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Abstract
Microplastics (MPs) are small, plastic particles of various shapes, sizes and polymers. 
Although well studied in marine systems, their roles and importance in freshwater 
environments remain uncertain. Nevertheless, the restricted ranges and variable 
traits of freshwater fishes result in their communities being important receptors 
and strong bioindicators of MP pollution. Here, the current knowledge on MPs in 
freshwater fishes is synthesized, along with the development of recommendations 
for future research and sample processing. MPs are commonly ingested and pas-
sively taken up by numerous freshwater fishes, with ingestion patterns often related 
to individual traits (e.g. body size, trophic level) and environmental factors (e.g. local 
urbanization, habitat features). Controlled MP exposure studies highlight various ef-
fects on fish physiology, biochemistry and behaviour that are often complex, unpre-
dictable, species-specific and nonlinear in respect of dose–response relationships. 
Egestion is typically rapid and effective, although particles of a particular shape and/
or size may remain, or translocate across the intestinal wall to other organs via the 
blood. Regarding future studies, there is a need to understand the interactions of MP 
pollution with other anthropogenic stressors (e.g. warming, eutrophication), with a 
concomitant requirement to increase the complexity of studies to enable impact as-
sessment at population, community and ecosystem levels, and to determine whether 
there are consequences for processes, such as parasite transmission, where MPs 
could vector parasites or increase infection susceptibility. This knowledge will de-
termine the extent to which MP pollution can be considered a major anthropogenic 
stressor of freshwaters in this era of global environmental change.
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1  | INTRODUC TION

1.1 | Microplastics in the environment

The ubiquity of microplastics (MPs), small plastics particles <5 mm 
in diameter (Barnes et al., 2009), has recently developed into an 

environmental issue of high societal concern, especially as MP 
pollution is intricately linked to the use of plastics in everyday life 
(Rodrigues et al., 2019). Primary MPs are deliberately manufactured 
within this general size range for use in industry or various cosmetic 
products (Godoy et al., 2019; Guerranti et al., 2019; Yurtsever, 2019), 
whereas secondary MPs form from the breakdown of larger plastics 
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through physical, chemical and biological degradation (Kundungal 
et al., 2019; Raddadi & Fava, 2019; Sánchez, 2019; Winkler et al., 
2019).

Microplastics are highly diverse and vary in size, shape, colour, 
polymer type and their constituent chemicals that all affect how 
they behave in the environment (e.g. their transport, degradation, 
adsorption capacity and ultimate fate). Nevertheless, variants of 
polyethylene (PE), polypropylene (PP), polyethylene terephthal-
ate (PET), polystyrene (PS) and polyvinyl chloride (PVC) account 
for 90% of all plastic polymers used (Andrady & Neal, 2009) and, 
therefore, most MPs also. All MPs can be considered as dynamic, 
being continually modified and degraded over time to produce 
ever smaller particles, eventually forming nanoplastics (NPs) <1 µm 
(Gigault et al., 2018).

Microplastics were identified within the marine environment 
in the 1970s (Carpenter et al., 1972; Carpenter & Smith, 1972), 
though the term was introduced later by Thompson et al. (2004), 
with many studies subsequently identifying MPs in freshwater and 
terrestrial systems, where both water (Akdogan & Guven, 2019; 
Bank & Hansson, 2019; Wu et al., 2019) and wind (Chen et al., 2020; 
Huang, Qing, et al., 2020; Zhang et al., 2019) are major transport 
mechanisms. Several studies have also highlighted that waste plas-
tics, including MPs, in aquatic systems typically originate from the 
land, demonstrating the interconnectedness of aquatic and terres-
trial systems (Malizia & Monmany-Garzia, 2019; de Souza Machado 
et al., 2018).

Plastic particles move throughout aquatic systems and float, 
sink or settle depending on particle properties (density, shape 
etc.), environmental features (water density, salinity, flow rate 
etc.) and aquatic processes (e.g. water currents and storm events) 
(Bondelind et al., 2020; Li, Zhang, et al., 2020). The ultimate fate 
of MPs is to accumulate in sinks, such as river sediments (Simon-
Sánchez et al., 2019; de Villiers, 2019). MPs may also become 
temporarily or permanently trapped within algal mats (Feng et al., 
2020) or by physical barriers such as dams (Watkins et al., 2019). 
Environmental perturbations, such as flooding, weather events and 
habitat alterations, can then free previously trapped or sunk MPs 
into the environment, which then gradually pass through aquatic 
systems and biota (von Friesen et al., 2020; O’Connor et al., 2019; 
Ockelford et al., 2020).

Studies on ingestion reveal that environmental MPs are consumed 
by a range of different taxa across varying trophic positions (TPs), feed-
ing types and habitats (Gouin, 2020; Ribeiro et al., 2019). Many of these 
studies have focused on marine organisms, especially taxa of ecologi-
cal, economic or conservation interest (Casabianca et al., 2019; Katyal 
et al., 2020; Setälä et al., 2014; Ward et al., 2019). A secondary goal is 
often trying to understand the potential human exposure via ingestion 
of contaminated fauna (Oliveira et al., 2019; Prata et al., 2020; Rainieri & 
Barranco, 2019; Walkinshaw et al., 2020). Complementary studies have 
focused on developing understandings of how MP exposure affects ani-
mal physiology, population dynamics, ecology and behaviour (Anbumani 
& Kakkar, 2018; Franzellitti et al., 2019; Guzzetti et al., 2018; Prokić et al., 
2019). Although the main research focus has been on marine species 

and systems, there is increasing knowledge on how MPs behave and 
their consequent effects in freshwater (Li et al., 2018; Strungaru et al., 
2019; Triebskorn et al., 2019).

1.2 | Issues of MPs in freshwaters and 
freshwater fishes

Though covering only a relatively small proportion of the surface of 
the earth (<0.01%), freshwaters are highly biodiverse and support 
a wide range of key ecosystem services (Dodds et al., 2013). They 
are also already at high risk from multiple anthropogenic stressors, 
including nutrient pollution, habitat loss, biological invasions and cli-
mate change (Jackson et al., 2016; Ormerod et al., 2010; Reid et al., 
2019). Consequently, freshwater MPs potentially represent an ad-
ditional stressor, with freshwater environments also representing 
a critical target habitat for future MP remediation and mitigation 
strategies (Karbalaei et al., 2018; Wong, Lee, et al., 2020). As much 
as 80% of aquatic plastic waste originates from terrestrial sources 
(Andrady, 2011) and often reaches marine environments via con-
necting freshwaters (Galloway et al., 2017).

Freshwater fishes comprise a highly diverse taxonomic 
group, covering a range of TPs, ecological guilds and life his-
tory strategies (Noble et al., 2007). With the exception of di-
adromous fishes, they spend their lives within a limited area, 
where the presence of anthropogenic barriers may further limit 
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their range (Grill et al., 2019). Thus, freshwater fish popula-
tions and communities may be continuously exposed to a range 
of MPs throughout their lives and must adapt to, or tolerate 
all changes within their local environment, particularly where 
their movement is restricted. Freshwater fish are, therefore, 
a key receptor and bioindicator of MP pollution and so repre-
sent strong model taxa for developing knowledge on how MPs 
affect the ecology and behaviour of animals, from individuals 
through to community levels. Consequently, in this review, we 
synthesize the issues and knowledge gaps relating to MPs in 
freshwater fishes and suggest future research directions and 
approaches. The objectives of this knowledge synthesis are to: 
(a) summarize the major sources of and transport of MPs into 
freshwaters; (b) outline the major ingestion–egestion and pro-
cessing pathways within freshwater fish; (c) detail the princi-
pal impacts of MPs on freshwater fish; and (d) outline a series 
of future perspectives on research priorities and approaches. 
Figure 1, below, summarizes the sources, transport, processes 

and pathways relating to MPs in freshwater fish discussed in 
this review.

2  | OCCURRENCE OF MPs IN 
FRESHWATER FISHES:  FROM SOURCES TO 
EGESTION

2.1 | Sources of freshwater MPs

Most freshwater MPs originate from terrestrial systems (Andrady, 
2011), with the extent of local urbanization being a strong predic-
tor of MP loadings in nearby water bodies, which are dependent on, 
and also a proxy of, local plastic usage and disposal (Kataoka et al., 
2019; Tibbetts et al., 2018). The breakdown of larger plastic materials 
(including paints, tyres and litter) by physical, chemical and biological 
processes is an important source of secondary MPs to freshwaters 
(Fadare et al., 2020; Horton et al., 2017; Karbalaei et al., 2018; Knight 

F I G U R E  1   Generalized overview of microplastics in freshwater fishes including sources, transport and transfer between different 
biota and systems. Grey boxes indicate processes, red outlined boxes indicate abiotic and biotic compartments and arrows indicate the 
directionality of microplastic transfer. “MPs” is used as an abbreviation for microplastics and “GIT” for the gastrointestinal tract. [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2020). Recreational freshwater activities such as boating and 
angling may also contribute MPs or larger plastic waste directly into 
rivers and lakes through the degradation of plastic lines, nets, boats, 
waders etc.; however, these potential sources have yet to be inves-
tigated and quantified. MPs, along with larger litter, accumulate on 
impermeable surfaces or in dusts, and are washed into storm drains 
then water courses after sufficient rain (Liu, Li, et al., 2019; Roychand 
& Pramanik, 2020; Yukioka et al., 2019). Some MPs and smaller litter 
may also be transported by the wind and deposited in various ur-
banized or remote environments, where dispersal tends to be higher 
for smaller and lighter particles, particularly fibres (Chen et al., 2020; 
Huang, Qing, et al., 2020; Y. Zhang et al., 2019; Zhang et al., 2020).

The textile industry is another source of MP pollution as syn-
thetic polymers such as polyester are commonly used to make cloth-
ing. The different synthetic materials used as well as the particular 
manufacturing process may dictate the sustainability and lifespan 
of the item of clothing (Janaina et al., 2020) and how many second-
ary MPs, typically fibres, are shed when the item is worn or washed 
(Belzagui et al., 2019; Henry et al., 2019; Hernandez et al., 2017; 
Napper & Thompson, 2016). Aspects of the wash cycle, the machine 
and the washed load may also impact both the number and type of 
fibres released (Cai et al., 2020; De Falco et al., 2019; Yang et al., 
2019). Synthetic fibres from clothes washing, together with rinsed 
cosmetics and other flushable plastics (Guerranti et al., 2019; Morritt 
et al., 2014), then navigate the sewage system within wastewater.

This wastewater eventually passes through the sewage system to 
wastewater treatment plants (WWTPs), which treat domestic and indus-
trial waste before release into the natural environment (often rivers and 
estuaries) (Ngo et al., 2019). Waste may undergo biological, chemical and 
physical processing to remove large debris, neutralize harmful chemicals 
and degrade biological materials, with these processes simultaneously 
degrading and modifying MPs throughout treatment (Enfrin et al., 2019; 
Li, Mei, et al., 2019). Furthermore, there is evidence that MPs may re-
duce the efficiency of the treatment processes if they contain harmful 
internal or bound chemicals that can inhibit biological processing stages 
(Zhang & Chen, 2019). While WWTPs vary in their treatment processes, 
even highly efficient WWTPs that approach 98% MP removal/exclusion 
still allow the daily discharge of substantial numbers of MPs in treated 
sewage effluents (Conley et al., 2019; Hidayaturrahman & Lee, 2019; 
Hyesung Lee & Kim, 2018). Waste sludge may accumulate up to 98% 
of MPs from the treated water (Gies et al., 2018; Nizzetto et al., 2016), 
which can account for up to 3% of biowaste by weight (Mohajerani & 
Karabatak, 2020), and is often modified for use as fertilizer if it is not 
incinerated or disposed at landfill (Edo et al., 2020; Rolsky et al., 2020). 
Agricultural application thereby provides a secondary opportunity for 
these MPs to directly reach water courses through runoff, wind dispersal 
and deposition, together with any MP-bound or internalized chemicals.

2.2 | Transport of MPs in freshwater

Microplastics in freshwaters tend to move and behave according to 
plastic particle properties such as size, shape or polymer density as 

well as features and processes within the system (Bondelind et al., 
2020; Figure 1). MPs may be transported floating, in the water col-
umn or carried along the bottom sediments and may have variable 
residence times in the environment, depending on whether MPs are 
ingested, impeded or sink and settle onto or into bottom sediments 
(Daily & Hoffman, 2020; Hoellein et al., 2019; Song, Jongmans-
Hochschulz, et al., 2020). Flow conditions and sediment type can 
often favour MP accumulation within the sediments, even for par-
ticles with relatively low polymer densities, resulting in concentra-
tions often exceeding those of the overlaying surface waters (Frei 
et al., 2019; Simon-Sánchez et al., 2019; de Villiers, 2019).

Microplastics trapped within sediments may eventually perme-
ate into groundwaters or aquifers before re-joining the water cycle 
(O’Connor et al., 2019; Re, 2019), or may be freed by storm and rain 
events that may resuspend trapped MPs and introduce them back 
into aquatic systems (Bondelind et al., 2020; Ockelford et al., 2020; 
Piñon-Colin et al., 2020). Since freshwater and climatic factors may 
vary seasonally, there can also be some temporal variation, with en-
vironmental MP loadings typically being higher during wet seasons 
(Campanale et al., 2019; Eo et al., 2019; Kurniawan & Imron, 2019; 
Weideman et al., 2019; Yuan et al., 2019). Meandering and differ-
ences in flow and sediment profiles within systems can also produce 
spatial differences in MP concentrations between the littoral and 
mid-channel areas of rivers (Wong, Löwemark, et al., 2020). The 
same processes also largely affect lakes and ponds, though MPs may 
persist in static water bodies for longer (Daily & Hoffman, 2020).

The high surface area to volume ratio, the degree of hydropho-
bicity and the surface structure of MPs may promote the coloniza-
tion of plastic particles by various microorganisms within natural 
aquatic systems, altering particle density and interactions with biota 
and other surfaces (Caruso, 2019; Shen et al., 2019). Degradation 
and modification of MPs in aquatic systems may also favour the 
release of internal chemicals (e.g. additives, plasticizers) and/or the 
binding of various organic and inorganic chemicals present in the 
environment (e.g. metals, pharmaceuticals, fungicides) depending 
on environmental conditions, local concentration and MP properties 
(Caruso, 2019; Godoy et al., 2020; Liu, Zhu, et al., 2019; Magadini 
et al., 2020; Wang, Yang, et al., 2019). The modification of and bind-
ing by MPs in turn impact their transport, density and effects.

2.3 | MP encounter rates in freshwater fishes

As ectotherms, fish activities and feeding rates are intrinsically 
linked to the environmental temperature, but will also vary accord-
ing to the size, sex and metabolic activity of individuals, as well as the 
abundance, nutritional quality and processing time of their prey re-
sources (Jobling, 1981). Consequently, these same factors may also 
govern the encounter and ingestion rates of MPs by fish. Although 
MP encounter by fish is assumed to occur mainly during active feed-
ing, there is increasing evidence of MPs being encountered via the 
gills and/or epidermis of wild freshwater fish (Abbasi et al., 2018; 
Hurt et al., 2020; Park et al., 2020). Experimental studies have also 
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demonstrated MP accumulation on the gills (Mak et al., 2019; Roch 
et al., 2020). Passive uptake of MPs is thus an additional source of 
MPs following environmental exposure during swimming and res-
piration. Collard et al. (2017) quantified the ingestion of anthro-
pogenic particles in several marine fishes and found that ingestion 
was highest in the species with the most efficient filtration appa-
ratus (high filtration area and small gill raker spacing). In a similar 
way, fish features such as gill surface area, gill structure, habitat etc. 
may correlate with numbers of MPs on the gills suggesting passive 
accumulation.

The foraging habitats of freshwater fish should also impact MP 
encounter rates, given MP distributions and loadings differ, with 
typically higher loadings in sediments compared to overlaying sur-
face waters (Bondelind et al., 2020; Boucher et al., 2019; Li, Geng, 
et al., 2019). Consequently, within a given location, pelagic species 
ought to encounter fewer floating MPs (e.g. less dense fibres and 
beads) than benthivores, with the latter then potentially encoun-
tering higher concentrations of sunk and settled MPs (e.g. denser 
fragments and films), provided there is also a relatively higher ben-
thic MP concentration. Correspondingly, the trophic level of a fish 
and feeding guild can also affect MP exposure levels, with obligate 
piscivores potentially only encountering MPs passively or indirectly 
via ingested prey, whereas species in other feeding guilds are more 
likely to directly encounter MPs associated with vegetation or detri-
tus (Hoang & Felix-Kim, 2020; Kalčíková, 2020; Ribeiro et al., 2019).

2.4 | MP ingestion by freshwater fish

The ingestion patterns of MPs in freshwater fishes have been well 
documented (Table 1) and may vary depending on the encounter 
rate, MP characteristics and whether the particle is externally iden-
tified as a nonresource item (Collard et al., 2019; Markic et al., 2020). 
Gape size constrains the prey and MP sizes a fish can ingest, with 
larger fish generally having larger maximum particle sizes and/or 
MP loadings (Dantas et al., 2012; Pegado et al., 2018; Ramos et al., 
2012; Ryan et al., 2019), although there are exceptions (McNeish 
et al., 2018; Slootmaekers et al., 2019; Vendel et al., 2017). A gen-
eral review of plastic ingestion in animals suggests that body size 
alone can explain as much as 42% of variations in plastics consumed 
by animals and that the ratio of the maximum ingestible plastic size 
for an animal relative to its body size is approximately 1:20 (Jâms 
et al., 2020). Sex has also been implicated as a possible explanation 
for differences in freshwater fish MP patterns (Horton et al., 2018; 
Su, Nan, et al., 2019), although this might be an artefact of body size, 
given patterns of sexual dimorphism in fish (Parker, 1992).

The issue of body size is, however, complicated at the individ-
ual level, given that ontogenetic dietary shifts facilitate changes in 
prey items and sizes, which then result in changes in TP (Campbell 
et al., 2017; Hurt et al., 2020; Khan et al., 2020; McNeish et al., 2018; 
Roch et al., 2019). With their increased gape, body size, and TP, MPs 
are potentially accumulated in the gastrointestinal tract (GIT) of 
apex predators, as demonstrated in populations of largemouth bass 

(Micropterus salmoides, Centrarchidae) (Hurt et al., 2020) and north-
ern pike (Esox lucius, Esocidae) (Campbell et al., 2017), which both 
had higher GIT MP levels compared to fishes of lower TP from the 
same system. However, pike have also been found to have fewer 
MPs than other fishes (Roch et al., 2019), suggesting some complex-
ity in the transfer of MPs within food chains and the limitations of 
current “snapshot” MP screening methods. Moreover, a recent gen-
eral review of plastic ingestion in animals suggested no evidence of 
bioaccumulation or biomagnification (Gouin, 2020) where MPs cross 
the intestinal barrier then translocate into and accumulate within 
tissues, respectively. It should however be noted that ingestion re-
search to date is heavily biased towards MP accumulation in the GIT 
which, while inside the body, is considered external as it is contin-
uous with the environment at the mouth and anus, though several 
studies have identified MP bioaccumulation within the liver, brain 
and muscle of freshwater fish (Abbasi et al., 2018; Batel et al., 2016; 
Ding et al., 2020; Su, Nan, et al., 2019). The reported mean MP inci-
dence of 20%, a mean of four particles per individual and a general 
range of up to 10 pieces per individual (Gouin, 2020) is largely consis-
tent with ingestion studies in freshwater fishes (Table 1). The trophic 
transfer of MPs has been demonstrated experimentally from water 
fleas (Daphnia magna, Daphniidae) to fathead minnows (Pimephales 
promelas, Cyprinidae) (Elizalde-Velázquez et al., 2020), brine shrimp 
(Artemia sp., Artemiidae) to zebrafish (Danio rerio, Cyprinidae) (Batel 
et al., 2016) and from tintinnid (Favella sp., Ptychocyclidae) to inland 
silversides (Menidia beryllina, Atherinopsidae) (Athey et al., 2020). 
Thus, ingestion of MPs via resource items is a viable transfer mech-
anism in freshwater fish.

The relationship between fish consumption rates and MP expo-
sure concentration followed a Type II functional response curve in 
banded tilapia (Tilapia sparrmanii, Cichlidae), with consumption of 
MPs even at low concentrations (Mbedzi et al., 2019). Experiments 
have also suggested that the probability of ingestion is elevated 
where MPs have similar characteristics (appearance, smell and/
or taste) to common prey resources (Roch et al., 2020; de Sá et al., 
2015). The ingestion of a red MP fibre by a sight-feeding fish may 
occur, perhaps due to its similarity to chironomid larvae, whereas the 
binding or leaching of info-chemicals, such as dimethyl sulphide, can 
induce ingestion by taste-feeding marine copepods (Procter et al., 
2019) and fish (Savoca et al., 2017). While dimethyl sulphide is not 
present in freshwaters, most likely through an absence of the mi-
croorganisms that produce it (Zink & Pyle, 2019), similar freshwater 
info-chemicals might be discovered.

The increased ingestion rates of MPs when coupled with a feed-
ing cue is supported by experimental evidence that many fish will 
readily reject MPs except when they are presented in combination 
with food items (Kim et al., 2019; de Sá et al., 2015; Xiong et al., 
2019). It could also explain why older MPs with altered structures 
and chemistry might be more likely to be consumed than virgin MPs, 
given that older MPs tend to degrade, develop biofilms or bind other 
chemicals over time (Chen, Xiong, et al., 2019; Song, Hou, et al., 
2020). The adsorption and uptake of MPs by aquatic plants is an-
other understudied concentrating mechanism that has the potential 
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TA B L E  1   Overview of studies accessible before the 15th May 2020 investigating microplastic ingestion in at least one wild freshwater 
fish (including estuarine/temporarily freshwater fish)

Species Country N FO Mean Polymer(s) References

3 Brazil 182 23 — (PA)a  Possatto et al. (2011)

2 Brazil 569 7.9 — (PA)a  Dantas et al. (2012)

3 Brazil 425 13.4 — (PA)a  Ramos et al. (2012)

1 France 186 12 — — Sanchez et al. (2014)

4 Switzerland 40 7.5 — — Faure et al. (2015)

44 USA 419 8.2 — PP, PES, AC, PS Phillips and Bonner (2015)

2 Tanzania 40 20 — PE, PU, PET Biginagwa et al. (2016)

2 USA 436 45 0.8 — Peters and Bratton (2016)

1 South Africa 70 73 3.8 — Naidoo et al. (2016)

1 Brazil 530 64.2 — — Ferreira et al. (2016)

2 UK 76 66 0.5 PES, PA, AC, PET McGoran et al. (2017)

6 China — 95.7 2.4 CE, PET, PES Jabeen et al. (2017)

1 Brazil 48 83 3.6 — Silva-Cavalcanti et al. (2017)

2 Switzerland 25 24 1.15 — Roch and Brinker (2017)

69 Brazil 2,233 9 1.06 — Vendel et al. (2017)

13 China 35 25.7 0.86 PE, PA K. Zhang et al. (2017)

5 Canada 181 73.5 3.28 — Campbell et al. (2017)

11 Argentina 87 100 19.2 — Pazos et al. (2017)

4 South Africa 36 100 — — Naidoo et al. (2017)

3 Portugal 120 38 1.67 PE, PP, PET, PA, RAY Bessa et al. (2018)

3 Australia 93 — 1.37 PET, RAY Halstead et al. (2018)

1 China 30 60 4.3 PP, PE Cheung et al. (2018)

1 UK 64 32.8 0.69 PE, PP, PET Horton et al. (2018)

11 USA 74 85 — — McNeish et al. (2018)

46 Brazil 189 13.7 1.2 PA, RAY, PE Pegado et al. (2018)

2 Brazil 125 — — — Silva et al. (2018)

1 France 60 15 0.15 PET, PP, PAN, PEVA Collard et al. (2018)

21 UK 876 32 — PET, PA, PP McGoran et al. (2018)

16 Brazil 172 26.7 0.56 PE, PVC, PP, PA, PMMA Andrade et al. (2019)

1 Canada 74 59 1.15 — Collicutt et al. (2019)

1 Belgium 78 9 0.1 PET, EVA, PVC, PP, PVA, PA, CE Slootmaekers et al. (2019)

2 China — — 1.7 PE, PP Lv et al. (2019)

13 China 217 — — PET, PP, PE Su, Deng, et al. (2019)

2 Brazil 529 > 50 1.4/1.5 — Ferreira, Barletta, et al. (2019)

9 China 279 50 7 PE, PP, PET Zheng et al. (2019)

1 China 11 91 7.64 PE, PP Yuan et al. (2019)

1 Australia 180 19.4 0.6 PET, RAY, PA, PP Su, Nan, et al. (2019)

3 Brazil 529 58 1.46 — Ferreira, Barletta, Lima, Morley, et al., 2019

1 USA 44 100 9 — Ryan et al. (2019)

22 Germany 1167 18.8 0.2 — Roch et al. (2019)

1 Argentina 21 100 9.9 — Blettler et al. (2019)

2 USA 96 100 — — Hurt et al. (2020)

2 Poland 389 54.5 1.16 — Kuśmierek and Popiołek (2020)

4 South Africa 174 52 0.79 RAY, PET, PA, PVC Naidoo et al. (2020)

(Continues)
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to increase the ingestion probability of associated MPs by herbivo-
rous fish (Kalčíková, 2020). Nevertheless, debate remains over im-
portant questions such as whether fish are able to distinguish MPs 
from prey resources and to assess the suitability of MPs as a food 
source prior to ingestion, if fish learn to avoid or ingest MPs, whether 
ingestion is deliberate and under which conditions does MP inges-
tion increase (Huuskonen et al., 2020; Li, Su, et al., 2020; Peters & 
Bratton, 2016; Ramos et al., 2012; Ryan et al., 2019).

2.5 | MP processing and egestion

Following ingestion, the morphology of both the GIT and ingested 
MPs may affect their passage through the fish (Jabeen et al., 2017) 
and whether they temporarily or permanently lodge on to GIT struc-
tures, such as coils or projections. Differences in GIT structure have 
been suggested as a driver of species-specific differences in MP 
levels (Jabeen et al., 2017), although uncertainty remains over how 
particular MP morphometrics and physicochemical properties affect 
their passage rates through fishes and whether there are systematic 
biases in the MP screening of fish GITs as a consequence.

Internal environments within fish will differ in temperature and 
pH which may modify MPs and promote the release of certain harm-
ful MP-associated chemicals (Coffin et al., 2019; Khan et al., 2017; 
Lee et al., 2019; Wu et al., 2020). These in vitro studies suggest 
that a variety of chemical and physiological cues in different spe-
cies and sections of the GIT may change the absorption profile of 
MPs to leach out chemicals internalized within the particle as well as 
those bound to the external surface of the particle. Chemicals within 
MPs often include additives such as flame retardants and bisphe-
nols which are added to plastics to achieve certain properties (Chen, 
Allgeier, et al., 2019; Gunaalan et al., 2020; Sun, Nan, et al., 2019), 
while externally bound chemicals may include a variety of pharma-
ceuticals, fertilizers, pesticides and heavy metals encountered and 
bound in the freshwater environment (Atugoda et al., 2020; Bradney 

et al., 2019; Caruso, 2019; Guan et al., 2020). MPs may therefore 
vector or leach a range of different chemicals into fish and other 
biota that then produce effects according to factors such as the type 
of chemical, concentration, where the chemical is released within 
the GIT and whether the chemicals are taken up across the intestinal 
barrier (Bradney et al., 2019; Gunaalan et al., 2020).

Microplastics size and shape are also important features af-
fecting the processing of ingested MPs, particularly as small parti-
cles, typically <10 µm, may translocate across the intestinal barrier, 
reaching the blood and eventually the rest of the body (Ribeiro et al., 
2019). The range of particles that may cross the intestinal barrier 
does, however, vary with species and only particles of a particular 
shape, size and chemistry may pass (Ribeiro et al., 2019). The MPs 
ingested by fish may already be capable of translocation; however, 
MPs may also be modified and degraded internally throughout the 
GIT by processes such as maceration, digestion etc. which may pro-
duce particles capable of translocation within fish, though this has 
yet to be investigated.

Within fish, translocated MPs, NPs and their associated contam-
inants have been recovered from regions such as the liver, muscle 
and brain (e.g. Abbasi et al., 2018; Batel et al., 2016; Ding et al., 2020; 
Su, Nan, et al., 2019), suggesting some risk of MP trophic transfer to 
piscivorous fauna. The MPs present in a fish at the point of capture 
should thus be considered a snapshot representing those currently 
trapped, as well as those yet to be egested or translocated. The 
varying individual diets, rates of internal physiological processes and 
time since egestion once caught/euthanized will, therefore, provide 
varying GIT MP loadings, even if the fish are of the same species, size 
and sex, and from the same local environment. Additionally, process-
ing tissues of the same fish may provide a greater level of data on 
fish MP exposure over a slightly longer time period. Tissue MP lev-
els could be correlated to both gut concentrations and factors such 
as body condition which may depend more on translocated tissue 
MP concentrations than those accumulated, temporarily or perma-
nently, in the gut.

Species Country N FO Mean Polymer(s) References

8 Thailand 107 72.9 1.76 — Kasamesiri and Thaimuangphol (2020)

32 China 120 30/47 2.83 PE, PET, PP, PS Huang, Koongolla, et al. (2020)

6 South Korea 6 100 22 PFTE, PE, RAY Park et al. (2020)

2 Egypt 43 76.7 4.91 PE, PET, PP Khan et al. (2020)

22 Colombia 302 7 0.23 PA, EVA, Latex Garcés-Ordóñez et al. (2020)

4 China 126 — — — Li, Su, et al. (2020)

Note: Studies are presented in chronological order. “Species” denotes the number of species studied, “N” the sample size, “FO” the percentage 
frequency of microplastic occurrence, “Mean” is the mean number of microplastics per individual and “Polymer” lists the main polymers confirmed 
through chemical techniques.
Alphabetized polymer abbreviations: AC, acrylate; CE, cellophane; EVA, ethylene vinyl acetate; PA, polyamide; PAN, polyacrylonitrile; PE, 
polyethylene (high or low density); PES, polyethersulphone; PET, polyethylene terephthalate/polyester; PEVA, polyethylene vinyl acetate; PTFE, 
polytetrafluoroethylene; PMMA, polymethyl methacrylate; PP, polypropylene; PS, polystyrene; PU, polyurethane; PVA, polyvinyl alcohol; PVC, 
polyvinyl chloride; RAY, rayon.
aDenotes studies in which the polymer was reported without chemical confirmation. 

TA B L E  1   (Continued)
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Laboratory experiments have demonstrated that goldfish 
(Carassius auratus, Cyprinidae) may clear 50% of MPs within 10 hr 
and 90% within 33 hr of ingestion (Grigorakis et al., 2017), although 
egestion rates vary within and between species, depending on 
the MP and GIT structure, food availability and stomach fullness 
(Elizalde-Velázquez et al., 2020; Gouin, 2020; Hoang & Felix-Kim, 
2020; Xiong et al., 2019). For example, fibres tend to accumulate at 
higher levels relative to fragments and pellets, as they are harder to 
egest (Qiao et al., 2019). Faecal pellets may act as a concentrated 
source of MPs and organic material which may be utilized by a range 
of pelagic or benthic organisms as it sinks and settles, transferring 
MPs and material between biota (Hoang & Felix-Kim, 2020; Ribeiro 
et al., 2019).

3  | IMPAC TS OF INGESTED MPs ON 
FRESHWATER FISHES

Following ingestion, MPs can affect fish via three broad, nonmutually 
exclusive ways: (a) through physical effects of the MP itself (e.g. block-
ing the GIT or causing false satiation); (b) the leaching of plasticizers, ad-
ditives and other harmful chemicals from within the MPs; and (c) by the 
desorption of harmful pollutants bound to the MPs (Strungaru et al., 
2019). The effects of MP exposure on freshwater fish are thus highly 
variable (Table 2; Figure 2), depending on the interaction of the MP 
exposure (e.g. concentration, size, polymer and shape) and the ecology 
of the species. Effects vary from no effect to measurable changes in 
feeding rates, movement, gene expression, physiology, development, 
and/or survival (Jovanović, 2017; Wang, Ge, et al., 2019).

In general, much of the experimental MP literature for freshwater 
fish has focussed on using various life stages of cyprinids (Table 2), es-
pecially zebrafish, as the model species to test the effects of MP ex-
posure, most likely due to their extensive use in toxicology research 
(Dai et al., 2014). The broad diet and different feeding behaviours of 
zebrafish (Froese & Pauly, 2019) allow several MP exposure methods, 
including presented paired with food items (Batel et al., 2018; Lei 
et al., 2018; Lu et al., 2016), within feed (Mak et al., 2019) and/or via 
contaminated prey resources (Batel et al., 2016, 2020).

Within controlled experimental studies, freshwater fish MP expo-
sure levels have been highly variable, based on the type, size and shape 
of MPs, and, taking weight alone, span at least five orders of magnitude 
from 10 µg/L (Qiao et al., 2019) up to 6 g/L (LaPlaca & van den Hurk, 
2020). While these exposure levels are largely within the variation of re-
corded freshwater environmental loads (e.g. Li, Busquets, et al., 2020; 
Li et al., 2018; Tibbetts et al., 2018), some higher exposure levels can 
be considered ecologically irrelevant based on these current freshwater 
data (e.g. LaPlaca & van den Hurk, 2020; Mazurais et al., 2015). Several 
studies have replicated specific environmental MP loadings appropriate 
to the life stage and habitat of the model fish (e.g. Mazurais et al., 2015; 
Rochman et al., 2014, 2017), with Naidoo and Glassom (2019) addition-
ally also replicating the types and shapes of MPs in the exposure regime.

Several studies have demonstrated dose-dependent impacts 
of MP exposure on freshwater fish, though these effects may only 

occur at a particular MP concentration, suggesting MP thresholds 
for impact, with the relationship between exposure and impact thus 
being more complex than a simple linear dose–effect relationship 
(Lei et al., 2018; Mazurais et al., 2015; Qu et al., 2019; Zhao et al., 
2020). MP impacts are often exaggerated when the fish is coex-
posed to an additional chemical (Banaee et al., 2019; Qiao et al., 
2019; Roda et al., 2020), although antagonistic interactions can also 
occur where MPs modulate the harmful effects of another chemical 
in the fish, or may also have no interaction at all (Hatami et al., 2019; 
Oliveira et al., 2013; Wen, Jin, et al., 2018). MP effects may also be 
life stage-specific, and are occasionally more detrimental to larval 
than adult fish, especially when MP exposure affects development 
(Pannetier et al., 2020).

3.1 | Physiological impacts

The most common impacts of MP exposure have been recorded 
at the level of the individual fish, or lower, with impacts most 
typically including modified patterns of expression and/or pro-
tein activity (Figure 2; Table 2). Chemicals within or bound to 
the MP may also be released within the fish, causing a range of 
impacts including altered immune activity, expression or blood 
biochemistry in response to the foreign MP and any associated 
chemicals (Table 2). GIT oxidative stress and histological damage 
are common impacts at the organ/tissue level (Figure 2), where 
the processing of MPs and/or any associated chemicals induce 
immune response, resulting in localized cell damage and altered 
morphology of physiological structures (Lu et al., 2016; Yu et al., 
2020). Changes in GIT morphology may also alter the types and 
activity of symbiotic microorganisms, resulting in gut dysbiosis 
and altered metabolism (Ding et al., 2020; Jabeen et al., 2018; 
Qiao et al., 2019; Xia et al., 2020; Zhao et al., 2020). Typically, 
sufficient cellular level effects scale up to tissue/organ then indi-
vidual-level impacts etc. as different numbers and types of cells 
are affected by MP exposure (Figure 2).

Blood biochemistry and immune biomarkers may indicate 
the absorption and translocation of MPs or associated chem-
icals across the gut, and are useful indicators for identifying 
dysfunction and damage in various non-GIT organs and tissues 
(e.g. Banaee et al., 2019; Hamed et al., 2019; Karami et al., 2016; 
Qiao et al., 2019; Roda et al., 2020). Changes to blood composi-
tion may result in anaemia, altered immune function and nutri-
ent supply throughout the body (e.g. Hatami et al., 2019; Karami 
et al., 2016; Roda et al., 2020). MPs in the brain may interfere 
with the endocrine or central nervous system, which can impact 
individual growth, body condition, behaviour and/or survival (e.g. 
Athey et al., 2020; LaPlaca & van den Hurk, 2020; Lei et al., 2018; 
Xia et al., 2020). Functional disruption of key organs, such as the 
kidneys, liver and brain, can then impact body fluid composition, 
neurotransmitter and endocrine pathways (Walpitagama et al., 
2019; Wang, Wei, et al., 2019), with survival consequences for the 
individual (Figure 2).
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3.2 | Biological consequences

Behavioural alterations resulting from MP exposure often occur as 
MPs and/or their associated chemicals impact cells in the brain or 

central nervous system which may negatively affect swimming ac-
tivity and/or survival in freshwater fishes (Limonta et al., 2019; Mak 
et al., 2019; Qiang & Cheng, 2019; Yang et al., 2020). Impairments 
to swimming behaviour might be temporary; however, some studies 

TA B L E  2   Overview of studies accessible before the 15th May 2020 investigating impacts of microplastics on freshwater fish (including 
estuarine/temporarily freshwater fish), grouped by taxa

Taxa Impact(s) Source

Acipenser transmontanus, 
Acipenseridae

Protein levels and feeding behaviour altered (J) Rochman et al. (2017)a 

Ambassis dussumieri, Ambassidae Growth, survival and body condition reduced (J) Naidoo and Glassom, (2019)

Barbodes gonionotus, Cyprinidae Increased protein levels; epithelial thickening (J) Romano et al. (2018)

Carassius auratus, Cyprinidae Reduced body weight; mouth and GIT damage
GIT damage; oxidative stress; altered growth/activity (L)

Jabeen et al. (2018)
Yang et al. (2020)

Clarias gariepinus, Clariidae GIT damage; protein levels/blood chemistry altered (J)
Altered protein levels; liver damage; oxidative stress (J)

Karami et al. (2016)a 
Iheanacho and Odo, (2020)

Cyprinus carpio, Cyprinidae Oxidative stress; protein levels/blood chemistry altered (J)
Blood chemistry, protein and immune activity altered (J)
Reduced growth; GIT damage; protein levels altered (L)

Hatami et al. (2019)a 
Banaee et al. (2019)a 
Xia et al. (2020)

Danio rerio, Cyprinidae No impact on protein levels or GIT structure (A)
GIT damage; metabolism and protein levels altered (A)
Altered protein levels in adults only (A + E)
GIT damage leading to some mortality (A)
GIT damage; protein levels and gut biota altered (A)
Altered protein levels in larvae only (E + L)
Metabolism, protein levels and gut biota altered (L)
Protein activity and swimming behaviour altered (L)
Altered protein levels (E)
Altered protein levels
GIT damage; protein levels and behaviour altered (A)
GIT damage; protein levels and behaviour altered (A)
GIT damage; metabolism and gut biota altered
Condition, protein levels and metabolism altered (A)
No adverse effects (A)
Oxidative stress; protein levels altered (A)
Protein levels and metabolism altered; delayed hatching (E)
Protein activity altered due to lead leaching (L)

Batel et al. (2016)a 
Lu et al. (2016)
Batel et al. (2018)a 
Lei et al. (2018)
Jin et al. (2018)
LeMoine et al. (2018)
Wan et al. (2019)
Qiang and Cheng, (2019)
Cormier et al. (2019)a 
Qiao et al. (2019)a 
Limonta et al. (2019)
Mak et al. (2019)
Qiao et al. (2019)
Zhao et al. (2020)
Batel et al. (2020)a 
Yu et al. (2020)a 
Duan et al. (2020)
Boyle et al. (2020)

Dicentrarchus labrax, Moronidae Protein levels altered and some mortality (L) Mazurais et al. (2015)

Fundulus heteroclitus, Fundulidae Protein levels altered and some mortality (A) LaPlaca and van den Hurk (2020)

Lates calcarifer, Latidae Coexposure impaired feeding and swimming (J) Guven et al. (2018)a 

Menidia beryllina, Atherinopsidae Reduced growth rate (L) Athey et al. (2020)a 

Misgurnus anguillicaudatus, Cobitidae Coexposure induced oxidative stress (A) Qu et al. (2019)a 

Oreochromis niloticus, Cichlidae Blood and body chemistry altered; anaemia induced (J)
Altered brain activity and metabolism (A)

Hamed et al. (2019)
Ding et al. (2020)

Oryzias latipes, Adrianicthyidae Protein levels, signalling and germ lines altered (A)
Morphology, behaviour and protein levels altered (E + L)

Rochman et al. (2014)a 
Pannetier et al. (2020)

Pimephales promelas, Cyprinidae No adverse effects (L)
Protein levels altered and some mortality (A)

Malinich et al. (2018)
LaPlaca and van den Hurk (2020)

Pomatoschistus microps, Gobiidae Metabolism and neurotransmission altered (J)
Predatory efficiency and performance reduced (J)
Protein levels and neurotransmission altered (J)

Oliveira et al. (2013)a 
de Sá et al. (2015)
Luís et al. (2015)a 

Prochilodus lineatus, Prochilodontidae DNA damage; blood, brain and protein activity altered (J) Roda et al. (2020)a 

Symphysodon aequifasciatus, Cichlidae Predatory behaviour, metabolism and signalling altered (J)
Oxidative stress; protein levels altered (J)

Wen, Zhang, et al. (2018)
Wen, Jin, et al. (2018)a 

Bracketed letters refer to the life stage(s) of taxa: “A,” adult; “E,” embryo; “J,” juvenile; “L,” larvae.
aIndicates studies investigating an interaction between MPs and an additional chemical. 
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also suggest more damaging effects if MP exposure impacts early 
development (Duan et al., 2020; Pannetier et al., 2020). Fish eggs 
can also externally bind MPs and/or uptake smaller NPs that can 
alter gaseous exchange and delay hatching times (Batel et al., 2018; 
Duan et al., 2020).

MP-induced reductions in predatory behaviour and efficiency 
have been demonstrated in juvenile common goby (Pomatoschistus 
microps, Gobiidae), most likely through affecting the discrimination 
of copresented prey and MP items (de Sá et al., 2015). Changes to 
predator–prey dynamics may modify food webs and communities 
through altering interaction strengths (Figure 2) and is particularly 
relevant since higher trophic levels and predators appear to be more 
vulnerable to MPs than their prey (Huang, Lin, et al., 2020). While 
goldfish experimentally rejected MPs that could not be chewed and 
swallowed, this processing damaged the mouth (Jabeen et al., 2018), 
potentially affecting their subsequent foraging behaviours and con-
sumption rates.

3.3 | MPs as biological vectors

Microplastics are often implicated to aid in the binding and transport 
of various pathogens and invasive species (Caruso, 2019; Shen et al., 
2019); however, the potential role of MPs in macroparasite transport 

remains unexplored. As MP uptake in fish occurs predominately 
through feeding (Gouin, 2020; Ribeiro et al., 2019), then the associa-
tion of parasites to MPs may potentially benefit trophically transmit-
ted parasites through increasing their transmission probabilities to 
fish hosts. MPs might also indirectly increase transmission rates and 
parasite virulence by suppressing the immune response and/or the 
general condition of the impacted individual (Limonta et al., 2019; 
Luís et al., 2015). The trophic transmission of parasites can often 
involve parasite manipulation of the behaviour of the intermediate 
host to promote their ingestion by a final host (Thomas et al., 2010). 
For example, infection of three-spined stickleback (Gasterosteus 
aculeatus, Gasterosteidae) by the cestode Schistocephalus solidus 
(Schistocephalidae) results in infected fish foraging on smaller prey 
items (Barber & Huntingford, 1995) and altering habitat utilization 
to increase predation encounter and subsequent parasite transfer 
to a final bird host (Barber et al., 2004). These parasite-mediated 
behavioural modifications can result in trophic differences between 
infected and uninfected fish within populations (Britton & Andreou, 
2016), potentially also altering their exposure to MPs.

Nevertheless, the consequences of MPs for freshwater fish host–
parasite relationships remain uncertain. In marine environments, an-
ecdotal evidence suggests that MPs and parasites accumulate in the 
same part of the gut in seals (Hernandez-Milian et al., 2019), and fish 
closer to urban areas have both higher MP and parasite loads (Alves 

F I G U R E  2   Overview of microplastic 
impacts on freshwater fish at different 
levels of biological complexity and how 
impacts can scale up to effects at higher 
levels of organization. Several common 
impacts are given for each biological level. 
Population, community and ecosystem 
level impacts resulting from freshwater 
fish exposure are thus far unknown, 
and so suggested potential impacts are 
italicized. [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2016). Microplastics and trophic (ingested) parasites are also 
most likely accumulated in the same way, with typically more of both 
in larger and/or predatory individuals (Lester & McVinish, 2016). 
Several exposure studies in freshwater fish have also suggested that 
MP exposure might increase susceptibility to parasites or disease 
(Limonta et al., 2019; Luís et al., 2015), though this was not studied. 
In addition, environmental plastics do attract and harbour distinct 
bacterial and fungal assemblages compared to natural particles, 
many of which can be pathogenic to fish, and may provide similar 
mechanisms for transporting parasites (Gong et al., 2019; Munier & 
Bendell, 2018; Vethaak & Leslie, 2016).

4  | FUTURE PERSPEC TIVES

4.1 | Experimental approaches

Microplastics exposure studies have revealed a wide range of ef-
fects in freshwater fishes (Table 2), but there remains consider-
able uncertainty in how these translate into measurable impacts in 
wild populations, particularly above the individual level (Figure 2). 
Understanding the impacts of MPs on freshwater fish requires, at 
least in part, controlled studies that enable the decoupling of the 
impacts of MPs from other stressors and that use appropriate ex-
posure conditions and model species. Therefore, it is recommended 
that exposure studies initially test the effects of current (or pre-
dicted) ecologically relevant MP concentrations and ensure that the 
concentrations, sizes, shapes and polymers of the MPs reflect the 
natural exposure levels of that species and life stage. In controlled 
studies to date, there has been a bias towards using spherical beads 
during exposure (e.g. Mazurais et al., 2015; Oliveira et al., 2013; de 
Sá et al., 2015), so there is also a need to further investigate the im-
pacts on freshwater fish arising from exposure to fragments, fibres 
and films, especially as these are already known to have different 
egestion rates in freshwater fish (Qiao et al., 2019). The actual ex-
posure mechanism should also aim to simulate how a particular fish 
might encounter MPs in the wild, such as sprinkling floating MPs and 
food for surface filter feeders, but spiking resource items with MPs 
for species at higher trophic levels.

Most studies have exposed fish to MPs via the water when feed-
ing (e.g. Batel et al., 2018; Lei et al., 2018; Lu et al., 2016), with this 
an appropriate exposure route for most of the investigated species 
and life stages to date, typically larvae/juveniles of cyprinid zoo-
planktivores. However, there have been fewer impact studies using 
benthic-feeding or piscivorous fishes (e.g. Iheanacho & Odo, 2020; 
Karami et al., 2016; Oliveira et al., 2013; de Sá et al., 2015), as well 
as a lack of studies exposing fish via contaminated resources (e.g. 
Batel et al., 2016, 2020; Rochman et al., 2017), despite this often 
being a more effective MP transmission route than coupled with 
commercial fish food (Athey et al., 2020). Consequently, there re-
mains a lack of knowledge over whether benthic fishes, which often 
tend to ingest more MPs than pelagic feeders within the same en-
vironment (McGoran et al., 2017, 2018; McNeish et al., 2018), are 

similarly disproportionally impacted by MP exposure. Trophic trans-
fer studies could additionally determine if MP transfer efficiencies 
are similar from prey to predatory fish as between invertebrates and 
fish, which might explain different MP ingestion patterns in wild fish 
occupying different niches and trophic levels (Campbell et al., 2017; 
Hurt et al., 2020; McNeish et al., 2018; Roch et al., 2019).

For scaling up from individual MP impacts to higher levels of bi-
ological organization (Figure 2), the controlled conditions provided 
within mesocosm studies provide a strong experimental framework 
using fully factorial designs that enable the effects of MPs on com-
munity structure and function to be quantified. Such studies enable 
complexity to be developed and investigated, including how MP im-
pacts are affected by other stressors, such as warming and nutrient 
enrichment. For example, studies utilizing mesocosms have exper-
imentally demonstrated the trophic transfer of NPs across several 
trophic levels into top-predator fish (Chae et al., 2018; Mattsson 
et al., 2015), where quantified impacts included histological damage 
and alterations to feeding, shoaling behaviours and metabolism.

Alternative experimental approaches, such as exposure studies 
translocating organisms within mesh cages, also provide opportuni-
ties to identify how different species respond to different MP levels 
in the environment, as well as whether previous exposure to MPs may 
impact susceptibility to future exposure. Similar studies have already 
been completed in marine systems for blue mussel (Mytilus edulis, 
Mytilidae) (Kazour & Amara, 2020) and European flounder (Platicthys 
flesus, Pleuronectidae) (Kazour et al., 2018) and are another promising 
experimental framework for future MP research in freshwater fishes.

4.2 | Nonfatal field sampling

Current field sampling methods tend to result in fish being eutha-
nized for analyses in the laboratory that provide limited short-term 
data (Ferreira et al., 2016; Possatto et al., 2011). Correspondingly, 
future studies should consider using nondestructive sampling meth-
ods where feasible. For example, stomach flushing has been used 
to recover up to 95% of spiked MP samples from juvenile Mexican 
crocodiles (Crocodylus moreletii, Crocodilidae) (Gonzalez-Jauregui 
et al., 2019), with flushing techniques already used in fish dietary 
analyses (e.g. Correa & Anderson, 2016; Kamler & Pope, 2001). It 
should, however, be noted that stomach lavage is only suitable for 
larger fish and can potentially cause damage, and sometimes fatality, 
in smaller and/or agastric individuals. The application of nonfatal MP 
recovery techniques can then be complemented by the ecological 
application of stable isotope analysis (SIA) that can provide temporal 
and spatial information on fish diet composition (Grey, 2006). While 
SIA would be unable to quantify MP loads in individual fish, it does 
enable information to be developed for populations in relation to 
their trophic (isotopic) niches (Jackson et al., 2012) and the extent 
of individual dietary specialization (Araújo et al., 2011), that can be 
tested against the numbers of MPs recovered from the GIT. This 
complementary approach could also identify whether differences in 
MP loads between individuals are a consequence or driver of dietary 
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specialization (Britton & Andreou, 2016). For MPs encountered pas-
sively, such as those on the gills (Hurt et al., 2020) and epidermis 
(Abbasi et al., 2018), then the use of “skin scrapes” and “gill swabs” 
(e.g. Roberts et al., 2009; Young et al., 2008) could prove suitable 
and noninvasive methods to quantify this mechanism of MP uptake.

Research investigating the bioaccumulation of MPs has so 
far focused almost exclusively on those found in the GIT (Gouin, 
2020), despite being continuous with the external environment 
and smaller MPs being known to translocate to other parts of the 
body (Ribeiro et al., 2019), including the liver, muscle and brain of 
freshwater fish (e.g. Abbasi et al., 2018; Batel et al., 2016; Ding 
et al., 2020; Su, Nan, et al., 2019). The development of nondestruc-
tive techniques for tracing MPs in fish organs can potentially utilize 
MP carbon isotopes, as these have been used experimentally to 
demonstrate the incorporation of MP materials by microbes and 
to track the trophic transfer of these particles into animals (Taipale 
et al., 2019), as fluorescent dyes are often problematic and less re-
liable (Schür et al., 2019).

4.3 | Laboratory analyses

Reviews of current laboratory processing techniques highlight a 
range of different methods of digestion and MP analyses (Collard 
et al., 2019), with particular techniques working better for different 
species (Bianchi et al., 2020), but that might under- or over-estimate 
counts for particular polymers (Karami et al., 2017). A single, stand-
ardized procedure for all MP processing is, therefore, not possible, 
although attempts should be made to reduce the signal–noise ratio in 
samples and to comprehensively outline and critique the processing 
steps. In a review of plastic ingestion in wild freshwater fish, Collard 
et al. (2019) made numerous recommendations to standardize fish 
MP processing protocols, including on sample sizes, MP target size 
and visualization methods. In addition to these recommendations, 
where additional density separation of samples is employed, floata-
tion reagents should have a minimum relative density of 1.5 g cm-3 to 
maximize the number of MPs recovered from samples and to reduce 
systematic underrepresentation of denser plastics (Coppock et al., 
2017; Quinn et al., 2017).

Contamination is a recurring problem in MP research and it is im-
portant that all reasonable attempts are made to eliminate contami-
nation and to determine the efficacy of implemented contamination 
control steps by quantifying remaining sources of contamination. 
Best practice reviews suggest the wearing of nonplastic personal 
protection equipment, the use of laminar flow cabinets to minimize 
atmospheric sample exposure, carrying out procedural blanks, and 
ensuring reagents and equipment are filtered and cleaned prior to 
use are all effective ways to reduce contamination to acceptable lev-
els (e.g. <10% of sample counts) (e.g. Collard et al., 2019; Dehaut 
et al., 2019; Gong & Xie, 2020; Lusher et al., 2017; Scopetani et al., 
2020). Studies should additionally outline the steps taken to reduce 
contamination, as well as declare any residual contamination and/or 
subsequent data correction.

Microplastic visual screening varies with individual experience 
and the particular shapes, sizes and colours of MP particles (Cadiou 
et al., 2020). MP screenings under microscopy should aim to be con-
servative and carried out blind, in a randomized order, with a pre-de-
termined and standardized search time and search criteria to reduce 
bias and variation in counts. The processing of samples by multiple 
observers is another effective way of reducing individual bias by as-
sessing interobserver reliability.

Visual screening should also be supplemented by chemical con-
firmation, through spectroscopy or other techniques, on a subset of 
samples (e.g. 10%) to confirm the proportion of suspected MPs that 
are actually plastics and to determine polymer types. Automated 
techniques, such as image processing software, should also be fa-
voured preferentially to more subjective manual visual processing 
(Andrade et al., 2020; Dehaut et al., 2019; Renner et al., 2019). Many 
studies on MPs in freshwater fish have not utilized chemical tech-
niques, indicated by those studies in Table 1 without polymer data, 
and so for these studies estimates of MP incidence are likely to be 
unreliable and to include various other particles of nonplastic origin. 
As an example, Collard et al., (2018) identified approximately a quar-
ter of anthropogenic particles as plastics while Slootmaekers et al., 
(2019) found only half of suspected MPs were actually plastic. The 
chemical analysis of suspected MPs is therefore critical to determine 
reliable MP counts and to assess the actual risks of MP pollution 
faced by freshwater fish.

4.4 | Scaling up complexity

Much MP research in freshwater fish has been on single species 
(Table 1) and has focussed on individual-level effects and below 
(Table 2; Figure 2). Consequently, as knowledge develops, there is 
a need to fill in the gaps to understand MP impacts at population, 
community and ecosystem levels (Figure 2), as well as continuing to 
investigate the relative impacts of body size, sex, trophic level and 
other traits that affect MP ingestion patterns. Field studies should 
aim to collect representative communities with sufficient numbers 
of fish per trophic level and functional group (excluding those of con-
servation concern), with consideration of sampling across different 
seasons and under different river flows and levels.

5  | CONCLUSIONS

Both field and laboratory approaches have, to date, contributed 
knowledge on how particular characteristics of freshwater fish af-
fect the encounter, ingestion, effects and egestion of MPs. Studies 
highlight considerable variability in ingestion patterns and effects, 
but that these differences can generally be explained through a 
combination of traits of the fish (e.g. size, trophic level, habitat), its 
environment (e.g. the extent of local urbanization) and the MP char-
acteristics (e.g. size, shape, polymer, internal/external chemicals). 
Future field research should identify MPs in novel fish species and 
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locations, and develop population level and community-wide assess-
ment approaches using standardized methods that maximize MP re-
covery while minimizing contamination. Experimental studies should 
ensure that exposure regimes and routes are environmentally rel-
evant and investigate uptake and effects in a wider range of species, 
including piscivorous and benthic fishes. The interactive impacts of 
MPs with other anthropogenic stressors are also required, given that 
MP pollution is likely acting as a further stressor in environments 
already exposed to multiple stressors. Data generated through field- 
and laboratory-based studies can then move towards a more quan-
titative assessment of the risks faced by particular freshwater fish, 
with criteria on freshwater MPs able to be incorporated into fresh-
water monitoring programmes and species action plans.
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