations in a SoS context,

based on trust assumptions with an expectation to achieve required goals, we

must then consider what obstacles may cause this trust relationship to change.

These changes could bring positive or negative effects towards the dependency,

thus potentially increasing or decreasing risks if an interaction is not fulfilled as

expected, e.g. when performing tasks and processes with assets, contributing to the

satisfaction of goals – which other tasks and goals may also be dependent upon for

their success, all of which contribute to the overarching SoS purpose and goal.
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Different needs, expectations, and requirements make trust preservation difficult

to achieve and maintain, yet easy to lose, adding challenges towards the criticality

of the trust relationship and dependencies. There is a need to determine how the

trusted entities are depended upon within each trust relationship. Each relationship

can relate to different contexts, where some may be more likely to change and

evolve, and dependencies may increase, or levels of trust may reduce. For example,

a third-party may claim to have data security processes and controls in place, but

lack of availability to data, perhaps as a result of an expired ‘trust’ certificate in vital

communication services exposes the lack of controls in place to prevent the issue.

Despite this, there is still a dependency for the goal of the trust relationship to be

fulfilled, either continuing with the third-party, or withdrawing and interacting with

another. In a SoS context, at an independent system level, this could be critical

towards a SoS achieving its goals.

Actual trustworthiness within a trust relationship is established following one or

more interactions between entities, whereas perceived trustworthiness may have

been derived based on assumptions towards prior reputation or other trust signals.

Trustworthiness is defined from the trustor and trustee perspectives as an objective

quality governing the degree to which transactional obligations will be fulfilled in

situations characterised by risk or uncertainty (Bailey et al. 2003).

Trustworthiness can also be considered in relation to the flow of information, the

security and service provisions to protect systems and data used by supporting

systems of the SoS (Richardson 2012). Trust assurance for data requires the

data to be accurate, precise, available, and uncorrupted (Miller et al. 2010) and

thus a dependency is created between the trustor and trustee to maintain this

trustworthiness for continued interaction and risk reduction, despite the risk still

being present.

As interactions increase, trustors are likely to develop an expectation that the

trustee is reliable (Fléchais et al. 2005) if the trustum has been fulfilled as expected,

and therefore the potential for security risks may be reduced where interactions

would be considered ‘trusted’. If the trustum has not been fulfilled as expected, this

may lead to a quantified belief by a trustor that a trustee is incompetent, dishonest,

not secure, or dependable (Grandison and Sloman 2003), and thus the potential

for risk, impact, and required countermeasures and controls would be increased.
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Distrust, therefore becomes a measure of the trustor’s belief towards the unlikelihood

that the trustee will fulfil as expected. This may be as a result of misplaced trust

creating Mistrust, leading to Untrust that becomes a measure of how little the trustee

is actually trusted (Marsh and Dibben 2005).

2.4 Towards Modelling System of Systems Security

and Risk

Throughout the engineering and decision making processes, modelling is used at

different stages to represent system and human elements for different purposes

related to the context in which modelling is used. This may include the design of a

system, its data flows, and activities related to required interactions. To support the

modelling process, it is necessary to identify what the systems does, its purpose,

mission and goals, and to explore the interactions of different decisions in a security

context.

Capturing the design of systems and interactions through the use of models can

help decision makers to reflect upon the system’s social-technical characteristics,

and are effective instruments to reason about the integration of people with systems

and software, whilst accounting for multiple stakeholder needs, costs, and risks (Al-

hajHassan et al. 2016, Salvaneschi 2016). However, it can also be time-consuming

and expensive to maintain model consistency as changes are made to the systems’

architecture or interactions (Sommerville 2015). A particular challenge in the SoS

context is a potential for limitations within the communication flow capturing all

changes to the SoS. Despite this challenge, ongoing monitoring by independent sys-

tems should at very least aim to account for areas of change towards risk equations

to support the necessary risk-based decision making for the SoS.

Design principles, heuristics, best practices, and patterns are all similar terms

for the idea that soft rules correlated with success can be inducted from observing

system development (Maier 1996). Models can be a descriptive abstraction of

reality, representing the decomposition of systems, sub-systems, and their inter-

relationships, inputs and outputs, functions, and performance indicators. However,

given the complexities of SoSs, as the models and their elements of the decomposed

SoS increases, it may become impossible to understand all elements of the SoS
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and related risk in its entirety, indicating the unlikelihood of single model successfully

capturing the multiple dimensions and perspectives of a SoS (De Bruijn and Herder

2009, Haimes 2017).

2.4.1 Modelling for SoSRE

The scale, complexities and challenges presented by SoSs require us to go beyond

traditional RE approaches (Ncube et al. 2013). When modelling systems and SoSs,

a combination of top-down and bottom-up processes can be used within SoSRE,

but would require modelling of goals in the system and SoS context (AlhajHassan

et al. 2016). Using reductionism in the SoS context as a form of decomposition

is challenged due to the inherent complexity of SoSs. Reductionism assumes

clear system boundaries, rational decision making, and well-defined problems,

whereas in the SoS context, these assumptions do not always align to the context

(Sommerville 2015). Moreover, researchers in software engineering generally adopt

this reductionist assumption, but for large-scale complex systems, these assumptions

are never true and can attribute to failures (Sommerville et al. 2012).

Nevertheless, model decomposition is a natural approach to systems analysis

and design, therefore, acknowledging the strengths and limitations of using the

approach is important when decomposing the SoS. Incorporating the concept of

abstraction stacks within the process of decomposing the SoS provides a simple

means towards modelling different levels of abstraction of the SoS (Simpson and

Dagli 2008). For example, a decomposition may involve different levels of abstraction

to define the SoS and its independent systems and associations, decomposed into

associated sub-systems. This should factor-in their security features and services

that are meaningful, e.g. addressing accountability, non-repudiation, or authentica-

tion (Bodeau 1994). This could be applied to the concepts of asset, goals, task, and

process modelling, where security and risk-related elements can be incorporated

during different parts of the modelling processes.

When modelling security aspects in particular, there is already a call for better

models visualising how various people approach a security task, their mental models,

or security-related skills and knowledge. Current informal and implicit models that

aim to capture the human element are not always robust enough, or rarely focus on

how people make security decisions (Shostack 2014). Therefore, when modelling
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security and human elements, the supporting risk assessment inputs and outputs

must assist the process of risk-based decision making to help make more informed

decisions to mitigate risk in the SoS.

However, in the SoS context, given there are likely to be a range of stakeholders

with different needs or expertise, and systems with varying degrees of coupling, the

data gathering, modelling, and communication of model aspects can be a challenge.

Some current methods for modelling security in a single system context are said

to fall short for the average user, as some may require special coding practices or

require significant training and interaction with the modelling tool. Moreover, given

the small community of security engineers and researchers, there appears little

motivation for creating tools (Ardi et al. 2007). This challenge therefore extends into

the field of SoSRE that is still relatively unexplored towards security.

UML Modelling Approaches

Standard design and engineering approaches usually incorporate various types of

UML models or Class diagrams to represent elements such as assets, systems,

structures, or software functions. Capturing the SoS structure and related associa-

tions under consideration would be useful towards aligning with the assessment of

security risk, but should also align with other concepts and models. Use cases and

descriptions are also useful for capturing related actors interacting with elements of

a systems, thus indicating the process for interaction with specified functions and

dependencies of the systems.

Other typical modelling techniques or languages include the Systems Model-

ing Language (SysML) based on UML that is a graphical modelling language for

analysing and specifying the design, verification and validation of complex systems,

and can be tailored to support SoS capability engineering, and cost estimation (Lane

and Bohn 2013, Lane and Epstein 2013, Friedenthal et al. 2014). Aligning with

SysML, CML is language specifically designed for modelling and reasoning about

system interactions and the architecture needed for composing them into a SoS

(Woodcock et al. 2012).

Some approaches have also been extended to factor security within its process.

For example, SysML-Sec supports the assessment towards the impact of security

through a three-phase approach of system analysis, software design, and system
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verification and validation from safety and security perspectives (Apvrille and Roudier

2013, Roudier and Apvrille 2015). UMLSec or SecureUML are also used at the

design stage, although are both used in differing ways to model security risks and

access control (Matulevičius and Dumas 2010, Chowdhury 2014). SecureUML could

be applied for security risk management, although some limitations of modelling

security risk using SecureUML were found (Chowdhury 2014). Moreover, Secure

Tropos extends the i* and Tropos approaches and can be used to model stakeholders,

along with risk-related concepts towards the system and social goals (Mouratidis

2011).

Security and Threat Modelling Modelling

Security modelling should bring together techniques used for identifying threats, vul-

nerabilities and countermeasures to prevent security problems early in development

(Baadshaug et al. 2010). To provide assurance that countermeasures are applied

to target vulnerabilities correctly, a full understanding is required towards areas of

weakness, threats, and behaviours of attackers against the software and SoI (Ardi

et al. 2007).

There are a number of approaches with a particular focus towards threats. This

could incorporate the internet threat model described in RFC 3552 (Rescorla and

Korver 2003), or security and privacy considerations from RFC 6973 as another

means supporting threat modelling by describing threat areas for consideration

against protecting from vulnerabilities (Cooper et al. 2013). Determining threats,

potential areas of weakness, and modelling of such instances may incorporate

threat models such as OWASP Top Ten, Trike, DREAD, or STRIDE (OWASP 2017).

STRIDE can also be aligned with Data Flow diagrams (DFDs) to identify areas of

concern towards information assets and their related information flows (Shostack

2014).

However, where OWASP provides focused considerations towards application se-

curity, and STRIDE is useful for capturing perhaps more cyber perspectives through

its threat model approach, neither really account for other human or environmental

threats and vulnerabilities that may be associated both from a wider information

security perspective, and a SoS context, for example, as introduced within OA.
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Obstacle and Goal Modelling

Architectural and contextualised attack patterns can assist architectural risk analysis

(Faily et al. 2012), or fault tree analysis is another useful technique (Aitken et al.

2011). The use of Attack Trees is another common approach (Moore et al. 2001),

and Obstacle modelling can be used in a similar way. As a consequence of security

threats or vulnerabilities under consideration in a SoSRE process, obstructions

may occur towards a goal being achieved resulting from the affected performance

of a task and its related processes. Obstacles can be introduced into the KAOS

Goal modelling approach to anticipate exceptional behaviours in order to identify

realistic goals, requirements, and assumptions towards the satisfaction of goals

(Van Lamsweerde and Letier 2000). In a SoS context, modelling of SoS goals

and their obstacles with KAOS would play a central role aligning with risks towards

security and human factor concerns of the SoS, and would therefore be a chosen

approach for application within the research contribution.

The KAOS approach considers what a system needs in order to achieve each

goal, and includes different model elements such as a Responsibility model indicating

goal related responsibilities. Goals and their descriptive elements used within KAOS

are considered to be a prescriptive statement of intent that a system must satisfy

(Van Lamsweerde 2009). These may be refined using leaf goals with AND/OR

relationships to support the satisfaction of the root goal being achieved, and provide

alternative methods to achieve the goal where applicable.

This concept would align with the high-level goal refinement in a SoS context,

where independent systems interoperate to achieve the SoS goals. Sub-goals

support the satisfaction of root goals and could operationalise processes, supporting

the completion of tasks operationalised by the goal and their associated roles, related

to activities performed by human users. Moreover, using this approach may be more

straight-forward towards capturing system goals in a SoS context, providing more

flexibility by comparison to i* and Tropos-based approaches.

Taking a different approach to KAOS, the Goal-oriented Requirement Language

(GRL) models may be effective towards considering interoperability between sys-

tems to examine the impact of changing system assets, goals, or user processes

(Faily and Fléchais 2014) or towards conflicting security and regulatory requirements

(Ghanavati et al. 2014). GRL takes a similar approach to that of the i* and Tropos
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approaches that implements a Strategic Rationale model mapping organisational

relationships, and a Strategic Dependency model. The processes applied for so-

cial goal modelling are versatile, and useful for capturing the social rationale for

requirements. However, the modelling notation can appear complex, and large

models can be difficult to scale (Moody et al. 2010, Maiden et al. 2011), which may

become a challenge when modelling a SoS where scale and complexity is inevitable.

Another RE approach for modelling and specifying goals implements anti-goals and

anti-requirements similar to that of use and misuse cases (Van Lamsweerde et al.

2003), although this approach is likely to require further research and testing before

being considered for use with SoSs security and risk.

Modelling Responsibilities and Dependencies

Modelling responsibilities and dependencies between systems, roles, and people

is not a new concept, but my be applied differently using different approaches.

Responsibility models can be used dynamically to represent evolving socio-technical

scenarios and the interaction between humans and machines, highlighting areas of

mitigation towards risk, whilst providing support for the analysis of potential process

change (Lock et al. 2010).

A common point of reference is within the Tropos approach that adopts the i*

model and implements a Strategic Dependency model that relates to a Strategic

Rationale model. These are used to support early requirements analysis (Giorgini

et al. 2004), and are to some degree adopted within the GRL approach to goal

modelling (Amyot et al. 2009).

When modelling dependencies, the basic premise is that You as the Depender

depends upon Me the Dependee for something, the Dependum. For goal modelling,

the dependum may be to achieve a goal or sub-goal, or as i* and Tropos begins to

explore, dependencies towards tasks being performed and the availability or creation

of related resources.

Goals may be used to capture the dependencies and rationale relationships

between system ‘hard’ goals, and human ‘soft’ goals, where soft goals may also

be captured and analysed by other means. Modelling in a systems or software

context, non-functional requirements (NFR) including security considerations are

often represented as soft goals. These can be described as goals where there
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is possible ambiguity in its description, without a clear measure of satisfaction to

achieve the goal or not, whereas a goal is quantifiable and more concrete (Amyot

et al. 2009).

Although, in a security context, it could be argued that a goal to achieve a security

need is likely to be considered a hard goal, something that needs to be achieved for

the system to function as required. For example, where a user may access online

banking, and some form of authorisation and authentication mechanism is required

in order to provide access to the user.

The KAOS Goal and Responsibility modelling approach integrates this concept

which is slightly different to GRL, and takes a different direction to i* and Tropos by

implementing a Responsibility model, generated from its other models that support

goals, objects, and operations (Lapouchnian 2005). Root or main goals can be

supported by leaf or sub-goals where they could be applied as functional or NFR,

and may concern resources, e.g assets.

It is also possible to represent a risk-based obstruction towards goals being

achieved with Obstacles, which are not explicitly defined in i* and Tropos, but

are useful towards expressing where security risks may impact upon tasks and

goal completion and related dependencies. However, by comparison to i* that

considers actors as agents, roles, and positions within its dependency model linking

to the rationale model, the KAOS Responsibility model does not directly show the

relationships between all actors’ dependencies in the same way (Werneck et al.

2009).

When modelling these dependencies in a SoS context, it would be useful to draw

upon the benefits of these approaches and further consider the SoS relationships

and dependencies, making clear who is accountable. This would relate to the owner

and subsequent authorities, e.g of an asset or the goal, where there is delegated

authority to a role, e.g to achieve a goal, and therefore a chain of accountability for

its operation and control, for which the SoS as a whole is dependent upon. This

could potentially be adapted within the KAOS Responsibility model, with elements

that considers where accountability at each level resides, e.g. between an owner

and delegated role, thus highlighting other dependencies in addition to the currently

captured elements, specifically where there is a risk to assets associated to other

assets used in tasks and processes to achieve a goal.
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Although Sommerville (2007b) goes some way towards drawing a degree of

accountability with the causal and consequential responsibility model elements and

notation, greater dependencies are not clear. The i*, Tropos, and GRL approaches

also have slightly different notation related to the links between dependencies,

which again is different to KAOS Goal modelling. When integrating models, this

may become confusing if different independent systems’ stakeholders of a SoS

are familiar with one approach over another, which may again be different to other

approaches e.g. UML. For example, in each of these cases, arrow head types may

have a meaning, but are not consistent across approaches.

Consistency in models would therefore be desirable, but should aim to reduce

cognitive load, certainly if there is an expectation to share these models with non-

technical stakeholders as part of RBDM. Models should capture and clearly illustrate

each of the dependencies reliant upon the input or output by each accountable entity

to achieve the task or goal, or specifically in the context of security, achieve and

maintain risk reduction towards the SoS interaction.

2.4.2 Integrating Tool-support

It is evident there are a number of approaches to modelling with different types of

models, each capturing different elements of systems. Given that these are usually

used in a single system context, combining models is already a challenge as tools

may be limited, or multiple model generating tools may need to be used in parallel.

Sharing modelling results with others can contribute to greater awareness of security

issues, but models must be illustrated in such a way that they can be understood.

A current tool often used for a variety or purposes is Microsoft Visio that offers a

range of flowcharts, diagrams and model types for graphical illustration (Microsoft

2017). However, for some users it was found tools such as Rational Rose and Posei-

don could take 60% less time to create a security model compared to modelling with

Visio (Baadshaug et al. 2010). Visual Paradigm (Visual Paradigm 2017) also offers a

range of flowcharts, but is a slightly more powerful tool, with some model alignment,

although understanding different model elements can become complicated.

There are a range of other off-the-shelf tools available, but some may have more

of a HCD focus, or others may specifically focus on systems threats, but not model

its goals. The GRL approach to goal modelling is also tool-supported with jUCMNav
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(Amyot et al. 2009), but doesn’t combine other elements to capture security and risk

holistically to consider the tasks, processes, and asset interactions. The CORAS

method does, however, provide risk analysis as a model-driven approach using

a computerised tool designed to support documenting, maintaining and reporting

security analysis, using UML based threat and risk modelling to capture and model

relevant information (Lund et al. 2010, Stølen and Solhaug 2015).

Many of these approaches offer value in their specific areas, but do not align

directly with other model types and concepts.To enhance security during develop-

ment, good tool-support is required that can integrate with other current development

tools or be used by other stakeholders (Meland and Jensen 2008). Moreover, as

security modelling usually incorporates a variety of general purpose drawing tools,

standardised modelling methods and tools with data repositories would be greatly

beneficial towards the production of security related models (Ardi et al. 2007), and

potentially increase the efficiency of producing and updating integrated models.

However, there appears limited tool-support integrating some of these different

modelling elements specifically with a focus towards security and human factors

to visualise and assess the interactions and consequences of risk in greater detail.

Identifying the combinations of model elements to suitably visualise these concerns

would be useful for illustrating systems design and security risks related to the

independent and interdependent socio-technical system interactions of a SoS.

The open-source Computer Aided Integration of Requirements and Information

Security (CAIRIS) requirements management tool (Faily 2018a) does attempt to

address and integrate a number of these important elements and models. CAIRIS

and its automatic analysis and visualisation capabilities can assist when modelling

the socio-technical interaction of the SoS and the usability, security, and requirements

engineering activities (Faily et al. 2012, Faily and Iacob 2017). This provides a current

view on security risks and associated assets, roles, goals, tasks, and other security

and usability concepts, thus providing an ideal combination of model opportunities in

which to explore.

In addition to CAIRIS already integrating a number of useful elements and tools

helpful towards assessing security risk, a further motivation for using this type of

a tool considers the benefits of CAIRIS being an open-source tool, which could

enable a potential for further development. The tool is also in constant development,
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meaning new features and enhancements continue to be implemented, thus adding

to its value of an integrated tool. CAIRIS could, potentially incorporate SoS specific

modifications to the tool, further aligning towards a tool-supported framework for

security risk assessment in the SoS context. CAIRIS was, therefore, adopted for

application within a research contribution towards integrating concepts, models, and

techniques for assessing and modelling information security risk and human factors

concerns with tool-support.

CAIRIS and IRIS

Many of these security requirements engineering and human factors ingredients

necessary for SoS analysis have been incorporated into the IRIS framework (Faily

2018b). The IRIS framework was created to illustrate how design concepts and

techniques in Security, Usability, and Requirements Engineering can be integrated

when devising processes for designing usable and secure software.

IRIS is underpinned by a meta-model stipulating the conceptual alignment be-

tween these areas of engineering, and are supported by the CAIRIS platform (Faily

2018a), which implements this meta-model. Because CAIRIS uses a relational

database to implement the IRIS meta-model, we can reason about CAIRIS models

to highlight areas of potential concern. For example, related work (Coles et al. 2018)

implemented validation checks of privacy elements, where goals can be related to

the processing of personal data.

The different IRIS model elements provide aligned perspectives of a secure

system’s context of use, many of which are specific to the modelled environment.

The IRIS concepts captured within the environment meta-model are illustrated in

Figure 2.4. An environment is used to represent the context of use for the physical,

social, or cultural environs within which the system is situated. This may include

goals, or tasks, and related roles and dependencies that may affect the satisfaction

of goals.

The use of environments could be particularly useful towards capturing the view

of independent systems of the SoS. Each environment or view, would therefore

capture the direct interactions of systems with other systems, that combined would

account for the SoS to be modelled using selected concepts of the IRIS meta-model.

Separate environments can be used to represent a view from specific independent
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Fig. 2.4 IRIS Environment Meta-model (Faily 2018b)

system of the SoS to capture the contexts of use within which a system specification

needs to be situated for. This would be favoured over the box within a box approach

to modelling or swimlanes, given there could be many boxes or swimlanes to account

for representing different levels and views of the SoS and for each model type.

To address the bounded rationality (Simon 1979) problems that occur that make

creating, managing and visualising SoS models difficult due to its size and complexity,

CAIRIS can automatically generate several types of system models. These are

based on requirements, security, and usability model elements. CAIRIS also has the

flexibility to facilitate collaboration between different types of systems stakeholder

to explore the impact of a threat on different systems, while its API can be used to

facilitate integration with complementary tools.

2.5 Chapter Summary

There is a continuing need for the SoSRE community to grow and understand the

discipline and approaches required to engineer SoSs, whilst accounting for their
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constraints on geographical, environmental, evolutionary and emergent behaviour,

risks, human interaction and culture that add to SoSs complexities. Moreover, a

gap is evident towards a formal process to support a security risk assessment for

defining and characterising a SoS. In particular, where the distinction between types

of SoSs’ authority and control is not always clear, leading to ambiguity towards how

a SoS may be represented and its security concerns assessed.

Although there are many differing approaches to risk and how it may be managed

and assessed, there has been little research focusing on Information Security risk

assessment in SoSs that combines modelling and visualisation of related interactions

using tool-support to integrate different models, concepts, and techniques within

analysis. Different approaches and models elements may be considered towards

assessing security risk in a SoS context, capturing the stakeholder needs, goals,

activities, assets, ownership and accountability, multiple responsibilities, human

factors and perspectives of a SoS to assess the interactions and consequences of

risk in greater detail.

Security modelling should bring together techniques used for identifying threats,

vulnerabilities and countermeasures to prevent security problems early in develop-

ment, whilst accounting for human factors to reduce unwarranted assumptions or

pre-conceptions about the activities applicable to the system design, yet there is

no clear guidance provided to inform how they may be integrated towards a SoS

context. Therefore, the identification and testing of suitable approaches would be

a useful research contribution to support an end-to-end information security risk

assessment and modelling process to assist RBDM in SoSRE.
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Research Methodology

In this Chapter, a range of research methods were considered that could be adopted

to address the RQs detailed in Section 1.2. The chosen methods for the research

strategy applicable to the research context are indicated, with examples of how

methods would be applied to achieve elements of the research contributing to the

thesis.

3.1 Research Methods

A paradigm can be considered as relating to the concepts of ontology, epistemology,

and methodology with related methods that presents a worldview providing differing

assumptions of reality and knowledge underpinning the related research approach

(Scotland 2012). A methodology can be considered as to provide a combination

of research design methods, approaches, processes and procedures used in an

investigation that is well planned to find out something (Keeves 1997).

Paradigms are often regarded as being philosophical in nature, and may, for

example, align towards positivism, constructivism, realism, and pragmatism, each

taking a different stance towards the research focus (Maxwell 2012). For example,

the positivist ontology and epistemology aims to discover absolute knowledge or

truth about an objective reality, although the subsequent generalisations may not

be fully understood as they do not take into account the intentionality of human-

centred activity (Scotland 2012). The post-positivist paradigm may instead provide

a worldview more suited towards research than considers human behaviour, as
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post-positivism accepts that reality is imperfect and that truth is not absolute, but

probable (Kivunja and Kuyini 2017).

Other approaches that take a more qualitative role may include interpretivsim,

critical theory, post-modernism, and phenomenology, providing further options to-

wards combining well developed methods within a research approach (Maxwell

2012). However, interpretivism rejects the positivism approach by arguing that the

effects of human behaviour are intrinsically aligned with the environment in which

they are in, and the associated subjective perceptions about the environmental

conditions (Willis et al. 2007). Therefore, when research has a focus towards infor-

mation system and human interaction, capturing these elements becomes critical for

the researcher. The interpretive paradigm does not question ideologies; it accepts

them, whilst focusing upon the interactions that are culturally derived and historically

situated, striving for legitimacy and trustworthiness of the research without claiming

uncontested certainty (Scotland 2012).

Research design methods are constructed, combined, and applied in different

ways, but should be relevant to the scientific demands for a given domain, e.g.

where a broad or deep and narrow focus may be required through quantitative and

qualitative approaches. Quantitative research methods usually involve a quantity

of statistics from counting, measuring, and analysing a range of data inputs, such

as surveys and questionnaires. These may also take a positivism approach where

assumptions towards objective measurements may be made from observations and

fact-based analysis (Hennink et al. 2010). Whereas, qualitative research approaches

are considered descriptive, inferential, investigative, and evidence-based (Gillham

2000). Qualitative approaches seek to embrace and understand the contextual

influences taking an interpretative approach, where the researcher must be open

and empathic with a curiosity for discovery and understanding (Hennink et al. 2010).

When undertaking qualitative research, there is a need for researchers to set

aside their own perspectives, beliefs, and unwarranted assumptions of a problem

domain. There is a tendency for researchers to identify with aspects of human

activity to appreciate different perspectives, behaviours, and cultural needs of users

and stakeholders, whilst gathering and analysing related data to make research

decisions (Taylor et al. 2015). An exception and addition to this may be where a

researcher introduces personal reflexivity to consider how their personal background
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and experience may influence the elements of the research and findings (Hennink

et al. 2010).

Another method of integration may take an inductive approach that can be used in

a qualitative way with consecutive research findings, leading to inductive inferences

towards a deeper understanding of the domain. Alternatively, a deductive approach

can be used with quantitative research methods, relying on existing literature and

theory to deduce a conceptual framework for data collection (Hennink et al. 2010).

Action research could be used to provide focused observation towards a specific

agenda, with a reflective period evaluating multiple inputs aiming to achieve a

specified output. It provides a theory and practical knowledge contributing to a

more equitable and sustainable impact towards the ecological context of society

through observation, reflection, and intervention (Ivankova 2014). It is a systematic

investigative approach enabling discovery of effective solutions to every day problems

(Stringer 2013).

Where specified research questions have a focus towards information systems

and the environments in which they are situated in, applying a case study approach

provides a useful means to capture the organisational context and knowledge of

practitioners, then developing theories from it. This enables the researcher to

examine “how” and “why” questions to unravel the complexity of the questions posed

(Benbasat et al. 1987).

As case studies are implemented, the long-term value of a study, its processes,

and findings would need to be considered. The quality of case studies possess

certain characteristics that are desired. For example, these would relate to the

trustworthiness, credibility, confirmability, and data dependability of a study that

can be tested in four areas to determine validity and reliability of a case study (Yin

2013). A case study approach can help generate a more holistic representation

of a particular problem domain, allowing for generalisations of findings that can be

enhanced by use of replication with multiple case studies to improve the accuracy,

validity, and reliability of results (Noor 2008).

These can be supported by interviews, observations, focus groups. Focus groups

can be useful to gain different perspectives, whilst maximising stakeholders’ time and

availability, sometimes in addition to supporting fact-finding or validation interviews,

or as an alternative. However, based on other research activities, it is acknowledged
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that identifying and securing candidate organisations for projects as case studies

providing interviews, observations, focus groups or other data gathering for modelling

and analysis is difficult. This seems more apparent when the topic is security and

risk related, even with basic research requests.

This has a direct impact when applying certain methodological approaches,

but can still be addressed by using exemplars or case studies, or other means

of data capture and analysis to reduce participant interaction time and resource

requirements. Furthermore, where interviews are undertaken, within the bounds of

research ethics, it is common for research data to apply anonymisation to remove

the identities of the interviewees to provide a level of confidentiality, whilst affording

the ability to share and publish research analysis and findings. Researchers should,

however, adopt oversight to maintain the verifiability of the data, and ensure ethical

requirements are adhered to.

Nevertheless, semi-structured interviews can be used with pre-prepared simple

and open questions, prompting responses of concrete descriptions of the respon-

dent’s knowledge and experiences (Given 2008). Semi-structured interviews can be

applied and tailored to the context of the expertise, but also allows the interviewees

the freedom to limit or elaborate upon the content being discussed. Where two or

more interviews use consistent questions, triangulation of analysis of data can be

applied to compare and contrast between the given answers to help strengthen the

validity of the findings (Griffee 2005).

Grounded theory is considered as another qualitative approach used to system-

atically analyse data, forming a theory from its output. The concept is often linked

back to the work of Glaser et al. (1968), although most common day approaches

follow a more updated version (Corbin and Strauss 2008). Grounded theory can

be described as a process of two steps forward, one back through data analysis

(Glaser 1978).

The specific aim of grounded theory is to investigate the real world, discovering

concepts grounded in the data and uses the derived concepts to build theory around

the data in context (Allan 2003). It is an analytical process using coding strategies,

splitting data into distinct units of meaning, clustered into interrelated descriptive

concept categories (Goulding 2002), which can then be analysed and modelled to

support research findings. Persona Cases based on grounded theory is a method
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of data analysis that can, for example, be applied to analyse interview transcripts

and factoids represented in affinity diagrams, and lead to new insights of users,

behaviours, and their environments (Faily 2018b).

Findings of research may also inform the design and prototyping of certain

research outputs. Prototypes act as a means of inquiring into a context of use through

experimentation to generate research data and conceptual arguments for reflection

towards the design (Wensveen and Matthews 2015). McElroy (2016) considers

prototyping to be a manifestation of an idea into a format that communicates the

idea to others or is tested with users, with an intention to improve over time, and

is therefore useful for stakeholder decision making. The use of prototyping can

provide a generative and balanced structure, that can potentially save time, effort,

and money whilst reducing risk by identifying problems early in the process and

throughout the development life-cycle (Warfel 2009).

Effective prototyping is demonstrated through repeatable processes with a range

of prototyping methods available to elevate the creation of systems and software

being designed with tangible representations of the design interactions. Examples

of prototyping can include card sorting, wireframes, storyboards, paper or digital

prototypes, and others (Arnowitz et al. 2010).

3.2 Application of Adopted Methods

Because the scope of the research project is part agenda-driven with a multi-

disciplinary crossover between the different elements contributing to its subject area,

the research strategy chosen to address the research problem applies a selection of

methods in combination with design, engineering, security, risk, and human factors

techniques. From the methods introduced in Section 3.1, a qualitative research

approach has predominately been applied as a main research methodology.

This further applies mixed-methods for exploration and discovery in a SoS con-

text, incorporating examples of SoSs and case studies for the purpose of combining,

applying, and validating the research contributions. Kumar (2019) argues that com-

bining or mixing different methods within a research approach can take advantage

of strengths from different paradigms to enhance the accuracy, validity, and reliability

of findings towards the theory and application of the related research (Kumar 2019).
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Figure 3.1 illustrates how each of the selected methods and approaches were

combined and applied in research presented throughout related chapters, whilst

demonstrating their relation towards addressing each of the RQs. Each research

method or approach was chosen for use to address parts of a particular RQ, or

combination of RQs. For example, the focus of RQ1 was to consider “What SoSs

factors contribute to challenges of security risk assessment of SoSs”. A review of

literature suggested there was a common theme in SoSs whereby the notions of

decentralised control, different owners, conflicting requirements, and a dependability

upon interoperability are critical. To explore these notions further, a literature-based

SoS example would be constructed, supported by interviews and a focus group to

help test and validate theories with related stakeholders, helping to address the

RQ, whilst informing other RQs towards a clearer understanding of the SoS context

required to support the security risk assessment process.

As indicated in Figure 3.1, the output related to RQs would lead to a SoS

characterisation process in Chapter 4, providing context to support the information

security risk assessment process. Other SoS security, risk, and human factor

considerations and challenges would be identified whilst addressing RQs 2 and

3 in Chapter 5. Together, these outputs from exploring RQs provided a focus

and foundations towards the three contributions of OASoSIS for addressing the

research gaps discussed in Chapter 6. OASoSIS blends a component-driven and

system-driven SoS assessment for information security risk capturing related human

factors concerns, aligned with a SoS goal-driven modelling approach applied with

tool-support from CAIRIS.

3.2.1 An Inductive and Deductive approach

A combined inductive and deductive approach would be applied towards process

design, testing, and validation of an approach, and its suitability towards assess-

ing information security risks and associated human factors in a SoS, and which

integrates tool-support for modelling and visualising risks in the SoS. Considering

different examples of SoSs would help to provide a view of who the different owners

are, who controls what, and what these challenges and impacts may actually look

like, thus informing other RQs and thesis contributions.
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Fig. 3.1 Combining Research Design Methods
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For example, informed by inductive research and the SoS examples in Chapters

4 and 5, a shift to deductive research would be used to identify a suitable process

for assessing risk in the SoS context. After prototyping an approach for assessing

SoS information security risk, inductive research then continues in later Chapters

with more interviews and focus group activities with two case studies to apply, test,

and validate the approach. These activities apply elements of interpretive design,

taking a model-driven approach in a SoS context with the use of tool-support to

assist the research process of assessing SoS information security risk and related

human factors for RBDM and SoSRE.

3.2.2 SoS Examples and Cases studies

Each of the SoS examples that were implemented in Chapters 4 and 5 were applied

to help explore the problem domain, leading to the testing, validation, and formali-

sation of the OASoSIS framework. The three contributions of OASoSIS would be

applied using Case Study 1 in Chapter 7, including the processes for SoS charac-

terisation and context, an information security risk assessment aligned towards a

SoS, integrated with other concepts, models, and techniques, then re-applied as an

end-to-end process in Case Study 2 in Chapter 8.

Supported by stakeholder feedback and validation, the case studies and example

SoSs were the main supporting methods applied, along with other largely qualitative

methods as a structured approach to address RQs, and to explore the different per-

spectives, inputs, outputs, and activities related to the problem domain, specifically

towards assessing and modelling information security risks and their related human

factors concerns in a SoS. A potential for using action research was considered

for Case Study 2, but would not be applied in full due to changes in the on-going

availability of the original stakeholders.

3.2.3 Interviews and Focus Groups

Supporting literature reviews and document analysis, followed by verbal or electronic

communications with relevant stakeholders would be used to ground the theory

based on the empirical study, whilst gaining expert feedback and validation through

interviews and focus groups. Semi-structured interviews and focus groups would be
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used to place the SoSs under consideration into context with stakeholders and other

experts, and to provide stakeholder validation towards the adopted approach and

elements within it, as applied in the case studies and example SoSs. Semi-structured

interviews as a qualitative method was chosen to allow for an initial set of interview

questions to be applied, but still afford the flexibility to explore answers in different

ways. For example, stakeholders from a variety of roles and sectors would provide

different expertise and input in relation to a particular context, but specifically related

to their area of expertise, thus covering different topics or aspects.

It is, however, acknowledged that a challenge to the research community is where

interview candidates are difficult to secure in a SoS context and towards security and

risk, where even when conducted, many decline an audio recording of the interview,

which instead relies upon hand-written note taking. Some instead prefer an informal

short discussion to provide context towards specific scenarios or environments

without giving specific detail. At times, there is a reluctance or resistance towards

giving access to a company and its potentially private or confidential information,

internal processes, some of which may warrant security clearances in order to

access or observe, in particular government, or military and defence. Nevertheless,

for research-based projects, an amount of information captured must be publishable,

and may therefore be duly limited by stakeholders, which presents challenges for

research evolution adopted in real-world and organisational scenarios. This is a

challenge for SoSs, certainly at a time where there is an industry appetite towards

data and information security to defend and mitigate against the ongoing information

and cyber security conundrum.

3.2.4 Prototyping

Prototyping would be used in differing scenarios, for example, for the SoS char-

acterisation approach, or where SoS and HFSI elements are implemented into a

suitable information security risk assessment process identified through a deductive

approach. As the chosen information security risk assessment method, OCTAVE

Allegro by Caralli et al. (2007), would then be modified and tested towards the SoS

context and used in conjunction with tool-support.

Prototypes of model enhancements and model validation checks within the tool-

support was a further option. One example, is where CAIRIS source code was
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modified to display a new symbol within certain models, e.g. the responsibility model,

to represent accountable owners, similar to that representing a role of responsibility.

The benefit of this enhancement also gained stakeholder validation, demonstrating its

use towards risk-based decision making identifying the dependencies between those

responsible, and accountable for the satisfaction of SoS goals, tasks, processes,

associated assets, and the mitigation of related risks.

3.2.5 Grounded Theory and Personas

Grounded theory could be used to systematically analyse research data supported

by literature reviews, interviews, and case studies forming a theory from its output.

However, an element of grounded theory would be used when creating personas,

representative of archetypical users identified as being central within the SoS exam-

ples and case studies. Data collection, coding and categorising of elements of data

as factoids would be captured and grouped using an affinity diagramming process.

Moreover, in one case study this was integrated with the Toulmin based argumen-

tation model to support the validity of assumptions in persona models generated

within the CAIRIS tool-support.

3.3 Chapter Summary

In this chapter, a number of approaches to research were considered and selected

to align with the research project type and its multi-disciplinary nature. This re-

search would aim to integrate a selection of methods in combination with design,

engineering, security, risk, and human factors techniques applied within OASoSIS.

Research methods were adopted to address the RQs detailed in Section 1.2, and

applied to achieve elements of the research contributing to the thesis, as illustrated

in Figure 3.1. A qualitative approach was predominately selected as a research

methodology, incorporating example SoSs and case studies towards validating the

research contributions and OASoSIS.

Methods applied would lead to the formulation of a SoS characterisation process

providing context to support the information security risk assessment process in

Chapter 4. SoS security, risk, and human factor considerations and challenges
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towards addressing RQs 2 and 3 are discussed in Chapter 5. The combined

output of RQs would provide a focus towards the three contributions of OASoSIS for

addressing the research gaps discussed in Chapter 6, blending a component-driven

and system-driven SoS assessment for information security risks and related human

factors concerns, and a SoS goal-driven modelling approach with tool-support from

CAIRIS. This was applied, tested, and validated as presented in Chapters 7 and 8.





Chapter 4

A System of Systems
Characterisation Process

Chapter 4 introduces a means for characterising a candidate set of independent

systems as a type of SoS, to provide its specific SoS context and to identify where

ownership, authority, and control of systems are in place for the SoS. Furthermore,

from the context of the SoS scenario discussed, its SoS challenges and associated

factors applicable towards a SoS information security risk assessment framework are

considered. The application and findings based on the context of the scenario are

presented to discuss each step applied towards addressing the research problem.

4.1 Motivation

Literature has shown that SoSs may be regarded as being complex, adaptive, large-

scale, with different degrees of ownership and control, and have a potential for

geographical constraints. However, it is not always clear in which context a system

or systems become complex, or indeed whether it is attributed to the scale, or the

number of system inter-connections used within the SoS. Moreover, as a result of

the term being used inconsistently across audiences and creating ambiguity towards

how a SoS may be represented, this emphasises a need for clarity when defining

and characterising a SoS to align its context from a design, engineering, or security

viewpoint.
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Where it is now becoming common for socio-technical system evolution to com-

bine systems in different ways, and which at times creates dynamic cross-system

collaborations, a more diverse approach is required when designing, developing, and

maintaining these systems or SoSs. Research suggests taking a traditional single

system approach towards these collaborative system combinations may overlook

certain aspects. This could include the inability to capture all stakeholder needs,

goals, ownership and accountability, and requirements for security, interoperability, or

vital inputs and outputs providing situational awareness supporting resilience across

the whole. As a result, this may lead to increased levels of unaccounted for risk.

While there is some diversity in the approaches proposed for engineering SoSs,

a gap is evident towards a formal process for defining, characterising, and modelling

a SoS, where only commonly used descriptions are posited, with few illustrative

examples demonstrating their initial classification and resulting SoS structure. It

would, therefore, be useful to apply a candidate SoS, and illustrate how the example

might be framed as a SoS given its characteristics. This clarity of context would

specifically aim to support the first steps of a SoS security risk assessment process,

given that any risk assessment process must be driven by its related context. These

findings would then inform the application of suitable design techniques and SoS

components appropriate to a SoS’s type and complexity, considering where issues

may exist and which may be assessed and modelled in the context of the SoS.

4.2 Grounding the System of Systems Context for

Security Risk Assessment

Through research and stakeholder interactions, it has become evident that use of a

common less-technical language of engineering, security, and risk can assist multi-

level stakeholder understanding. Moreover, it is useful for operational stakeholders

to first align with the concept of SoSs before its complexity can be identified and

appreciated. Therefore, based on findings from the review of literature and SoSs

examples considered, to assist the communication bridge between operations and

SoSRE, a clearer SoS distinction and description is applied within the SoS charac-

terisation process. An example using simple models is demonstrated in Figure 4.1

to introduce the SoS concept.
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Fig. 4.1 Simple Models for Systems and System of Systems
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This was provided to ground the SoS concept and definition to support a charac-

terisation process with stakeholders unfamiliar with the concept and types of SoSs,

and which could contribute to a SoS security risk assessment process.

Pre-Context

As indicated in Figure 4.1, an improved description was applied to the process to

simply define a System of Systems as being ‘the coming together of independent

systems collaborating for a new or higher purpose’. Independent collaboration must

be in place by one means or another for the SoS to exist, where systems are used

and combined in different ways to that of their original purpose, otherwise they would

simply be independent systems.

A Directed SoS seemingly has the most in common with the genetic make-up of a

single independent system, usually with a top-down input, but still requires bottom-up

input to function. Although, where centralised ownership and control is reduced in

other types of SoS, the inputs may reduce and conflicts increase. Evolutionary and

geographical challenges are important factors, but are also drivers for present day

systems and innovation, as well as SoS collaborations. Emergence is, however,

more likely within SoSs because of systems coming together in new ways.

The level of centralised control within a functional and operational SoS appears

to be the overarching feature significant towards accounting for the SoS risks and

ownership, combined with the level of collaboration from independent systems, their

sub-systems, and trust boundaries. Therefore, to challenge and redefine current

SoS descriptions further towards security aspects, situating control, ownership and

accountability stemming from the levels of control within the SoS, within the process

it was considered that:

- A Directed SoS has interrelated collaboration, with central management, oper-

ation and control over the SoS as a whole;

- An Acknowledged SoS has designated management, but has limited control

over the independent collaboration of the SoS as a whole;

- A Collaborative SoS has no central management, so operation and control

must be formed and agreed as a mutual independent collaboration;

- A Virtual SoS has individual independent collaboration with no central man-

agement, operation or control of the SoS as a whole.
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These redefined descriptions continue to align with other research of SoSs, e.g.

Maier (1996), Dahmann and Baldwin (2008), Boxer and Garcia (2009), Sommerville

(2015), and were used within the SoS characterisation process as illustrated in

Figure 4.2, intended for alignment with a SoS security risk assessment framework.

Context and Characterisation

In addition to previously reviewed SoSs literature, a thematic review of publicly

available literature was undertaken to introduce the Afghan Mission Network (AMN)

as a SoS, related to the time period of the North Atlantic Treaty Organisation’s

(NATO) implementation of the AMN. Using the AMN scenario, a prototype of the

characterisation process was applied.

The main element of the process integrates an approach based on work de-

scribed by Dahmann and Baldwin (2008) drawing comparisons between a system

and Acknowledged SoS, framed towards SoS engineering terminology. As articu-

lated in Figure 4.2, this work was modified and expanded upon to consider the subtle

differences between other types of SoSs as a means to classify a given example

in a likely SoS environment, whilst considering concepts from Maier’s parameters

(Maier 2005). Supporting arguments towards the claims presented for each type of

SoS in Figure 4.2 are illustrated in Appendix A, in Figures A.1 to A.4.

Using Figure 4.2 helps to frame considerations towards the SoS’s management

and oversight, its operational environment, implementation, and other design and

engineering considerations, by indicating the degrees of input and complexity found

across different types of SoSs. Whilst subtle differences between the indicated

types of SoSs can help to determine the type of SoS under consideration, these

differences could be quite significant in some scenarios. There is also a potential for

other SoS types to exist at different levels within a SoS, thus progressing through

the process begins to highlight the scope and complexity, and potential challenges

for the SoS under consideration.
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The characterisation process is intended to drive initial questions and information

gathering to support the identification of the points detailed in the different sections

in Figure 4.2. This is intended to help identify the SoS’s stakeholder involvement,

it’s Governance, focus on operations, and towards the design and engineering

considering boundaries, interfaces, acquisition, testing, evaluation, performance and

behaviours of the SoS.

In particular, this provides a high-level focus towards the stakeholders of the SoS,

to ascertain the degrees of ownership, control, accountability and responsibilities

required within the SoS to achieve and maintain its combined SoS goals. The

characterisation process would then be aligned towards supporting a security risk

assessment and modelling approach to guide the minimum amount of information

to determine the context and scope of the independent system collaboration and

its interdependencies, specifically where SoS managerial and operational control

is in place towards mitigating SoS risks for independent systems and the SoS as a

whole. This may, however, present challenges for some systems or types of SoS

where there is a weak collaboration or trust relationships providing limited systems

and risk-based information.

Initial questions to support the SoS context and characterisation should aim

consider:

- Who are the high-level stakeholders - the main independent systems of the

SoS?

- Who are the other relevant stakeholders important to the SoS achieving its

mission?

- Who provides management oversight, governance, funding, and operational

control of the SoS?

- Who is responsible for SoS design, development, testing and implementation?

- What system boundaries exist for the SoS - do restrictions apply?

- How is on-going SoS performance and behaviour monitored to provide a

resilient SoS balancing independent system needs?
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4.3 Applying the Process with the AMN SoS

4.3.1 Example System of Systems Scenario

Supported by literature describing the historical accounts of military coalitions, this

scenario considers the AMN as a likely candidate SoS, assisting the discovery of

its related complexities and challenges for consideration. The AMN acted as a

wide-scale integration of the communication links and data feeds used by the NATO

International Security Assistance Force (ISAF) during the Afghanistan campaign

missions (Finn 2011). The evolution of the AMN was driven by a need to meet

the requirements of many stakeholders, and the criticality of interoperable systems

depended upon to assist communications and RBDM. For example, each Troop

Contributing Nation (TCN) as independent systems of the SoS would communicate

across systems using their own non-federated networks operating without a common

core, thus making information sharing a challenge between TCNs (Buxbaum 2010).

Because of the criticality of these communications, a shift in the NATO cultural

mind-set was required from a ‘Need to Know’ basis to a ‘Share to Win’ approach,

specifically as ISAF recognised data restriction created greater risks (Nankervis

2011). This approach was further complicated by national concerns and restrictions

on data sharing between other nations, regardless of their NATO status (Seffers

2011b). It was also found the technical problems of net-centric warfare were relatively

minor compared to cultural issues and human factors, particularly as personnel

interacting with intelligence information could no longer be considered as secondary

actors (Finn 2011). Robust information management was therefore required to meet

the needs of people, process and technology, and timely decision making within the

AMN (Nankervis 2011).

By placing all information exchange on the common ISAF Secret network, dur-

ing 2010, the AMN became the primary communications network for ISAF forces

(Nankervis 2011). The AMN extended across Afghanistan to 48 TCNs servicing

a total force of over 130,000 combined military and civilian personnel with human-

to-human exchanges of basic services for text-based chat, audio-based Voice-

over-Internet-Protocol (VoIP) telephone connectivity, video-based Secure Video

Teleconferencing (SVTC), email, web access, and office productivity tools (Serena

et al. 2014). The AMN provided Command & Control (C2) to support growing mis-
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sion and coalition partner’s needs, and evolved to become central to Command,

Control, Communications, Computers, Combat Systems, Intelligence, Surveillance,

and Reconnaissance (C5ISR) (Serena et al. 2014). This supported rapid decision

making within the AMN by using coalition data and Common Operational Pictures

(COPs) (Serena et al. 2014) to improve the SA within the security environments

(Thiele 2013).

4.3.2 Characterising the AMN

Considering this scenario begins to highlight the managerial and operational indepen-

dence, evolutionary nature, geographical separation, and a potential for emergent

behaviours within the AMN. Because of the type or level of centralised control, this

particular configuration presented a strong indication the AMN could be classed as

an Acknowledged SoS, given NATO’s centralised management and functional opera-

tion of the AMN, whilst TCNs provide there own functionality in which to interoperate

with the AMN. NATO/ISAF and TCNs would also retain independence towards their

own operations and related assets

To capture these aspects in a SoS context in further detail, the prototype charac-

terisation process using the sub-categories described by Dahmann et al. (2008b)

were implemented to frame the AMN, considering whether the scenario and context

would indeed align with the characteristics of an Acknowledged SoS.

AMN Management and Oversight

Stakeholder Involvement

In Acknowledged SoSs, stakeholders are at both System level and SoS levels, and

includes the system owners, with competing interests and priorities. In some cases,

the system stakeholder has no vested interest in the SoS and all stakeholders may

not be recognized (Dahmann and Baldwin 2008).

For the success of the AMN, considering stakeholder needs was an important

challenge to ensure a continuous operation of local, military and civilian interaction

priorities were met. Primary stakeholders included NATO/ISAF, TCNs and part-

ners. The list of direct and in-direct stakeholders was extensive across all SoS and

independent system levels, although stakeholders at system level would have a
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vested interest in the SoS given the nature of their participation. Other important

in-direct stakeholders reliant upon the information flow of the AMN included NATO’s

civilian representation, the Afghanistan government, the UN Assistance Mission in

Afghanistan, Non-Governmental Organisations (NGO’s), other international organi-

sations supporting humanitarian or aid efforts (Brooke-Holland and Mills 2012), and

the Afghan population working to implement mutual goals for their nation.

Governance

In Acknowledged SoSs, there are added levels of complexity due to management

and funding for both the SoS and individual systems, meaning the SoS does not

have central authority over all the systems (Dahmann and Baldwin 2008).

Governance within the AMN was achieved at a number of levels, e.g. NATO/ISAF

AMN Operations, testing and validation collectives, and other national level input.

Therefore, added levels of complexity arise across all levels of the SoS Governance.

Funding was focused at the SoS level, whereas individual systems connecting to

and forming the AMN were funded, managed and operated by relevant participating

nations, thus retaining a level of autonomy.

AMN Operational Environment

Operational Focus

In Acknowledged SoSs, they are called upon to meet a set of operational objectives

using systems whose objectives may or may not align with the SoS objectives

(Dahmann and Baldwin 2008).

The NATO Communication and Information Systems Services Agency (NCSA)

and its Mission Detachment to ISAF (NMD-I) were responsible for the operation of

in-theatre Communication and Information Systems (CIS) services. Meeting the

needs of operational objectives and mission threads were, therefore, aligned with

the SoS objectives. However, TCNs and other agencies were likely to have national

objectives separate or in addition to SoS objectives.

Within the AMN, the Joint Mission Threads (JMTs) shown in Figure 4.3, such as

Battlespace Awareness, Medical Evacuation, and Freedom of Movement, together

with applicable services critical to their functioning were the primary means of
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Fig. 4.3 AMN Mission Threads

aligning the goals and activities of the SoS to achieve its mission (Serena et al.

2014), thus being integral systems within the SoS.

AMN Implementation

Acquisition

In Acknowledged SoSs, added complexity exists due to multiple system life-cycles

across acquisition programs, involving legacy systems, developmental systems,

new developments, and technology insertion, which typically have stated capability

objectives up front that may need to be translated into formal requirements (Dahmann

and Baldwin 2008).

The NATO Consultation, Command and Control Agency (NC3A) primary role was

to develop, acquire and implement capabilities using their expertise of C2 through to

C5ISR, providing vital communications and data services supporting NATO forces

across Afghanistan (Kenyon 2010). To meet the operational needs of the NMD-I,

Thales were tasked by the AMN Architecture Working Group (AMN AWG) with the

provision, operation and maintenance of a complete network, end-to-end logistics
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and integration of systems, including transfer of all equipment throughout the theatre

of operations in Afghanistan (Thales 2008). However, participants at a system level

were responsible for ensuring their legacy systems could interface with the AMN.

Complexity existed across the multiple system life-cycles, but were reduced using

tried and tested solutions, supported by testing and validation programmes providing

feedback for improvements to core technology, systems and configurations within

the SoS.

Test & Evaluation

In Acknowledged SoSs, testing is more challenging due to the difficulty of synchro-

nizing across multiple systems’ life-cycles, given the complexity of all the moving

parts and potential for unintended consequences (Dahmann and Baldwin 2008).

The Coalition Interoperability Assurance and Validation (CIAV) programme pro-

vided in-theatre mission-based assurance testing and validation, and verified the

status of interoperability among current, future, and experimental systems that would

be deployed within the AMN (Serena et al. 2014). The CIAV Working Group (CIAV

WG) were responsible for interoperability improvements within AMN governance

structure, and integrated with accreditation groups providing security of coalition infor-

mation and networks established under the Combined Federated Battle Laboratories

Network (CFBLNet) (CFBLNet 2015).

The CFBLNet facilitated development of coalition interoperability, doctrine, pro-

cedures, and protocols that could be transitioned to operational networks in future

coalition operations. This was carried out through 17 dedicated integrated labs

based in ten nations (NATO Communications and Information Agency 2013), and

bi-annual testing with the Coalition Test and Evaluation Environment (CTE2) and

Coalition Warrior Interoperability Exercise (CWIX) (Anon. 2010) for new systems and

architecture of specified CIAV assessments (Rose 2011).
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AMN Engineering and Design Considerations

Boundaries and Interfaces

In Acknowledged SoSs, the focus is on identifying the systems that contribute to the

SoS objectives and enabling the flow of data, control, and functionality across the

SoS while balancing needs of the systems (Dahmann and Baldwin 2008).

The AMN AWG developed the architecture and modelling of the AMN mission

threads to support multi-national C5ISR planning at the enterprise level (Rissinger

2011). SoS boundaries and interfacing requirements were identified through the

NC3A, Thales, AMN AWG, and implemented by the NMD-I over a single core

network at the classification level of ISAF Secret.

The AMN boundary generally ends with the connections to each of the TCNs,

although some data distributed through the AMN may be disseminated through na-

tional level command structures, under national policy and control. Boundaries are

also considered in different contexts, covering networks, people, process, and tech-

nology, across land, sea, air, space and cyber domains, where different parameters,

characteristics and interfacing requirements exist.

Performance & Behaviour

In Acknowledged SoSs, performance is across the SoS that satisfies SoS user

capability needs while balancing needs of the systems (Dahmann and Baldwin

2008).

NMD-I and Thales managed and monitored on-going performance of objectives

to meet the SoS objectives of secure C5ISR data flow, with further performance and

interoperability feedback provided by TCNs and the CIAV programme. Direction,

oversight and monitoring of security behaviour for Cyber Defence was conducted by

the NATO Cyber Defence Management Authority (NCDMA), whilst the NATO Com-

puter Incident Response Capability (NCIRC) provided capabilities for maintaining

the end-to-end network security. Security risks faced by the AMN often emanated

from targeted network attacks using malicious software and Denial-of-Service (DoS)

attacks, spam, malware, web defacements, or poor maintenance related vulnerabili-

ties, system privilege abuse, authorised user indiscretions, and classified information

leakage (Herrmann 2010).
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4.3.3 Reviewing the AMN

A review of the literature supporting the AMN example identified the main dominant

systems and stakeholders shown in Figure 4.4, directly an indirectly critical to the

SoS and its interoperation, indicating where certain dependencies exist. Designated

management and oversight was provided by NATO/ISAF in operational collaboration

with TCNs.

Using the characterisation process highlighted where the central dependency

for the SoS was the reliance upon the core of the AMN collaboration between

NATO/ISAF and TCNs indicated in a main boundary in Figure 4.4. Although geo-

graphically, some stakeholder systems and their interactions were dispersed over

many continents. All systems would also have their own overlapping boundaries

with differing priorities and dependencies. Other representative stakeholder systems

include those responsible for the acquisition, implementation and operations, testing

and validation, in-theatre users, and other external entities that were identified.

Interviews with stakeholders representative of some of these military and de-

fence based systems were conducted. Interview sessions were hosted by Dstl, and

included a Security and Risk person experienced in NATO activities, and network-

based representatives experienced in projects such as CFBLNet. Interviews con-

sidered some of the challenges for these entities when collaborating with such an

example of a NATO SoS and federated networks.

Security and risk aspects, in particular, for inter-network connectivity, were reliant

on TCN agreements for operating requirements, and relied upon the input provided

by RMADs to support RBDM. The typical challenges associated with the integra-

tion and interoperation of this type of SoS and was also to some degree placed

into context by discussions with other service personnel, and French engineers at

a NATO conference that architect and integrate systems into NATO SoS environ-

ments. Together, their feedback assisted towards validating the identified context

and challenges as being prevalent in this type of SoS.
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4.4 Application Findings

When reviewing the AMN example of a SoS towards the research problem, a number

of challenges were identified relating to the SoS context, scale, and dependencies

towards meeting the SoS goals. The stakeholder systems shown in Figure 4.4

provided an indication as to the complexity of stakeholder interactions to develop

and maintain the AMN. Many of the systems in the left portion of the model related in

some way to NATO sub-system operations, although coalition testing and validation

was also important to the wider operational picture. To help validate this scenario,

certain stakeholders from this area of military and defence provided feedback for the

characterisation and SoS context, and closing analysis.

Stakeholders in the upper right portion interacted in other ways with the AMN,

and may be consulted or informed based on the data inputs and outputs of the AMN.

Some may also be considered as benefactors of the AMN, rather than providing any

form of managerial or operational control, but still nevertheless have important roles.

Having framed the AMN in the context of a mission-driven Acknowledged SoS,

this provided a level of clarity considering the vested interest of stakeholders towards

the AMN achieving its SoS mission objective, each with differing needs and interac-

tions either at a SoS, system, or component level. Stakeholders should, therefore,

be viewed as multi-dimensional and their interaction at differing levels should be

understood. This focus should include an understanding of stakeholder objectives

towards the SoS and the role they play at each stage of achieving the SoS mission,

including the bi-directional dependencies on people, processes, technology, and

trust during the implementation and operation of participating systems within the

SoS.

To support set-up of operations in future SoS environments similar to the AMN,

where applicable stakeholders provide differing inputs and outputs at varying stages

of the systems and development life-cycles, joining options should be more straight-

forward with proven solutions for integration. Common service management and

cost-effective cross provisioning of services incorporating data labelling for easier

information sharing should be considered (Friedrich 2014), which can have a positive

effect towards interoperability.

The AMN as a SoS supported the agile ‘Come as you are’ approach where

future mission networks must interoperate with differing mission types and partners,
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with the need to communicate information at specified security classification levels

(Whitehead 2014). There should, however, be a duty for the system entities within

the SoS to identify a unified approach that answers the question ‘How should we

come?’ This reinforces the need for global standardisation of data types, system

and network configurations to improve interoperability. This need will become more

prevalent in Acknowledged, Collaborative and Virtual SoS as central management

or control is reduced.

Commonly defined and understood mission threads should be used to guide

the development of future coalition data-sharing enterprises, and be supported with

assurance and validation through programmes such as CIAV and the CFBLnet

(Serena et al. 2014), both of which could also be considered as being SoSs. Testing

becomes an iterative process that should focus on the end-state and mission thread

success requirements, considering that components are put into systems, systems

are put into platforms, platforms must interoperate with other families of platforms,

and these family of platforms must interoperate via networks (Rissinger 2011). This

demonstrates that in a SoS, at times there is a need for components and systems to

scale-up to interoperate with higher groupings of systems to achieve its purpose as

a SoS, which potentially becomes an area to observe for emergent behaviours.

The AMN also highlighted not only the dependency placed upon interoperability,

but the different interoperability needs of people, information, and system interac-

tions. To achieve a standardised, consistent and interoperable approach in a single,

common mission-centric federated network such as the AMN, requirements may

include the use of Commercial Off-The-Shelf (COTS) hardware and software, as

opposed to developing expensive in-house alternatives, whilst maximising the use

of other current applications, interfaces, web services (Herrmann 2010), reducing

costs and resources, but may broaden aspects of ownership and control. Further

consideration should also be given towards dependencies from the use of COTS

products and risks created within the supply chain relating to product availability, or

ensuring security and reliability of products before use and implementation in a SoS.

Human factor interoperability considerations were a particular challenge faced

by the AMN, particularly when considering end-users in-theatre were dependent

upon systems that were easy to administer and operate, and possessed the ability

to provide reliable and timely CIS and SA in emergency scenarios (Veit 2011).
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This finding correlates with other work in emergency services that found a key

characteristic of a SoS is its inherent socio-technical nature, where social factors

can become even more complex than technical interoperability (Dogan et al. 2011).

Using the characterisation process helped to provide a usable and repeatable

format in which to frame the example SoS. This helped towards identifying the high-

level goals, roles, interoperability needs and accountabilities providing sustenance

to the context of the SoS, and would therefore provide useful input for a security

risk assessment in the SoS context. This was considered important to related stake-

holders, both from interviews and a separate presentation with military and defence

stakeholders. The presentation was hosted by Dstl with the networks representa-

tives in attendance along with other other Information Assurance personnel with

experience of NATO activities.

After the presentation of the process and it’s application, a discussion was held

to determine further feedback in relation to the approach taken and it’s findings.

Feedback suggested for those configuring systems and networks within a NATO

coalition, they are aware of the requirements towards information assurance, yet

providing that assurance relies on trust, in the form of operating agreements, and

accountability to provide the assurance. Capturing those roles is an important aspect,

in particular where there may be conflicting requirements. The main challenge for

stakeholders interviewed or presented to was the notion of SoSs, which was an

unfamiliar term, albeit they generally understood the concept. For example, network

engineers were familiar with the concept for network-of-networks, but not SoSs.

Explanations using the simple models demonstrated in Figure 4.1 helped to reduce

this problem by providing a clearer understanding of SoSs.

The characterisation process was found to indicate some of the design and

engineering challenges and needs for consideration within a SoS context that may

not have been considered in that way previously. As a result of the positive application

of the process, this provided a means to characterise the SoS, whilst determining the

subtle differences exhibited by different types of SoSs. More critically, this provided

a means to identify where, what, and who has ownership, accountability, and control

within the SoS context to achieve its goals.
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4.5 Chapter Summary

This chapter presented an approach that provides the context and characterisation

of a given SoS, enabling a platform for applying suitable design techniques to

SoS components appropriate to SoS type and complexity. The prototyping of a

characterisation process proved a useful means to frame the AMN as a SoS, and has

benefited from taking a wider approach to clearly differentiate between other types of

SoSs and their characteristics, whilst providing the context of the SoS. By considering

the structure, management, and participation of systems and stakeholders within

the SoS, this helped identify where dependencies and constraints may exist towards

the SoS achieving its SoS mission objectives, and provided the context for which the

SoS is situated in, thus useful for informing a related security risk assessment and

modelling approach.

Findings suggest considerations for SoSs and future mission networks should in-

clude a specific focus towards identifying all relevant SoS stakeholders and individual

mission-driven needs, including relevant human factor implementation and opera-

tional considerations. Cultural, environmental, and geographical considerations were

of key importance in the AMN, with a high reliance and use of the cyber domain.

Together, these created a greater dependency on interoperability for availability of

systems and networks. It was also found that information and data sharing needs

should be agreed and utilise common data labelling and classification formats using

appropriate information management, security, and risk approaches.These consider-

ations therefore demonstrated valuable insights gained from using the process that

could support a security risk assessment of a SoS.

This research aimed to answer questions primarily in response to RQ1. However,

findings from early modelling of the SoS and then identifying SoS characteristics and

challenges gave further considerations towards aligning security risk approaches

for SoSs, thus addressing RQ2. This provided some inference towards RQ3 by

highlighting the notion of capturing independent system views encapsulating the

direct interactions of each system, because capturing multiple views, or a view of the

SoS as a whole may not be possible in all scenarios where there is decentralised

management and control. In support of additional validation, peer review was gained

through the presentation and publication of elements of this work in Ki-Aries et al.

(2017b).





Chapter 5

Assessing and Modelling SoS
Security Risks and Human Factors

Chapter 5 introduces a second SoS using an existing example of a Directed SoS,

primarily to consider implications towards how security, risk, and human factors

may be assessed and modelled in the SoS context. In particular, this considers

how human factors, and impacts related to interoperability and emergence may be

accounted for. This work considers lessons learned from the AMN example, and

continues to identify challenges, concepts, and factors applicable for consideration

towards assessing SoSs security risk, whilst accounting for related human factors.

The context, application, and findings are presented to discuss each step applied to

address the related research problem.

5.1 Motivation

There are many examples of different SoSs, each with different types of systems

collaborating to achieve a new purpose and goal. Some may be organisational and

enterprise based, or some may be regarded as Internet of Things (IoT) applications.

These may consist of multiple software components, sensors, and communications

modules, integrated with networks, core systems, processes, and people interaction

with the technology (Bartolomeo 2014). For example, smart city sensors monitoring

air quality or traffic. However, interoperability and emergence are such intrinsic
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properties of IoT applications that the classic notion of a system is inadequate for

dealing with system complexity, and tackling security problems.

In recent years, there has been some interest in framing types of IoT systems as

SoSs (Maia et al. 2014), which can help make sense of complexity associated with

interoperability and emergence. However, while the notion of designing for a SoS can

help manage some design complexity, there is little work providing guidance for what

designing for SoS security entails, certainly given the various types of SoS examples.

More specifically, although some literature exists considering SoS challenges to

risk management, there has been little work focusing on information security risk

assessment in SoSs, and the modelling and visualisation of such interactions using

tool-support to integrate different models, concepts, and techniques.

Risk is a key concept in security, thus mitigating controls and requirements need

to reflect a system’s expected behaviour in the presence of risk. These requirements

need to be verified and validated to ensure specified behaviour meets stakeholder

expectations and operational needs. Assessing the security risk of SoSs is, however,

likely to be a challenge due to the operational and managerial independence, with

differing degrees of centralised control and decision making. For example, research

in Chapter 4 identified constraints on geographical, environmental, evolutionary and

emergent behaviour, human interaction and culture adding to SoS complexities,

creating obstacles and opportunities towards interoperability.

Although SoSs are collaborative in different ways, in order to understand the SoS

as a whole, an important aspect for SoSRE is to identify related characteristics at a

system-element level (Simpson and Dagli 2008) that extend through relationships

and concurrent behaviour between systems. This is easier to identify in Directed

SoSs, but the challenge becomes greater as central management, access and

control of constituent systems is reduced in Acknowledged, Collaborative, and

Virtual SoSs. Consequently, classic approaches for security, risk assessment,

human factors, requirements and systems engineering need to evolve to cope with

challenges posed by different SoS characteristics (Dogan et al. 2011, Ncube et al.

2013).

Supporting research would therefore need to consider these types of challenges

and key concepts that may need to be addressed when accounting for human and

system interactions where there is a potential for risk in security. Identifying how
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these systems interact becomes a critical aspect towards accounting for potential

areas of concern emanating from the different operational interactions, data flows,

and dependencies. Related risk may then be assessed to analyse and evaluate

which systems are not only at risk, but may create issues for other systems resulting

from the of loss of availability and interoperability.

5.2 Integrating SoS Components for Security Risk

Assessment

To consider these challenges and concepts, this would implement a previously

published example of a pervasive SoS detailed by Whittington and Dogan (2015), to

allow a focus towards exploring how we may assess and model the SoS security

risks and related human factors. Although examples of their previous work primarily

had a focus towards accessibility and assistive technology (Whittington et al. 2015),

there was an appetite by its researchers to begin to consider where risk may be

present in the SoS. For example, the notion towards capturing information about

Human System Interactions, detailing where the human actions are performed with

systems of the SoS, and where potential interoperability concerns may apply.

Stakeholder feedback and validation was gained iteratively in-person and through

follow-up communications, providing useful insights for the stakeholder and their

SoS operations. Working with Dr Paul Whittington as the main stakeholder for

his pervasive SmartPowerchair SoS, research would identify and observe the in-

terplay between the socio-technical aspects of the SoS towards performing a risk

assessment.

This was achieved first through a scoping session with the stakeholder to explore

the purpose and goals of the SoS, and how each of its systems were integrated

to achieve the common goal. This included a walk-through of the interactions

and dependencies important to interoperation of the SoS and its user. Follow-

up communications were then conducted to clarify certain aspects towards those

dependencies in relation to the SoS operation and security considerations, before

applying early prototyping of selected components within a security risk assessment.

When accounting for interoperability and related dependencies across different

SoS types, or their constituent and component systems, modelling can be introduced
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to highlight the impact upon aspects of the SoI influencing risk analysis within the

SoS. Given the unpredictable nature of emergence, it is, however, a difficult challenge

to capture risks centred on emergent behaviour of SoSs, but would nonetheless be

useful to identify potential issues where possible. By gaining an understanding of

these aspects related to the SmartPowerchair SoS, this would continue to inform the

suitability of concepts for inclusion within a SoS security risk assessment framework.

5.2.1 Assessing Security Risk

In the first instance, a basic risk assessment approach would be adopted based

on considerations of ISO 27005 (British Standards Institution 2011) to capture the

potential for impacts on systems from threats and vulnerabilities. Three components

would then be introduced to assist the SoS risk assessment, which could overlay

with existing security and risk approaches. To account for human-related aspects,

this considers the broader categories of HSI early in the process, then identifies and

analyses potential impacts towards interoperability and emergent behaviour related

to the pervasive SmartPowerchair SoS. The assessment data could then be carried

over to begin to explore modelling options using tool-support from CAIRIS.

5.2.2 Human Systems Integration Analysis

The first component entails identifying and analysing human characteristics of those

involved within the SoS. HSI as described by National Research Council and others

(2007) is used to focus on roles, responsibilities and relationships of manpower and

personnel, ownership, stakeholder interaction, training, safety and other factors. HSI

could align with other user-centred approaches, and would be integrated to provide

context towards socio-technical aspects applicable to security risk identification

and analysis, whilst informing decision makers towards suitable requirements and

controls within the context of the SoS and its users.

5.2.3 Interoperability Analysis

The second component considers the interoperability impact resulting from a security

concern within the SoS using a qualitative assessment. In particular, this would
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support the ideation of capturing cross-domain interoperability, e.g. towards captur-

ing the interoperability needs as described in the NCOIC Interoperability framework

(NCOIC 2019a). Interoperability should be considered during the identification stage

of an assessment, then within analysis to determine system impacts on the SoS.

Although not all risks will necessarily have an impact on SoS level interoperability,

the overall impact on SoS goals should be assessed against each risk identified. All

details should be taken into consideration with results appropriately documented.

5.2.4 Emergent Behaviour Analysis

Some systems may be used in different contexts due to evolutionary changes, or the

emergent behaviour of the users and systems; this may affect the utility of the SoS

as a whole. Based on analysis, evaluation should consider the potential for emergent

behaviour, and possible mitigating controls or requirements that risk-based decision

makers may wish to consider.

5.2.5 Exploring Model Generation with Tool-Support

Once security risk has been assessed in the context of the SoS, data output from the

assessment can be used to explore how the resulting risk data can inform a modelling

and elicitation process using tool-support. In this instance, CAIRIS is introduced to

model the socio-technical interactions of the SoS, and explore its model generation

capabilities. During this stage, abstraction stacks are introduced (Simpson and Dagli

2008) to assist the security risk assessment as a means towards decomposing the

SoS, and which supports the modelling of systems and components, thus defining

its structure of interoperation.
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5.3 Assessing and Modelling the SmartPowerchair

SoS

5.3.1 Example System of Systems Scenario

The SmartPowerchair is a standard powered wheelchair (Powerchair) integrated with

existing pervasive technologies. This is comprised of different systems, components,

interactions and functions, with the aim of enabling independent living, improving

quality of life for people with reduced physical abilities (Whittington and Dogan 2015,

Whittington et al. 2015).

The SmartPowerchair is supported by SmartATRS using a Smartphone system

to control an Automated Transport and Retrieval System (ATRS). ATRS is a techni-

cally advanced system using robotics technology with Light Detection and Ranging

(LiDAR) to autonomously dock a Powerchair onto a platform lift. The lift is fitted into

the rear of a standard Multi-Purpose Vehicle (MPV) system, and is operated and

docked whilst a disabled driver is seated in the driver’s automated Freedom seat.

Various system components are integrated with the Powerchair to meet overall

requirements for the SoS as illustrated in an updated diagram shown in Figure 5.1.

For example, the GoVue application is installed on the Smartphone to facilitate use

of a rear view camera attached to assist with manoeuvring. SmartATRS is a key

system in this SoS supporting interaction between the MPV and the Powerchair

systems. SmartATRS improves usability of ATRS keyfobs and hand-held pendants

by providing a Smartphone application to control the interaction between the MPV

and Powerchair systems.

Integrated into the MPV system is a web server and relay board interfacing

between SmartATRS and ATRS components (seat, lift and tailgate). The web server

relay connects through Ethernet to a Wi-Fi router that transmits over secure Wi-Fi

Protected Access II (WPA2) network. Smartphones or other Wi-Fi enabled devices

interact with a GUI by entering the URL or bookmark into a browser. SmartATRS

sends commands wirelessly to the relay board, executed by JavaScript.
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Fig. 5.1 SmartPowerchair System of Systems Architecture
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The server stores the HTML and JavaScript GUIs as web pages and JavaScript

XMLHTTPRequests are transmitted to access an eXtensible Markup Language

(XML) file. The file contains the timer durations for each ATRS function as integers

that represent the number of milliseconds that each function is switched on for. An

XML editor can also be used to view and change the timer durations, whilst ensuring

the process is not visible to end users.

The iPortal system operates via Bluetooth, providing an alternative to the touch-

screen interface, using the Powerchair joystick interaction with the Smartphone and

SmartATRS GUI, using left or right for screen navigation and forwards for selection.

The Smartphone is the primary enabling system for control and communication

with the user through the interface, Powerchair and joystick controller to receive

commands.

Other technologies integrated with SmartATRS can provide alternative interaction

mediums, such as Head Tracking and Smartglasses. Interoperability and emergent

behaviour of such systems integrated into a SoS bring significant challenges to

risk assessment. The complexity and number of interactions illustrated in the

SmartPowerchair diagram in Figure 5.1 re-emphasises the importance of identifying

SoS risks centred on human and system integration, interoperability and emergent

behaviour.

5.3.2 Applying Human Systems Integration

Previous work from the SmartATRS project (Whittington and Dogan 2015, Whitting-

ton et al. 2015) carried out extensive work towards improving usability and interaction

of the SmartPowerchair SoS. To build on this previous work taking a new perspective,

HSI was implemented to account for the human factors associated with the manage-

ment and operation of the SmartPowerchair SoS. HSI was applied by gaining input,

demonstration, clarification, and validation from the Powerchair user regarding the

typical functions, activities and potential dependencies of system interactions, thus

providing a level of context for the security risk assessment.
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5.3.3 Assessing the SmartPowerchair SoS Security Risks

Using the data and context captured thus far of the SoS, this provided considerations

towards system assets and the user’s interaction with systems. Availability was

considered the primary security goal for this SoS, with integrity of data processed,

stored or transmitted also of value. Although confidentiality of some assets were

valued, some trade-offs were considered necessary.

Further detail was incorporated into specific operations of the SoS, mission goals

and context, or where dependencies and security trade-offs exist. An example of a

system-level trade-off included the potential for using authentication to control access

to the Smartphone, but this function was disabled due to accessibility constraints.

Additionally, only one Smartphone Wi-Fi connection can be used at a time, meaning

the iPortal web application controlling SmartATRS functionality with the Powerchair

joystick and Smartphone cannot be used at the same time as the Camera system.

This results in interoperability and availability trade-offs for both systems within the

SoS.

To consider the system interactions, a threat model was used to guide the risk

assessment to account for potential threats and vulnerabilities. The threat model

was based on the “internet threat model” described in RFC 3552 (Rescorla and

Korver 2003). This helped to consider potential threats and vulnerabilities carried

out by a possible attacker and the potential impact placed upon security goals. Other

threat model types could, however, be used to provide a consistent means in which

to identify and analyse the potential for security concerns.

5.3.4 Capturing Impacts on Interoperability and Emergent Be-

haviour

Once the assessment was at the stage of analysing and evaluating related im-

pacts, the effects towards interoperability and emergence considered their impacts

towards a specified risk. An example from the risk assessment that demonstrates

interoperability and emergence impacts is shown in Figure 5.2.

For interoperability, this specifically demonstrated where the system asset was

at risk of interconnection issues with a majority of the SoS, thus losing the ability to

control it. It is not uncommon for Smartphones to be integrated as a key system in
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Fig. 5.2 Risk Overview with Interoperability and Emergence Analysis

IoT and SoS scenarios, despite the known impact this might have to IoT security

(Khan and Shah 2016). This may contribute to the loss of SoS availability and

interoperability if the device or operating system is compromised. Privacy could also

be compromised if data theft or location tracking malware is inadvertently installed

(Mylonas et al. 2011).

The emergent behaviour analysis attempted to uncover unanticipated emergent

behaviour that may be associated with the related system interaction, the conse-

quences of which could increase risk if the SoS mission and security goals are not

met. HSI considerations would also help inform towards decision making when con-

sidering applicable controls and measures to reduce the likelihood of issues arising

from emergent behaviour. Emergent behaviour was, however, harder to anticipate

due to its unknown and uncertain nature. Stakeholder feedback included in the

evaluation considered a previous operating system update offering enhancements to

its security and functionality, but this no longer supported voice interaction functions

previously used and tested with the SoS. Other updates by the operating system or

application providers outside the SoS boundary were therefore considered, as these

may have unexpected consequences.

5.3.5 Modelling the SmartPowerchair SoS with CAIRIS

Providing further visual assistance to frame the SoS context, models can help to

reason with interactions of a system, and could assist when considering security

aspects. To explore the use of tool-support with CAIRIS, whilst identifying how the
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risk assessment data can be used to support the modelling and visualisation of the

SoS, using an asset model was the chosen method to capture the system assets

and associations. These could be captured and modelled early in the assessment if

required to help with visualisation.

Each system element was entered into CAIRIS as an individual asset, where

assets can be of type: information, people, software, hardware, or systems. Security

goals for confidentiality, integrity, availability, and accountability are also included

within each asset description that can also be environment specific. Although CAIRIS

has the ability to situate models in multiple environments as views, a single view was

used in this scenario given the single user, owner, stakeholder view of the related

systems coming together as a Directed SoS.

Using information from the SoS review, stakeholder discussions, and risk as-

sessment data, initial modelling began by decomposing the SmartPowerchair SoS

within its environment using the abstraction stack approach introduced by Simpson

and Dagli (2008) to analyse the system parts that make up the whole. For example,

starting from its highest level, an abstraction stack of a House is composed of rooms

that consists of floors and walls, which in turn is made up from bricks and mortar. For

SoSE, this approach can be used to determine then model and represent individual

assets and system elements, understanding their position and relevance in the SoS.

However, by following this approach, it was identified that certain systems within

the SoS were actually interconnected in a different way compared to the original

stakeholder architecture diagram. To support the risk assessment, the user interac-

tions with the SoS were therefore re-modelled to reflect the correct interactions, as

was illustrated in Figure 5.1.

Example assets visualised using CAIRIS asset models are illustrated by Figure

5.3 showing a filtered model centred around the Smartphone system and its associa-

tions. These models, which are based on UML class diagrams, introduce the notion

of associations, aggregations, and composition between an instance of individual

components, systems, and the Directed SoS as a whole.

Goal models can also be introduced to associate system goals that need to be

satisfied in order for the SoS goals to be achieved. Tasks can also be associated with

goals. Tasks represent activities performed, and can relate to the system interactions
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Fig. 5.3 CAIRIS Asset Model - Smartphone System and relations

identified in the risk assessment. Other risk data about assets used in tasks could

then be added to the risk model to link the risk to assets in models.

5.4 Application Findings

To assist with the SoS security risk assessment of the SmartPowerchair, this ap-

proach introduced relevant SoS components addressing HSI, interoperability and

emergent behaviour with a view to inform SoSRE. HSI was important towards un-

derstanding security concerns of human interaction, and interoperability analysis

was found to be significant when determining the overall risk impact level. Risk

assessment must, however, be based upon informed knowledge of the SoS context,

constituent systems and components to ensure key stakeholders, user and system

interactions are considered throughout the process. To help validate this scenario,

stakeholder input was provided during both the assessment and closing analysis,

specifically where security could be improved and controls may be specified.

5.4.1 HSI and Assessing Security Risk of the SmartPowerchair

SoS

Having good stakeholder interaction throughout the process enabled a good under-

standing towards HSI needs and system assets, and which should be accounted for

towards interactions considered within the security risk assessment. Direct interac-

tion with the stakeholder and user of the system made it relatively straight-forward

to capture the context and interactions of systems interoperating as part of the

SmartPowerchair SoS.
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However, when considering the scale and greater stakeholder needs, control,

and interactions as was demonstrated with the AMN in Chapter 4, it would be

more difficult to interact with all users, meaning other human factors approaches

may be required to identify roles and activities critical to the SoS operation, whilst

also factoring the different degrees of control. There was also some overlap when

applying the risk assessment, as this was accounting for the activities of a single

user, whereas an assessment with the AMN or other SoS contexts may need to

account for different users interacting with different systems, and their services and

information exchange.

In this scenario, the risk assessment focused on systems considered critical to

the SoS, and where they may be at risk from something or someone. This was

guided by the selected threat models towards questions and considerations for

possible threats that may exploit a vulnerability causing a risk that has potential

consequences and impacts. This could, however, be supported with other methods

in which to identify and characterise potential attackers.

The likelihood and impact levels were assigned to each providing an overall risk

score. Given these impacts in the first instance relate to the user and interoperation

with related systems, it would have been useful to align the impacts with the HSI

categories considered in the early information gathering, whilst making the impact

to security goals more explicit. Then as a result of the impacts, how the system

is affected, with the resulting effect upon the SoS. To some degree, this would be

captured by analysis on interoperability.

Initial findings towards prioritising critical risks suggested the Camera system

could be a potential attack vector, although this seemed remote when comparing

the threat model for this system; with the remote likelihood of the passive or active

attacks described. For example, a man-in-the-middle attack leading to inaccurate or

delayed video was deemed unlikely as the attacker would have to shadow the user

on-the-move in close proximity, potentially for a long period of time. Moreover, these

security issues were unlikely to affect interoperability for the SoS as a whole.

Other threats and vulnerabilities identified the potential of compromising the

GoVue application in some way, or accessing, transmitting, modifying and deleting

GoVue image files stored on the Smartphone. Although this feature was not currently

used, needs might arise where sensitive images could be stored, or information



114 Assessing and Modelling SoS Security Risks and Human Factors

about journey routes and locations could be disclosed. This risk is likely to be

minimal, but the authentication restrictions did increase the risk of an in-person

attack, or unintentional mistake by the user or their assistant. Furthermore, a version

of the GoVue application could potentially be downloaded from one of many unofficial

sources listed on a search engine.

All of these example findings were shared with the stakeholder for their feedback,

both in the context as an operational user, and as a stakeholder interested in im-

proving the security of the SoS. After discussing the initial findings, it was found the

user does not currently consider the risks to security and interoperability related to

download sources. This consideration also highlighted that a critical system, which

in this scenario was a smartphone, could be used in many ways as a personal

device, but when used for a different purpose, this may require compromises or

changes in the way it is used in order to increase security and reduce the potential

for risks, specifically for the SoS. This was an aspect the stakeholder hadn’t consid-

ered, as the smartphone was also central to other daily activities. It was, however,

accepted that the smartphone was also critical to the SoS achieving its goals, thus

helping the stakeholder to now make more informed risk-based decisions towards

its dependencies and risk reduction in both contexts.

5.4.2 Analysis of Capturing Impacts on Interoperability and Emer-

gent Behaviour

Interoperability impact at SoS level was considered against each potential risk, as

demonstrated in Figure 5.2, providing further consideration towards dependencies

and required control measures. For example, if the camera system was no longer

interoperable, the SoS would continue to function. Despite the Camera system

not appearing to demonstrate significant risks or impact on interoperability, it did

highlight a specific attack vector due to consistent interactions and dependencies on

most systems of the SmartPowerchair SoS.

If, for example, the Smartphone was compromised in some way, this would

have a significant impact on security risks, availability and interoperability at a

SoS level. If the Smartphone system cannot communicate with other constituent

systems, the entire SoS ceases to function. Therefore, as agreed by the stakeholder,
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understanding the impact on interoperability at human, information, and system

levels could be critical to achieving its SoS goals.

Moreover, in most cases it seems there is a common link between availability

being achieved to maintain interoperability. When considering interoperability centres

around the ability to interact and communicate, information and data integrity is also

a factor, although if the integrity was affected in some way, this would potentially

result in issues with its availability, thus indicating a link between security goals

and interoperability. The impact of a risk upon interoperability could also align with

categories of HSI, meaning that if impacts focused upon HSI categories, these

would provide focus towards the range of dependencies placed upon the need for

interoperability and the effect of different impacts.

Identifying or predicting emergent behaviour was challenged by the unknown

effect of coupling systems into a SoS for a new purpose. However, it was evident

this should be an ongoing exercise benefiting from performance monitoring and

feedback of current and previous behaviour, which in this scenario, helped identify

possible emergence and control measures.

In the example described in Figure 5.2, reviewing future operating system or

application updates may be considered. However, updates from third-parties beyond

SoS control may be required to ultimately improve system performance and security.

This means trade-offs may exist to maintain safety and security in the SoS. Interoper-

ability and emergent behaviour is, however, relatively complex, and requires further

analysis and application to understand challenges posed by different SoS types.

In some scenarios, applicable controls may include data loss prevention and

remote wiping tools, certainly where physical theft of the device is a potential risk.

Policy, process, and security awareness towards permitted usage are other tools

that may be incorporated. However, in this scenario, the SoS is managed and

controlled by a single IoT user, which highlights a need to consider security for

the user at design stage. This also raises the challenge of introducing basic steps

and security awareness for IoT users, particularly when the interoperability of the

Smartphone system becomes a critical element towards the success or failure of

the SoS. Suitable control measures and mitigations also need to consider possible

outcomes of steps taken for SoS resilience given the emergent behaviour associated

with identified risks.
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5.4.3 Modelling with CAIRIS

Using data captured from the risk assessment, this was integrated into CAIRIS

to begin exploring the potential for model generation and integration to visualise

elements of the SoS. Each of the systems and components were modelled in CAIRIS

as assets associated with other relevant system assets composing the SoS.

Modelling the SoS first applied the notion of abstraction stacks to decompose the

elements of the SoS. This helped to develop a visual representation of the system

structure with an asset model, aligned with the model shown in Figure 5.1 to capture

and visualise the interconnections and user interaction within the SoS. The asset

model illustrated in Figure 5.3 was useful for reviewing and visualising assets, points

of interoperability, and their relations with stakeholders. This indicated how they

could be subsequently linked to threats, and modelling the related risks specific to

the human and system activities.

The application of models and their outputs were useful when validating the

decomposed elements and potential risks with the stakeholder, as the models helped

to identify missing systems, components or interrelations, and areas of concern

towards the SoS security. Tasks were useful to represent the SoS user interactions,

and were helpful towards identifying how they contribute to a goal or goals being

achieved or affected by potential security risks to the systems and activities. The

risk model was also used and populated by data relating to a threat, vulnerability, an

attacker, and a misuse case describing the misuse of the assets assessed used in

tasks contributing to goal satisfaction. Furthermore, a benefit of the risk calculation

was that in addition to accounting for the likelihood and severity of the risk to an

asset, the impact upon the security goals is captured too.

CAIRIS offered useful tool-support for modelling and visualising a Directed SoS

with parent-child relationships. It was, however, unclear how this clarity might be

achieved with other types of SoS given their differences including levels of centralised

management, access, and control, although independent system views could be

captured in a separate environment to visualise its interactions and direct interactions

with other systems. The use of goal modelling appears to play a central role towards

how risk in its different forms may affect the SoS achieving its goals at different levels,

where tasks, people, and processes also contribute to the SoS goals being achieved.

Further analysis and application to case studies in other domains would, therefore,
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be useful for validating the effectiveness of CAIRIS as tool-support for eliciting and

modelling security risks and their related human factors within a SoS context.

5.5 Chapter Summary

This chapter presented three components of consideration towards their integration

within a SoS security risk assessment. This incorporated HSI, interoperability impact

analysis, and emergent behaviour evaluation with control measures within a security

risk assessment applied. Lessons learned from findings suggest the use of HSI

and HF techniques to align with tasks performed in the SoS where resulting risk

and impacts are to be captured, could be improved upon within the risk assessment

process and tool-supported models. Capturing impacts towards interoperability was

a useful exercise, and was found to be a critical aspect on many levels, not only

at the more technical machine level, but also between people and their ability to

interoperate within the context of the SoS. Detailing emergent behaviour was useful

in principle, but in practice was difficult to determine. Although, the process did

benefit from stakeholder input based on a previous issue, suggesting that ongoing

risk monitoring would likely capture emergent behaviours, and should then feedback

into any ongoing risk assessment activities as part of threat intelligence.

The abstraction stack decomposition of systems was applied to the modelling

process using CAIRIS to explore risk modelling of security and socio-technical

aspects of the SoS. Evaluating the components provided a holistic view of the SoS

from which threat-sources and vulnerabilities to security and the SoS could be

identified, modelled, and then validated with the stakeholder, thus supporting the

SoS risk-based decision making towards mitigating requirements. Validating the

process and its components with the stakeholder indicated its potential towards

improving the security and safety of people with reduced physical abilities interacting

with assistive technologies.

This work made a contribution towards current research challenges to SoSs,

and how security risk may be modelled and assessed in a SoS context. This

helped to direct further research considering other case study examples aligning

SoS factors and tool-support. The research detailed within this chapter aimed to

address considerations for RQ2 and RQ3, and helped support RQ1. In support of
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additional validation of the work within this chapter, peer review was gained through

the publication of elements of this work in Ki-Aries et al. (2017a).



Chapter 6

An End-to-End Information Security
Risk Assessment and Modelling
process to assist RBDM in SoSRE

Chapter 6 introduces OASoSIS representing an end-to-end information security

risk assessment and modelling process to assist RBDM in SoSRE. The OASoSIS

framework combines three contributions, the need for which were derived from

related literature and SoSs reviews applicable to the research gaps being addressed

by the RQs posed. Using steps based on the original format of OA Caralli et al.

(2007), this chapter details the steps to be taken throughout the process, providing

direction and considerations for each step.

6.1 Introducing OASoSIS

Research and findings described in Chapter 2 suggests there is a gap towards

SoS focused security risk approaches, and which integrate tool-support to model

and visualise SoS security risk and human factors, helping to bridge the communi-

cation gap between operational needs and SoSRE. There are a range of tools or

approaches designed for a single system context, but no clear guidance or limited

tool-support integrating different techniques and modelling elements to visualise and

assess the SoS security consequences in greater detail. Identifying and integrating

different elements to suitably visualise these security risks and related human factors
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in a SoS context is required to account for the independent and interdependent

system interactions of a SoS.

6.1.1 Aligning Security Risk Assessment for System of Systems

As identified, the term System of Systems can be applied to a number of scenarios

with differing scale or complexity of interconnected systems, or geographical bound-

aries. This was also demonstrated when considering the SoSs in Chapters 4 and 5

where each were quite different, specifically in terms of scale and users.

Moreover, where there is a greater usage and reliance placed upon internet

connected technology, geographical separation is becoming common through con-

tinued evolution, both in the systems and SoS contexts, and so are no longer entirely

unique characteristics towards SoSs. Examples of systems converging to form a

SoS may be less or more complex, or have differing levels of management, oversight,

and control. Because these considerations are typically greater than that of a single

system, the interactions and interdependencies can increase risks at different levels

for independent systems, and the SoS as a whole.

However, because there has been little research or guidance towards integrating

suitable concepts, models, and techniques that can be aligned towards an end-to-

end SoS security risk assessment approach, when combined with associated issues,

these make the already difficult problem of Security-RE (Cheng and Atlee 2009)

even harder. When accounting for security risk in a SoS, each entity may only know

or have access to a certain amount of information about each system in which to

assess security risk as a whole. Having detailed information of the SoS interactions

as a whole may therefore not be available or achievable in some SoS scenarios, yet

we need to understand the given SoS context if we are to identify security risks and

mitigating requirements.

Furthermore, without the assurance and warranting trust equations, this makes

risk assessment more difficult to accurately determine potential impacts, and mitiga-

tions would need to be treated on a higher risk basis, e.g. least privilege, need-to-

know. Nevertheless, security and risk should still aim to be assessed for the SoS as

a whole, but may need to be performed at an independent system level if there is

a weak collaboration with limited, or no useful information to support security risk

assessment.
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In a typical information security risk assessment within an organisational environ-

ment, the assessment view takes a top-down approach looking at the protection of

assets under the management and control of the organisation for its own business

purposes – its day-job – and outwards towards the third-parties providing services

for the organisation and its operations. However, when assessing the security risk

related to the SoS interaction, the view is reversed, because in addition to the

organisation and technological systems’ day-job or originally designed purpose,

the assessment now needs to alter its direction of focus to consider the bottom-up

interaction into the SoS where the organisation – now an independent system of

the SoS – collaborates with other independent systems to achieve a new or higher

purpose.

This interaction is in addition to the day-job or the original purpose it was designed

for, relating to the physical, technological, and people elements of each independent

system and the interoperations between each. What is considered the SoS as

a whole, may therefore be constructed with differing degrees of these elements,

working together integrating legacy systems with new technology, manual and

automated processes.

To address this problem, the characteristics and context of a SoS must, therefore,

be captured prior to any risk assessment to establish relevant high-level systems,

assets, stakeholders, and users central to the SoS design and operation. A SoS

characterisation process can be used to address this problem as a first step of

an assessment, with a continued focus towards critical asset interactions as the

assessment progresses.

If combinations of threats and vulnerabilities towards the critical information

assets were to be realised, the impact assessed would first need to consider the

impacts upon the assets and their security goals, along with how and where they

are stored, transported, or processed. It should then consider the impact upon the

organisation and systems towards the continued ability to interact with the SoS, and

how resulting impacts affect the SoS goals being achieved.

Where issues may be identified that could potentially affect the day-job, this

should feedback into the organisation’s regular risk management and assessment.

For example, this may include data storage and network capacity, personnel and

manpower. It is, however, critical to identify issues and maintain stakeholder commu-
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nication where the conflicts towards the day-job goals threaten the overall depen-

dency towards the independent system’s continued interaction with the SoS.

6.1.2 Informing Risk-based Decision Making for the System of

Systems

Where applicable, the identified SoS risks should be shared and communicated with

other independent system stakeholders and risk-based decision makers to determine

risk mitigating outcomes, either internally to the organisation or transferred to another

independent system. It is from these combined assessment inputs, modelling and

visualisation, where the security risk to the SoS as a whole can be determined.

However, at minimum, an independent SoI should have an understanding and

means to elicit, assess, and mitigate their own SoS risk.

Although many areas of the SoS may be under different levels of management

and control, the common link between independent systems to achieve its goals

securely is accountability, both internally and externally focused. Accountability

begins with each independent system, and should relate to each area of the physical,

technical and people interoperations for SoS. Where each organisation may be

divided into divisions, areas or departments, who use business processes, manual

processes, or software and hardware combinations for technological processes,

each of these will have accountability.

From the organisational body itself, down to the user within these system divi-

sions, using physical processes or technological systems, an accountable person

would, or at least should be in a role of responsibility throughout this chain. Within the

information security risk assessment, information relating to an asset’s ownership,

responsibility and accountability should be captured. This will aim to identify where

dependencies exist and accountability is in place for risk owners to ensure preven-

tative controls are operational, and responsibilities are clear towards implementing

reactive countermeasures to ensure a risk (threat & vulnerability) is addressed.

Given the differences in some types of SoSs where participation or complete

managerial and operational control of the SoS by an independent system can range

from total to none, it may be difficult to determine all information in which to assess

the SoS interaction with other independent systems, or where accountability is in
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place for system interactions, or controls. Therefore, each independent system would

need to provide their own assessment related to the SoS interaction. Depending

on the strength of the SoS type and collaboration, this should be shared to agree a

collaborative approach towards mitigating the risk related to the SoS, some of which

may uncover further risks for independent systems that were previously unknown,

such as the knock-on effect of risks affecting other SoS goals from being satisfied.

However, independent assessments may produce differing results depending

upon the risk assessment processes used. Using a consistent approach across the

SoS may not always be possible. For example, some organisations may need to

follow ISO27001-5 or NIST approaches, whereas for some smaller organisations, ba-

sic standards may instead be followed. In most cases, providing a simple repeatable

approach to assess security risk in a SoS context helping to inform RBDM would

therefore be an advantage.

6.2 OASoSIS

To address this SoSs research need, OASoSIS has been formulated to represent

an end-to-end information security risk assessment and modelling process to assist

RBDM in SoSRE. This framework incorporates three main contributions to assist

the end-to-end process.

This includes a process to provide the SoS characterisation and context, extended

from work described by Dahmann and Baldwin (2008) discussed in Chapter 4. This

process leads into the second contribution introducing an information security risk

assessment process using a modified version of OA for SoSs. This contribution

extends and modifies the work originally presented by authors of OA, Caralli et al.

(2007).

The risk assessment process and its output is integrated within tool-support

from CAIRIS (Faily 2018a) as the third contribution, extending the process for SoS

information security risk and human factors modelling, visualisation and analysis.
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The main order of Steps within OASoSIS are:

0 - Identify SoS context, structure, stakeholders, roles, goals, and dependencies;

1 - Establish risk measurement criteria;

2 - Develop information asset profile;

3 - Identify information asset containers;

4-5 - Identify areas of concern with threat scenarios, and identify vulnerabilities;

6 - Identify risks;

7 - Analyse risks;

8 - Prioritise critical risks, Model and visualise SoS risks, and Select mitigation

approach to risks.

6.2.1 OCTAVE Allegro for Systems of Systems with CAIRIS

The characterisation process described in Chapter 4 forms Step 0 of OASoSIS to

support information gathering required to provide the SoS context under assessment

with the modified OA. Continuing with Step 1 of OA, the standard or suggested

Risk Criteria impact area is extended to improve the focus towards socio-technical

impacts in a SoS with HFSI – the combination of HFI and HSI elements (National

Research Council and others 2007, BAESystems 2010), to acknowledge human

factors, human and systems interoperability, and other related impacts of the SoS.

The critical information assets relevant to the SoS, including where they are

stored, transported, and processed within the SoS and by whom, can then be

captured to identify areas of concern for the potential of threats and vulnerabilities

creating security risks to the assets. This would continue to be documented using

versions of OA’s paper-based worksheets and spreadsheet templates.

Information captured throughout the process can also be used to extend the

mitigating requirements analysis and evaluation within OA, providing data for a

developmental process, or a process that uses modelling to visualise and analyse

risk towards information security and human factors in the SoS design. Once

analysed, the effects can be evaluated and assist risk-based decision makers to

make informed decisions towards the application of suitable mitigating actions,

requirements, and controls.
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Risk data may be refined, then modelled with tool-support from CAIRIS as the

third contribution, capitalising upon the current CAIRIS concepts and components,

whilst aligning their use towards a SoS context within the OASoSIS process. This

integrates a goal-driven modelling process with various concepts and techniques to

help decision makers towards making informed decisions to reduce security risks

and related human factors concerns in the SoS.

For example, this could begin at an early stage when capturing information about

SoS stakeholders, independent systems, goals, context and asset use, tasks and

processes. Moreover, models can account for where critical information assets are

stored, transported, and processed, along with areas of concern towards potential

threats and vulnerabilities leading to risk. From analysing the roles, responsibilities,

activities, and human interaction with the physical, technical, and people elements,

related mitigating controls and requirements can be elicited within the context of the

SoS.

When integrating tool-support such as CAIRIS for modelling the SoS, once a new

project is created, separate environments can be added to represent the view of an

independent SoI and its known and direct SoS interactions. If considering the views

and interactions of more than one independent system, it is useful to be clear which

assets, goals, and interactions should be situated within each environment prior to

adding new elements to each environment.

Each environment or view can then be constructed based upon all known direct

interactions with internal and external systems as assets. Roles and personas

can be created representing the people element. Tasks are used to document the

activities carried out by a persona, for which use cases can be used to represent

the process steps of the task, and data flows can be mapped with the Data Flow

Diagram.

Goals and Obstacles towards enabling the completion or obstruction of processes

and tasks for the SoS mission goals can also be created, whilst providing the ability

for operationalising tasks. Combining obstacles and goals can provide an element

of addressing threats and vulnerabilities, although these are specifically considered

using the Risk model, with attacker roles included with a supporting misuse case.

These and other models within CAIRIS can be shared and discussed with

stakeholders refining the system interactions, leading to countermeasures, controls
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and requirements as an output from the elicitation, visualisation and assessment of

the risk towards security and human factors within the SoS interaction. These may

feed directly back into the completion of the OASoSIS process, whilst providing a

platform for on-going assessment of the SoS security risks that will change overtime

as the SoS evolves or dissolves. Models can, however, be quickly updated to

consider changes to the SoS and resulting security risks.

6.3 OASoSIS Process Steps

The steps presented in this section were based upon the original format by authors

of OA (Caralli et al. 2007), and demonstrates the modified SoS approach to the

context of use, whilst indicating how models, concepts, and techniques can align

with tool-support such as CAIRIS. Each of the steps indicates high-level decisions,

considerations for completing tasks within each step of OASoSIS, and how the

data captured within the OA worksheets discussed in Appendix B can support the

assessment and modelling of the information security risk and human factors within

the SoS using a tool such as CAIRIS. A Step Completion Criteria is provided for the

assessor to validate each step has been performed as expected.

The OASoSIS process can be used in part or in full, and be used by different

stakeholders. For example, in the first instance, the characterisation process and

the modified OA element of the process can be used in an organisational context

as a repeatable means for carrying out a high-level SoS information security risk

assessment. This could therefore be performed by stakeholders of the SoS SoI with

the relevant authority and expertise such as the Compliance and Risk Management

team, the Information Security team, or as historically been the case, the IT team.

Relevant roles are therefore defined as being The Assessor, under the authority

of the organisational independent SoI to perform the SoS information security risk

assessment.

Once achieving Step 8 and mitigating controls have been agreed between stake-

holders, the process may end, then be repeated and updated when required. Fur-

thermore, this output may be passed to design and engineering stakeholders as

input for SoS engineering purposes, continuing the OASoSIS process of modelling
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and visualising risk towards information security and human factors in the SoS,

supporting the elicitation and specification of mitigating requirements and controls.

The OASoSIS process is, however, formulated with a focus towards SoSRE and

RBDM, to be used by design and engineering teams for end-to-end information

security risk assessment with modelling and visualisations centred around the SoS

assets, and associated tasks, processes, goals, and risks. Users of OASoSIS would

therefore individually or combined have an appropriate level of expertise towards the

application of different models, and the assessment of security risk. Relevant roles

in this context are also defined as being The Assessor, under the authority of the

organisational independent SoI to perform the end-to-end SoS information security

risk assessment for SoSRE supporting RBDM.

The end-to-end process would use the characterisation process and OA element

of risk assessment for data collection and prioritisation of identified areas of concern

and potential risks in the SoS. Then, extending Step 8, a more focused second-

stage analysis through modelling and visualisation with tool-support such as CAIRIS

provides a means for risk-based decision makers to identify and agree suitable

risk mitigations for the SoS’s context. In addition to the flexibility of the process

application, different combinations of models may be used dependent upon the

context or needs of assessors to determine mitigating requirements for the SoS

interaction. The tracebailtiy afforded through using CAIRIS, along with its in-built

validation checks provides further validation towards the output of the OASoSIS

assessment.

Given the possibilities of use for OASoSIS, the following steps detail the required

stages for completion of the OA element of the SoS information security risk as-

sessment. This includes an indication towards the risk-based decision makers and

other supporting stakeholders for each step, and how the information gathered within

each step can contribute to modelling with tool-support. A high-level overview of the

main steps is illustrated in Figure 6.1. How tool-support from CAIRIS can be used

to model and visualise the SoS information security risk and human factors is then

detailed in Section 6.4.
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6.3.1 Step 0

Decisions: Agree Area of Focus and Views within the SoS.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 0-Task 1

To provide the SoS context and classification, the newly added Step 0 considers initial

questions to frame the SoS, its mission and goals. When asking these questions,

information may begin to be captured using Master sheets 1-3, identifying SoS

roles, relationships and dependencies, organisational systems and containers, likely

information assets, business owners of goals, processes, tasks, information assets

and their related information custodians and other system owners, and any other

related restrictions. Systems’ day-job goals and potential conflicts should be noted.

Also consider relevant naming conventions for all assets documented through the

risk assessment, as assets will relate to multiple stakeholders.

Initial questions should consider:

- Who are the high-level stakeholders - the main independent systems of the

SoS?

- Who are the other relevant stakeholders important to the SoS achieving its

mission?

- Who provides management oversight and control?

- Who provides operational control of the SoS?

- Who provides governance?

- Who provides funding within the SoS?

- What system boundaries exist for the SoS - do restrictions apply?

- Who is responsible for SoS design, development, testing and implementation?

- What system dependencies or specific requirements exist for the SoS?

- What Trust mechanisms are in place or required?

- How is on-going SoS performance and behaviour monitored to provide a

resilient SoS balancing independent system needs?

- Consider the classification type of this SoS.

- Do other SoSs exist within this SoS?

- Do any other challenges or conflicts exist for the SoS interaction?
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Step 0-Task 2

Using information collected in Task 1, identify the main independent systems where

managerial and operational control is provided. By aligning the SoS characterisation

with the examples shown in Figure 4.2, this may be used to determine the type of

SoS under consideration, framing important aspects that are useful for SoSRE and

risk-based decision makers where there is a focus towards ownership, accountability,

and responsibilities within the SoS to achieve its goals. This is considered later in

the process.

Step 0-Task 3

Tasks 1 and 2 provided the SoS context in which the area of focus for the SoS views

should be agreed. Confirm the SoS mission and goal, and identify the related goals

of independent systems and stakeholders in which the SoS collaboration depends

upon. Agree the scope of the SoI and continue to Step 1.

Step Completion Criteria

Confirm the following points:

� It is clear who and where the roles of managerial and operational control are

provided for the SoS.

� It is clear who and where ownership, accountability, and responsibilities are

designated within the SoS to achieve its goals.

� The SoS goals and supporting goal requirements have been indicated.

� All other initial questions have been answered.

� All related details are captured in the data templates.

� Conflicts and dependencies are clearly detailed.

� The scope for the assessment area of focus and SoI views within the SoS have

been agreed.
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The scope of organisation/system and its SoS interaction will be the focus for the

risk assessment. The assessing authority must ensure the required expertise is

provided to perform the assessment. However, this process may also be used by

other levels of the organisation/system to provide further detail. For example, by

department, division, or any other sub-level related to the organisation, system or

SoS. This may also be adopted by other independent systems of the SoS to provide

further consistency.

The Risk Criteria should therefore relate to the level assessed. Once this is agreed,

the Risk Criteria in Step 1 may be defined and agreed, then Information Asset

identification can commence for Step 2. Both of these steps can be completed

separately, but both must be complete before Step 3.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Master Sheets 2 & 3 provide Assets, with further Organisations in Master Sheet 1.

Master Sheet 1 provides information on Roles, Relationships, and Dependencies.

Step 0 may also provide certain Goals and Tasks.

6.3.2 Step 1

Decisions: Agree System or SoS risk measurement levels. Agree System or SoS

levels of priority for the Impact Areas.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 1-Task 1

Once the SoS context and systems-of-interest views to be assessed have been

agreed, document the Risk Measurement Criteria in Master Sheet 4. The criteria

categories includes a range of SoS and Human Factors System Integration impacts

to be considered as shown in Table 6.1. Elements of the criteria may be modified

or added to if required. Based on the criteria impact areas, define a qualitative set

of measures for the Risk Measurement Criteria. This will be used to evaluate the

impact of the risk on the organisation helping to determine the impact on meeting

the needs of the SoS mission objectives.
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Table 6.1 Risk Criteria with HFSI Elements based on (National Research Council and others
2007, BAESystems 2010)

Criteria Example

Financial Costs and Losses As a result of the impacts specified in the risk criteria, this
is the likely cumulative amount of costs and losses, e.g.
from loss of revenue, extra manpower, replacement or re-
development of assets, systems, or other physical and techni-
cal processes, policy and procedure. If it is possible to quan-
tify the financial impact of reputational losses, this should
be included. In some cases, this may not be clear. Note:
The Costs and Losses figure could exclude any Fines and
Penalties, as this is accounted for separately.

Fines and Legal Penalties As a result of a data breach, regulatory fines, for example, un-
der the General Data Protection Regulations may be issued,
with a possibility of other legal liabilities.

Reputation and Customer
Confidence

Trust and reputation of the organisation, systems, and SoS
as a whole can be negatively impacted by an incident result-
ing in the loss of confidence by customers, users, or other
dependent systems.

Manpower and Personnel
(Productivity)

Manpower and personnel requirements could reflect the num-
ber of military, government, civilian, or contractor personnel
required, including the cognitive and physical capabilities re-
quired to train, operate, maintain, and sustain systems within
the SoS.

Social and Organisational The consideration of the characteristics of systems focused
on satisfying the reliance on social aspects that interact with
process and technology.

Human Factors Engineering HFE considers the integration of human characteristics into
system definition, design, development and evaluation to
optimise human machine performance under operational con-
ditions.

Training The instruction or education and on-the-job or unit training
required to provide personnel and units with their essential
job skills, knowledge, behaviours, and attitudes.

Safety, Health and Environment Environment, Safety and Occupational Health (ESOH) Haz-
ards – The minimisation of human or machine errors or fail-
ures that cause injurious accidents.

Habitability The consideration of the characteristics of systems focused
on satisfying personnel needs that are dependent upon phys-
ical environment, such as berthing and hygiene.

Survivability The characteristics of a system that can reduce fratricide, de-
tectability and probability of being attacked, and can minimise
system damage and human injury.
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If the organisation has already developed a Risk Measurement Criteria, it can

be used in the risk assessment, but should still maintain human factor considera-

tions towards impact. Although this criteria is likely to represent the impact on the

organisation/system-of-interest related to the SoS interaction, how that affects its

own needs against the continued ability of interaction with the SoS should be the

overall focus. The output may therefore feed directly back into its own internal risk

assessment process for the organisation or system’s day-job, whilst accounting its

SoS risks.

Step 1-Task 2

Prioritise all of the impact areas from the Risk Criteria in order of importance to the

organisation and its SoS interaction by using the Impact Area Ranking in Master

Sheet 4.

For example, if you have ten impact areas, rank the most important area as number

10, and the least priority set to 1.

Conflicts may need to be agreed (e.g. Safety vs Manpower ranking).

Step Completion Criteria

Confirm the following points:

� Risk criteria impact areas have been agreed.

� Qualitative measures for levels of impact for each of the criteria impact areas

have been defined.

� Priority levels for each of the criteria impact areas have been defined.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

This OA step is completed outside of CAIRIS, as Severity is calculated in a different

manner. The level or range of Impact can however be aligned.

For example, Negligible 0 - Marginal 1 - Critical 2 - Catastrophic 3.
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6.3.3 Step 2

Decisions: Agree Critical Information Assets for the SoS. Confirm Critical Asset

SoS relations. Confirm Accountable Owners.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 2-Task 1

The purpose of this step is to identify all related information assets dependable to

the SoS interaction. Some of these may already have begun to be captured in Step

0 using Master Sheet 3. The focus will then be to determine which of the information

assets are most important to the system / SoS interaction. User-centred techniques

such as task analysis, scenarios, and personas may also be adopted to consider

related human factors towards important user and asset interactions.

Ideally with a range of SoS stakeholders, perform activities such as brain storming

or other techniques to identify the related information assets that are important to

the organisation and its SoS interaction. For example, this could be within a focus

group setting. You can begin to add this information to Master Sheet 3.

Consider the following questions:

- What information assets are used in supporting processes and operations for

the SoS?

- What information classifications are there (e.g. TOP SECRET)?

- What information assets would significantly disrupt the organisation and the

SoS interaction if accessed, modified, shared, lost or destroyed?

- What other assets are closely related to or dependent upon these assets?

Information assets directly related to or under control of the assessing organisation

or system may already be documented under its current ’day job’ role. For example,

an asset register, or details of a Data Protection Impact Assessment (DPIA). These

or other supporting information can be used to assist this element of the process.

However, they should be considered towards their additional interaction with SoS

needs, identifying where conflicts may arise. Externally received information assets

used for SoS purposes may also be documented if there is accountability towards

its process, storage and transport under the control of the assessing system.
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Step 2-Task 2

When identifying related information assets towards the SoS interaction, it is possible

quite a number may be identified, some in greater detail, and some of which may

have a greater element of risk of an adverse impact to the asset or the SoS. As a

means of prioritisation, focus the risk assessment on assets deemed critical to the

SoS interaction, whilst considering related restrictions and dependencies.

To determine which information assets are considered critical to the SoS inter-

action, consider which of the identified information assets in Master Sheet 3 would

have an adverse impact on the organisation and its SoS interaction if assets were

subjected to:

- Unauthorised access, use, modification, or disclosure;

- Loss or destruction;

- Disruption or loss of availability.

Where assets critical to the organisation and its SoS interaction are potentially

affected by these scenarios, these critical assets become central to the risk assess-

ment. Update Master Sheet 3 highlighting the asset’s criticality.

Step 2-Task 3&4

In subsequent tasks of Step 2, further information gathering is required about the

information asset. Continue entering this information directly into Master Sheet 3, or

use Information Sheet(s) 1 if preferred for a paper-based activity.

Some information may already have been captured in Master Sheet 3. If required,

use Information Sheet(s) 1, or continue updating Master Sheet 3 to record the

asset information in more detail. For example, begin with the name of the critical

information asset, and consider its classification (e.g. TOP SECRET), description,

rationale, owners, restrictions and dependencies. Consider information that will

assist with demonstrating its value and criticality to the SoS.

Initial questions to consider are:

- Why is this asset critical to the organisation, systems, or SoS?

- What dependencies exist for the SoS interaction, and to what degree?

- Is this critical information asset subject to regulatory or cross-border require-

ments? - If so, what are these?
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Step 2-Task 5

When describing the critical information asset, be clear on its scope and importance

to the SoS interaction.

The following points should be considered when describing the critical asset:

- Is this information used inside or outside of your control?

- How is it used and for what purpose?

- Is this critical information asset a person, physical or electronic?

- Indicate where specific regulations and requirements exist.

- Indicate the internal and external dependencies towards cross-boundary organ-

isational processes or services used by or supporting this critical information

asset for the SoS interaction.

Step 2-Task 6

Identify and document the owners of the critical information asset. This includes

business owners, specific roles, and people responsible and accountable for the

asset.

Consider the following questions when you are documenting the critical informa-

tion asset owners:

- Which organisation is specifically responsible and accountable for this critical

information asset, and at what stages?

- Is there cross-boundary/organisation shared accountability for this critical

information asset?

- Who in the organisation is specifically responsible and accountable for this

critical information asset?

- Which organisation, role and person are responsible for determining the value

of this critical information asset?

- Who determines the security requirements?

- Which organisations, roles and people are responsible and accountable for

each business processes where this critical information asset is used?

- What dependencies exist in relation to the critical information asset for both

the organisation and SoS interactions?
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- How would the impact of a comprise to the critical information asset affect the

organisation and its continued ability to interact with the SoS?

Where possible, all related stakeholders of the critical information asset (owners,

custodians, controllers, processors) should be involved within the decision making

towards defining the asset. For example, related stakeholders should provide input

towards the critical assets’ security goals, needs and requirements. Later steps will

help provide further focus towards related stakeholders.

Step 2-Task 7

Detail the Security Requirements of Confidentiality, Integrity, Availability, and Ac-

countability for each critical information asset. If there is cross-boundary/organisation

shared accountability for a critical information asset, these security requirements

should be captured. Some conflicts may arise.

Detail the security requirements for each critical information asset. If applicable,

detail other related requirements. Identify the most important security requirement

for each critical information asset by noting the rationale. This will be considered

later where risks may impact upon these areas, and additional requirements and

controls must hold.

Security requirements for critical information assets are usually derived from legal &

regulatory requirements, business policy, related procedures, or other contractual

terms of engagement.

Step 2-Task 8

Ensure that information collected using Information Sheet 1 is entered into Master

Sheet 3.
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Step Completion Criteria

Confirm the following points:

� Information assets deemed critical to the SoS interaction have been identified

and detailed with a rationale.

� Ownership, accountability, and responsibilities for each of the critical informa-

tion assets deemed critical to the SoS interaction have been identified and

detailed.

� Dependencies, restrictions, and other related requirements for each of the

critical information assets deemed critical to the SoS interaction have been

identified and detailed.

� Security goals and requirements have been detailed and prioritised for each of

the critical information assets with a rationale.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Master Sheet 3 (or Information Sheet(s) 1) provide further Information Assets.

This includes Owners and areas of Accountability, and Security Requirements.

Step 2 may also provide data for certain Goals, Tasks, and Personas.

6.3.4 Step 3

Decisions: Agree Known Critical Asset Containers across the SoS. Confirm Con-

tainer Security Restrictions. Confirm Accountable Owners.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 3-Task 1

Information Asset Container – An information asset container is where information

assets are stored, transported, or processed. It is a place where an information

asset ‘lives’. Containers generally include hardware, software, application systems,

servers, and networks (technology assets), but they can also include items such as

file folders (where information is stored in written form) or people (who may carry

around important information such as intellectual property). They can also be both

internal and external to an organisation (Caralli et al. 2007).
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Use the information assets listed in Master Sheet 3 (and/or Information Sheet(s) 1)

with the Information Sheet 2 Guide to identify all containers where critical information

assets are stored, transported, or processed.

Consider internal containers directly under the control of the organisation/system,

and external containers controlled by other organisations/systems of the SoS. Identify

any other external areas relating to the critical information asset, e.g. off-site physical

or electronic data storage, or areas of the supply chain. Group these by owner and

parent system, then by sub-system.

- Identify the internal and external Technical containers where each critical

information asset is stored (usually electronically), transported (transmitted), or

processed (usually electronically).

- Identify the internal and external Physical containers where each critical infor-

mation asset is stored, transported, or processed (usually manually).

- Identify the internal and external People containers where each critical infor-

mation asset is stored (e.g. in memory), transported (e.g. communicated), or

processed (e.g. cognitively).

Based on the critical information assets listed in Master Sheet 3, add or update details

of their containers to Master Sheet 2. For paper-based activity, use Information

Sheets 2a, 2b, and 2c. Document the container information in as much detail as

possible. Some of this information will also be used in Master Sheet 5 detailing the

critical information asset and container combinations with areas of concern.

Ensure that information collected using Information Sheets 2a, 2b, and 2c is

entered into Master Sheet 2. Document the owner(s) responsible and accountable

for the containers applicable to the critical information assets, and where possible,

capture the organisational roles of internal and external owners.

Communicate with relevant stakeholders where possible to determine details

of the internal and external containers. This relationship will be important towards

applying related security controls and requirements across the SoS when required.

Consider how mitigation dependencies on other organisations and systems of the

SoS will be managed.
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Step Completion Criteria

Confirm the following points:

� All internal and external containers where critical information assets are stored,

transported, or processed have been identified and detailed with a rationale.

� Owners responsible and accountable for the containers related to the critical

information assets have been identified and detailed.

� Organisational roles of internal and external container owners, users and tasks

have been identified and detailed where possible.

� Security restrictions and requirements for containers have been identified and

detailed where possible.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Master Sheet 2 (or Information Sheet(s) 2a,b,c) provide further System Assets.

This includes Owners and areas of Accountability.

Step 3 provides Information and System Asset Associations.

Step 3 may also provide certain data for Use Cases, Data Flows, Goals, and Tasks.

6.3.5 Steps 4&5

Decisions: Agree Asset Container Threat combinations. Agree the Probability

score.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Steps 4&5-Task 1

Once the containers of critical information assets have been identified, consider

any related security risk-based areas of concern towards each container associated

with the critical information asset. Use details from Master Sheets 2 & 3 (or with

Information Sheets 1, and 2, 2a, 2b, or 2c) to record any areas of concern directly

into Master Sheet 5 (or for paper-based activity use Information Sheet 3). Use

Information Sheets 3a, 3b, and 3c to guide possible threat scenarios and questions

to consider.

Using Master Sheet 2 (or Information Sheets 2a, 2b, and 2c), review each of the

containers listed to drive discussion and decision making towards potential areas of

concern.
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Document each area of concern that you identify on Information Sheet(s) 3,

and/or directly into Master Sheet 5. Identify the name of the critical information asset

and container from Master Sheets 2 & 3 (or with Information Sheets 1, and 2, 2a,

2b, or 2c) and document the area of concern and related information in as much

detail as possible. Use a separate entry for each potential area of concern, and each

individual threat and vulnerability combination identified.

Using Information Sheet(s) 3, and/or Master Sheet 5, each entry will uniquely capture

a single risk, thus equating to several entries or information sheets completed

throughout the risk assessment. It is therefore important to ensure paper-based

activities are collated correctly.

Steps 4&5-Task 2

Use the threat scenarios in Information Sheets 3a, 3b, and 3c to guide the areas of

concern.

For each area of concern that you have recorded, the threat scenario questions

in Information Sheets 3a, 3b, and 3c used earlier in the process will help to identify

the actor, means, motive, and outcome. Complete as much details as possible. If

you find that you have answered ‘yes’ to a question, but cannot apply it to a realistic

scenario, it is potentially not a risk (or at great risk), so move to the next concern.

Using Master Sheet 5 (or Information Sheet 3), detail how the threat would affect

the security requirements of the critical information asset. Continue to perform this

activity for each threat and vulnerability combination of the area of concern. The

remaining risk information will be gathered in a later step.

Threat categories within the OA threat model illustrated in Figure 6.2 demon-

strates the decomposition of an actor’s threat motive, type, and consequences

impacting upon security properties of a critical information asset.
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Fig. 6.2 OA Threat Model

Steps 4&5-Task 3

A single container may result in the identification of one or more areas of concern,

each of which may have one or more threat and vulnerability combinations. If a

specific vulnerability cannot be described, attempt to identify the general weakness

that may have enabled the threat success.

Continue to work through each of the critical information asset and container

combinations identified. Detail as many areas of concern as possible with their threat

and vulnerability combinations.

If using Information Sheet 3, ensure all information is added to Master Sheet 5.
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Steps 4&5-Task 4

Considering the Probability of a concern occurring helps to determine which of the

scenarios are more likely given the operating contexts. However, as SoSs are often

unique collaborations, this may be a challenge to fully determine at times. This

information will, however, assist with the prioritisation of risk mitigation activities.

Probability is considered by a higher or lower score, for where there is a high and

low likelihood of the event occurring. The scale used is as follows:

Incredible 0 - Improbable 1 - Remote 2 - Occasional 3 - Probable 4 - Frequent 5

Assign a probability to each of the threat combinations identified.

Step Completion Criteria

Confirm the following points:

� Potential areas of concern towards internal and external containers where

critical information assets are stored, transported, or processed have been

identified and agreed.

� Threat scenarios have been applied and reviewed for each area of concern,

identifying the actors, means, motives, and outcomes of individual threat and

vulnerability combinations identified.

� The effect of each threat and vulnerability combination upon the security

requirements of the critical information assets have been identified for each

area of concern.

� Each threat and vulnerability combination has applied a probability estimation

towards the likelihood of it occurring, supporting the prioritisation of each area

of concern.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Master Sheet 5 (or Information Sheet(s) 3, 3a,b,c) provide Risk Elements.

These are: Concern (Misuse Case Narrative), Risk Description, Threat, Vulnerability,

Attacker, Motive, Impact against Security Requirements, Probability of Impact.

Steps 4 & 5 provide certain data for Roles, Tasks, Use Cases, Data Flows, Obstacles,

Misuse Cases.
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6.3.6 Step 6

Decisions: Agree Impacts on Information Assets.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 6-Task 1

Consider, if the event occurred, what would be the consequential impact directly

attributed to the organisation and its SoS interaction? How will this affect the SoS?

Align impacts with the areas detailed in the Risk Criteria. This should account for the

impact on the critical information asset and the container combination that is being

assessed, and how that impacts upon the organisation and its continued ability to

interact with the SoS, which helps identify the impact to the SoS achieving its goals.

Using Master Sheet 5 (or Information Sheet 3):

- Determine how the organisation and its SoS interaction would be impacted if

this threat scenario was realised.

- Describe each consequence for the threat and vulnerability combination of the

area of concern. This may help decompose the area of concern providing a

refined risk title or description.

Step Completion Criteria

Confirm the following points:

� Consequences from the impact of the threat and vulnerability combination

have been identified, detailed, and aligned with the Risk Criteria categories for

each area of concern.

� This captured the impacts on the critical information asset, the container

combination, the independent SoI, its continued ability to interact with the SoS,

and subsequent impacts to the SoS.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Step 6 is specific to Impacts on the OA Risk Criteria, but provides further conse-

quence information.
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6.3.7 Step 7

Decisions: Agree Impact on System or SoS Assessed. Agree Impact on SoS

Interaction. Agree the potential Risk conflicts and priorities.

By: The Organisation/System, SoS Stakeholders, The Assessor.

Step 7-Task 1

From each consequence described, this should enable the level of severity of the

impact to be measured against the Risk Measurement Criteria in Master Sheet 4.

Severity levels are: Negligible 0 - Marginal 1 - Critical 2 - Catastrophic 3 (Multiplied

by the Criteria Priority)

Confirm the level of severity for all impacts to the criteria categories detailed in

Master Sheet 4. Select the related impact levels for all impact areas in Master Sheet

5 (or Information Sheet 3) to help determine a relative risk score.

Step 7-Task 2

When each of the levels of severity have been agreed, each level multiplied by its

priority level will produce a score providing an indication as to its overall effect. The

total impact scores are then multiplied by the Probability score to provide an overall

relative risk score that can be compared and prioritised for further mitigating action.

- Calculate the score for each category impacted as detailed in the Risk Criteria

of Master Sheet 4. Use the impact value of each threat and vulnerability

combination, then multiply this by the category priority level number to return a

score.

- Repeat this for each category, adding each score to create a total.

- Multiply the first total score by the Probability score to give an overall likelihood

and severity risk score of the impact on the asset.

- Begin to identify those risks with a higher impact score, then contrast this with

the overall score with probability to gain an indication which risks may need

more immediate attention.
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It should be noted the scores are only used to indicate a scale of potential risk

for prioritisation purposes. Scores may differ where elements of the Risk Criteria

in Master Sheet 4 are added or removed. For example, with ten areas ranked

from 1-10, this equates from 0 to a maximum severity impact of 165, or 825 with

probability, and can therefore be grouped into bands of priority of concern. If the

criteria only had five areas, these maximum scores would be lower, but could still be

grouped by relative bands. This may, for example, first group by probability scores,

then sub-prioritise based on the impact only score.

The levels of concern may also differ, for example, one risk with a high

probability with a lower impact, compared to a low probability with a higher impact,

which may also indicate other patterns and anomalies. Furthermore, an impact or

outcome may affect the organisation or system differently by comparison to the SoS

as a whole. These type of considerations should also be taken into account when

determining how the SoS will be affected. How risks are prioritised may therefore be

context specific.

Based on the information gathered and assessed, the entire context should be

taken into account before moving to Step 8, as this may highlight particular risks of

interest to consider in Step 8.

Step Completion Criteria

Confirm the following points:

� For each area of concern, aligning with the previously prioritised risk criteria

categories, the estimated level of severity for the identified impacts have been

applied to each category.

� Each applied level of severity has been multiplied by its category priority level

to produce a category score relative to the risk criteria.

� The total impact scores for each area of concern have been multiplied by the

probability score to provide an overall relative risk score.

� In addition to the indicated areas of higher concern, high impacts with lower

likelihoods, and low impacts with higher likelihoods, and other risk-related

conflicts have been highlighted for review.
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Inputs for Modelling and Tool-Support, e.g. CAIRIS:

Step 7 can provide an indication which of these Critical Information Assets and

their Containers/System Assets need further attention. When modelling Information

Assets in CAIRIS, all may be modelled, or this step can indicate which elements to

give specific focus to model in further detail.

6.3.8 Step 8

Decisions: Agree Mitigation Strategy, and Security Requirements, External Condi-

tions, Potential Controls, and Residual Risk.

By: The Organisation/System, SoS Stakeholder, The Assessor.

Step 8-Task 1

The purpose of this step is to prioritise the identified risks for further action. Ideally

all risks should be reviewed to at least consider which are within or outside of direct

control of the SoI within the SoS. Many risks may, however, be identified requiring

a means in which to make risk-based decision towards the risks, where further

modelling and investigation may be required before mitigating requirements and

controls can be determined.

There are a number of ways risk scores can be divided from highest to lowest. For

example, OA suggests a method of separating the risks into four pools with equal

number of risks. The risks with the highest score go in Pool 1, and so on. Or, as

suggested, first prioritise by overall score, then sub-prioritise by scores of impact only.

In this instance, (with ten impact areas, impact levels 0-3, and probability levels of

0-5) scores can also be considered using an impact band of 0 - 55 - 110 - 165,

and/or the band with probability equates to 0 - 165 - 330 - 495 - 660 - 825.

Organise and prioritise the risks for further action using the chosen relative bands.
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Step 8-Task 2

Decide how the chosen risk bands should be aligned towards a mitigation strategy.

For example, using the example of Pools, the mitigation approach may consider

mitigating everything in Pool 1, then mitigating, deferring, or accepting other level

risks. It should, however, be noted that a SoS is dynamic, therefore risks may evolve

and change. This means some risks that go unattended may create further risks

either for the organisation/system, or the SoS interactions with other independent

systems where some risk mitigations may need to be transferred.

- Select mitigation options for all risks/bands.

- Consider how mitigation dependencies on other organisations and systems of

the SoS will be managed.

- Where possible, relevant stakeholders should consider these mitigation ap-

proaches. This may need to be co-ordinated with decisions documented.

Step 8-Task 3

All mitigation details must be captured regardless of whether a risk is being accepted,

deferred, transferred, or mitigated against. If mitigated against, this should consider

with what approach - detect, prevent, deter, or react. Consider any residual risk after

the mitigation approach.

When considering a strategy to reduce and mitigate each risk, review all threat

and vulnerability details to consider how the following examples should be addressed

by the requirements and controls (Caralli et al. 2007):

- How could the actor be prevented from exploiting a weakness?

- How could the means that the actor would use be prevented?

- How could the motive be prevented?

- How could the resulting outcome be prevented?

- Could the probability of the threat be reduced?

- If no proactive activity can be performed, can the impact of the threat be

reduced?

- Can the organisation minimise the effect or impact of a realised risk?

- How will the security requirements for this critical information asset be satisfied

by the mitigation strategy, and by whom?
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If using tool-support for modelling and visualisation of risks to security and human

factors in the SoS design, it is at this stage where, as detailed in Section 6.4, Step

8 - Task 3 is extended for further analysis towards SoSRE. This aims to support

risk-based decisions, contributing to the completion of these final tasks of Step 8 to

apply mitigating requirements and controls, and which would lead into other stages

of risk management.

Identify where there are external dependencies with other independent systems

of the SoS for mitigating requirements and controls.

Where requirements and controls have been determined, note details of the

containers in which the controls will need to be implemented. Detail all expected

controls to be implemented, e.g. administrative, physical, technical requirements

and controls.

Step 8-Task 4

Risk owners should ensure requirements and controls are in place. This may be

achieved through a planned approach, and should be tracked and monitored to

ensure this is completed and as expected. The level of each residual risk should not

be relied upon until each completion.

Continue on-going monitoring and feedback until such time the risk assessment

process is repeated. However, as SoSs are dynamic, the rate in which risk is as-

sessed may also need to be dynamic.
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Step Completion Criteria

Confirm the following points:

� All risk scores for each area of concern have been prioritised.

� High impacts with lower likelihoods, and low impacts with higher likelihoods

have also been reviewed together with other anomalies, potential issues and

risk conflicts.

� Appropriate mitigation approaches have been agreed and applied for all levels

of prioritised risks.

� The mitigation strategy for each area of concern has been detailed, addressing

how each combination of threat, vulnerability, and potential impacts could be

reduced or prevented at different levels with applicable controls and require-

ments.

� Owners responsible and accountable for mitigating the risks related to the

critical information assets have been identified and co-ordinated with where

applicable.

� All other external dependencies with other independent systems also respon-

sible and accountable for the mitigating risks have been identified and co-

ordinated with where applicable.

� Risks have been managed, tracked and monitored to ensure the mitigation

strategy in each instance has been completed as expected.

Inputs for Modelling and Tool-Support, e.g. CAIRIS:

For completion of Step 8, specified mitigations may be carried out within OA, and/or

within CAIRIS, selecting the appropriate mitigating Security Requirements and

Controls for each element of Risk.

6.4 Extending Step 8-Task 3 with Tool-Support

6.4.1 Using CAIRIS

Many of the steps within OA provide a wealth of information that can be utilised by

tool-support to model and visualise information security risk and human factors in a

SoS context, as illustrated in Figure 6.1. However, how CAIRIS is used may depend
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upon the context and the SoS to be modelled. Moreover, some development areas

may focus less on approaches such as data flow modelling, and be more concerned

with goals, tasks, and processes, whereas other areas may wish to consider the

whole combination available. Different needs and modelling requirements may apply.

Furthermore, the SoS being modelled may be based upon an existing ‘as is’

SoS, or could be a development of a new SoS ‘to be’. An existing SoS may already

have mechanisms in place, whereas a new SoS may need to build relationships

and mechanisms. An existing SoS may also provide accurate and quantitative

information in which to base a security risk assessment upon including existing

controls, but a new SoS may require research and assumptions based on what is ‘to

be’, and therefore controls and mitigations need to be specified. It is for this reason

the OA element does not consider existing controls when assessing risk, as these

can instead be documented or identified and specified at this stage.

Supporting approaches towards design analysis, such as through using user-

centred approaches may also be applied in different ways and at different stages.

For example, an existing SoS may have systems, goals, tasks, and people for

which a security risk assessment of critical information assets can be based upon.

Personas could be created to represent archetypical users and behaviours based

on these people, perhaps through interviews and observations, or other secondary

data means with an augmentation model.

However, if the SoS is ‘to be’, then research may need to be undertaken to create

the context related scenario in which representative personas would perform speci-

fied tasks where critical information assets are stored, processed, and transported.

These may also be derived to some degree from the use of epics, user stories, and

scenarios, which may also suggest where dependencies exist for stakeholders and

data flows.

Much of the information that supports this early stage of the design process

is captured within Step 0 of OA, although further context may be required from

domain stakeholders and experts, or further research in a given area. In some

instances, certain elements such as user stories and personas may have already

been created by a separate design team and be incorporated into the information

security risk assessment along with subsequent modelling and visualisation. This
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process therefore allows the flexibility towards the context of use and integration with

other security, risk, and design teams in the engineering and operational domains.

Information captured in OA Steps 0-3, along with any other supporting information

not only provides the context for SoS to be assessed, but also directs the required

input to begin modelling the SoS. This should begin by identifying the system views

of interest, and creating a new environment for each required view. This would

capture an independent system’s all known direct interactions with internal and

external systems as assets, linked to a view from another independent system.

Modelling Assets

Assets may be of type: Information, People, Software, Hardware, Combined Systems,

General Organisational, Groups, or Social Systems, and a SoS. A SoS asset should,

for example, be associated with the independent systems of the SoS as general

system assets, who in turn have associations with other asset types as demonstrated

in Figure 6.3. However, the viewing or visibility of associations would be environment

specific, e.g. determined by who can see or has knowledge of what. Figure 6.3 is

from the view of independent system 2 (S2) that has some direct interaction with S1,

but not with S3.

Step 0 will provide important high-level system assets that can be captured in

the first instance, whereas other assets, their associations, and security needs are

likely to be derived from Steps 2 and 3. Moreover, once Steps 4 to 7 are complete,

this will help focus on which specific asset associations, goals, processes, and tasks

need to be included within further modelling; this suggests an iterative process is

required for efficiency.

Modelling Roles of Responsibility and Personas

Where Tags are present throughout CAIRIS, these should be used to represent the

main body and if applicable directly related bodies (e.g. parent body) in relation

to the object for its Ownership, Authority, Control, Accountability, and Trust Entity.

Where there is an association, relation, or direct interaction between objects with

tags, this can be considered as a relationship and dependency, with a chain of

responsibility and accountability.
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Fig. 6.3 Modelling the SoS Assets in CAIRIS

Step 0 will indicate high-level independent system roles to achieve the shared

SoS mission needs and goals. Steps 2 and 3 will provide specific responsibility

roles, and personas can be created to represent the people element of interactions,

although persona creation may be a separate activity outside of CAIRIS, or be

incorporated within. Roles may relate to certain stakeholders with responsibility

towards the SoS interactions, or be data controllers, processors, and subjects, or

attackers. Roles may relate to personas carrying out tasks in the SoS.
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Modelling Personas and Tasks with Use Cases

Tasks are used to document the different activities performed by personas. These

may apply to general tasks towards goal completion, or specific tasks identified from

the threat scenarios in Steps 4 and 5. Tasks have steps that can be considered as a

process or processes, for which a role is likely related to a persona who performs

each step of the task as illustrated in Figure 6.4. Each process can be represented

as a Use Case contributing to the task, which itself has pre and post-conditions and

steps for completion.

Fig. 6.4 Modelling the SoS Tasks and Use Case Processes in CAIRIS

Modelling Data Flows and Boundaries

Data output from Step 3 details where critical information assets are stored, pro-

cessed, and transported. This also indicates the potential data flows between use

case processes, asset entities and data stores, and where trust boundaries may

need to apply. Using this information can help with the population and generation

of a Data Flow Diagram (DFD). A simple example is shown in Figure 6.5. Industry

standard threat modelling with approaches such as STRIDE may compliment the

use of DFDs if required. Steps 4 and 5 do, however, provide an approach for threat

model categories within the data capture.
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Fig. 6.5 Modelling the SoS Data Flows in CAIRIS

Modelling Risk

Data output from Steps 4 and 5 provides related elements of the potential risks

identified. These specifically capture the Area of Concern that can be used as

a narrative towards a Misuse Case, along with a name or description for the risk.

These are derived from the information relating to the Threat, Vulnerability, Attacker,

Motive, and impacted Security Requirements of the critical information asset. The

Probability of Impact and related consequences are captured in Steps 6 and 7.

Fig. 6.6 Modelling the SoS Risk in CAIRIS

CAIRIS does, however, relate the probability to the threat occurring, and the

severity towards the vulnerability, and calculate the score to include the level of

impact upon the security properties, which is different to the impact severity score

used by OA in Step 7. From this information, a Risk model can be populated as seen

in Figure 6.6. A separate threat model summary is provided, for example, where

elements of data flows may be at threat, or highlights potential issues towards tasks

where assets may be exploited.

Modelling Goals and Obstacles

When using goal modelling, a task can support a main goal, whereas a sub-goal

may contribute towards enabling a process contributing to the task. This concept

interplay that drives the goal-based approach is demonstrated in Figure 6.7.
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Fig. 6.7 Goal, Task, and Use Case interplay with Assets

Figure 6.7 demonstrates where a goal can have a sub-goal. The sub-goal

contributes to a use case process completion that contributes the completion of an

associated task, where the task and related assets contributes to an associated

main goal to be achieved. Goals may be decomposed in a similar way to assets,

with the overall SoS goal decomposed with any sub-goals that are associated with

each high-level independent system goal as illustrated in Figure 6.8, until each goal

can no longer be refined.

Sub-goal descriptions should be written as a requirement to state what the system

element shall do to achieve the sub-goal, thus enabling the associated task step to

be performed. Obstacles obstructing the completion of tasks for the SoS mission

goals can be created, whilst providing the ability of addressing certain threats and

vulnerabilities, although these are specifically considered using the Risk model, with

attacker roles and personas included with a supporting misuse case.
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Fig. 6.8 Modelling the SoS Goals in CAIRIS
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Step Completion Criteria

Confirm the following points:

� Details of all selected prioritised critical information assets, and other software,

hardware, people, systems, and organisational system assets are captured,

associated, and asset modelled.

� Details of all related roles and personas performing tasks and processes where

critical information assets are depended upon are captured, associated, and

task modelled.

� Details of processes, and assets as external entities, data stores, and data-in-

flow, have been associated and modelled as data flows.

� Details of all related goals, responsible roles, contributing tasks and processes

depended upon are captured, associated, and goal modelled.

� Details of all selected threat, vulnerability, and attacker role combinations to

critical information assets and other related assets are captured, associated,

and risk modelled.

� Details of all selected threat, vulnerability, and attacker role combinations also

represented as obstacles are captured, associated, and modelled with goals.

� From potential goal and task obstructions, further risks to other SoS goals

being satisfied have been identified.

� Owners responsible and accountable for assets, tasks, processes, goals, and

risks have been noted throughout.

� Model validation checks have been performed.

� Threat model data has been reviewed.

� The mitigation strategy for each area of concern has been detailed, addressing

how each combination of threat, vulnerability, and potential impacts could be re-

duced or prevented at different levels with applicable controls and requirements.

(Continue with Step 8 - Task 3 and Task 4)

6.4.2 Chapter Summary

Within the first step of OASoSIS, the information gathered should aim to identify all

related stakeholders, specifically clarifying the independent system owners, their
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related SoS goals, and where operational and managerial control is in place. This

would aim to support the identification of dependencies between systems for po-

tential processes and people, contributing to related tasks and goal achievement.

When identifying assets, this should include their owners and related restrictions

or requirements, and security goals. Dependencies between asset owners and

delegated roles using critical information assets with other system related assets for

the storage, process, and transportation of information should be identified, along

with their related processes, and tasks, relating to goals. Sub-goals along with their

owners and roles of responsibility can be elicited to support or enable processes for

tasks completion, whilst supporting the satisfaction of a parent goal.

When using OA as a standalone process, Step 8 prioritises risks from high to

low, and selects a response to the risk, e.g. to mitigate, accept, transfer, or defer.

Controls and requirements may be specified at this stage. Alternatively, this step is

used to identify which of these risks should receive further assessment, considering

where risks may cause obstructions towards the success of specific goals, tasks, and

processes, with their roles and representative personas. Step 8 is extended to further

model, visualise, and assess the security risk and related human factors with tool-

support, providing traceability towards eliciting and specifying related requirements

for the SoS.

Where potential areas of concern identify threats and vulnerabilities towards

assets from threat agents, this supports risk-based decision makers by informing

which owners and roles are relative to the associated SoS risks. A risk owner can

be assigned, for example, to the assessing system or information owner. Where

elements of the risk extend to interoperability between people, processes and tasks,

and potential obstructions towards goal achievement, this specifically informs where

elements of the risk may be delegated out or transferred to other owners and roles

to implement related risk mitigating actions for the SoS.





Chapter 7

Case Study 1: Applying OASoSIS
with a Military Medical Evacuation
(MEDEVAC) SoS

Chapter 7 presents Case Study 1 that builds upon the NATO focused research

undertaken for the AMN in Chapter 4 and frames a NATO Military Medical Evacuation

(MEDEVAC) scenario of that time period as a SoS. The MEDEVAC Mission Network

(MMN) case study is used to introduce and validate the three contributions forming

OASoSIS. As detailed in Chapter 6, when combined, OASoSIS would represent an

end-to-end information security risk assessment and modelling process to assist

RBDM in SoSRE.

7.1 Applying OASoSIS to the MMN SoS

The first contribution of OASoSIS of which forms the first step within the information

security risk assessment process, includes a SoS characterisation process that was

applied to identify the relevant context of the MMN SoS. This was aligned with the

second contribution modifying the approach taken using the OA risk assessment

process, and applied in a SoS context to assess information security risks identified

within the MMN scenario. Feeding into the third contribution, the output of this first-

stage risk assessment from using the modified OA process would then be modelled

in tool-support for further analysis, using a goal-driven approach towards visualising
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information security risks and their related human factors. Findings towards the

application of each contribution are discussed, along with process refinements for

OASoSIS, supporting further testing and validation as an end-to-end process as

detailed in Chapter 8.

7.1.1 Case Study Scenario

Armed forces around the world rely on a symbiotic relationship between people,

processes, and technologies, and their systems have been designed with emergence

in mind. Many goals that armed forces are called upon to achieve, depend upon

interactions with coalition forces. However, each TCN to this coalition relies upon its

own people, processes, and technologies, and while each contribute to achieving an

overall SoS mission goal, each nation may have other goals that conflict with the

goals of other nations.

In previous work described in in Chapter 4 with the AMN SoS, a range of services

and mission threads vital to NATO operations were identified as shown in Figure

4.3, including support for MEDEVAC operations. These type of operations could be

considered a SoS given the joint-force collaboration to provide a MEDEVAC service.

Therefore, inspired by operations of that nature, supported by available literature and

doctrine documents that summarise relevant SoS goals, a reduced-scale example

of the typical interconnections of a Military MEDEVAC SoS was implemented.

There is much publicly available data in support of research activities towards

examples of military SoSs, e.g. doctrine documents that summarise SoS goals,

assisting with the identification of related requirements for the scenario. In addition

to the research undertaken about NATO forces and the AMN in Chapter 4, the

MMN scenario was based on documentation published by NATO and UK Ministry

of Defence (MoD) (NATO 2013), although much of the technological software and

hardware examples were only published through US and Department of Defence

(DoD) sources, e.g. (Pahon 2012, MC4 2018, Seffers 2011a c, Meier 2011).

However, some technology that was actually used by the US in NATO operations

has, in this example scenario, been moved under NATOs control, for example, patient

data uploaded into a central data repository. Some variations may therefore exist in

comparison to unpublished and classified activities. Nevertheless, the MMN SoS

case study was used to apply and test the three contributions of OASoSIS, and
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gained feedback and validation through focus group interaction with UK military

medical expert stakeholders, as discussed in Section 7.2.4.

In this scenario, the MMN considers a typical patient data-flow and intercon-

nections of three collaborating independent systems – Alpha, Bravo, and Charlie.

These are representative of a relationship such as a NATO operation with two TCNs,

coming together as independent systems collaborating to achieve a new or higher

purpose; to perform a continuum of care through medical evacuation. Alpha provides

designated management with Command and Control, whereas Bravo, representative

of a UK force triggers the MEDEVAC process, and Charlie, representative of a US

force provides the systems for forward transportation and medical facilities. Each

system is also reliant upon other sub-system interactions to fulfil the continuum of

care.

Tracking casualty movement from Point of Injury (PoI) through to repatriation

is required to regulate the treatment and flow of casualties, providing effective

correctly documented treatment, meeting patient, organisational and regulatory

needs (Hartenstein 2008b). As patient data is at the centre of the continuum of

care, this provided a focus for testing OASoSIS, considering examples of critical

information assets within the MMN SoS information security risk assessment.

The full MEDEVAC continuum of care provides additional patient evacuation

co-ordination to other stage hospitals outside the area of operation, often leading

to repatriation to other countries. Other stages would utilise a Patient Movement

Request (PMR) for Tactical Air MEDEVAC patient transfer from the FST to a next

stage HQ hospital. Strategic Air MEDEVAC would used to transfer patients outside

of the area of operations; this along with further care and repatriation to the home

nation is usually the responsibility of the independent system. At each stage of this

SoS interaction, each system has their own role in achieving the continuum of care

(Hartenstein 2008a b).

However, in this scenario, the primary focus is towards the initial MEDEVAC

mission goal – for Bravo to initiate the process in-field with Alpha, then for Charlie

Forward Air MEDEVAC to transport a patient from the PoI to a Charlie Forward

Surgical Team (FST) within one hour – The Golden Hour.

To illustrate the MMN scenario with its combined interactions, dependencies, and

data flows, this begins with a call raised for a MEDEVAC, initiated in-field by Bravo
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using a 9-Line request ; this is a template for the basic information needed for a

medical evacuation. Once received by a Joint Operations Centre (JOC) Officer, this

is communicated to and processed with the Patient Evacuation Co-ordination Cell

(PECC) who together initiate the MEDEVAC. Their mission goal is to transport a

patient to a FST within one hour from PoI, whilst depending upon multiple systems,

processes, and people to achieve its SoS goals, and keep patient information secure.

A first-stage Forward Air MEDEVAC is called to evacuate in-field casualties,

where the patient and details of care are provided by Bravo to Charlie. The Air

MEDEVAC team are then responsible for the care and transfer of the patient to a

suitable Forward Operating Base (FOB) FST, where details of care are provided, and

captured electronically by sub-divisions and different systems of Charlie. Further

context towards the interactions within this scenario is detailed throughout Section

7.1.2.

7.1.2 Applying OASoSIS

Prior to the risk assessment, the scope of the independent system collaboration and

its interdependencies must be determined. The main focus would be on identifying

where the SoS managerial and operational control was in place. During Step 0, when

characterising a SoS with Figure 4.2, this helps us consider initial questions detailed

in Section 4.2. It should, however, be noted that in order to answer these questions,

intelligence gathering should first be conducted to capture this type of information.

These questions may, therefore, guide the minimum amount of information for this

process.

Step 0 - Characterising the MMN

In this scenario, the MEDEVAC operation depends upon three main independent

system examples to perform a continuum of care through medical evacuation. These

are described as Alpha, Bravo, and Charlie, coming together as independent systems

collaborating to achieve a new or higher purpose. This scenario includes certain

stakeholders within the chain of care responsible for retaining and communicating

patient information at each stage. Details of this and other information are captured
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within the characterisation process to ascertain the wider context of the SoS and its

stakeholders.

MEDEVAC Management and Oversight

Stakeholder Involvement

The primary stakeholders include Alpha, Bravo, and Charlie. Alpha provides man-

agerial command and control to assist operations, although Alpha has other intercon-

necting systems to achieve this function. Alpha also provides medical oversight from

the main HQ outside of the operational area, and Medical Director functions at each

level of command. External stakeholders may exist, for example, with the integration

of other Air Traffic Management Systems, or development of some systems. Bravo

and Charlie each provide independent sub-systems of interaction for the SoS. For

example, Charlie Force 1 provides Air MEDEVAC, and Force 2 provides FST medical

treatment facilities. Moreover, both Bravo and Charlie may rely on individual external

air and medical facilities outside the area of operations. A number of stakeholders

therefore exist at different levels, although some local stakeholders may not be

recognised by all systems.

Governance

Governance is provided by Alpha, with support from Bravo and Charlie, setting out

formal procedures and doctrine broadly describing the collaboration requirements.

Along with NATO type joining instructions and other third-party type agreements,

these provide a foundation in which trust relationships are formed. Other require-

ments and regulations exist at independent system level. Managerial oversight, a

secure network, services, data repositories, and some software is provided by Alpha.

Whereas, funding for technical use and implementation sits with Bravo and Charlie

(Hartenstein 2008a b).
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MEDEVAC Operational Environment

Operational Focus

In this scenario, Bravo is the initiator of the process. A Bravo Field Unit’s Medic

provides in-field medical care, requesting the MEDEVAC and documents the care

given to the casualty, creating a chain of patient related information. Trust mech-

anisms are likely to be in place, supported by technical measures to ensure this

data-flow is maintained. Charlie has a greater role and depends upon more than

one system to achieve its mission, each individually operated to fulfil the process,

further managing patient care and documentation stored in Alpha’s shared data

repository. Bravo and Charlie, therefore, each retain a level of autonomy with some

competing interests. However, operations are driven by Alpha command levels and

the MEDEVAC operation, specifically through the PECC. Mission needs are guided

by the coalition COP of tactical and medical SA to achieve its mission safely and

securely (Hartenstein 2008a b, Meier 2011).

MEDEVAC Implementation

Acquisition

Some system and security requirements would be mandated by Alpha for participa-

tion, however, Bravo and Charlie would be responsible for capturing those needs

within their differing requirements to ensure interoperability. Alpha provides an ‘as

is’ configuration for command and control, using systems, services, and networks

developed and tested outside of the operational area. Various systems are also

integrated with different ownerships, e.g. the MC4 brand of in-field and theater

medical systems, or the Joint Medical Workstation (JMeWS). However, Bravo and

Charlie are responsible for acquiring and implementing their own systems. For

Charlie, this includes the common MC4 medical data system using software from

AHLTA provided by Alpha for accessing their central repository, the Theatre Medical

Data Store (TDMS) system. Charlie also use Laptops with AHLTA-Theater software

to add patient data. Other technical elements such as purpose-fitted Black Hawk

MEDEVAC helicopters and FST facilities are also the responsibility of Charlie, but

from separate sub-systems (Meier 2011).
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Test & Evaluation

It is likely that many of the lower level systems may not be fully tested at SoS level

before implementation. Trust boundaries may be an obstacle, as a negative could

have adverse impact on external systems. MC4 systems would, however, have been

tested by Alpha prior to its use and dependency. Charlie may achieve a degree of

testing given its inter-relations, but it is more difficult to align with Bravo, and Alpha.

MEDEVAC testing exercises outside of the operational environment may exist.

MEDEVAC Engineering and Design Considerations

Boundaries and Interfaces

Boundaries cover a range of contexts of people, process, and technology, across

land, sea, air, space and cyber domains. However, given the flow of data, cyber,

air, and geographical boundaries are of high importance, with multi-national data

regulations applying. The most immediate trust boundaries are between the three

independent systems and their sub-systems, interfacing with other systems and

assets.

Performance & Behaviour

Alpha continue to provide command and control with SA provided to all throughout

the continuum of care. This allows for on-going feedback to improve their own

capabilities, whilst providing input for independent systems to align and balance SoS

needs against system demands. Performance would also be monitored at casualty

level, with reduction of issues and rates of survival from critical golden hour care and

transportation (Hartenstein 2008a).

7.1.3 Steps 1-7 - Assessing Security Risk with OCTAVE Allegro

To perform a risk assessment, an amount of information gathering is required to

identify data assets and associated system asset interactions where data may

be processed, stored, and transported or transmitted. The new Step 0 provided

a process to support an assessment by framing the SoS and its context, and

identifying the type of SoS by its characteristics from the given scenario. For
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example, understanding where various management and control was in place for

systems and the SoS, indicating where accountability or conflicts may exist.

Using this process provided the foundations and scope of the SoS to determine

the systems-of-interest and related elements to be assessed. The second con-

tributing part implements OA Steps 1-7 as detailed by Caralli et al. (2007). These

are applied within the modified version of OA to perform the first-stage identifica-

tion, analysis, and evaluation of SoS information security risk and human factors

concerns.

Steps 1-7 were used to produce an example security risk assessment using the

MMN, first from the view of one independent system, Bravo and their interaction

with the SoS, then later repeating the process for other system assessment views.

Having characterised the MMN scenario as an Acknowledged SoS, this process

identified relevant stakeholders, boundaries, and where managerial and operational

independence, and control were in place for MMN, pointing to areas of dependency,

complexity, and potential risk.

In Step 1, system stakeholders would normally be relied upon to collaboratively

agree the criteria in which risk may impact upon a system and its interaction with the

SoS, and within which parameters. For example, if the impact of a risk would create

financial penalties, the criteria category for financial penalties aligns with a scale to

define a Low to High financial impact contributing to the risk equation. These were

applied accordingly to the context of the scenario. In OASoSIS, the parameters are

within the bounds of impacts being Negligible 0 - Marginal 1 - Critical 2 - Catastrophic

3, therefore the criteria would be divided into four horizontal sections accounting for

impacts within these different degrees.

Much of the standard vertical categories in the OA criteria gives focus towards

typical business impacts, but accounts less for the impact on human factors. Given

the socio-technical nature of SoSs, aligning the concept of HFSI in Step 1 aimed to

address this gap, whilst accounting for impacts towards interoperability within the

socio-organisational impacts. As the criteria categories are prioritised, e.g. 10 to 1,

with 10 holding the highest importance, balancing business and human needs or

impacts would require stakeholder discussions to agree each level of importance for

each category, particularly in SoSs where safety is paramount.
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Steps 2 and 3 considered the likely information assets used in the MMN scenario,

specifically considering the critical assets and where they were stored, processed,

transported or transmitted. For example, this included data captured by using a Field

Medical Card (FMC), the 9-Line Request using radio communications, verbally com-

municated information between entities, and subsequent data stored electronically.

To identify and analyse potential areas of concern, Steps 4 and 5 considered

initial concerns towards how information assets are used, then introduces threat

scenarios in order to establish likely threats and weaknesses towards assets with

a potential for risk. Steps 6 and 7 were applied to analyse the areas of concern

towards information assets and their related systems, considering the probability

of the threat and vulnerability combination occurring. Then, an impact score was

applied relating to each of the risk criteria categories, and multiplied by its risk criteria

level amount. This was multiplied again against the probability to account for the

likelihood of the impact and severity, thus providing an overall risk score.

By the nature of OA, documenting threats and concerns of critical patient infor-

mation assets could be spread out over many sheets of paper for a single asset. For

flexibility, this was instead entered into spreadsheets, but later converted to a single

line all-in-one spreadsheet, considering areas of concern for the process, storage

and transmission of data, by people, physical, and technical means, then assessed

the impact and probability of the occurrence.

Leading into Step 8, each of the risks were reviewed to identify groups of higher

and lower risk, at which point a decision can be made whether to avoid, accept,

transfer, or mitigate a risk. Suitable controls can be agreed and applied towards each

risk relating to the system interactions within the SoS. Information assets with areas

of concern that indicated higher probability and severity risk scores were, however,

then selected for further modelling using CAIRIS, although the challenge was to

identify how and where this information could be suitably extracted from OA and

visualised with CAIRIS.

7.1.4 Step 8 - Modelling with Tool-support

The third contributing part of OASoSIS introduces certain concepts, models, and

techniques, integrated with the use of tool-support to extend the assessment in Step

8. It is this contribution in particular that supports the SoSRE domain towards the
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modelling and visualisation of SoS risks and related dependencies to achieve the

SoS goals securely. Moreover, it is by introducing this combined output that facilitates

decision makers’ understanding towards the criticality of activities performed with

related assets. This includes the owners, roles and responsibilities for ensuring these

are completed securely to achieve the SoS goals, and who would be responsible

and accountable for mitigating identified risks.

To begin modelling a SoS in CAIRIS, a separate environment was created

to represent the view of each independent system, and an additional overview

environment to capture all interactions. In the initial Bravo view, an asset model was

first populated, where an asset is used to represent the SoS as a single entity. This

SoS could then be decomposed using a top-down approach associating each of the

main independent systems and sub-systems assets with people and information

assets.

In Bravo’s view, this would include the known interactions between the constituent

systems where Bravo has direct interaction with other systems. Associations may

also be an aggregation or composition to its parent asset. This was later repeated

for the other systems in other views, providing a bigger picture towards the different

interactions interconnecting for the purpose of the MMN.

Systems are represented at higher level as an organisational level system asset

who may in turn have lower level organisational systems, each of which have

technological systems where human actors interact with software and hardware

combinations. Information or data assets may also be physical and paper-based,

or a person and the knowledge they hold that may also be communicated verbally,

and which may then be entered into a software interface and database, creating an

electronic version of the data.

Modelling Roles and Personas

All main assets from within the MMN scenario were modelled and associated with

roles of key stakeholders and actors performing the continuum of care, reflecting

areas of responsibility for systems and interoperability. This included certain activities

and tasks performed by specific roles undertaken by a person. Specific risks carried

over from the OA risk assessment also helped to highlight these activities where a
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data asset may be at risk by a human, accidentally or maliciously, or trust may be

diminished in some way.

Roles were then associated with personas, representative of archetypical descrip-

tions embodying the goals of users offering insights into threats and vulnerabilities.

Attackers were modelled and assessed in a similar way, reasoning about the intent,

skill, or means of an attack by an actor internal or external to the SoS. Personas

were implemented to further reason with human factor considerations and the con-

sequence of actions when assessing security risk and related requirements.

To do this, CAIRIS supports the alignments of Toulmin argumentation models

to justify persona characteristics (Faily and Fléchais 2010). The Persona Helper

Chrome plugin (Faily 2018c) was used to capture factoids from online and offline

data, such as a webpage and clips of text within it. These factoids were stored within

CAIRIS, and exported to a Trello board (Trello 2018) that itself can be used as part

of the affinity diagramming process. A further example of using Trello for affinity

diagramming is discussed by Faily and Iacob (2017). Elements relating the output of

this process capturing an Air Medic persona’s characteristics are shown in Figure

7.1. Once the factoids were grouped into characteristics, these were marked as a

grounds, warrant or rebuttal supporting the argumentation of the characteristic, and

imported directly back into CAIRIS to create a persona and related model derived by

using grounded theory.

This resulted in the creation of six personas supporting the goals, tasks and

scenarios. These were:

- A Field Medic;

- An Air Medic;

- A FST Technician;

- A JOC Officer;

- A PECC Co-ordinator; and

- A Casualty.

In CAIRIS, roles can also be attributed to being a ‘data controller’, similar to that

of a ‘data processor’ in relation to a ‘data subject’. Although these specifically relate

to privacy requirements, they were added to the MMN model, but not tested. That

said, the privacy validation did not return any errors, suggesting at a basic level,
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Fig. 7.1 CAIRIS Persona Characteristics and Model with Trello

privacy elements were considered, but creates a future opportunity for incorporating

privacy by design using this SoS model and scenario.

Modelling Personas and Tasks with Use Cases

Personas were associated with tasks, and use cases were created to represent steps

of the task. The use case and its sub-steps represented the process for completing

a task step carried out by an actor. A use case would, however, be associated with a

role that would likely be associated with the persona, although other roles may apply.

Once the tasks were created, the use cases representative of each of the task were

linked to its related tasks through traceability links.

In this scenario, task steps would include an instance where no software and

hardware interaction may occur with physical patient data, but would lead to steps

where this does occur by users from other systems. For example, where information

originating from the FMC based on patient injuries and care given, is verbally

communicated and travels along the patient journey across organisational systems

forming part of other medical information. Some of this information is also copied

into electronic formats by two personas.

Modelling Data Flows and Boundaries

In parallel, data flows and trust boundaries were then mapped, further highlighting

needs for interoperability. To create data flows, assets were used to represent
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external entities as people, systems or hardware, information assets were used as

data stores, and use cases represented the processes between data flows. As some

data flowed from assets of one environment to another, these interactions can be

represented from one trust boundary to another, viewed in a Data Flow model.

Boundaries were further represented using the Location model, where a location

can represent sub-locations in which an instance of an asset occurs, e.g. a house

has rooms. We can also link these sub-locations, e.g. if we have a hall, these can be

linked to the rooms. In this scenario, the different areas of operation were accounted

for. All related assets for that location were populated along with personas carrying

out a task in that environment. Locations included a FOB, in-the-field, and HQ. When

risks were created, risks to assets were also seen in the Location model.

Modelling Risk

There were a number of options for modelling and visualising elements of risk

in CAIRIS. The primary risk-focused option entailed modelling where threats and

vulnerabilities were associated, which equate to a risk for systems and the SoS.

Once assets, tasks, roles and attackers were created, threats and vulnerabilities

could be added with an associated misuse case equating to a risk, viewed in the

CAIRIS Risk Analysis and Task models. The models indicated where some risks

may occur in one environment which may affect a system in another environment, or

some risks may occur across all environments, or be specific to a sub-system in one

environment.

However, this representation originally created a strange effect in CAIRIS, where

a risk could be situated in one environment, but is applicable and visible to another

where no misuse case is present. To remedy this, in addition to other built-in

validation, CAIRIS developers added a means to identify and alert to where an

instance of this risk scenario occurs; thus indicating a useful early finding towards

improvements to CAIRIS, specific to the SoS context.

Once risk elements have been added and combined in CAIRIS, a threat model

listing is self-generated, demonstrating where certain aspects, entities, and data

flows are at threat. It is therefore from these combined visualisations of risks that

we can begin to consider where requirements and controls need to be specified to
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mitigate the risks to assets, tasks, and goals, related to roles and persona interactions

within the SoS.

Modelling Goals and Obstacles

Goal and Obstacle models in CAIRIS provided the option to model system-specific

requirements, using a top-down or bottom-up approach, where goals and sub-goals

were operationalised by tasks, and refined into requirements. However, in the MMN

scenario, the required tasks and high-level system goals had been captured, but

needed to further identify areas in which to elicit the system sub-goals. Each of the

sub-goals were therefore selected to enable or support the process steps of a task

carried out by a persona.

The representation of Responsibility models also added value by demonstrating

where a role was responsible towards an asset, related to a task, goal, requirement,

and elements of risk. Where a role is responsible for a goal, this can be added within

the sub-goal association of the goal. The Responsibility model is another example

of a self-populating model, generated as part of the KAOS Goal model as other

elements are added and interlinked within CAIRIS. This model indicated a sense of

where control was in place, and is generated primarily from goal model elements.

Obstacles were then used to represent a threat or vulnerability towards an

information asset identified in the Risk model potentially obstructing the completion

of other tasks and satisfaction of goals. For example, threats of unauthorised access,

use, disclosure, disruption, modification, or destruction of data or systems affecting

the continuum of care. To address the goal obstacles, these were refined into

requirements to satisfy the system interaction with SoS goals. This became more

difficult when there were conflicting requirements or where there was no direct

relationship between some systems, meaning trade-offs needed to occur between

systems and requirements to maintain interoperability and trust.

For example, the communication of the FMC information may require its Integrity

and accuracy of patient data to be upheld. Whereas, for information that later

becomes stored electronically by another system, Availability may be a higher desire,

because without the information, treating the patient accurately is difficult. However,

in both cases, once in electronic format, Confidentiality may be of higher importance,

but in all cases Accountability should be present.
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7.2 Discussion

The OASoSIS approach was introduced with the MMN scenario to align SoS factors

and concepts suitable for eliciting, analysing, and modelling security risks and human

factors using tool-support within the SoS context. The application of a reduced-

scale example of a Military MEDEVAC SoS case-study was purposely limited to a

simplified abstraction of a SoS. However, as is often the case, with any simplicity,

there is always complexity, perhaps more so in a SoS scenario. By applying each

of the contributions that form OASoSIS, this helped to provide an understanding

towards those ensuing complexities of the SoS.

7.2.1 Applying Step 0

When using the characterisation process in Step 0 with the MMN scenario, given that

NATO joint-force operations may be considered as a grouping acting as one force,

early assumptions could indicate some alignment with this type of SoS as being

a Directed SoS. Although Alpha would mandate standard operating agreements

(STANAGS) and doctrine, each independent system of the SoS operates with its

own autonomy and operating procedures. This can be demonstrated where Alpha

has no direct link to Charlie Air Corp, who have operational and managerial control

of Air MEDEVAC, who Alpha does interact with.

Despite this type of example, Alpha, Bravo, and Charlie are reliant upon the

collaboration to fulfil the SoS mission needs, suggesting qualities of a Collaborative

SoS. The conclusion of the review determined the MMN to be an Acknowledged

SoS based on its high-level distinction of designated management by Alpha, but with

limited control over the independent collaboration of Bravo and Charlie who retain a

high-degree of operational control in the SoS.

Other SoSs also exist within this configuration. For example, the Electronic

Health Record (EHR) data flow to support the continuum of care consists of various

systems providing input and output, some of which interface with home nations

(Meier 2011). Also, the MC4 systems providing tools to digitally record and transfer

medical data using joint medical software, with commercial and government-off-the-

shelf products, acting as a deployed EHR repository for battlefield surveillance (MC4
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2018). Additional considerations such as these may only become apparent once

systems information has been gathered and assessed.

The characterisation process was important for identifying the main stakeholders

and dependencies between independent systems, and identifying where other SoSs

also exist within this configuration of the MMN. For example, the infrastructure

supporting the MMN data flows, and the MC4 systems used by Charlie to digitally

record and transfer medical data. However, as Bravo does not have processes in

place and access to these systems, interoperability and communications is reduced

towards patient data flow, suggesting an area of improvement for future joint-force

operations. This point in particular was highlighted when validating the scenario

and approach with military medical experts, who provided further clarity towards a

typical joint-force MEDEVAC operation, and potential data flows at risk, helping to

fine-tune the scenario and its assessment. Stakeholder feedback is discussed in

Section 7.2.4.

7.2.2 Applying Steps 1-7

Where the OA element has been to be modified to provide a simple repeatable and

reusable process for identifying information security risk in a SoS, early findings

suggest the alignment of its data collection and output has the potential to align

with selected concepts, models, and techniques in a tool such as CAIRIS. It was

found that OA was generally asking the right questions, and could be useful as a

means through CAIRIS to convey operational needs to SoSRE, but requires further

refinement. For example, Step 0 already begins to capture details of stakeholders,

organisations, and other persons of accountability and their related SoS assets.

However, as this feeds into Steps 3 and 4, there is an opportunity to document more

of this information earlier as part of OA within the spreadsheets.

Steps 1-3 may also run in parallel, thus changing the original flow of OA. The

introduction of HFSI to the risk criteria was useful towards capturing the human

related impacts to the wider SoS, whilst indicating interoperability and other engi-

neering impact related concerns. Being mindful of this from these early steps helped

maintain that focus whilst progressing through other steps.

Changing the order of OA Steps 4 and 5 to consider threat scenarios earlier to

capture potential areas of concern would seem a more effective approach to provide
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focus to areas of exploitation. For example, the original steps first required the

assessor to consider scenarios where there may be a concern, then provided threat

scenario questionnaires to identify if they would actually be a potential risk. However,

in OASoSIS, this should provide the threat scenarios earlier to indicate example

areas of focus towards threats and vulnerabilities in order to establish likely concerns

and potential for risk. This would not only improve the efficiency of the process steps,

but would help less experienced stakeholders or assessors to arrive at the how and

why aspects a little quicker guided by the scenario-based questionnaires.

Furthermore, where OA considers concerns, threats and threat scenarios, it does

not explicitly document the potential weakness or vulnerability, where it perhaps

should. This was, however considered to provide a more clear and complete risk

equation, and further enables better data capture into CAIRIS towards addressing

the weakness.

At the point of applying Steps 6 and 7, the spreadsheet capturing the risk data

became quite large to manage, but more manageable than many pieces of paper.

Nevertheless, these steps provided a means in which to analyse and evaluate the

probability and severity of impacts that could the be prioritised for further attention

leading into Step 8. This was not only an important consideration towards managing

and prioritising quantities of risk, but also to be mindful of the quantity of assets that

would be modelled, because even when using tool-support, models may become

complex.

The focus did, however, remain towards identifying information security risks and

their related human factors concerning information assets and their dependencies

towards the MMN achieving its SoS goals. In comparison to the standard OA

approach, the modified version was driven by this focus assisted by the broadening of

socio-technical impacts towards independent systems and their ability to interoperate

at different levels with the SoS to achieve its goals.

7.2.3 Applying Step 8

Data output from OA into CAIRIS provided most of the information required to

generate selected models and requirements, with some additional details from initial

data collection for rational. Unlike other versions of OCTAVE, the benefit of OA

to operational areas is that it gives a specific focus towards the information asset
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and its related security properties, e.g. Confidentiality, Integrity, Availability, and

Accountability. When translating this into CAIRIS, we find that we can identify what

security properties must hold for each information asset, but have little indication of

security needs for other types of system assets.

This appears to be a weakness or limitation of OA, but could be turned into a

strength when considering how information assets from one owner or independent

system should be treated by other people and systems within the SoS context

towards its process, storage and transmission, some of which are outside of their

control. Specific security and human factor needs and potential requirements

conflicts may then be identified and addressed to meet SoS needs.

Combining models first provided a view for Bravo and their SoS interactions, with

additional views added for Alpha, Charlie, and a combined view of all interactions.

Each environment highlighted where dependent relations and security risk exists

towards fulfilling the continuum of care, whilst supplying reasoning towards SoSRE.

The use of environments representing views of independent systems helped to

provide an element of clarity towards framing different aspects and concerns for each

of the system views. When modelling multiple systems across different environments,

naming convention and terms across environments did become a challenge to

indicate in the models which element related to each independent system.

Understanding in what order to build SoS models is also a process efficiency

consideration. In CAIRIS, this began with assets, roles and personas, then goals,

tasks, and use cases. Others may be applied in different orders. However, models

may also be used for various purposes across different engineering or design

teams, therefore, understanding how these models inter-link plays a further role in

understanding the viewpoints and varying needs of SoSRE and related stakeholders.

The integration of goal modelling is, however, central to the modelling element of

OASoSIS, underpinning the process guided by the SoS goals identified during Step

0, and illustrated in Step 8 as goal-driven requirements aligned with the supporting

tasks, processes, people and roles related to the SoS context and the identified risks

and concerns. From the analysis, the impact towards the SoS achieving its goals

can be determined, helping to guide decisions towards mitigating risks and satisfying

these goals, whilst reducing the wider risk criteria impact areas identified in OA.

Moreover, by extending OA and applying the modelling process, this specifically
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helped to identify further impacts to the satisfaction of SoS goals that were not

apparent from the first-stage assessment.

The responsibility model was useful for demonstrating the roles of responsibility

that may be associated with elements of the risk equation, however, it is was evident

there was still a gap for RBDM towards capturing the important link between the

owners with authority for the different objects. For example, owners of assets, tasks,

goals, processes, and risks, details of which were largely captured during Steps

0 to 5, but became redundant or unaccounted for when transferring data to the

tool-support.

It is from these owners and authorities where authority is delegated to roles with

specific responsibilities that could be made more explicit. Moreover, it would be

useful to visually indicate those owners with accountability alongside the roles of

responsibility within the modelling process. This would provide continuation and

consistency of important data already captured, and provide critical information to

help inform RBDM regarding the entities likely to be the risk owners responsible and

ultimately accountable for mitigating the elements of risk attributed to the SoS.

7.2.4 Stakeholder Review

In addition to previous data and interviews to help ground the NATO-based sce-

nario, expert military medical stakeholders representative of Bravo decision makers

provided feedback and clarifications to help validate this scenario, whilst adding

context towards how Bravo may interact in this scenario with Alpha and Charlie. This

was extremely useful for OASoSIS towards shaping its application, fine-tuning the

modelling and assessment, and validating the soundness of the SoS structure being

generally representative for the scenario presented.

A focus group was arranged and chaired by Dstl, and hosted at a UK military

facility. Five military and defence representatives were in attendance at the focus

group, two of whom had extensive backgrounds towards UK and NATO commu-

nications, networks, and operations. Three other senior personnel with extensive

experience in UK and NATO medical operations provided specific feedback towards

co-ordinating the medical evacuation and patient data-flows from PoI to a medical

treatment facility.
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Stakeholder feedback suggested that by following the SoS characterisation pro-

cess of Step 0, this approach provided a useful process for a SoS level stakeholder

to first align with the SoS concept, and to identify specific characteristics of an

interconnected systems environment. Then, potentially classify it as a SoS based on

this output, clarifying where managerial and operational independence and control

are in place for the SoS. This in-turn could direct future assessment of areas of

dependency, responsibility, and complexity, or specific areas of concern and risk.

During the focus group, stakeholders also created a diagrammatic whiteboard

board example of the operations relevant to the scenario. This was used as a point

of reference throughout the discussions to review and compare various interactions

and dependencies at different stages of the medical evacuation. The whiteboard

diagram was also useful for validating how the structure was very similar to that

which had been modelled within CAIRIS, and which was also very similar to a

joint-force operational structure indicated in an unclassified but unpublished NATO

document. Stakeholders were, however, keen to point out conflicts in terminology.

For example, where much of the supporting information for the case study was

based on the interactions of American forces with NATO, and supported by other

NATO publications also, a Tactical Operations Centre would instead be referred to

by British forces as a Joint Operations Centre. A simple, but nevertheless important

observation for the stakeholders.

Stakeholders also clarified where Bravo would not have interoperable systems

and processes in place to interact with some TCN systems. For example, Bravo

reduces some of their security risks simply by continuing to use certain manual pro-

cesses, whereas Charlie are much more dependent on electronic system interactions

for patient data-flow, thus increasing their cyber element of security risks.

The risks identified when using OASoSIS, were otherwise considered representa-

tive for the MMN scenario, although it was acknowledged that co-ordinating changes

to processes and controls with TCNs can be a challenge given the different levels

of ownership and control across the systems. Nevertheless, it was considered that

providing the means and traceability to support the need for change and risk reduc-

tion towards security goals is an important aspect for stakeholder communication in

NATO operations, especially where there is an implication that lives and patient care

may depend upon it.
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7.3 Chapter Summary

In this chapter, based on work towards RQ1, and considerations to inform and learn

from RQ2 and RQ3, OASoSIS was introduced and applied as an approach that

combined three contributions to align SoS factors and concepts suitable for eliciting,

analysing, and modelling SoS security risks using tool-support. The application of

OASoSIS began with a simple repeatable characterisation process implemented with

the MMN SoS example, helping to characterise and define the SoS collaboration,

its context and environment. Risks to critical assets were identified and analysed,

providing risk data output that could then be aligned with concepts, models, and

techniques integrated with tool-support to provide further visualisation and analysis

of SoS risks and goals to be accounted for within RBDM and SoSRE.

The application of OASoSIS demonstrated its value, with early findings suggest-

ing the alignment with a tool such as CAIRIS can provide many benefits for translating

operational needs into goal-driven requirements. Findings also highlighted where

the modelling process could be extended within the tool-support to enhance the

completeness of aligning ownership and accountability with responsibilities captured

within OASoSIS, thus supporting RBDM.

In support of additional validation, peer review was gained through the publication

of elements of this work, first with characterisation process in Ki-Aries et al. (2018b),

and modelling with tool-support in Ki-Aries et al. (2018a). As a continuation of this

research, the OASoSIS process would be further refined based on findings from

the MMN case study. OASoSIS would then be re-applied as an end-to-end process

with Case Study 2 in Chapter 8 to identify and assess areas of information security

risk and related human factors, thus providing further validation of OASoSIS as an

end-to-end information security risk assessment and modelling process to assist

RBDM in SoSRE.





Chapter 8

Case Study 2: Applying OASoSIS
end-to-end with a Canadian
Emergency Response SoS

Chapter 8 presents Case Study 2 that considers a Canadian Emergency Response

System as a SoS, applying OASoSIS to a real-world problem and intervention in sup-

port of possible future operations for Mutual Aid Alberta (MAA). This research fuses

all RQs building upon previous findings to apply the refined process of OASoSIS to

the case study scenario. This combines the three contributions tested and validated

in Case Study 1 representing an end-to-end information security risk assessment

and modelling process to assist RBDM in SoSRE. The context, application, and

findings of the case study are presented to discuss each step applied.

8.1 Applying OASoSIS to an Emergency Response

SoS

There is an increasing reliance placed upon the technical and social system in-

tegrations to deal with consumer and economic demands, whilst coping with and

responding to unexpected changes within the world. This is exemplified by how we

adapt to natural disasters and the socio-technical interdependencies associated

with dealing with such events to protect public interests, communities and the envi-
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ronment. However, communicative interoperability between all dependent entities

becomes a challenge. Software systems that are integrated to help attend to such

disasters, are not always designed towards the wider context, or therefore account

for the wider socio-technical system perspectives.

For example, in some parts of the world, wildfires are more prone to start earlier

in the season and are often lasting longer. Consequently, the effect of these events

can have a long-term impact upon both the environment and the economy. As

a result of a narrowed scope, this affects the ability to reason with the needs for

strategic, operational, and tactical requirements and controls, which need to be

better integrated to reduce the wider impact of such disasters.

An emergency management scenario is a classic example of a typical SoS where

independent systems such as police, fire, ambulance, and local authorities, each

with their own day-job, come together to meet the joint emergency response mission

goals. Achieving and maintaining SoS-wide interoperability is particularly challenging

for systems in these scenarios, e.g. through different processes or technology.

Moreover, information assets related to the socio-technical interdependencies need

to be secured, but available on-demand when required in emergency situations to

facilitate communications and SA.

An example of this research challenge was posed by MAA: a Canadian non-

profit organisation supporting Alberta’s emergency response capability. MAA were

considering design options for an instant messaging system that could potentially be

used by emergency responders engaged within incident response, e.g. a wildfire.

This software engineering design challenge was presented to the RE Cares track of

the 26th IEEE Requirements Engineering conference in Banff during August 2018,

where stakeholders from the RE community converged to help identify potential

users of such an application, and the typical functionality required to fulfil its purpose

(Dekhtyar et al. 2019).

However, given the wider context of the operational environment in which the

application would be situated, and the multi-level stakeholders within the environment,

it was considered that at a higher level, the MAA intervention would also benefit

from applying a different perspective towards a SoS approach. Taking a SoS

approach would instead aim to account for the wider technical and social system
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goals, perspectives, and potential risk-based impacts towards the SoS achieving its

goals.

In the MAA example, early indications from collaboration with RE Cares sug-

gested there were many related human factors and information security needs across

multiple systems under different ownership, authority, and control, some of which

may have no clear boundaries, conflicting requirements, and a web of complexity.

This example further demonstrated the need for developing new approaches, and to

evolve existing RE capabilities to cope with the complexity of SoSs. This need has

been motivated by SoSRE communities, calling for a greater focus towards engineer-

ing for SoSs, including multi-level modelling techniques and security requirements

frameworks for SoSs (Ncube 2011, Ncube et al. 2013, Ncube and Lim 2018) to

capture the needs of SoSs against the potential for risk affecting goals of the SoS

being achieved.

Nevertheless, it is acknowledged that when engineering for SoSs, bridging the

communication gap to convey the operational needs of independent systems to

SoSRE is difficult. Security requirements and system needs can become lost in

translation. This is exacerbated in SoSs where multiple stakeholders exist, but

not all are known. This means only limited information may be available to support

RBDM. The trust placed upon the resilient interoperation of communications between

systems, processes, and people is critical to the success of the SoS (Fan and

Mostafavi 2018). Such trust is warranted only when potential SoS security risks are

identified and managed.

8.1.1 Case Study Scenario

Within the original collaborative RE Cares and MAA project, the primary focus of

the intervention was to support the software engineering process for application

design. However, this case study implementation instead takes a different approach

to the problem domain. To test and illustrate OASoSIS with further analysis of the

modelling process supporting SoSRE, this took a snap-shot of a possible scenario

related to the original RE Cares output of the MAA example (RECares 2018). The

scenario was considered from a broader perspective, defining the MAA Emergency

Response System instead as a SoS (ERSoS). Some variations exist in comparison

to unpublished or classified business and emergency operations.
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In this scenario, the infrastructure for the ERSoS would be provided by MAA

to support the use of an emergency response application, specifically to facilitate

command and control functionality assisting an emergency incident. This would

be co-ordinated by local and provincial Incident Command Systems (ICS), whilst

integrating supporting data from the MAA emergency resource portal maintained as

part of their day-job.

MAA would come together with the ICS, which is made up of different systems

and emergency responders using the emergency response application, e.g. Emer-

gency Medical Technicians (EMT), Firefighters, and volunteers. Roles would be

assigned within the proposed MAA software application relevant to the location of

the emergency and related expertise. Also included is the Community as an entity,

but individually become evacuees who would then be dependent upon the communi-

cation flow of the messaging system. This dependency becomes much greater if

functionality is built-in for evacuees, either relying upon the software application for

public information alerts, or individual requests and responses from evacuees.

In a larger-scale emergency, individual responses may require considerable

resource and manpower to manage this function. Although there was a potential

towards including functionality for evacuee notifications and alerts for members of

the community, it was unclear to what capacity this may be facilitated, including the

human and technical resource required to manage and monitor such alerts to the

extent this could require.

Further domain-specific research also highlighted how the MAA ERSoS was

actually part of a much greater set of SoSs. For example, where an instance of an

ICS was itself a SoS feeding into the Municipal, Provincial, and Federal levels of

the Canadian Emergency Management SoSs (EMSoS), supporting public safety

throughout Canada. Although other SoSs form part of the bigger picture, the main

focus and supporting data of this case study considers the view from MAA as an

instrumental independent system to the ERSoS, where other immediate independent

systems include the ICS and Communities, thus providing a focus towards the typical

stakeholders, roles, activities, interactions, and communications for consideration

and assessment within the scenario. Further context towards the interactions within

this scenario is detailed throughout Section 8.1.2.
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8.1.2 Applying OASoSIS

In addition to some participation working with stakeholders from MAA and RE Cares

during the RE Cares workshop sessions, several publicly available datasets and user

experience (UX) artefacts related to the MAA scenario and SoI were made available

by RE Cares (RECares 2018). These would also be shared between stakeholders in

a project setting to support design purposes, and could be used for further analysis.

Making use of the interactions with RE Cares and MAA and the subsequent

published datasets would be complete enough to support the ideation around the

design problem, extending from a software focus, instead to a wider SoS context of

analysis. However, additional validity of the personas and scenarios derived by the

RE Cares development stakeholders was required, as the assurance of data feeding

into a risk assessment was important to identify where further information may be

required, or assumptions may not be warranted. This assurance was be obtained

through further requirements notes derived during the event that were overseen by

the stakeholders, validating their relevance to the context of the MAA scenario.

OASoSIS would be applied to the MAA case study scenario utilising the RE

Cares data, further validating the three contributions that represents an end-to-end

information security risk assessment and modelling process to assist RBDM in

SoSRE. The preliminary evaluation of OASoSIS demonstrated its suitability as a

tool-supported information security risk assessment process within the organisa-

tional SoS context for independent systems. Based on the lessons learned from

the evaluation in Chapter 7, OASoSIS was refined to provide a clearer indication

towards the significance of tool-support. By decomposing the problem domain into

different models from the view of an independent system, different perspectives

of the system interactions throughout the SoS can be obtained. This includes the

resulting dependencies between people, processes, assets, tasks, and goals, that

may be impacted by identified information security risks.

With this as the focus, to capture the information security and human factor

concerns in the MAA scenario, OASoSIS begins in Step 0 with a process for charac-

terising the SoS, identifying its goals, system stakeholders, levels of operational and

managerial control, and roles and responsibilities for main system interactions of the

SoS. The application of this step would be important towards identifying the MAA

context and scope of the independent system collaboration and its interdependen-
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cies towards the ERSoS, and where managerial and operational control is in place

with accountability.

The process in Step 1 for establishing a risk criteria for the SoS interaction

has been extended from the standard OA impact areas, combining considerations

towards HFSI to acknowledge human related impacts of the SoS. Steps 2 to 7

continue to identify critical information assets and the systems in which they are

stored, processed, and transported, and by whom or what. Threat scenarios help

to identify where there may be areas of concern towards the security of the assets,

and subsequent outcomes if the threat to a weakness was realised.

Step 8 prioritises risks, and enables a second-stage deeper assessment integrat-

ing IRIS concepts with tool-supported modelling of the SoS using CAIRIS, fusing the

goal-driven approach to support RBDM. Once Step 8-Tasks 1 and 2 are complete,

the resulting critical risk data enables further detail and context to model elements of

the SoS. Roles, personas, high-level goals and independent systems as assets may,

however, begin to be modelled with data captured from Steps 0, 2 and 3.

These elements of risk align with details of tasks and likely processes where

information flow between systems and entities may be at risk, and where task and

goal obstructions may occur. Tasks provide narratives describing how people carry

out work in the system being specified. IRIS characterises people using personas,

where responsibilities can be allocated to roles associated to personas. OASoSIS

leverages the IRIS conceptual relationships between roles and responsibilities, as

illustrated in Figure 8.1.

Dependency

Role
*

*

Asset

Goal

Persona

Attacker

Task

1..*

*

1..*
*

1..*
*

Fig. 8.1 IRIS Role and Responsibility relationships used by OASoSIS
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This complements other IRIS concepts, for example, with IRIS risk and KAOS-

based goal concepts (Van Lamsweerde 2009), and task concepts as shown in Figure

8.2. The integration of these concepts would also be helpful towards identifying

where personas may become overloaded with responsibilities, or may be overly

dependent on other people; this may lead to potential vulnerabilities (Faily 2018b).

Although not shown in Figure 8.2, some of the IRIS concepts present are aligned

with DFD concepts. Use cases are synonymous with processes, and certain types of

assets are synonymous with entities and data stores. With the additional concept of

data-flow, this makes it possible to model DFDs in order to capture how information

would potentially flow across the ERSoS. How IRIS is conceptually aligned with

DFDs is described in more detail in Coles et al. (2018).
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Case
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Task

ThreatVulnerability

Risk

*
Goal *

*
Obstacle *

*
*

*

*

*

*

1..*

* *

*
1 1

*

*

*

*

Asset
*
*

**

*

*

1..* 1..*

Fig. 8.2 IRIS Risk, Task, and Goal relationships used by OASoSIS

These combined elements would help to provide the foundation for deeper

analysis into security and human factor concerns within the SoS, and reasoning

towards system requirements to support or enable SoS processes and tasks, to

achieve ERSoS goals.

Furthermore, previous findings in Chapter 7 also highlighted the evident gap

towards the application of modelling, illustrating who is accountable for what, where,
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and whom, e.g. assets, tasks, processes, goals, risks, and their associated roles

of responsibility within the SoS. When accounting for security and human factor

risks and concerns during SoSRE, it is important to capture in as accurate detail

as possible all known critical operations and system interactions of the SoS, and

their nodes of ownership, authority, and accountability where independent systems

and the SoS as a whole are dependent upon its operability and interoperability.

In particular, where information flows are critical to the operation, it is crucial to

clearly understand who controls what, and who is responsible and accountable (Boy

and Grote 2011) where assets are used in tasks to achieve goals, which may be

obstructed by risks and their potential consequences.

This may be captured, modelled, and analysed from different perspectives. For

example, from an organisational and systems perspective, this identifies the general

top-down structure, and bottom-up SoS interaction with specific goals, roles, and

tasks important to the problem domain. Whereas, from an information security risk

assessment perspective, this begins with who owns the information assets, the in-

tended use, context, and security needs, then in which internal and external systems

the information assets are to be stored, processed, and transported between, whilst

capturing related owners and roles of responsibility.

The concept would, therefore, be aligned with other IRIS concepts. A meta-model

representing the owner concept towards assets, goals, tasks, processes, and risk

elements that aligns with IRIS concepts is shown in Figure 8.3. This would specifically

align with meta-data already captured within each Tag field of the meta-model

components integrated into CAIRIS that have been used to specify and capture the

organisation, person, or role regarded as the owner with accountability. To implement

this concept, the output of certain models were modified within the CAIRIS source-

code to visualise these dependencies of ownership and accountability, leaving

existing role associations to represent interactions of responsibility afforded to the

role, or where a role should be consulted or informed about a particular aspect

towards the activities or RBDM. How the owner concept in Figure 8.3 is applied is

discussed in Section 8.1.5.
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Fig. 8.3 Extension to IRIS concepts with an Owner meta-model used by OASoSIS

Applying Step 0 - Characterising the MAA Emergency Response System as a

SoS

Stakeholder supplied information and EMSoS research provided the basis for the

characterisation of the ERSoS in the first step of the process. This indicated the

type of systems and information that would be used and communicated within the

SoS. MAA, whose day-job it is to maintain community and industry relationships,

and the emergency response portal, would use related portal information to support

the emergency operations. MAA would, in this scenario, be integral to delivering

the emergency response application and emergency situation infrastructure for

messaging throughout Alberta, Canada.

MAA Emergency Response Management and Oversight

Stakeholder Involvement

In this scenario, the primary stakeholders include MAA, ICS, and Communities. MAA

provides its own input into the SoS, in addition to the managerial command and

control infrastructure to assist emergency operations, and its related stakeholders

to provide this. Whereas, the ICS rely upon the emergency response application

to support their own emergency response command and control activities. The

ICS will contain a range of stakeholders related to emergency response activities

at municipal and provincial levels. At one level, this includes responders such as

firefighters, or at other levels, entities such as the Calgary and Alberta Emergency

Management Agencies (CEMA/AEMA).

These systems are specifically dependent upon communication and information

flow between interoperable systems when tending to an emergency scenario. Com-
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munities as evacuees also depend upon the public information flow to know what to

do in an emergency. To what degree evacuees would be dependent, would relate

to the level of use or reliance placed upon the emergency response application for

evacuees. In this scenario, very limited interaction for evacuees has been applied,

whereas the ICS users would have a quite different interaction with role dependent

access to information.

Governance

The SoS governance is provided by MAA working with emergency response and

industry partners. For example, fire departments, communities, and emergency

management agencies. The supporting portal and emergency response application

funding would be provided by MAA and partners. All users of the software application,

e.g. the ICS, their responders, and community users would be required to own or

operate a smart device to interact with the application. Governance specifically for

the ICS would also be provided by CEMA or AEMA.

MAA Emergency Response Operational Environment

Operational Focus

MAA and its data input from the portal would provide important information to

support ICS operations. The infrastructure provided by MAA would offer command

and control capabilities to the ICS, where the ICS is managed and operated by the

Incident Command and its Incident Commander. The ICS would be operationally

responsible for its users interacting with the emergency response application for

necessary data flow. The ICS would also be responsible for responding to evacuee

notifications and related public information updates. Members of the community

would be responsible for their use of the emergency response application.

MAA Emergency Response Implementation

Acquisition

The supporting infrastructure would be the responsibility of MAA to provide the

required data centre and network access for services provided by the emergency
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response application. Where users are to be responsible for providing the smart

device systems to interact with the application, constraints may apply regrading

compatibility, software updates, and correct usage of the emergency response

application. In some cases, the smart device may be owned by an entity within

the ICS, such as a fire department, although in most cases the assumption is that

personal devices would be used that are outside of the direct control of MAA and

the ICS.

Test & Evaluation

In this scenario, the sole accountability for design and testing of the emergency

response application and related infrastructure would reside with MAA and its

engineering partners. However, what is outside of the control of MAA is the availability

of local cell networks in real-time, compared to that of design-time. Mobile cell

networks may be accounted for by municipal or provincial EMSoSs.

MAA Emergency Response Engineering and Design Considerations

Boundaries and Interfaces

In many EMSoS scenarios, the ICS maybe instantiated across multiple towns or

provinces, thus creating a bigger set of SoSs with differing controls and regulations.

In the first instance, the area of Calgary and throughout Alberta would be the main

operational and geographical boundaries, which may be required to extend with other

municipalities or provinces. Other boundaries and interconnections may include sea,

air, and space domains, but would primarily be cyber and land based. The most

immediate trust boundaries are between MAA and the ICS responders as system

users, and between the ICS and the evacuees.

Performance & Behaviour

Each EMSoS and ICS provides a unique set of systems and scenario in which the

emergency response application is operated. Ongoing usage can be monitored by

MAA. Whereas, the effectiveness of the application, its interface, or functionality
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would be monitored by the ICS. Users of the emergency response application would

likely monitor and report issues from their devices.

8.1.3 Identifying related Assets and Concerns

Applying Steps 1 to 5

The risk criteria in Step 1 was aligned accordingly to the environment where safety

and human factors are prevalent impact areas within this SoS domain. Step 0

already provided a good indication towards the main stakeholders and users within

the ERSoS. Steps 2 and 3 centred around the information assets considered critical

to MAA and their interaction with the SoS and its users, and in which systems they

were to be stored, processed, and transported between.

Once the main stakeholders and systems were identified, along with high-level

goals and dependencies, these were considered against tasks derived from the

personas and scenarios. Six personas were used representing:

- An Incident Commander, who was also a Firefighter;

- An Emergency Medical Technician;

- An On-Site Supervisor;

- A Public Information Officer;

- An Emergency Manager of MAA; and

- An Evacuee.

Using the supplied personas and user stories provided an indication towards

the possible scenarios in which related activities may occur. This would include

data stored in the portal and transferred into the application by the MAA persona to

support ICS operations, as well as data coming from ICS operations, processed by

personas of responders and other personnel using the application that interfaces

with the MAA servers and databases. Notifications related to the persona of the

evacuee were also considered.

Steps 4 and 5 considered possible areas of concern guided by threat scenarios

where unauthorised, disclosure, modification, destruction, and interruption may be

attributed to potential threats or weaknesses to the SoS. When applying the OA

threat scenarios, these were related to the activities performed by each persona,
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and where possible attackers may have a potential to exploit a weakness. Many of

these concerns centred around the use of smart devices, where usability issues,

human error, and malicious activity could occur. Other concerns also considered the

potential for environmental concerns, such as smoke or forestry locations affecting

cell and internet signals.

8.1.4 Analysing and Evaluating related Assets and Concerns

Applying Steps 6 to 8

Based on the severity of the consequences, and the likelihood of the occurrence,

areas of concern and related risks were calculated and evaluated. Based on persona

activities, 486 potential threat and vulnerability combinations were identified towards

areas of concern, of which 57 risks were identified for secondary analysis. Risks

of highest concern related to emergency responders and the reliance placed upon

them to independently supply and control a smart device to operate the emergency

response application. For example, as these were assumed to be personal devices

used for a different purpose, e.g. to check emails or use other applications, a virus

could not only disable the device, but affect the application and its data in some way.

Other risks considered personas having the correct role-based access to the

application and data based upon their responder role, which may also change during

operations. Usability, missed alerts, and therefore error became a growing theme for

some activities or personas, e.g. the firefighter. Some risks that may appear lower

based upon its likelihood, also required further acknowledgement. This included

a loss of cell service in the area of operations due to the fire or smoke, or other

network interruptions. It was identified that if this occurred, the initial impact would

make the SoS redundant until service was resumed, which would potentially create

other issues or consequences for the ICS. Identifying these concerns contributes

to considerations for risk-based decision makers at different levels of the SoS to

ensure the reliance and dependability placed upon the independent systems and

sub-system interactions remains resilient.
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8.1.5 Modelling the MAA ERSoS

Applying Step 8-Task3

Once the risk concern scores were calculated and prioritised, details of critical assets

and their interactions captured within the data capture spreadsheets were entered

into CAIRIS to begin populating the models. The models and their elements were

each situated within an environment from the view of MAA. This main view was

supported by additional views of the ICS, and with additional perspectives of the

three levels of EMSoS for further context.

Roles and personas were one of the first set of elements to be captured in

CAIRIS, along with high-level goals added to the KAOS goal model to represent

SoS goals, where roles can then be assigned with responsibilities towards the goals.

High-level SoS goals can be identified in a top-down approach, associating with

supporting goals of independent systems to achieve the main SoS goal. Bottom-up

system goals would also be captured later in the process. High-level systems assets

were also added to the asset as illustrated in the filtered model example in Figure

8.4.

Fig. 8.4 Independent Systems of the SoS

Asset models were used to incrementally model the associations between sys-

tems, people, and information assets, showing how the SoS is decomposed in the

context of the environment’s perspective. Using asset models was a useful approach

to visually identify in each view how the independent systems and sub-systems

internal and external to the independent system of MAA have a direct interaction

with other system elements. These associations were useful for highlighting the

potential for different types of interoperability needs between the different assets.

Based on persona activities gained from user stories and scenarios, tasks iden-

tified in Steps 2 to 5 were modelled then decomposed into task steps with use
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cases as processes to complete the task. From this data, 25 supporting use case

processes were elicited with 11 related tasks, with two tasks each for the Incident

Commander, Firefighter, and Emergency Manager, and one each for the remaining

personas. Each task step represented by a use case could also have steps within

its process, along with pre and post-conditions for use.

The conditions and process requirements also indicated where a sub-goal should

be specified to support or enable the process, that when performed contributes to

the task completion. The task would contribute to a main goal being achieved, which

is associated to the derived sub-goal for the process. The role responsible for the

process is captured, and will likely relate to a persona performing the associated

task. As with goals, multiple roles may, however, be assigned to each, which begins

to highlight where shared responsibilities and dependencies exist.

Data flows were modelled based on the tasks performed by a persona where the

critical information assets were stored, processed, and transported between systems

and external entities to fulfil system and SoS goals. The persona performing the

task, also represented as a person asset, becomes the external entity modelled in

the DFD. A threat model report indicates threats to each of the data flows at risk.

Because stakeholders might be concerned about tasks being completed rather

than goals, many of the goals were elicited on a bottom-up rather than top-down

basis. Where a task supported a goal being satisfied, the specified sub-goals would

operationalise the task. These related to 73 leaf and root goals in support of the

main SoS goal, providing both functional and security goals as requirements, many

of which were elicited through the needs of process and task completion.

Tasks placed the goals into context and, in doing so, helped make sense of

the wider scope of the SoS goal model. As a result, this assisted the elicitation of

other goals making the tasks possible, and potential obstacles that might obstruct

these goals, thereby obstructing the tasks and other higher level goals. For example,

Figure 8.5 illustrates a slice of a generated goal model associated with the Monitor

Emergency Fire Response task. The task operationalises the Updates received

goal associated with the component Firefighter system. This goal is eventually

refined into sub-goals that need to be satisfied by ICS system (Responder to access

data relate to role) and EMT system (Access to app on Smartphone provided and

Up-to-date App Installed). To explore the impact that an out-of-date app on an



198
Case Study 2: Applying OASoSIS end-to-end with a Canadian Emergency

Response SoS

Firefighter - Updates Received

Firefighter - Updates Monitored

Firefighter - Updates Accessed

ICS - Responder to access data related to role

EMT - Access to app on Smartphone provided

EMT - Up-to-date App Installed

The Firefighter

The Emergency Medical Technician (EMT)

The CEO of MAA

Monitor Emergency Fire Response

EMT - Out-of-date App installed

Fig. 8.5 Goal and Task Obstruction

EMT’s smartphone might have, an obstacle (EMT - Out-of-date App installed) was

introduced to obstruct the EMT Up-to-date App Installed goal.

After demonstrating the usefulness and criticality towards understanding task and

goal obstructions, this research finding helped inform CAIRIS developers towards

integrating a related model validation check. When applying the validation tool within

CAIRIS to validate the goal model, it was identified that not only was the Monitor

Emergency Fire Response task obstructed, but 8 tasks in total across the SoS,

thus affecting many of the SoS goals being achieved or maintained. This included

responding to emergency calls from evacuees, sending approved alerts to evacuees,

and initiating emergency response plans. This obstacle was then associated with the

pre-existing vulnerability Vulnerable app installed - Device, thereby linking the SoS
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goals to potential security issues identified from the threat and weakness analysis in

Steps 4 and 5.

More informed decisions may also be considered with regards to the humans

performing tasks, or relying upon integrated systems for some purpose. This may

indicate where processes and procedural effectiveness may need to be increased,

or allocation of responsibilities reduced. Conflicts may also be identified in relation

to SoS activities conflicting with the day-job activities. For example, a Firefighter is

responsible for checking and sending fire related updates through the emergency

response application. As part of the ICS, the firefighter’s day-job is to tackle the

wildfire. At times, it is difficult for a firefighter to do both, but both goals need to be

satisfied. Moreover, if communication and cell coverage is lost, the availability of

the emergency response application is affected. The ICS, therefore, needs fall-back

methods of communication, indicating to the ICS that responders need to be trained

for information flow continuity until availability is restored. This further demonstrates

that, even when assessing from the view of MAA, risks and goals can be identified

about the interactions of other systems across the SoS, highlighting where these

systems too may need to adopt further controls to maintain a level of interoperability.

From this combined analysis, we can begin to identify SoS dependencies critical

to its operation and information flow. These associations and dependencies can

be modelled and visualised to identify further load-balancing concerns and areas

of weakness from risk propagation across the SoS. For example, when using and

combining certain modelling approaches, this enabled the identification in a corre-

sponding element where a responsibility is or should be assigned to an object, and

where another object, roles, and owner are dependent upon it for some purpose.

This could include sub-goals that enable a system and its process action, performed

by a role or specific persona to complete a task and achieve role-specific and system

goals for the SoS.

This also begins to highlight where reliance and accountability exists between

each of the independent systems, ultimately to achieve the SoS goals. To achieve

each goal, this may therefore rely and depend upon a number of different owners and

controlling authorities across each independent system and the SoS as a whole. To

demonstrate this concept, a simple example of ERSoS interdependencies between

owners, roles, goals, assets, a task and process is illustrated in Figure 8.6.
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This considers an example already modelled and accounted for through related

ERSoS risks, but could by viewed from different perspectives. For example, this

demonstrates a task performed by a Firefighter role using their smart device, where

information assets may be stored, processed, or transported in different ways with

other assets, roles, and people.

To achieve this task and the goal it contributes to, there are a number of de-

pendencies between assets, goals, a process, and responsible roles. This model

was then extended to show the highest level of responsibility by including a yellow

hexagon shape to represent the accountable owner for an asset, goal, task, and

process. Thus, when considering the example indicated in Figure 8.8 showing a

filtered selection of tasks and goals that The Firefighter role is responsible for, this

enhancement would also provide an upper layer to indicate the owners with account-

ability for those tasks and goals. An unfiltered model would, therefore, capture the

SoS chain of accountability.

Within the first step of OASoSIS, the information gathered identified the SoS

stakeholders, specifically clarifying the independent system owners and their related

SoS goals. This supported the identification of dependencies between systems for

potential processes and people, contributing to related tasks and goal achievement.

When identifying assets, related information included their owners and specific

restrictions or requirements, e.g. security goals. Dependencies between asset

owners and delegated roles using information assets with other system assets for

the storage, process, and transportation of information were identified. This indicated

their related processes, and tasks, and associated goals. Sub-goals along with their

owners and roles of responsibility were then elicited to support or enable processes

for tasks completion, whilst supporting the satisfaction of a parent goal.

Having already populated the CAIRIS Tag field in many of these concepts with the

corresponding accountable owner meta-data, using the integrated models towards

tasks using assets and processes to achieve goals and where risk may be present,

we can begin to infer and identify who may be accountable and responsible. By

doing so, this indicates new dependencies between owners as well as those where

authority has been delegated to another role of responsibility, e.g. to perform a

process and task. However, since the aim is for using modelling and visualisation

to inform decision makers, it was more useful and efficient for the model to indicate
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this chain of ownership and accountability, in addition to roles of responsibility,

providing further clarity towards RBDM, as demonstrated in Figure 8.6 using the

yellow hexagon shape. One example of this is shown in the filtered risk model shown

in Figure 8.7 demonstrating two accountable owners of the task, which is a possibility

in the SoS scenario given the collaborative nature. However, it was determined that

in this example, the ICS would own the task, but the Fire Department would own the

process, as was indicated in the example of Figure 8.6.

Fig. 8.7 Example of a filtered risk model enhanced to show the accountable owner(s) of the
task

8.2 Discussion

Although focusing upon SoS assets, roles, and activities is central to OASoSIS, the

over-arching concept that brings together the SoS context is through the integration

of goals as a proxy for design rationale. This aligns directly with the concept of

what a SoS aims to achieve through its collaboration. At the highest level, the goal

represents the Why aspect of the existence of the SoS. This goal may be refined

into leaf goals that support the main SoS goal being achieved and maintained.

These would be refined and related to the root goal for each independent system’s

contributory goals, operationalised by their tasks and supporting processes to satisfy
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the systems’ and SoS goals. To help validate this scenario and the application

of the goal-driven approach, this considered input from the original MAA project

stakeholders, and closing analysis provided by an expert in Disaster and Emergency

management, as discussed in Section 8.2.3.

Following the early stage analysis, high-level goals were captured, aligning with

identified user stories, scenarios, and tasks of personas. It was through these

tasks and processes with their needs for completion that enabled further eliciting,

specifying, and validating of supporting goals as requirements. Aligning the tasks

performed by personas in a given scenario also helped to further integrate with

security and human factors concepts, allowing for analysis towards user behaviours

and associated security threats that could obstruct SoS goals from being satisfied.

From the outset, this analysis helped towards identifying the Why aspect of the

SoS goals, and through discovery of the What and How Well tasks and processes

should be enabled and performed to achieve the goals, this assists RBDM towards

the prioritisation and evaluation of security risks, and possible mitigating controls

and requirements.

8.2.1 ERSoS Integration Challenges and Opportunities

When considering human factors in the SoS from a wider perspective, although the

evacuee’s limited interaction with the application was modelled, in this scenario, it

was found the MAA Emergency Manager would monitor incoming evacuee alerts,

but the Incident Commander would be responsible for actioning the alerts or re-

quests. The Public Information officer would be responsible for subsequent public

announcements.

However, findings would suggest the requirement to include functionality for

evacuees would need further work to consider whether the emergency response

application should only act as a public information tool for evacuees, or to act

as a public messaging system. In either case, these activities could require a

considerable amount of resource and manpower to manage, which was not on place

for this scenario. This could present a significant risk to the design and operation

of the ERSoS as it was unclear who would be responsible for achieving this goal,

and the magnitude of the responsibility would fall outside of the capability of the

currently associated roles and personas. Moreover, it is possible this process should



204
Case Study 2: Applying OASoSIS end-to-end with a Canadian Emergency

Response SoS

be integrated with the emergency management agencies, who may also implement

additional crisis informatics capturing social media alerts from evacuees that can be

effective for SA in an emergency scenario (Starbird et al. 2010, Dailey et al. 2018).

Other elements that were out of scope for the ERSoS scenario could be further

explored towards the integration of other functionality. For example, this could include

text-to-voice, and voice-to-text communications and data capture. To support RBDM,

further investigation would need to consider how interoperability would be achieved

if relying on different types of radio systems used by responders. Furthermore, how

the responders would be made aware that audio data was being captured and stored,

how and where this data would be used and stored securely ensuring its availability,

and who would own this; who is in the chain of accountability. This functionality could

reduce some manual interaction, but could also create other task, goal, and obstacle

considerations.

During the RE Cares session, a requirement for capturing GPS data of respon-

ders was also proposed by the original stakeholders. Assuming informed consent

would be provided, it was not clear what that purpose should be in relation to the

communication flow depended upon by the SoS, or how and where else it could be

used and stored securely. Incorporating map-based functionality within the applica-

tion to show the real-time location of all responders using the application would be a

useful opportunity. With appropriate access controls, this functionality would reduce

the need for tasks relating to team communications and co-ordination relating to fire

areas, responder, and evacuee locations.

In doing so, it would provide a COP to assist systems of the SoS to more

efficiently co-ordinate emergency activities and achieve SoS goals. This would,

however, create dependencies with map software and satellite communications

for GPS signals. However, for users of the emergency response application, as

part of the application installation and user agreement, each user would need to

accept the requirement for location-based data capture, and enable their device

location function. As highlighted in Section 8.1.5, fall-back measures may need to

be considered if interoperability is affected towards providing real-time locations.
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8.2.2 Integrating Concepts, Models, and Techniques

Environments and Assets

Using environments to capture different stakeholder views is useful where there

are known interactions; this was the case in this ERSoS scenario for most systems.

Environment views are also useful for considering the greater impact on the more

abstract EMSoS goals. Environments also manage complexity by creating different

views of what could otherwise be a complex single model. They provide focus

towards the context of use for a SoI within the SoS, and its direct interactions

relevant to the view being assessed and modelled. If a different perspective is

required, another view can be created.

Each concept and model element served a relevant purpose towards their inte-

gration with OASoSIS. For example, using asset models to capture the structure

of the SoS along with the related systems, information, and people assets critical

to the SoS being assessed, and which each have interoperability needs. Each

asset association is also representative of a need for interoperability between the

asset types. Interoperability needs can also be analysed in the data flow model,

considering the dependency placed on information flows between systems and

people within the ERSoS.

However, as a consequence of the OA element of the OASoSIS approach that

centres on information assets, their owners and required security attributes, the

security needs for systems are not captured. The implications of this do, however,

help decision makers to determine and specify how related security must be applied

for the protection of the information assets when they are stored, processed, and

transported to achieve ERSoS goals.

Personas and Scenarios with Tasks and Processes

Human and technical interoperability concerns are highlighted through the modelling

of personas and scenarios. This has the effect of bringing the design to life from

the ability to walk in the shoes of the personas to really understand challenges from

their point-of-view, rather than considering stereotypes, or what the designer thinks.

Personas and their scenarios helped to characterise users and their behaviours.

This is particularly useful when there are conflicting voices. For example, the Mrs
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Firefighter persona is focused on tackling the fire, and may not be able to hear

or see the emergency response application’s alerts under her breathing appara-

tus. Because she wears fireproof gloves, she might accidentally delete important

information too when using the application’s user interface.

Mrs Incident Commander, who is acting for the Fire Department may not have

these restrictions, but would need to control the operations using the emergency

response application. In this role, she is more concerned about being provided

the correct authority and information from MAA to permit all registered responders

access to the application. This is in addition to monitoring information flow, and

managing the Incident Command area of operations. Task overload could therefore

become a factor. The personas may, therefore, interoperate with the application in

similar ways, but have different needs and behaviours that need to be captured and

accounted for.

Walking in the shoes of the persona helps analysts to reflect and provide context

to the needs of the personas. This clarity highlights dependencies, and suitable

requirements to address these needs whilst preventing obstructions to goal satisfac-

tion. Understanding how each persona performs a task related to SoS dependencies

helped to ensure the human factor remained central to usability considerations,

where security was an important aspect. Personas and scenarios provided the

colour and context to the tasks being performed to achieve the SoS goals.

Goals, Obstacles, Roles, and Responsibilities

To satisfy these goals, it was useful to consider how they could be achieved, and

what related goals were required to enable supporting processes contributing to

task completion. Or indeed, which tasks and goals may be obstructed, thus causing

issues towards goals and tasks being achieved elsewhere in the SoS.

Linking use cases as processes was a logical bridge between the goal and task

elements from both an interaction viewpoint, and given its use as a process within

data flows. Related assets could also be associated with tasks and supporting goals.

Identified dependencies of importance can then be added to CAIRIS and visualised

in the responsibility model.

Goal modelling within OASoSIS captured the SoS goals required for the SoS

interoperation, but as further detail was added, the SoS’s size and complexity
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increased. Because of this, the SoS models benefit greatly from not only the ability

to filter model elements, but also the ability to perform model validation checks, e.g.

as described in Section 8.1.5. These checks can identify errors or omissions, or

highlight design concerns where, for example, asset security properties may need to

be specified.

This is similar in the asset or task model where there are many associations and

interactions. However, the benefits of tool-support were relied upon to filter most

models into manageable sections for focused analysis, as indicated in Figure 8.5.

This reinforces the need for Step 8-Tasks 1 and 2 to prioritise critical information

assets and their interactions, otherwise models may become extremely complex,

losing focus towards the most important aspects.

When integrating concepts and models, it is from these goal, task, and process

elements that related trust needs and other dependencies can be identified towards

roles that are dependent upon a combination of these elements to achieve SoS

goals. These dependencies and specified roles of responsibility can be viewed in

the responsibility model.

For example, Figure 8.8 shows a filtered selection of tasks and goals that The

Firefighter role is responsible for. However, despite being an important factor at the

beginning of the process to capture accountable owners, what was not clear from

these models, was at a SoS level, who were the accountable owners that would be

associated with the roles of responsibility with delegated authority, for which they

are accountable for and dependent upon to achieve the SoS goals securely.

Fig. 8.8 Filtered Responsibility model example
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Accountability with Responsibility

In the first instance, when assessing security risk towards assets, it can be deter-

mined where there may be a weakness or potential threat that may, for example, do

harm and affect the availability of the information and the system where it is used.

This may be derived from activities performed by people in roles of responsibility,

using related information assets, systems, and processes to achieve a SoS goal.

Equally, it can be determined which related information, systems, tasks, processes,

goals, roles, and their related dependencies may be affected from the propagation

of the original risk scenario, and where accountability resides between owners to

mitigate the potential risk with related requirements and controls.

Moreover, from this we should be able to determine if specific roles or personas

performing tasks could have been overloaded from tasks or increased responsibility,

which may have resulted in the risk scenario. Or, where they may potentially

become overloaded from the resulting propagation of a different risk scenario that

could subsequently impact another asset, process, task, or goal and their related

dependencies. It would be useful to identify who would therefore be accountable

in these scenarios in order for the risks to be addressed and mitigated by those

deemed responsible for doing so.

Thus, when specifically focusing on information security and related human

factors, the impacts and requirements go beyond that of a limited area of focus.

Instead, in the SoS context, the security focus must consider the wider scope towards

the people, processes, and the technology interoperability between organisations

and other systems of the SoS interacting as a whole. This includes capturing those

accountable, specifically regarding risk-based decisions towards mitigating SoS

risks.

The risk, task, goal, and responsibility models were modified to introduce the

additional symbols that are populated based on the accountable owner meta-data.

As a result of the enhancement, this now indicated a more complete picture in which

to capture those responsible and accountable for ensuring the secure interoperation

within the SoS. Where potential areas of concern identified threats and vulnerabilities

towards assets from threat agents, this enhancement supports RBDM by informing

which owners and roles are relative to the risk equation. A risk owner can be

assigned, e.g. the assessing system or information owner. Where elements of
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the risk extend to processes and tasks, and potential obstructions towards goal

achievement, this informs where elements of the risk may be delegated out or

transferred to other owners and roles for risk mitigating actions.

8.2.3 Stakeholder Review

Unfortunately, at the time of completion of the assessment, the original project

stakeholders were no longer working on this project, perhaps due to some of the

viability concerns highlighted. This also meant that where the stakeholders were

now working on different projects and priorities, closing feedback and stakeholder

validation was not available. Nevertheless, an expert stakeholder with extensive

experience within Disaster and Emergency management instead provided feedback

towards the ERSoS context, that would be used and depended upon within an

EMSoS scenario.

Validation towards the context and application was first gained through an in-

troductory meeting to provide an overview of the project and how the process of

OASoSIS was applied. After the expert stakeholder had taken time to review the

project material and models, a follow-up meeting was conducted. The purpose

of the discussion was to provide more in-depth detail about the application of OA-

SoSIS to the ERSoS scenario, and thus gain feedback about the risks, models,

and findings, then with further concluding feedback provided towards the applica-

tion of the end-end process, including the concepts concerning accountability and

responsibility.

Initial comments from the expert stakeholder relating to identified risks also

questioned the viability and scale of activities required to support evacuee commu-

nications that would potentially require a separate focus and platform with suitable

manpower. The most prevalent concern regarded the dependency surrounding the

smart device application requiring available cell service. From their experience, this

concern was often a problem in those active incident environments, meaning missed

alerts and a reduced ability to communicate from noise restrictions, tending to the

incident, and lack of cell service could lead to further problems.

All risks and impacts were discussed, although the central concern revolved

around the dependencies on users, their devices, and the time-critical need for real-

time communications. Where users may experience usability issues that could affect
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the timely interaction and flow of information, the process was useful for indicating

weaknesses towards the reliability of the SoS, and therefore enabling decision

makers to address these concerns at design stage. However, if not addressed, it

was suggested that reliance may instead continue towards radio communications,

thus enabling a reduction in inter-system interoperability, rather than increasing it as

intended by the SoS goals.

Capturing the concept of obstructions and their knock-on effect creating wider

risks to the SoS was indicated as a useful contribution by the expert stakeholder, as

the wider impact may otherwise have not been considered or be unknown based

solely on a system level risk assessment. It was this type of information indicating

the wider effects to the SoS that would add value to holistic RBDM in the ERSoS,

and supporting EMSoS scenarios.

The complexity of some models was highlighted by the stakeholder, however,

it was found that filtered models provided focus towards certain aspects of the

SoS, that could for example, by examined in greater detail. The readability and

understandability of models was found to be positive, although how some concepts

within CAIRIS were aligned and interlinked required further explanation. It was found

that having the ability to generate model elements in this way with tool-support, e.g.

assets, personas and tasks, data flows, use case/processes, goals, and elements of

risk, was considered very useful in comparison to manually aligning concepts within

the process, as is often the case in other assessment processes.

Moreover, by building upon the concept of ownership and accountability, this was

considered to provide a useful means of indicating other stakeholders important

towards RBDM and the reduction of SoS risk. Having discussed this concept with

the expert stakeholder, it was found in hindsight surprising this was an important

aspect within risk assessments, but would be overlooked to some degree in current

risk-focused modelling processes. However, by including this simple but effective

enhancement, feedback suggested this resulted in the process becoming more

complete towards identifying the relevant stakeholders and risk owners, supporting

subsequent decision making processes. It was therefore considered a positive

contribution to the process for RBDM and SoSRE.
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8.3 Chapter Summary

In this chapter, Case Study 2 was introduced to test and apply the three contributions

combined as the end-to-end process of OASoSIS. The characterisation process

and supporting RE Cares stakeholder information provided the foundation for the

information security assessment process. This helped to guide the interactions of

interest within the end-to-end information security risk assessment for the ERSoS

with OASoSIS.

A main focus of the chapter was to also elaborate upon how using tool-support

with a goal-driven approach helped to fuse concepts, models, and techniques when

assessing and modelling the SoS information security risks and related human

factors with OASoSIS. When combined, these were used to account for SoS goals,

tasks, processes, obstacles, and security risks to assets. Moreover, the notion of

obstructions towards tasks and goals, thus preventing other tasks and wider SoS

goals from being achieved, was considered very useful for indicating the knock-on

affect of risks within the SoS context.

This benefits decision makers with clarity and a point of reference for roles,

responsibilities, and authority for making risk-based decisions in a SoS, in partic-

ular, where models were specifically enhanced to also show who was ultimately

accountable, thus highlighting further related dependencies within the chain of ac-

countability. Stakeholder feedback indicated this feature within the goal-driven use

of tool-support was useful and important towards capturing accountability, whilst

providing risk-based visualisation of the SoS being assessed, thus informing the SoS

decision making processes for the security, human factors, and SoSRE communities.

The combined application and alignment of these concepts, models, and techniques

demonstrated the important supporting role of integrating tools for SoSRE towards

capturing the broader SoS context for the information security risk assessment

process and RBDM.
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Conclusion

In this chapter, a summary of findings and related challenges towards the problem

domain are discussed. This chapter concludes by summarising how findings related

to the RQs in Chapter 1 have been addressed, and how these informed the three

main contributions that aimed to address the identified research gaps. An indication

towards future work and research considerations is provided, either for continued

validation or to expand upon other areas of interest within the problem domain.

9.1 Summary of Key Findings

Reviews of related literature demonstrated certain research gaps, in particular, where

there appeared to be no SoS focused information security risk assessment approach

or tool-support that aligns modelling and visualisation of related risks, people, pro-

cess, and technology in a SoS context. Furthermore, there is a lack of clear guidance

to inform how different concepts, models, and techniques may be integrated towards

a SoS context. Another research gap also indicated a need to formulate a means in

which to characterise the SoS to be assessed, thus helping to capture the context of

the SoS required within an information security risk assessment.

This highlighted an industry-wide need for identifying the alignment of SoS factors

and concepts suitable for eliciting, analysing, validating information security risks

and their related human factors within the SoS context. To address this need, the

aim of the research was focused towards identifying challenges for SoSs and how

information security risks may be assessed, whilst capturing related human factor
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concerns. The process would be extended by aligning SoS factors and concepts

suitable for eliciting, analysing, and validating these risks and concerns with the use

of tool-support, to support RBDM and SoSRE activities.

9.1.1 Combining Needs

As described in Chapter 4, research gaps were first addressed by contributing

a design artefact and process to support the early steps of the SoS information

security risk assessment process, providing context and clarity towards systems and

stakeholders of the SoS. This was found to be an important aspect of the process

when interacting with different stakeholders, given that many were unfamiliar with the

concept of SoSs, but could relate to the challenges towards dependencies between

collaborations. The most important aspect was, however, identifying who owns,

controls, and is therefore accountable for what, where, or whom in the SoS context.

Good stakeholder interaction is important, but may not always be possible in a

SoS context. Moreover, user interaction may be on a small scale, or could be part of

a much wider collaboration, meaning different demands upon interoperability, system

needs, and application would need to be accounted for. Therefore, accounting for

these needs captured in part by the characterisation process would then benefit

from aligning with a socio-technical risk assessment process, but could also suit

limited stakeholder interaction in which to perform it.

To address other research gaps, focus was then placed upon identifying and

aligning suitable concepts, models, and techniques within the framework to help with

modelling, visualising, and further assessing the interactions of a SoS using tool-

support to assist risk-based decision makers towards mitigating risks to SoS goals.

Considerations towards assessment and modelling were first applied in Chapter 5 to

account for security risk, human factors, interoperability, and emergence.

It was found that incorporating analysis of emergent behaviour was useful, but

difficult to predict and would require feedback mechanisms through ongoing mon-

itoring to support analysis. Moreover, where interoperability perhaps had a more

technical focus, it was found this should be more focused towards other social as-

pects, but particularly where there is a reliance upon the availability of information

and communication between humans and systems. Modelling of these interactions

provided a useful means in which to analyse the different interactions in more detail.
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It was also determined that including the concepts of people, performing tasks and

processes, interacting with assets to achieve goals, thus contributing to the satis-

faction of SoS goals, would therefore support the notion of a goal-driven approach

towards identifying and mitigating related risks within the SoS.

9.1.2 Implementing OASoSIS

Findings from the implementation and testing of approaches in Chapters 4 and

5 were integrated as part of OASoSIS in Chapter 6, providing useful research

contributions to support an end-to-end information security risk assessment and

modelling process to assist RBDM in SoSRE. This included the SoS characterisation

process, then introduced OA modified towards the SoS context, and was aligned

with tool-support using CAIRIS. OASoSIS was then applied in Chapters 7 and 8 to

test and validate the process.

OASoSIS was first applied in Chapter 7 with a NATO-based Military MEDEVAC

case study, using an example scenario related to MEDEVAC activities and its typical

information flow between systems. The characterisation process was useful towards

structuring information about the SoS and its stakeholders, whilst identifying its type

and degrees of ownership and control within the SoS context. This context was

useful towards framing the SoS and capturing related activities within the information

security assessment to identify, analyse, and evaluate potential risks for the SoS, that

could then be visualised in tool-support for further assessment, ultimately aligning

towards how the SoS goals were being satisfied or affected by risk.

Discussing related findings with stakeholders proved a useful exercise in validat-

ing the scenario and typical structure of the SoS collaboration implemented with

the asset model. However, it was indicated that where American forces integrate

a greater level of technology to capture, process, store, and transmit patient data,

interoperability is reduced within the SoS as other forces do not use this technology.

Although, in the case of British forces, this reduces risk to some degree, where in

current processes, the need to capture this degree of data is reduced by compar-

ison, thus reducing their level of concern towards security risks. Trust assurance

is also complicated by many factors, although it was determined that identifying

and maintaining accountability at each level can go some way towards providing

assurance.
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Findings in Chapter 7 also demonstrated the useful link between people, pro-

cesses, tasks, and goals, where assets are relied upon to achieve these goals.

Therefore, capturing risks to these assets aligns towards how the SoS goals are

being satisfied or affected by risk. Thus, when determining the needs and responsi-

bilities of stakeholders in which to mitigate these risks, this process and its modelling

and visualisation helps to inform decision makers, specifically towards risk and

informs the security and human factor requirements to be captured within SoSRE.

Each of these contributions are useful serving their own purpose, but combined they

provide a structured approach towards assessing and modelling information security

risk and human factors in SoSs.

To apply and validate OASoSIS further as an end-to-end process, Chapter 8

introduced a real-world problem and intervention based on stakeholder interaction

towards the potential for an Emergency Response SoS. Related stakeholder data

and artefacts provided input into the process, first gaining the characterisation and

context of the SoS, then performing a first-stage assessment on the scenario with

the OA steps now flowing more efficiently from the subtle changes to the process.

The resulting data output provided a wealth of information in which to model using

the structured approach. This incorporated personas related to tasks, who may also

be associated to specified roles, and who may also be responsible for goals and

processes. Assets could be modelled and associated with tasks and goals, and be

captured as part of the Data Flow model. Risks and obstacles towards tasks and

goals may then be realised, providing a view of the knock-on effect of risk to the

success and satisfaction on other SoS goals.

In both cases, it was the modelling element of the analysis that brought the

risk visualisation to life. For example, by combining different models and concepts

provided different perspectives for each environment view, such as through the use

of personas and tasks, or attackers with threats, vulnerabilities, and risks. Moreover,

the asset models were useful for indicating the structure of the SoS related to

each environment view, and the goal model for capturing the roles and goals with

contributing tasks and use case processes associated with the systems assessed,

aligning with the responsibility model.

However, as was evident by Chapter 8, the concept of ownership, which was

an important aspect throughout the assessment, should therefore be captured and
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more clearly modelled with other responsibilities to provide a more complete picture

towards identifying ownership and accountability, directing decision making towards

mitigating SoS risks. After the models were enhanced and applied in this way,

the visual result of this concept gained positive feedback from the disaster and

emergency management expert stakeholder supporting its importance and logical

inclusion into the process. In particular, it was determined this aspect could help

communicative interoperability between those identified in a position of accountability

and responsibility towards managing and mitigating the SoS risks for people and

systems to remain interoperable, and SoS goals to be achieved.

9.2 Evaluation of Contributions

The aim of this research was to identify the alignment of SoS factors and concepts

suitable for eliciting, analysing, validating risks within the SoS context, and to explore

opportunities to integrate the use of a tool-supported approach for modelling and

visualising risks in the SoS to assist RBDM. Research questions provided a means for

identifying challenges associated with security risk assessment in SoSs, supported

by the literature reviewed in Chapter 2. Continuing work aimed to address all

research questions by considering approaches that frame SoSs, and their challenges,

human factors, information security risk and modelling approaches. Based on

research findings and application, this thesis claimed that OASoSIS represents an

end-to-end information security risk assessment and modelling process to assist

RBDM in SoSRE, and implemented two case studies to validate this claim and

associated processes.

9.2.1 An end-to-end information security risk assessment and

modelling process to assist RBDM in SoSRE

This framework combined three main contributions to address research gaps driven

by findings of the RQs posed, which together represent an end-to-end information

security risk assessment and modelling process to assist RBDM in SoSRE. The

framework aligns a process to provide the SoS characterisation and context, ex-

tended from work described by Dahmann and Baldwin (2008) discussed in Chapter
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4, with the second contribution introducing an information security risk assessment

process using a modified version of OA for SoSs. This contribution extends and

modifies the work originally presented by authors of OA, Caralli et al. (2007), and

was chosen as a foundation for enhancement based on findings in Chapter 5, and

informed by findings from literature reviews and Chapter 4. Risk data output from the

OA risk assessment is aligned with the third contribution, applying concepts, models,

and techniques using tool-support from CAIRIS (Faily 2018a) to assist the process

for modelling, visualisation and analysis of SoS information security risks and related

human factor concerns, to help inform risk-based decision makers and SoSRE.

The first contribution gained peer review from presentation and publication of

elements of this work in Ki-Aries et al. (2017b) and Ki-Aries et al. (2018b). Whereas

the considerations towards the second and third contributions gained peer review

from presentation and publication of elements of this work in Ki-Aries et al. (2017a)

and Ki-Aries et al. (2018a). Moreover, each of the SoS examples used within

research leading to the implementation and application of these contributions has

gained stakeholder input and feedback at different levels.

Following the application and validation towards OASoSIS in Chapter 7, the

process was however refined slightly. Some changes to the worksheets and spread-

sheets were incorporated, for example, explicitly capturing the weakness or vul-

nerability, and improving the steps towards identifying potential threats to assets.

The modelling process was also given more structure, but remains flexible to some

degree towards the SoS to be modelled. Moreover, to address an evident gap

identified in Chapter 7 where the concept of ownership and accountability could

be made more explicit within the modelling, aligning with other associated roles of

responsibility, the Tag field within CAIRIS concepts would be adopted to detail the

owner, e.g. for an asset, process, task, goal, or risk. This would be visualised in

certain models later in the process.

Applying OASoSIS to the Emergency Response SoS scenario in Chapter 8

was effective towards uncovering some significant risks, concerns, and challenges

towards the ERSoS’s usability, interoperability, and dependability that could be

presented to stakeholders. Given that the original stakeholders who provided early

input were now working on other projects, much of the application review to this

scenario and its findings was therefore validated with a separate disaster and
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emergency management expert who agreed with the critical assessment findings of

potential risks for the SoS described.

Of particular interest to the expert stakeholder was their observations towards

the use and structuring used within asset and goal models. This was considered

helpful for capturing the more horizontal and perhaps strategic aspects of the SoS,

in addition to the more vertical aspects of tactical and operational levels for different

systems. However, where models were large and complex, the ability to filter

elements of these models proved useful for more focused discussion and analysis of

the interactions and dependencies towards achieving and maintaining interoperability

at different levels.

To address the need for clarity towards accountable and responsible entities, the

models within CAIRIS were enhanced adding a symbol to represent the accountable

owner of a related concept. Stakeholder feedback indicated it was this element of

the contribution that was perhaps the most significant. In particular, with regards to

RBDM and understanding the accountable owners at different horizontal and vertical

levels who would be responsible for attending to information security risk and human

factor concerns towards achieving the SoS goals.

What would, however, be of interest to the stakeholder in future work, was how

this process could capture a similar scenario but in a developing country where the

infrastructure towards emergency response and emergency management is less

clear or structured by comparison to the ICS and EMSoS in Chapter 8, and may

need to account for other environmental and cultural factors. Applying OASoSIS to

the ERSoS scenario did provide a good level of assurance this application could be

repeated with success, but could nonetheless consider opportunities if presented

towards this extended scenario in future work, whilst providing further validation of

OASoSIS.
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9.3 Evaluation of Research Questions

9.3.1 RQ1 - What SoSs factors contribute to challenges of se-

curity risk assessment of SoSs?

A review of related literature had already begun to indicate differences in SoSs,

either due to size, complexity, or geographical constraints. Findings discussed

in previous chapters concluded that ownership and decentralised control present

challenges for SoSs towards securely achieving and maintaining interoperability,

and where conflicts may arise due to multiple stakeholders with different needs and

dependencies both at system and SoS levels. Moreover, emergent behaviour is

difficult to account for in a SoS security risk assessment, but should be captured as

part of ongoing monitoring and SA.

Capturing the context of the SoS and its related systems and stakeholders would

be an important step for a design process, and should identify the SoS-specific

challenges to be captured by a security risk assessment related to its context.

Understanding this context and the characteristics of a SoS would be critical towards

supporting a security risk assessment of the SoS for identifying and interacting with

related stakeholders important to the secure interoperation of the SoS. It was found

the characterisation process should support the continuing identification of potential

risks to security and human factors, whilst helping to identify related goals, tasks,

people, and processes important to the SoS collaboration.

The process described in Chapter 4 aimed to address this need and was applied

as part of OASoSIS with a further two case studies in Chapters 7 and 8. However,

where in some SoSs there may be limited interaction between stakeholders, it is

accepted that there may also be limited input towards accounting for, assessing,

and modelling all aspects of the SoS interactions. This remains a challenge to-

wards RBDM, but would nevertheless be based on available information towards

the protection of independent systems of the SoS under consideration within the

assessment.
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9.3.2 RQ2 - What concepts are suitable to support a framework

for security risk assessment with requirements elicitation

in SoSs?

Research carried out in Chapter 4 towards answering RQ1 helped to inform RQ2

by considering the type of challenges presented to SoSs, elements of which should

also be captured within a risks assessment framework. The importance placed upon

interoperability is central to the secure interoperation of systems within the SoS, and

therefore central towards achieving its goals. However, because interoperability can

be depended upon at different levels, capturing the different needs towards SoS

activities and people also need to be accounted for within the context of the SoS.

As was first demonstrated in in Chapter 5, this would begin during the risk assess-

ment and would be further analysed in tool-support with combined models aligning

interactions between assets. It was considered that suitable concepts to support

a framework for information security risk assessment with requirements gathering

should also align with RQ3. In particular, where interoperability is considered, people

using assets with processes in tasks may be subject to risks from attackers, creating

an impact to the systems and SoS goals, and interoperability issues between these

elements at different levels.

Providing adequate information for each of these areas is required to capture the

security risks and human factor concerns, that when prioritised may be aligned with

tool-support for further modelling and analysis to support RBDM and SoSRE towards

the wider impacts to SoS goals. Deductive research concluded OA could offer a

suitable foundation that could also be enhanced and aligned towards conducting

a SoS information security risk assessment, and that would support the alignment

with research carried out towards RQ3.
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9.3.3 RQ3 - How can the newly developed SoS security risk as-

sessment framework be extended using modelling and vi-

sualisation software tools to assist the SoS security risk

and requirements process?

RQ3 has been addressed through a review of literature, and testing the application

of CAIRIS with three SoS examples to assist with modelling of information security

risks and related human factors, to support RBDM and SoSRE. The results of early

work in Chapter 5 were positive, indicating the potential concepts that would align

between the first-stage risk assessment and a second-stage using tool-support,

making use of the benefits from automatic model generation.

An alignment of OA with concepts, models, and techniques were introduced in

Chapter 6 and applied as part of OASoSIS with two case studies in Chapters 7 and 8.

Although a number of approaches were introduced, it was the goal-driven approach

that underpinned the risk assessment by not only identifying how risk can impact

upon goals being achieved, but also considering how the knock-on effect of risks

can have a wider impact upon achieving other tasks and goals throughout the SoS.

Capturing accountability in models extends the dependencies and illustrates the

related owners and assigned roles of responsibility providing a more complete picture

for RBDM by informing who would be accountable and responsible for managing

and mitigating risks across the SoS.

The benefit of using tool-support within the process directly related to the ability to

combine different models situated in environments, providing different perspectives

of the SoS, supported by a database of correlated data towards the context of

use. Models may be easily updated to account for alternate interactions and risk

scenarios. Tool-support such as CAIRIS provides a level of traceability towards the

requirements elicitation process, and provides a useful means in which to share

models with stakeholders to analyse the SoS consequences in greater detail, and

which may uncover SoS risks that may otherwise not have been accounted for.

Details regarding CAIRIS model files used in case studies is discussed in Appendix

C.

Moreover, a specific benefit of using CAIRIS was by maximising the use of the

IRIS concepts used in CAIRIS, and establishing a process for aligning risk data
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types towards with these concepts in CAIRIS. These are integrated to further assess,

model, and visualise in greater detail the SoS interactions, elements of risk, and risk

impacts towards interoperability, people, tasks, processes, assets, and goals of the

SoS. It was through combining these concepts, models, and techniques in a SoS

context that assisted towards capturing the wider knock-on effect of risks throughout

the SoS, whilst informing risk-based decision makers who would be responsible and

accountable at different system levels towards managing and mitigating potential

risks to the SoS. To support the notion of accountability, the enhancements made in

some models to show an accountability symbol also demonstrated the potential for

future development possibilities towards the open-source code that CAIRIS is built

upon, helping to provide further context and clarity to SoS models.

9.3.4 Research Limitations

As indicated throughout, certain limitations have been a factor towards completing

related research and validation. For example, where research in Chapters 4 and

7 were military-based centred around NATO activities. Although stakeholder input

and feedback was good and extremely useful, detailed depth was not available for

security reasons, given the need for outputs to be publishable in civilian environments.

This was different by contrast to research in Chapter 5, where the focus was on a

much smaller person-centred IoT SoS example, and stakeholder input and feedback

was more fluid and not subject to restrictions.

Furthermore, where in Chapter 8 the original MAA stakeholders’ input fed into

the design data that the OASoSIS process consumed, there was no opportunity to

validate the resulting models with the original stakeholders once the process was

complete. However, because a single CAIRIS platform managed all the OASoSIS

data, it was still possible to review the models with another expert in disaster and

emergency management, who also provided a good level of assurance towards their

expertise and related feedback towards the scenario assessed.

Limitations are also acknowledged towards the SoS examples used. For example,

Chapter 5 considered a small-scale IoT example, and although not risk assessed,

Chapter 4 considered a larger-scale NATO communications network. Extending

the NATO theme, Chapter 7 considered NATO MEDEVAC operations, which had

some similarities to Emergency Management and Response activities considered
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in Chapter 8. OASoSIS was therefore mainly tested with more organisational and

operational examples of SoS, in particular towards their information assets and data

flow. To strengthen the validity of OASoSIS, other SoS types and configurations

could therefore be tested and validated in future work.

Moreover, where the body of research has been conducted by the researcher,

future applications of OASoSIS would continue to benefit from good stakeholder

interaction, and collaborative input with other researchers to ensure different per-

spectives and needs are captured as the process and SoS context it applies to

evolves. Feedback from users adopting the use of OASoSIS would also be desirable

to any future enhancements.

9.4 Future Work

9.4.1 Further Application of OASoSIS

Where SoSs can be classified as being Directed, Acknowledged, Collaborative, and

Virtual, there can be many examples that may fall into these categories, and may

have systems which themselves are SoSs. Some SoSs may be highly dependent

upon technology, whereas for others there is a greater dependency upon people,

both however rely on the ability to interoperate and communicate at different levels.

Given the vast amounts of different system types and configurations representing

SoSs, to strengthen the validity of OASoSIS, it would benefit from the application to

different SoS scenarios with other stakeholders for further feedback and validation. A

continuing focus would be towards the people central to the secure operations within

the SoS, to whom interoperability is depended upon at many levels. Capturing these

human interactions, goals, dependencies, roles of responsibility and accountable

owners would remain central to the research focus towards assessing information

security risks of the SoS.

9.4.2 Explainability and Traceability within OASoSIS

Explainability and traceability are also important factors, therefore models and

documentation need to provide a level of assurance towards the identification,

analysis, and evaluation of security risks and human factor concerns, and how they
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inform mitigating controls and requirements. However, when modelling a SoS, there

is a potential for model complexity that could reduce the readability and explainability

towards the messages they attempt to convey, meaning further work would need

to be undertaken to find a suitable balance, whilst maximising the model’s ability

communicate related concerns of SoS interactions to decision makers. To support

this, there is a potential for tool-support such as CAIRIS to be modified further to

provide specified model validation checks, or models could be enhanced to suit any

further identified needs that would improve the process.

To further enhance and validate the OASoSIS framework, other SoS examples

could be applied, covering the different degrees of socio-technical activity and goals,

where each would tell a different story, but would nonetheless account for the infor-

mation security risks and related human factor concerns within the SoS. Moreover,

continuing with a focus on how the notion of capturing accountability together with

responsibilities can be useful for decision makers, further enhancements could be

made to add further clarity and context to models, e.g. explicitly notating their related

dependencies in addition to other system dependencies, or aligning impacts to asset

accountability needs to those in the chain of accountability.

9.4.3 Other Applications of Research

As contributions such as the characterisation process could be used in a standalone

nature, for example, in other engineering projects, this application could produce

useful insights, both towards its application, and capturing different types of stake-

holders and interactions, which may inform other elements of research. Research

could perhaps also shift the focus slightly to other engineering model types used

at different stages of the development life-cyle that were out of scope in current

research.

Understanding the needs of different stakeholders or teams within the life-cycle

is also important, as in some scenarios there may be no dedicated security or risk

personnel with expertise to perform these duties. This means that an information

security risk assessment and modelling process should be easily repeatable in

different scenarios by different stakeholders, whilst helping to inform towards their

design needs for addressing information security risks, capturing human factors

concerns. Moreover, this supports the ideation of building in security-by-design in
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systems and SoSs. Future research could also consider how this may be achieved

through privacy-by-design in systems and SoSs. For example, related work in Coles

et al. (2018) began to explore how IRIS concepts and CAIRIS could help to capture

privacy needs within the modelling process, helping to inform towards potential risks.

Although the example SoI in Coles et al. (2018) was modelled at a system level, the

electronic prescription service it described would actually be integrated and operated

within a SoS environment and context. Therefore, extending tool-support concepts

to assess and model privacy risks or concerns in the SoS context using different

scenarios would offer further value to the research body of knowledge.
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Fig. A.1 Argument for SoS Characteristics - Directed SoS
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Fig. A.2 Argument for SoS Characteristics - Acknowledged SoS
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Fig. A.3 Argument for SoS Characteristics - Collaborative SoS
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Fig. A.4 Argument for SoS Characteristics - Virtual SoS





Appendix B

Worksheets, Spreadsheets, and
Information Guides

Fig. B.1 Example worksheets based on OA (Caralli et al. 2007)

When conducting the information security risk assessment process, worksheets

and spreadsheets are used to capture supporting information. Which worksheets and

master spreadsheets are to be used in each of the steps of the process were detailed

in Chapter 6. As illustrated in Figure B.1, there are a number of these used within
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the process, and are also supported by additional guides and information towards

risk criteria impact areas. For brevity, these have not been individually represented

graphically in this Appendix. Instead, an electronic copy of the worksheet and

spreadsheet templates used within OASoSIS can be found stored within the online

folder at https://github.com/D-Dev/cairis. Or specifically in https://github.com/D-

Dev/cairis/tree/master/oasosis. These include:

Information - OCTAVE Allegro Definitions;

Information - OASoSIS Initial Questions;

Information - OASoSIS Characterisation Chart.

Master Sheet 1 - Capturing stakeholder information;

Master Sheet 2 - Capturing all containers where information assets are stored,

processed, or transported;

Master Sheet 3 - Capturing critical information assets;

Master Sheet 4 - Detailing the Risk Criteria;

Master Sheet 5 - Detailing all concerns and risks to assets from threats,

vulnerabilities, and attackers;

Information Sheet 1 - Capturing critical information assets;

Information Sheet 2 - Container guide;

Information Sheet 2a - Capturing Technical containers;

Information Sheet 2b - Capturing Physical containers;

Information Sheet 2c - Capturing People containers;

Information Sheet 3 - Capturing threats and risk analysis towards assets;

Information Sheet 3a - Threat Scenario Questionnaire for Technical containers;

Information Sheet 3b - Threat Scenario Questionnaire for Physical containers;

Information Sheet 3c - Threat Scenario Questionnaire for People containers;

Information - Risk Criteria impact area - Manpower;

Information - Risk Criteria impact area - Personnel;

Information - Risk Criteria impact area - Social and Organisational;

Information - Risk Criteria impact area - Human Factors Engineering;

Information - Risk Criteria impact area - Training;

Information - Risk Criteria impact area - Environment, Safety, and Health;

Information - Risk Criteria impact area - Habitability;

Information - Risk Criteria impact area - Survivability;
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CAIRIS Model Files

Fig. C.1 Models in CAIRIS

When conducting the information security risk assessment with tool-support from

CAIRIS, a number of models are generated as representations of the data entered

into its database. When exporting the model files, these are saved as xml files

that can be imported into CAIRIS to generate the models again. As illustrated in

Figure C.1, there are a number of these models used within the process, some of
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which become large and complex, and therefore do not scale-down well within the

parameters of this document for readability.

Therefore, if required to visualise these further, the CAIRIS xml model files

used as part of the application of OASoSIS in the case studies can be found

stored within the online folder at https://github.com/D-Dev/cairis. Or specifically in

https://github.com/D-Dev/cairis/tree/master/oasosis. These can be uploaded to the

demo version of CAIRIS found online at https://demo.cairis.org, using test - test to

login.

Furthermore, to view the enhanced models showing accountability, the project

development version of CAIRIS will continue to be stored at https://github.com/D-

Dev/cairis, and can be installed following the CAIRIS installation instructions found at

https://cairis.readthedocs.io/en/latest/install.html, being sure to change the git clone

address to https://github.com/D-Dev/cairis.
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