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Abstract
The past few years have witnessed the resurgence of uncertainty estimation generally in 
neural networks. Providing uncertainty quantification besides the predictive probabil-
ity is desirable to reflect the degree of belief in the model’s decision about a given input. 
Recently, Monte-Carlo dropout (MC-dropout) method has been introduced as a proba-
bilistic approach based Bayesian approximation which is computationally efficient than 
Bayesian neural networks. MC-dropout has revealed promising results on image datasets 
regarding uncertainty quantification. However, this method has been subjected to criticism 
regarding the behaviour of MC-dropout and what type of uncertainty it actually captures. 
For this purpose, we aim to discuss the behaviour of MC-dropout on classification tasks 
using synthetic and real data. We empirically explain different cases of MC-dropout that 
reflects the relative merits of this method. Our main finding is that MC-dropout captures 
datapoints lying on the decision boundary between the opposed classes using synthetic 
data. On the other hand, we apply MC-dropout method on dataset derived from Bitcoin 
known as Elliptic data to highlight the outperformance of model with MC-dropout over 
standard model. A conclusion and possible future directions are proposed.
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1  Introduction

Deep neural networks (DNNs) have attained successful performance in variety of fields 
such as medical imaging [1], computer vision [2], fault detection [3], and attractively in big 
data applications [4]. DNNs are a powerful tool to learn parameters to find the best point 
estimation that maps the given feature vector to the desired output in classification tasks. 
Due to the point estimation, these mappings are assumed to be exact which is not always 
the case in the presence of softmax function that outputs single predictions. Consequently, 
the misclassified examples are often provided erroneously with unjustified overconfidence. 
On the other hand, Bayesian approaches such as Bayesian neural networks (BNNs) and 
Gaussian processes have received significant attention to provide uncertainty measure-
ments besides the predictive probabilities. Unlike single predictions, BNNs and Gaussian 
processes yield predictive distributions in which the weights of BNNs are incorporated 
with priors distribution [5], whereas Gaussian processes introduces priors over functions.

In other words, Gaussian processes sample prior functions from a multivariate Gaussian 
distribution and update these priors with a newly collected data via Bayesian rule. BNNs 
and Gaussian processes are computationally expensive when dealing with a high number 
of parameters as the case of neural networks with a high number of units and multiple 
layers. BNNs require to get the posterior distribution across the network’s parameters, in 
which all possible events are obtained at the output. Gaussian processes need to sample 
prior functions from multivariate Gaussian distribution, wherein the dimension of Gauss-
ian distribution increases proportionally with the number of training points involving the 
whole dataset during predictions. Recently, the outgrowth of Bayesian approaches has wit-
nessed a resurgence of interest which is computationally much efficient than BNNs known 
as Monte-Carlo dropout (MC-dropout) method. As introduced in [6], MC-dropout is 
shown to be as an approximation of the probabilistic Bayesian model—deep Gaussian pro-
cess. Furthermore, this technique is viewed as the minimisation of Kullback–Leibler diver-
gence between an approximate distribution and the posterior of a deep Gaussian process. 
MC-dropout has achieved promising results in regression and classification problems espe-
cially in image datasets [7–9]. Concisely, MC-dropout is a method of performing multiple 
stochastic forward passes with the means of activated dropout in a neural network during 
the testing process to provide ensemble of predictions that could reflect uncertainty estima-
tions. Establishing uncertainty is necessary for the model to know what it doesn’t know. 
The major types of uncertainty are known as epistemic, aleatoric, and predictive uncer-
tainty which is the combination of the former types [10]. Epistemic uncertainty is derived 
from the lack of training data in the region of prediction. This uncertainty is reducible by 
collecting more data which enhances the model’s belief. Aleatoric uncertainty is accounted 
by noisy observations such as data collected by sensors. This uncertainty is irreducible by 
the model but rather mitigated by the source of observations.

Apart from uncertainty, another term is introduced in [11] is called risk. It has been 
defined as the inherent stochasticity in the model’s parameters and can be seen as the vari-
ability of the decision boundary in classification applications. MC-dropout has been criti-
cised by many researchers regarding the type of uncertainty that is captured especially in 
[11]. For instance, the work in [11] has claimed that MC-dropout is tied with risk and not 
uncertainty estimations which contradicts MC-dropout’s behaviour in [10]. For this pur-
pose, we aim to provide illustrative experimental discussion about the behaviour of MC-
dropout using a toy example in the light of the previous contradictory contributions in [6, 
11]. Also, we discuss the performance of MC-dropout on real data derived from Bitcoin 
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blockchain and we provide the strength and drawbacks of this method. Furthermore, we 
show that MC-dropout is not able to deal with out-of-distribution data, whereas it works 
well on some cases which we discuss in the upcoming sections.

2 � Overview of the Related Work

The growing interest of BNN models has been extensively established in [12, 13] in 
which Gaussian distribution is identified over the network’s parameters around the mode 
to compute the posterior distributions. Although Bayesian models are powerful in uncer-
tainty estimation, the exact inference of posterior distribution is intractable. Meanwhile, 
variational inference, Bayesian training by the Hybrid Monte Carlo method, and Markov 
Chain Monte Carlo with Hamiltonian Dynamics also exist referring to [14–16] in which 
assumptions to be made regarding the approximated posterior distribution. These methods 
are difficult to scale to large datasets [10]. The mentioned studies are limited in some cases 
or require additional cost. Recently, an efficient method to compute uncertainties is intro-
duced known as Monte-Carlo dropout (MC-dropout) [6]. Regarding classification tasks, 
we explain the practical implementation of MC-dropout, induced uncertainties, and the 
criticism of this work in more details in the following sections.

2.1 � How Does MC‑Dropout Work?

Primarily, dropout is introduced as a simple regularisation technique to reduce overfitting 
in neural network [17]. This technique is often applied during the training process of neural 
network in which a less over-fitted and more generalisation of the model over the predic-
tions occur. On the other hand, applying dropout before every weight layer has shown to be 
mathematically equivalent to an approximation to the probabilistic deep Gaussian process 
[6].

Consider ŷ as an output of neural network model with arbitrary layers L and parameters 
w =

{
W1,… ,WL

}
 as the weight matrices. Let be y∗ the observed output associated by the 

input vector x∗ . Given a dataset X =
{
x1,… , xN

}
, Y =

{
y1,… , yN

}
 , the predictive distribu-

tion can be expressed as:

where p(y∗|x∗,w) is the model’s likelihood and p(w|X, Y) is the posterior over the weights.
The predictive distribution involves a predictive mean and variance yielding uncer-

tainty estimation. However, the posterior distribution is analytically intractable. Instead, 
an approximation of variational distribution q(w) is obtained from Gaussian process to 
be close as much as possible to p(w|X, Y) in which the optimsation process occurs by 
minimising the Kullback–Leibler divergence (KL) between the preceded distributions as 
following:

With variational inference, the predictive distribution can be approximated as:

(1)p(y∗|x∗,X, Y) = ∫ p(y∗|x∗,w)p(w|X, Y)dw

(2)KL(q(w)|p(w|X, Y))

(3)q(y∗|x∗) = ∫ p(y∗|x∗,w)q(w)dw
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Referring to [6], q(w) is chosen to be the distribution over matrices whose columns are 
randomly set to zero according to Bernoulli distribution expressed as:

where zi,j ∼ Bernoulli
(
pi
)
 for i = 1,… , L and j = 1,…Ki−1 , with KixKi−1 the dimension of 

matrix Wi.
pi refers to the probability of dropout and Mi is a matrix of variational parameters 

(Please refer to [6] for more details). Thus, drawing T  sets of vectors of samples from Ber-
noulli distribution yields 

{
Wt

1
,… ,Wt

L

}T

t=1
 . Therefore, the predictive mean can be written 

as:

with ŷ∗ is the mapping of x∗ by the given neural network and pMC is predictive mean of 
MC-dropout, which is equivalent of performing T  stochastic forward passes over the neural 
network during the testing process with dropout then averaging the results. This method is 
viewed as ensemble of approximated functions with shared parameters which is an approx-
imation of the probabilistic Bayesian approach known as deep Gaussian processes. Since 
this method yields multiple outputs per input, therefore uncertainty could be inspected by 
computing the variance, entropy, mutual information…etc. of these outputs; we consider 
mutual information only in this paper which is discussed later. More practically, the neu-
ral network with dropout learns a variety of hypotheses by randomly subsampling from 
the units of the hidden layer. De-activating dropout during the testing process, the neu-
ral network reproduces all hypotheses simultaneously as ensemble of decision functions 
to perform a single prediction as the case in random forests to reduce the variance and 
consequently prevent overfitting. In case of MC-dropout, the only difference is that mul-
tiple outputs are provided for a single input wherein uncertainty estimation is desirable. 
Furthermore, this method provides higher independency between outcomes that reflects 
the behaviour of the variety of decision functions.

2.2 � Predictive Uncertainty Using MC‑Dropout

Several uncertainty measurements have been presented in the previous studies such as vari-
ance, mutual information and others. We only consider mutual information (MI) to express 
predictive uncertainty. Mutual information distinguishes the type of uncertainty by captur-
ing the epistemic uncertainty in the model [8]. Referring to [9], mutual information (MI) 
can be expressed as:

where c is the class label, and

(4)Wi = Mi.diag
([
zi,j

]Ki

j=1

)

(5)Eq(y∗|x∗)(y∗) ≈
1

T

T∑

t=1

ŷ∗
(
x∗,Wt

1
,… ,Wt

L

)
= pMC(y

∗|x∗)

(6)Î(y∗|x∗,w) = Ĥ(y∗|x∗,w) +
∑

c

1

T

T∑

t=1

p(y∗ = c|x∗,w)logp(y∗ = c|x∗,w)

(7)Ĥ(y∗|x∗,w) = −
∑

c

pMC(y
∗ = c|x∗,w)logpMC(y

∗ = c|x∗,w)
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MI captures the mutual dependency between the hypotheses derived from Monte-Carlo 
samples over the predictions in which MI identifies the information gain of the model’s 
confidence about its output.

2.3 � Uncertainty and Risk

An opposed discussion regarding MC-dropout has been introduced in [11]. Risk is defined 
as the inherent variability in a model, whereas uncertainty appears to capture our uncertain 
belief about the predicted value. Consider the popular example of tossing a coin. The prob-
ability of drawing head or tail will hold some risk. However, in the case of a biased coin, 
our beliefs are updated when we get more observations which are denoted as the uncer-
tainty. This “risk” term matches the case when dealing with feature vectors falling near 
the decision boundary in binary classification tasks. Consequently, MC-dropout provides 
flipped outputs across the extremely close classes. Furthermore, the test points occurring 
between two overlapping classes also identify aleatoric uncertainty. Thus, the two terms 
risk and aleatoric uncertainty hold the same concept to some extent. In both types, the risk 
in the model and aleatoric uncertainty of the predictions are irreducible. This example will 
be illustrated later in the experiment of this paper.

3 � Experiments and Discussions

3.1 � Classification Using Synthetic Data: Toy Example

In this section, we provide an empirical study of MC-dropout method using synthetic data-
sets for classification task. We perform two experiments (separable and non-separable data) 
using two different datasets generated by “make_classification” and “make_circles” func-
tions provided by scikit-learn package in Python Programming Language [18]. “make_
classification” is used to randomly generate a balanced n-class distributions drawn from 
a normal distribution situated on the vertices of 2-D hypercube with length 2 (using two 
clusters per class). “make_circles” produces Gaussian samples with a spherical decision 
boundary in which the function’s parameters acquire noise of 0.1 and scale factor of 0.5 
to separate the circles. For separable and non-separable data, we generate 1000 samples of 
2-D features corresponding to two different classes altogether as shown in Fig. 1. We train 
a neural network for each dataset with same settings of two hidden layers of widths 100 
and 81 respectively, and an output layer squashed with a softmax function for the binary 
classification. A dropout function is applied after every hidden layer with dropout ratio 
of 0.4. After that, the same set is used in testing with activated dropout setting to obtain 
the Monte-Carlo samples with 100 iterations (T = 100). The learning rate is set to 0.001 
and the number of epochs is fixed at 50. The average of the Monte-Carlo samples is used 
as the predicted mean referring to Eq. 5, and its predictive uncertainty is computed using 
MI. In the upcoming experiments, we denote by uncertainty threshold as Tu as introduced 
previously in [9]. This threshold can be randomly assigned between the minimum and the 
maximum uncertainty values in the test set.

Using data of “make_classification”. Using the data of “make_classification”, we 
compute the predictive mean and uncertainty of each instance as shown in Fig. 2. Clearly, 
the data points with predictive mean in a neighbourhood of 0.5 are more likely to acquire 
higher predictive uncertainty. We assign different thresholds T

u
 to the predictive MI, 



1006	 I. Alarab et al.

1 3

where T
u
∈ {0.6, 0.4, 0.2} . The data points with MI values exceeding T

u
 are highlighted 

in which uncertain predictions occur. Subsequently, we highlight the plottings of uncertain 
predictions assigned by these thresholds as depicted in Fig. 3. Interestingly, these uncer-
tain instances are located between the boundaries of the class distributions. Starting with 
T
u
= 0.6 , a few green points that correspond to uncertain predictions lies between class 0 

(red) and class 1 (blue) as shown in Fig. 3.

Fig. 1   Synthetic data. Toy example of separable (left subplot) and non-separable (right subplot) datasets

Fig. 2   Data derived from “make_classification”. Predictive mean versus MI of class 0 (red) and class 1 
(blue)

Fig. 3   Synthetic data with different uncertainty thresholds T
u
= {0.6, 0.4, 0.2} respectively in the subplots. 

Class 0 is plotted in red and class 1 is in blue. The green plots belong to the uncertain instances with respect 
to T

u
 using predictive MI
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A higher number of green points follows the boundary patterns as more uncertain points 
are added with the increased threshold. Specifically, these green instances show different 
types of uncertainty. Referring to Fig. 3, the highlighted instances falling between the tran-
sition region of the opposed classes are known as of aleatoric uncertainty type. The other 
green points that are not falling in the transition region of the class distributions are rather 
falling on the edge of the class itself in which the model has a weak belief about the pre-
dictions (shown in the most left and right sides of each subplot in Fig. 3). These points 
correspond to the model’s epistemic uncertainty where the lack of training points occur 
as introduced in the related work. Apart from the major types of uncertainties, we realise 
that MC-dropout captures the points falling on the boundaries of the class distributions. 
Thus, MC-dropout allows the variability in the model’s parameters (ensemble of hypoth-
eses) resulting in variations of the boundary lines between class distributions. For brevity, 
we generate three different test points of coordinates (− 0.5,4), (− 3,0), (0, − 0.5) as shown 
in Fig. 4.

Afterwards, we perform multiple stochastic passes to compute MI of each case, in which 
MC-dropout behaviour can solely be summarised in three different cases as following:

1.	 First test point of coordinates (− 0.5, 4): The predictive MI of this point is 0. This case 
reveals the drawback of MC-dropout in which the test point lacks to training data and 
cannot be detected as epistemic uncertainty as it is far from the decision boundary 
between the given classes.

2.	 Second test point of coordinates (− 3, 0): This point has acquired predictive MI of value 
1. This point falls near the decision boundary of the given classes, which causes vari-
ability in the decision functions using monte-carlo samplings.

3.	 In third case, the point of coordinates (0, − 0.5) is generated on region of overlapping 
classes (decision boundary). The predictive MI at this point is 0.229. The reason of low 
uncertainty on the decision boundary is due the limited variability of the line separating 
these two classes, whereas the test point occupies a region of overlapped classes. Hence, 
the multiple passes on this point provide nearly stable predictions.

Using data of “make_circles”. In this experiment, we apply MC-dropout on non-lin-
early separable data generated by “make_circles” function. Similarly, we choose different 
values of T

u
 of 0.6, 0.4 and 0.2 to study the effect of MC-dropout using predictive MI as 

shown in Fig. 5.
As depicted in Fig. 6, MI apparently captures the data falling on the spherical boundary 

between the classes distributions. Furthermore, it is reasonable to obtain more uncertain 
instances that belong to the class 0 (outer circle in red). This issue is due to the dispersed 

Fig. 4   Representation of “make_classification” data. Each subplot represents the given training set with a 
single test point shown in green that reflects a unique behaviour of MC-dropout
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distribution of class 0 on a wider circle which increases the variability of decision bound-
ary resulting in weak predictions.

In general, there is no doubt that part of the uncertain instances captured by MC-drop-
out belongs to aleatoric uncertainty type and others for epistemic type. However, the origi-
nal behaviour of this method is not tied with uncertainty rather than the variability of the 
decision boundary. For instance, the outer circumference of the outer circle in Fig. 6 does 
not include any type of uncertainty. Therefore, any data point falling on the outer region 
apart from any data is provided with high certainty that belongs to class 0 (red) which con-
tradicts the concept of uncertainty estimation.

3.2 � Classification Using Real Data: Elliptic Data

In this section, we study the effect of MC-dropout method on real data known as Elliptic 
data, which is derived from Bitcoin blockchain. In this experiment, we discuss the relative 
merits of using MC-dropout.

Elliptic data. It is one of the largest publicly available dataset which is derived from 
Bitcoin blockchain [19]. Specifically, it is a graph of bitcoin transactions with more than 
200 k nodes and 334 k edges. The nodes correspond to the transactions between addresses 
in Bitcoin blockchain, and the edges are the link issued from the source to the destina-
tion of these transactions. The Bitcoin transaction graph of Elliptic data acquires partially 
labelled nodes to distinguish between licit and illicit transactions. The licit transactions 
belong to the normal behaviour of the addresses such as mining bitcoin and other licit ser-
vices. The illicit transactions are derived from illicit services of transactions such as money 
laundering, ransomware, and others. The partial labelling of the graph nodes is acquired 

Fig. 5   Data derived from “make_circles”. Predictive mean versus MI of class 0 (red) and class 1 (blue)

Fig. 6   Synthetic data with different uncertainty thresholds T
u
= {0.6, 0.4, 0.2} respectively in the subplots. 

Class 0 is plotted in red and class 1 is in blue. The green plots belong to the uncertain instances with respect 
to T

u
 using predictive MI
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using heuristics based reasoning process [19]. This data is accompanied by 166 features, in 
which the first 94 corresponds to local features including the timestamp, and the rest corre-
sponds to the aggregated features acquired by the specificity of the graph network. Mainly, 
this data is suitable for binary classification in machine learning to assist anti-money laun-
dering processes by spotting the licit and illicit nodes. Elliptic data is a collection of dis-
tinct transaction graphs with 49 timestamps, where each of these graphs falls in a sepa-
rated timestamp. Moreover, the number of nodes per timestamp is approximately uniform 
in each graph. This data is highly imbalanced with 21% of nodes are labelled licit, and only 
2% are illicit, where the other labels are of unknown identity. In what follows, we only con-
sider local features excluding timestamps which counts to 93 features.

MC-Dropout with Elliptic Data. Using Elliptic data, the first 34 graphs are used as a 
training set including a validation set, whereas the remaining 15 graphs are used as a test 
set. We assess the performance of MC-dropout by training two neural networks with and 
without dropout each of two hidden layers of 100 and 81 neurons respectively. We refer 
to the first model as standard model, where dropout layer is not involved in the algorithm. 
The second model, MC-dropout model, is tied with dropout layer after every hidden layer 
with dropout ratio of 0.3, wherein monte-carlo sampling is performed on the test set with 
100 stochastic forward passes. Hence, predictive uncertainties are measured using mutual 
information (MI). We evaluate the performance of these two models to reflect the good-
ness of classification as shown in Table 1. Unsurprisingly, MC-dropout has outperformed 
a standard model since the former model uses ensemble of decision functions with shared 
parameters which enhances the final predictions.

Illustration of MC-Dropout Behaviour on Elliptic Data. Regarding MC-dropout 
model, we plot predictive mean versus MI for licit and illicit class as shown in Fig.  7. 
Referring to Fig. 7, the two subplots refer to the true labels of class licit and illicit respec-
tively, whereas the predictive mean corresponds to the model’s predictions after using mul-
tiple stochastic forward passes. Generally, we realise that false predictions are associated 
with high certainty as the model is able to detect few with uncertain estimations. There 
are two assumptions behind the high certainty of false predictions. The first assumption is 

Table 1   Comparison between 
standard and MC-dropout models 
using Elliptic data

Area under curve (AUC) represents the goodness of classification 
between class 0 (licit) and class 1 (illicit)

Model Accuracy F1-score AUC​

Standard (no dropout) 0.943 0.619 0.892
MC-dropout 0.966 0.729 0.894

Fig. 7   Predictive mean and MI of the test set using Elliptic data. The left subplot corresponds to licit class 
(red) whereas the right subplot corresponds to the illicit class (blue)
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that these points are similar to case 1 in the previously mentioned experiment of synthetic 
data. The second assumption could be the lack of features, wherein the test points are erro-
neously embedded in the wrong class, and these predictions cannot be detected by any 
machine learning model. On the other hand, assuming that a threshold Tu of 0.5 is assigned 
to the given test set, and we reject the uncertain test points. Consequently, the accuracy of 
the accepted predictions (remaining test points) becomes 0.967 with F1-score 0.736.

Out-of-Distribution Data. To represent Out-of-Distribution (OoD) data, we gener-
ate 100 test points with 93 features each sampled from Gaussian distribution of mean 3.0 
and standard deviation 1.0 chosen arbitrarily, knowing that the original data is normalised. 
With no doubt, MC-dropout is not able to provide any uncertainty on these points, in which 
they are predicted as licit class with predictive uncertainty equals to zero.

4 � Conclusion and Future Work

Dealing with uncertainty estimates is a desirable approach when exposed to critical predic-
tions such as the case in anti-money laundering, where licit and illicit services are involved. 
MC-dropout method as Bayesian approximation is able to capture a portion of epistemic 
and aleatoric uncertainty types, however this method is rather capturing data points fall-
ing on the decision boundary of the given classes. This method is not a reliable approach 
for out-of-distribution data and does not differ from unjustified predictions provided by 
a standard neural networks. Nonetheless, MC-dropout deals efficiently with misclassified 
instances located between the boundaries of different given classes, which is highly viewed 
in image datasets. In the future work, we foresee uncertainty predictions via distances from 
a given test point to a randomly chosen nearest neighbours, in which epistemic uncertainty 
can be identified.
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