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Abstract 

Venous thromboembolism (VTE) is the third most common cardiovascular condition that 

affects mainly hospitalized and cancer patients and it is associated with high morbidity and 

mortality. Some patients need immediate treatment and monitoring in intensive care units (ICU). 

Moreover, cancer patients are at increased risk of developing VTE, especially in the immediate 

period after ICU hospitalization. It is crucial to predict which of the cancer patients will develop 

VTE, as well as early and late mortality in these high-risk patients and recognize possible treatable 

factors in order to improve survival. Several scoring and predictive models have been developed 

for these purposes, but with limited generalizability and they are mostly effective in the 

prediction of in-hospital mortality. They have several limitations, for example they use data 

recorded only on the first day of admission. Moreover, no score exists so far to predict late 

mortality in ICU patients. With the advanced use of electronic health records, open-source big-

data medical databases and machine learning, predictive modelling could be utilized and become 

a powerful tool to guide clinical decision.  

The aim of the study was to explore the use and performance of various machine learning 

algorithms (ML) in order to predict two research questions: (i) VTE risk in ICU hospitalized cancer 

patients after discharge and, (ii) early and late mortality in VTE patients hospitalized in ICU. For 

that reason, a freely accessible database MIMIC-III has been used that contains a vast amount of 

various time-series healthcare data from thousands of patients, making it ideal for ML based 

forecasting. Since it provides information even after discharge from ICU, it gives an opportunity 

to predict late mortality. Two groups of datasets were extracted from the database: D1, consisted 

of 4,699 patients with cancer who were admitted to ICU and stratified in two groups based on 

whether they were readmitted to ICU within 90 days with a diagnosis of VTE or not. The ML 

classification task was to predict which of the cancer patients originally admitted to ICU will be 

readmitted with VTE within 90 days. D2, consisted of 2,468 patients who were admitted to ICU 

with a VTE diagnosis and stratified in three groups, based on their outcome, that is, died during 

their first ICU admission (early mortality group), died after their discharge from ICU or in a later 

admission (late mortality group) and remained alive for months after their admission in ICU. In 
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this case, two ML classification tasks were constructed, first to build a model that distinguishes 

early mortality and second, a model that distinguishes late mortality.  

A very wide range of features were selected, that includes demographic information, clinical 

and laboratory data, prescriptions, procedures, well established comorbidity and severity scores 

as well as information coming from written notes. Clinically relevant entities from free medical 

notes were extracted using the sequence annotator SABER and then they were fitted into a 

Latent Dirichlet Allocation (LDA) model of 50 topics. In total, 1,471 features were extracted for 

each patient, grouped in 8 categories, each representing a different type of medical assessment. 

Automated ML platform that easily handles with-high dimensional, noisy and missing data, as 

well as Monte Carlo simulations based on Random Forests with hyperparameter tuning and class-

balancing with Synthetic Minority Oversampling Technique (SMOTE) were trained in parallel.  

Due to the highly imbalanced nature of the first dataset (“cancer patients with thrombosis”), 

neither of the ML approaches were able to predict DVT in cancer patients even after the use of 

SMOTE method. As far as it concerns the prediction of early mortality in ICU patients with VTE, 

the best ML model chosen to predict early mortality was Random Forests (AUC=0,92). Regarding 

late mortality, the best ML model was again Random Forests. Nevertheless, the task of predicting 

late mortality was less efficient even with the holistic approach (AUC=0,82). Significant clinically 

relevant predictive features of early and late mortality were cancer, age, treatment with warfarin, 

and red cell transfusions, whereas known severity scores performed well only in the prediction 

of early mortality. 

The contribution of this study to the current knowledge was multi-leveled, as it explored the 

performance of various ML approaches in a big-data driven research approach, using multiple 

formats of data from structured to unstructured medical notes, it examined the effect of 

balancing techniques in highly imbalanced datasets, such as the case of medical datasets, and 

finally discovered possibly new biomarkers. Early mortality in critically-ill patients with VTE can 

be easily predicted by ML techniques, whereas in the case of late mortality, which is a more 

difficult task, and where medical scores are still lacking, ML could probably outperform classic 

statistical methods. There is a need for more precise and reliable tools in order to overcome the 
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nature of highly imbalanced medical datasets, such as the case of “cancer patients with 

thrombosis” dataset. This study showed that automated ML approaches have similar 

performance with manual selection and parametrization of ML models, which is highly promising 

in the setting of healthcare “big-data” medical databases.  
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1 INTRODUCTION 

Venous thromboembolism (VTE) is a potentially lethal disease that presents with clots in the 

veins, most frequently as deep vein thrombosis (DVT) and pulmonary embolism (PE). It is a quite 

common problem with an annual prevalence rate of approximately 1 per 1000 adults 1. Its 

prevalence has been reported to increase probably due to a doubling of life expectancy and 

quadrupling of the world population during the 20th century2. The impact of this disease is 

enormous since it has severe physical and psychological complications, such as post-traumatic 

stress disorder, post-thrombotic syndrome, recurrence, and even death. More specifically, post-

thrombotic syndrome impairs negatively the quality of life, and increases the healthcare costs3. 

Thrombo-embolic disease is one of the main causes of mortality in the world as it is estimated 

that it accounts for 1 in 4 deaths worldwide in 20104. Its prevalence is even higher in hospitalized, 

critically-ill and cancer patients5,6,7. VTE in critically-ill patients is associated with significant 

morbidity, prolonged intensive care unit (ICU) and hospital stay and increased mortality8. For 

these reasons, it is crucial to predict promptly which patients are at high risk, as well as in-hospital 

and later mortality, and potentially identify new predisposing factors. 

VTE is a complex multifactorial disease. Both acquired and hereditary factors interact and play 

essential roles in its development and outcome. The acquired risk factors can be transient or 

permanent depending on how long they persist. Based on their predictive value, they can be 

further stratified as strong (odds ratio >10), moderate (odds ratio 2–9), and weak (odds ratio <2). 

Examples of strong risk factors are orthopaedic surgery, major general surgery and major trauma. 

Moderate risk factors include central venous catheters, congestive heart or respiratory failure, 

cancer, chemotherapy, hormone replacement therapy, oral contraceptive therapy, and 

pregnancy/postpartum. Whereas bed rest (>3 days), air travel >8 hours, increasing age (≥40 

years), and obesity are considered as weak risk factors 9,10. Inherited factors are also classified as 

strong, medium and weak. Deficiencies of some natural coagulation inhibitors including 

antithrombin, protein C, and its cofactor protein S belong to strong genetic risk factors, as well 

as homozygosity of factor V Leiden (FVL) causing resistance to activated protein C, homozygosity 

of prothrombin G20210A which results in increased prothrombin levels and double 
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heterozygosity of these mutations. Moderate genetic risk factors consist of heterozygous 

mutation in the FVL or prothrombin G20210A, and blood group (non-O blood group). Weak risk 

factors are considered hyper-homocysteinemia and homozygosity for factor XIII 34Val alleles 

10,11. The above-mentioned classification schema is not widely accepted and probably of low 

clinical importance since guidelines use different classifications, there are broad confidence 

intervals of risk estimates and the risk of thrombosis depends on more complex gene-gene and 

gene-environment interactions12, but it could be a baseline approach in risk stratification. 

VTE is also a frequent complication in patients with active cancer. Cancer itself increases 

directly and indirectly thromboembolic risk by various pathophysiological mechanisms. Cancer 

cells secrete inflammatory cytokines and micro-particles, directly activate coagulation 

mechanisms and platelets leading to a prothrombotic state. Moreover, hospitalizations, surgical 

interventions, chemotherapy, the presence of central venous catheters, as well as the type and 

stage of cancer, the presence of comorbidities and advanced age are important predisposing 

superimposed factors. It is crucial for clinicians to prevent thrombosis in these high-risk patients 

as well as to realize that prevention is a life-saving procedure, since VTE development during the 

first year from diagnosis of cancer increases mortality and affects negatively the outcome of 

disease 13.  

VTE could be prevented if prompt and accurate selection of patients at high risk of thrombosis 

and prophylactic anticoagulation are applied. Unfortunately, there is no such a simple and 

straightforward method to predict thrombosis. Clinicians in their every-day clinical practice are 

constantly confronted with the dilemma of prophylactic anticoagulation in high-risk patients, 

since the balance of risks between thrombosis and bleeding cannot be quantified by clinical 

experience and most frequently there is a tendency to overestimate bleeding risks14. Moreover, 

recent negative personal experiences can affect objective judgment. To overcome this difficulty, 

several risk assessment models (RAMs), scores and tools such as Khorana 15 and COMPASS-CAT 

16 score have been developed to predict thrombo-embolism in hospitalized or ambulatory cancer 

patients respectively, but they have so far limited generalizability and validation15,16. External 

validation in large data sets is always necessary before these tools can be broadly implemented 
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17. The risk stratification in cancer patients has been problematic due to the broad heterogeneity 

of different cancers, the uniqueness of different patients and the coexistence of various 

pathologies that predispose both to increased bleeding and thrombotic risk.  

Some high-risk patients that present with thrombosis need immediate hospitalization in ICU 

and suffer from high mortality incidence. There are several scores to predict mostly in-hospital 

mortality and early mortality in ICU patients. The Simplified Acute Physiology Score (SAPS)18, 

Acute Physiology and Chronic Health Evaluation (APACHE)19 and Sequential Organ Failure 

Assessment (SOFA)20 score, are based on patient measurements during the first 24 hours of 

hospitalization and are considered validated tools in predicting early mortality21. On the other 

hand, long-term survival after ICU admission is not well studied and risk assessment models are 

missing so far. It has been recognized that this is an important outcome that needs to be 

accurately predicted and prevented, since it could assist difficult clinical decision making and 

improve medical costs22. For example, more accurate estimates of long-term outcomes at the 

individual level, could assist clinicians in important decisions regarding rational allocation of the 

limited medical resources, an important consideration especially in the era of COVID-19 

pandemic. 

Nevertheless, traditional RAMs have several limitations. They have been developed based on 

different target populations with heterogeneous inclusion and exclusion criteria, thus during 

validation they provide modest performance. For example, the accuracy of various scores drops 

in the elderly population23, since there is a significant correlation of various parameters with age 

(e.g. D-dimer and age correlation). Moreover, they are based on multivariate statistical methods, 

such as logistic regression models, that disregard the non-linear relationships that exist between 

variables in real medical datasets. These scores are built based on health data collected during 

the first 24 hours of ICU admission or instant based measurements (e.g. the worst or average 

value), and do not consider time-series measurements, that could contain important information 

for clinical deterioration24. Changes of organ function variables over time could provide more 

useful information with greater prognostic relevance. Simplified integer-based scoring systems 

neglect the complex nature of variables (for example hypertension could both increase 
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thrombotic as well as bleeding risk). Moreover, it has been reported variable interobserver 

agreement in the application of these scores based on the personal experience of clinicians, so 

there is a possible bias in the interpretation of RAMs25. Another significant problem is the use of 

different laboratory methodologies with varying specificities, sensitivities and cut-off values that 

produces difficulties in the comparison between various facilities26. 

As an adjunct in the above-mentioned problems, there has been an increasing interest in the 

use of machine learning (ML) approaches in the prediction of various outcomes in medicine27, 

since ML could recognize complex pattern changes in data and associations, that could probably 

help in improving patient care and survival, as well as lower hospitalization costs. On the other 

hand, the growing availability of large-scale healthcare big data and automated patient 

surveillance systems could improve clinical decision-making28. These data are not only large in 

size and dimensionality but also unstructured and heterogeneous. Using a holistic approach, 

incorporating large scale healthcare data could advance personalized and precision medicine. 

This study focused on the exploration of automated (autoML) as well as custom ML algorithms 

in the prediction of two important clinical questions, such as mortality and thrombosis in ICU 

hospitalized patients. A holistic approach was used choosing a high dimensional dataset, with 

thousands features of various formats, and further processing has been applied to manage a high 

imbalance ratio with the final goal to improve performance of the proposed model. More 

importance has been given to the collection and combination of a very wide selection, but 

thrombosis-oriented of heterogeneous clinical and laboratory features as well as free-text 

medical notes. Data were identified and selected retrospectively over a period of time and 

hospitalized ICU patients had a long-term follow-up in the database. The initial hypothesis was 

that use of multiple ML algorithms could outperform existing prognostic scores, as well as refine 

them by identifying new biomarkers. Finally, an effort towards selecting important clinical 

features has resulted in clinically meaningful bio-signatures. This study using a novel approach 

that exceeds the classic statistical methods, has contributed in the prediction of early and late 

mortality in ICU-hospitalized patients with thrombosis, the identification of bio-signatures and 
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rediscovery of candidate new biomarkers using “big-data”, combined with medical expertise and 

ML approaches. 
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2 AIM OF THE STUDY  

Given that there is no universal consensus in the use of a specific predictive score in patients with 

cancer and/or thrombosis and that scores are not rigid and are highly subjective, this study aims 

to explore the usage, applicability and performance of machine learning algorithms in a big-data 

driven research approach, to answer two important research questions:  

(i) Is it possible to use ML in prediction of VTE-associated readmission of ICU hospitalized 

cancer patients, after discharge? 

(ii) Is it possible to predict early and late mortality in VTE patients hospitalized in ICU? 

To fulfil these goals, the following objectives must be met: 

1) Data acquisition and definition: To correctly assess VTE risk and predict outcome in ICU 

hospitalized patients it is necessary to have a wide range of high-quality and high-frequency 

medical data. Attributes must be carefully selected according to current knowledge to avoid 

noise and “garbage-in, garbage-out” effects. Multiple different formats of data need to be 

processed in a homogeneous pattern (e.g. conversion of textual information to numerical and 

extraction of meta-features). 

2) Application of ML method and model training: Identification of best ML algorithms is time-

consuming and needs extensive parametrization and grid-search. For these reasons, a dual 

approach will be used comparing automated with standard ML algorithms and 

hyperparameter tuning.  

3) Implementation of balancing methods: Handling with highly-imbalanced data is a frequent 

problem in the medical field, thus impairing the performance of the proposed models. 

Exploration of balancing techniques could theoretically result in better performance. 

4) Evaluation and interpretation of results: ML algorithms can be evaluated with standard 

statistical metrics. Besides that, an important challenge for medical researchers is that ML 

algorithms results, ideally must be explainable in order to identify complex biological 

relationships and provide new insights. This would allow the identification of clinically 

meaningful predictive features that contribute to the predictive model.  

5) Comparison with other RAMs: Comparison of the proposed framework with known Risk 

Assessment Models or published data. 
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3 REVIEW OF LITERATURE 

Since the main research questions are focused on thrombosis prediction in critically-ill cancer 

patients and prediction of early and late mortality in ICU patients with thrombosis, in the 

following section a review of the existing risk assessment models for these two important clinical 

problems will be reported. These scores have been developed based on classic statistical 

methods. The novelty of the approach in the current study, is that to address these research 

questions, machine learning in big data will be used. In the following section of the review, 

background of using ML algorithms and automated ML platforms will be shortly addressed, as 

well as the importance of big-data in healthcare. Big data is a massive volume of both structured 

and unstructured data that is so large that it is difficult to process using traditional methods, but 

they are ideal for machine learning algorithms since the latter need large data for training. Finally, 

studies based on prediction of thrombosis using machine learning algorithms, as well as their 

limitations are discussed shortly.  

3.1 Risk assessment models for prediction of thrombosis in cancer 

patients 

Khorana score was the first tool that was developed to predict thrombotic risk in 

chemotherapy naïve patients15. It is simple in use but it has several constraints. Using simple 

laboratory parameters before chemotherapy treatment, patients are divided in three risk groups 

(low, intermediate and high) with a large proportion of them falling in the intermediate risk 

category, making debatable its clinical applicability. Moreover, it has low sensitivity in certain 

tumor types and this tool can be used only at diagnosis and before initiation of chemotherapy. 

To improve its predictive performance several modifications have been proposed but with 

limited generalizability. VIENNA-CATS score29 improved the discrimination ability through 

addition of two biomarkers, D-dimers and P-selection, although the latter is a sophisticated test. 

PROTECHT score tried to expand Khorana score through incorporating specific types of 

chemotherapeutic agents that increase the thrombotic risk30. The ONCOTEV score 31 showed an 

improved discrimination accuracy of Khorana score by adding ultrasound in the diagnostic panel 

but it is still under validation. Recently a promising risk assessment tool, COMPASS-CAT derived 
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from a large prospective cohort and focused in ambulatory cancer patients, has been shown to 

have improved sensitivity and specificity but it also needs further validation 16. A direct 

comparison of different RAMs for VTE prediction in a cohort of lung cancer patients showed that 

the COMPASS-CAT model had an 100% predictive accuracy32. 

3.2 Risk assessment models for prediction of mortality in thrombosis 

patients 

Another important clinical issue is the prediction of mortality in ICU hospitalized patients with 

thrombosis. Several prognostic models that incorporate clinical and or laboratory findings have 

been derived to predict early mortality in patients with thrombosis, such as the Pulmonary 

Embolism Severity Index (PESI) and the simplified PESI for pulmonary embolism which are the 

most well-known33, 34 , 35. Moreover, there are several other scores, such as SAPS 18 , APACHE 19, 

SOFA 20 , OASIS 36, that estimate the severity of disease in ICU and that correlate positively mostly 

with early mortality but have varying accuracy depending on the population studied. These 

scores are based on data obtained during the first day of admission or the worst value, so they 

lack considerable information stemming during their hospital stay and post-discharge. Their 

performance is lost over time, since medical practices change significantly. Moreover, they are 

not widely customized in different patient groups, such as patients with thrombosis or cancer. It 

should be noted that ICU patients are at increased risk of post-discharge morbidity and mortality. 

So far, accurate identification of patients who will stay at risk even months later is lacking.  

It is crucial to predict these high-risk patients since proper screening or adequate treatment 

could probably improve their survival 37. Moreover, all the above-mentioned tools were 

developed in an era without electronic health records, big data storage, and machine learning. In 

the last decades, there is an increasing interest in the use of information technology and ML 

algorithms in order to improve forecasting and possibly guide clinicians 27. 

3.3 Βasic ML algorithms background 

Artificial intelligence (AI) is a system that has the ability to correctly interpret, learn from 

external data, and use them to achieve specific goals and tasks through flexible adaptive 
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mechanisms like the human brain. AI is a research area which also deals with the interpretation 

of two types of data:  

i. Structured, such as patient characteristics (e.g. demographic), laboratory and imaging 

data. These features can be either binary, categorical or continuous. 

ii. Unstructured, such as clinical notes in the medical file or publications in medical 

journals.  

Structured data can be analyzed by ML algorithms while natural language processing (NLP) 

can be used to extract information from unstructured data 38.  

ML uses a combination of mathematics, statistics and computer science in order to achieve AI 

through learning from the available data, and thus the machine can be trained using the data and 

based on algorithms, gives the ability to learn how to perform a specific task. ML algorithms learn 

from a vast amount of input data (various patient features such as age, gender, body mass index, 

diagnosis) and they produce complex mappings between them in order to create an output (e.g. 

outcome of thrombosis or mortality). If the output is known this algorithm is called supervised 

ML, while if the output is unknown it is called unsupervised. Supervised learning performs better 

in predictive models since it can build relationships between inputs (patient traits) and output 

(outcome) but unsupervised learning could possibly discover unknown relationships or clusters 

of features. The goal of any supervised ML algorithm is to best estimate the mapping function for 

the output variable given the input data. The mapping function is often called the target function 

because it is the function that a given supervised ΜL algorithm aims to approximate. Different 

ML algorithms make different hypotheses about the form of the target function, for that reason 

it is necessary to try several algorithms in order to find the best for each function. 

There are two types of algorithms, parametric and non-parametric. Parametric models 

summarize data with a set of parameters of fixed size, make large assumptions about the 

mapping of the input to the output variables, are simpler and faster to train, and require less data 

but may not be as powerful. Examples of parametric algorithms are Logistic Regression and Linear 

Discriminant Analysis. Nonparametric methods make few or no assumptions about the target 
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function and require a lot more data, are slower to train and have a higher model complexity but 

can result in more powerful models. Examples of non-parametric methods are Decision Trees, 

Naive Bayes and Support Vector Machines (SVM)39. 

ML algorithms in some cases fail in the prediction process. There are two types of prediction 

errors, bias and variance error. Bias is the simplification of the assumptions made by a model to 

make the target function easier to learn. Generally parametric algorithms have a high bias making 

them fast to learn and easier to understand but generally less flexible. In turn, they have lower 

predictive performance on complex problems. Variance is the amount that the estimate of the 

target function will change if different training data are used. Ideally, it should not change too 

much between different training datasets. The ultimate goal of any supervised ML algorithm is 

to achieve low bias and low variance. In turn, the algorithm should achieve good prediction 

performance. Parametric ML algorithms often have a high bias and a low variance and the 

opposite applies for nonparametric algorithms. Trade-off is the strain between the error 

introduced by the bias and the variance. A common problem in ML that results in poor 

performance of the algorithm is overfitting. Overfitting happens when a model learns perfectly 

from the training data but cannot generalize to new data, resulting in a poor performance of the 

algorithm. To avoid overfitting, two methods exist, one is k-fold cross validation and the other is 

the partitioning of the data set to train and test validation set. 

The most basic and simple ML algorithm is linear regression which is based primarily on 

statistics. Linear regression is a statistical model that assumes a linear relationship between one 

or more input variables (x, independent variables) and a single output variable (y, dependent 

variable). Linear regression has been used for predicting output variables with continuous values 

(regression problems). For example, for n number of predictors (x1,x2, …, xn) the following 

regression equation takes place: y=β0+β1x1+…+βnxn+ε (where ε is the random error and β is the 

regression coefficients). Linear regression calculates the estimators or predicted weights of the 

regression coefficients (𝑏₀, 𝑏₁, …, 𝑏n) that they define the estimated regression function 𝑓(𝐱) = 𝑏₀ 

+ 𝑏₁𝑥₁ + ⋯ + 𝑏nxn. Ideally the estimated or predicted response, 𝑓(𝐱ᵢ), for each observation 𝑖 = 1, …, 

𝑛, should be as close as possible to the corresponding actual response 𝑦ᵢ. The differences 𝑦ᵢ - 
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𝑓(𝐱ᵢ) for all observations 𝑖 = 1, …, 𝑛, are called the residuals and it is represented as the vertical 

distance between the line and the data points. Regression is about determining the best 

predicted weights, that is the weights corresponding to the smallest residuals. Linear regression 

is a popular statistical tool that has also been applied in ML but it has some limitations. Linear 

regression models use linear combinations of variables but in biology it has been demonstrated 

that interactions between variables are more complex and nonlinear 40. 

Logistic Regression41 is a statistical method for analyzing a dataset in which there are one or 

more independent variables (risk factors) that estimate the probability of an outcome to occur 

or not (in this case thrombosis or mortality), that is a classification problem. Logistic Regression 

works with binary data, where either the event happens (1) or not (0). In contrast with linear 

regression, logistic regression does not use linear relationships but the natural logarithm function 

to find the relationship between the variables and uses test data to find the coefficients. The 

function can then predict the future results using these coefficients in the logistic equation. 

Logistic regression uses the concept of odds ratios to calculate the probability. This is defined as 

the ratio of the odds of an event “happening” to “not happening”. This method is quite easy and 

fast but is not suitable for high dimensional data40. 

Naive Bayes method42 is a supervised learning algorithm that is founded on Bayes’ theorem43. 

This theorem is based on conditional probability or the likelihood that an A event will happen 

given that another B event has already happened, as expressed in the following equation.  

𝑃(A|B) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

This algorithm is simple, requires little data but it assumes that the features being evaluated 

are independent of each other, an assumption that does not happen in real life40.  

Linear Discriminant Analysis 44 is a dimensionality reduction method. It is based on Naive 

Bayes theorem and can be applied when the outcome of classification is categorical and has more 

than two classes. The model assumes a Gaussian distribution of the input variables. Removing 



18 

outliers and standardization of data (so that they have a mean of 0 and a standard deviation of 1 

is considered helpful40).  

K-nearest neighbour (K-NN)45 is a non-parametric ML algorithm. Non-parametric algorithms 

do not require a certain distribution of the underlying data. This is particularly helpful in practice 

where most of the real-world datasets do not follow mathematical theoretical assumptions. It 

has been applied in pattern recognition, and data mining. To determine which of the K instances 

in the training dataset are most similar to a new input, a distance measure is used. For real-valued 

input variables, the most popular distance measure is Euclidean distance. Euclidean distance is 

calculated as the square root of the sum of the squared differences between point a and point b 

across all input attributes i 40. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖 )2

𝑛

𝑖=1

 

 

K -NN works well with a small number of input variables.  

Decision trees46 split the data multiple times according to certain cut-off values in the 

features. After splitting, different subsets of the dataset are created, with each instance 

belonging to one subset. The final subsets are called leaf nodes and the intermediate subsets are 

called internal nodes or split nodes. To predict the outcome in each leaf node, the average 

outcome of the training data in this node is used. Trees can be used for classification and 

regression problems and have been applied for decision support of medical practitioners. One of 

the most important drawbacks of classical decision tree algorithms is poor processing of 

incomplete, noisy data47. 

Support vector machines (SVM)48 are supervised ML algorithms suitable for both regression 

and classification problems. Data are pointed in a space with n-dimensions (according to the 

number of features), and the most suitable hyperplane (decision boundary) that differentiates 

between the two classes is estimated. SVM algorithms use a set of mathematical functions that 
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are defined as the kernel. Examples of used kernels are linear, nonlinear, polynomial, radial basis 

function (RBF), and sigmoid. SVM is effective in high dimensional data, but less efficient in large 

noisy data as it takes considerable training time.  

Principal Component Analysis (PCA)49 is a dimensionality reduction method for large 

datasets. For that reason, all variables are initially standardized according to the following 

equation50. 

𝑧 =
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

To remove redundant information correlation between input variables is identified with a 

covariance matrix. By computing the eigenvectors and eigenvalues (linear algebra concepts) from 

the covariance matrix it is possible to extract principal components. Principal components are 

new variables that are constructed from the initial variables either by mixture or linear 

combination and that have as much condensed information as possible. This is quite 

advantageous in the real-life dataset with thousands of features that intercorrelate. 

Ensemble51 methods are meta-algorithms that combine several machine learning algorithms 

into one predictive model in order to decrease variance (bagging), bias (boosting), or improve 

predictions (stacking). A commonly used class of ensemble algorithms is Random Forests (RF) 

where bootstrapping is performed. Each tree in the ensemble is built from a sample drawn with 

replacement from the training set. In addition, instead of using all the features, a random subset 

of features is selected, further randomizing the tree. 

Artificial neural networks (ANN)52 is a network of ML algorithms resembling the human brain 

learning function through neurons. ANN can detect patterns and non-linear interactions in large 

complex data. A weight is placed on individual input data (input neurons) and they are fed in 

intermediate connections (hidden layers), and the interactions between the neurons are 

determined by optimizing the algorithm on large bodies of “training” data. During this process, 

multiple iterations are performed in which the properties of the neurons or nodes are adjusted 

in turn, and changes that improve the predictive power of the output are retained for the next 
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iteration. Once trained, the neural network is then applied to previously unseen testing data, to 

assess its performance53. 

Reinforcement learning54 is another category of ML which is similar to the Marcovian decision 

process55 and uses interactions with the environment of reward or punishment type to make 

decisions56. 

Deep learning57 uses many hidden layers of ANNs that process various information and stimuli 

from the surrounding environment. They have an excellent performance in complex tasks and in 

high dimensional data, they can learn and make decisions on their own but they are complex and 

not easy to understand 58. An example of deep learning is Convolutional Neural Networks, the 

architecture of which is shown in Figure 1. 

Natural language processing (NLP)59 is a scientific topic that allow machines to extract 

information from text or speech. Sentiment analysis is one popular NLP tool that classifies texts 

into different categories relative to a positive, negative or neutral sentiment. A free-text is broken 

into smaller keywords or tokens of text (e.g. individual words) that can be used as features in an 

ML analysis. 

A schematic representation of most commonly used ML algorithms is shown in Figure 1 

provided by Rashidi et al 56. In this study, supervised ML algorithms such as Logistic Regression, 

Decision Trees, Random Forests and Support Vector Machines were employed in the final ML 

pipeline, and NLP methods were employed, to extract information from clinical notes.  
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Figure 1. Schematic representation of the most commonly used ML algorithms (provided by Rashidi et al 56). 

3.4 Automated Machine Learning 

The experimentation and extraction of the best performing ML model is time-consuming since 

it requires substantial human and computational effort, artificial intelligence expertise, and 

extensive tuning of hyperparameters. Moreover, the choice of algorithms and hyperparameter 

tuning is somewhat arbitrary, since they are difficult for humans to understand and they are 

treated as black boxes. For that reasons, several academia and industry based automatic ML tools 

have been developed to assist scientists (e.g. auto-WEKA 60, auto-sklearn 61). An extensive 
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comparison between auto ML platforms has been recently published62. AutoML is a rapidly 

developing field of ML. Moreover, the development of these autoML platforms provides a 

benchmark that will allow direct comparison and probably improved performance and 

reproducibility of the studies. 

The basic pipeline of autoML approach has three steps: a) Data preprocessing and feature 

engineering, b) Model selection and hyperparameter optimization and c) Model interpretation 

and prediction analysis63. The first step is not yet developed fully in most autoML platforms, since 

considerable human interaction is needed in order to preprocess and transform data (e.g. 

conversion of categorical data into integers). After feature extraction is completed, the next step 

is training different types of models with hyperparameter optimization and selection of the best 

model (or an ensemble of models). Each platform uses a collection of known ML algorithms to 

build a model. For hyperparameter optimization, some of the most popular methods are grid 

search, random search, and Bayesian search. The third step, model interpretation is not 

supported yet from all autoML platforms.  

3.5 Machine learning and risk assessment in the era of big-data 

Most of the risk assessment models or prediction scores in medicine have been derived based 

on univariate and classic multivariate statistical analysis of collected data and selection of 

features that provide the best prediction accuracy methods64. Well established risk factors are 

included a priori but preliminary univariate analysis can reveal novel risk factors such as the case 

of platelet and leukocyte counts in Khorana score15. RAMs are originally structured to fit the 

derivation data set. Validation in independent test sets is always necessary but unfortunately 

these models do not perform as well during this second phase 17 .  

Healthcare information has been overflowed by tons of data, such as electronic health 

records, freely accessible databases, genomic sequencing, medical imaging, wearable devices 

and smartphones, insurance and government records. The use of big-data analysis to deliver 

evidence-based information has been lagged so far, due to the difficulties in merging data into a 

common database and different types of format used. Several attempts so far to use big-data in 
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healthcare involve data mining and analysis for diagnostic purposes, prevention of diseases, 

precision medicine, medical research, cost reduction and prediction of disease outcomes 65. 

Given the fact that there is an increasing demand for “precision medicine” models, especially 

in oncology and with the growing availability of electronic health records (EHRs) and large 

healthcare databases (such as MIMIC III database66, UK biobank67), new challenging 

opportunities are opened in medical research towards a “machine-learning” analysis of “big-

data”. This approach exceeds the concept of classic statistical sampling and seems promising in 

risk assessment and prediction models. 

Artificial intelligence and statistics differ substantially in their objective. ML models are 

designed for accurate predictions that can be generalized while statistical models are designed 

for inference about the relationships between different variables 68. More specifically, inference 

corresponds to a mathematical model of the data generation process and formalizes the 

underlying system’s mechanism or tests a hypothesis about how the system behaves. Prediction 

aims at forecasting unseen data or future system’s behavior. Statistical models could be 

efficiently applied when the task at hand incorporates a tractable size (or dimension) of features 

and data size, while ML/AI could potentially fit better in problems with larger data size and high-

dimensional feature space including non-linearities. To perform well, ML models generally need 

more data than statistical models. Limitations of statistical approaches (e.g. logistic regression) 

are, that they assume that features have a normal distribution and that a linear relationship exists 

between independent and dependent variables69. ML approaches have the advantage that they 

are not affected by bias and logic, they learn from big and complex data that a normal human 

brain cannot digest. The disadvantage of this process is that the machine cannot differentiate if 

an association reflects a true biological pathway 27. In contrast to statistical methods, ML/AI 

methods usually have many hyper-parameters which need cautious tuning based on a 

training/test/validation/ dataset split, otherwise the performance of ML/AI model will be 

inferior. 

ML/AI models could probably outperform RAMs by providing more accurate predictive results 

or possibly refine the parameters of medical scores. Only a few studies have recently tried to 
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predict thrombosis using ML techniques, such as support vector machines or artificial neural 

networks 53 ,70 71. Ferroni et al 70 used multiple kernel learning based on SVM and random 

optimization (RO) models to predict VTE risk in cancer patients. SVM is used to learn classifiers 

and RO to devise relative importance of different groups of clinical attributes in final predictions. 

The type of prediction is considered as binary since it is determined whether a patient will have 

a high risk of developing a VTE event in the future or not. VTE risk predictors are learned based 

on a 3-fold cross-validation on a training set that allows derivation of the model parameters. ML 

predictor outperformed Khorana score (AUC 0.716 vs 0.589). Qatawneh et al. 71 proposed a 

clinical decision system to automate and accurately predict the risk of VTE in hospitalized 

patients. They classified patients into five levels of risk based on predisposing factors chosen from 

the Caprini score of VTE model 72. More specifically, the proposed approach is based on ANN in 

evaluating a multifactorial health issue. The system was developed a multilayered perceptron 

feed forward neural network which was trained using the Rprop training algorithm, and it 

consisted of an input layer with 35 neurons (representing the input variables for each patient 

such as age, gender, etc.), 3 hidden layers (where the number of neurons in the first, second and 

third hidden layer were 19, 10 and 5 respectively) and an output layer (that produced the type 

of the disease the patient suffered from). A stratified ten-fold cross validation was applied. This 

study was performed in only a few numbers of patients and appropriate metrics of performance 

are not reported.  

Willan et al.53 applied an ANN based method in order to risk stratify 11,490 patients referred 

with suspected DVT. This method could be extended for VTE prediction since it corresponds to a 

similar ML problem. More specifically, the authors introduced a system based on a standard 

binary classification problem, namely, whether or not the patient had a DVT. To address this, a 

standard binary-classification feed-forward artificial neural network was employed. The network 

consists of an input layer of 13 dimensions [sex, age, D-dimer result and the ten individual 

components of the Wells’ score 73], a hidden layer consisting of 8 neurons, and an output layer 

with one neuron. Each neuron contains a series of weights and biases which are multiplied and 

added to the inputs and then passed through an activation function that determines what 

numerical value is passed from a given neuron to the next layer or output from the network. It is 
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these weights and biases that are optimized to obtain the best performance from the network in 

terms of DVT prediction. This study was designed as a proof of principle and the authors suggest 

that ANN could outperform existing scores of risk assessment such as Wells score, but they do 

not report metrics of performance and they concluded paradoxical clinical associations (e.g. they 

did not find an association of thrombosis with cancer or older age). Overall, prediction of venous 

thromboembolism with machine learning is limited so far, and current studies are sparse and 

problematic so further work is needed in that direction exploiting the advantage of big-data. 

Table 1 summarizes the main characteristics and results of the above-mentioned studies. The 

only study that refers to cancer patients is by Ferroni et al.  

Table 1. Studies that use ML algorithms to predict thrombosis 

Authors 
Population 

studied 
Attributes 

set 
ML 

algorithm 
Train/Test/ 
Validation 

Perfor-
mance 
metrics 

Comparison 
with classic 

scores 

Ferroni et 
al 70 

1,179 
ambulatory 

cancer patients 
13 

Multiple 
kernel ML 
(SVM and 

RO) 

70/30 
AUC: 
0,716 

Khorana 
(AUC:0,589) 

Qatanweh 
et al 71 

150 hospitalized 
patient records 

35 (based on 
Caprini 
score) 

ANN 
(Multilayer 
Perceptron) 

80/10/10 

Recall: 
80,7% 

Precision: 
81,2% 

Caprini score, 
no direct 

comparison 

Willan 
et al 53 

7,080 eligible 
patients with 

suspected DVT 

13 (including 
Wells score) 

ANN 75/25 AUC: 0,89 

Wells score 
included in the 
attribute set, 

no comparison 

 

Abbreviations: ANN=Artificial Neural Network, AUC=Area under the curve, DVT= Deep Vein Thrombosis, 
RO= Random Optimization, ML= Machine Learning SVM= Support Vector Machine. 
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4 METHODOLOGY 

4.1 Data source 

Data were obtained from Medical Information Mart for Intensive Care (MIMIC-III, version 1.4) 

that is a large, freely-available database comprising of de-identified health-related data from 

38,597 adult patients and 49,785 admissions in ICU of the Beth Israel Deaconess Medical Center, 

between 2001 and 2012. This database includes complex information such as demographics, 

time series measurements of vital signs (~1 data point per hour), laboratory tests, procedures, 

medications, caregiver notes, and mortality (including post-hospital discharge), as shown in 

Figure 2 66. Clinical Classification Software (CCS)74 is used to categorize diagnoses according to 

the International Classification of Diseases 9th edition (ICD-9 codes). Diagnosis is given as primary 

and secondary diagnosis ICD-9 codes as well as diagnosis-related groups (DRG)75.  

 

Figure 2. Overview of the MIMIC III database (provided by Johnson et al 66 ).  

Abbreviations: CCU=Coronary Care Unit; CSRU=Cardiac Surgery Recovery Unit; MICU=Medical Intensive Care Unit; 

SICU =Surgical Intensive Care Unit; TSICU= Trauma Surgical Intensive Care Unit. 
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4.2 Ethics statement 

The MIMIC-III database was created in accordance with Health Insurance Portability and 

Accountability Act (HIPAA) standards and data access was approved by PhysioNet (account 

credentialised on September 17, 2019). Patient data are de-identified and date-shifted. All pre-

processing and data analysis were performed under MIMIC-III regulations. 

4.3 Dataset description 

Two datasets D1 and D2 were extracted in order to develop models for the two prediction 

tasks. D1 is identified as the dataset of patients with cancer that subsequently readmitted to ICU 

with a primary diagnosis of VTE within 90 days from the first ICU admission. This dataset was 

used in order to predict VTE risk in ICU hospitalised cancer patients after discharge. D2 is the 

dataset of patients admitted in ICU with a primary diagnosis of VTE. This dataset was used for 

predicting early and late mortality in VTE patients hospitalised in ICU. 

For D1, 630 ICD9 codes were selected, related to common solid tumors and hematological 

malignancies that have increased thrombotic risk, i.e.gastrointestinal, urogenital, brain, breast, 

leukemias and lymphomas. For D1 and D2, 35 ICD9 codes related to deep vein thrombosis, 

thrombophlebitis and pulmonary embolism, were selected. Validation of this grouping for 

thrombosis diagnosis from an independent panel of physicians showed very good performance 

76.  

D1 database patient inclusion criteria: All patients aged >15 years old hospitalized in ICU with 

a primary diagnosis of cancer. Exclusion criteria: Age<15 years old (n=0), pregnancy and 

puerperium complications (n= 15), patients that presented with thrombosis in the first admission 

(n=527), patients with previous admission in ICU with thrombosis (n=36) patients with a 

subsequent thrombosis-related admission of more than 90 days (n=56), and patients with “do 

not resuscitate code” (DNR) (n=358). In total 5,691 cancer patients were identified (14,74% of 

total MIMIC-III patients). From this group of patients 4,642 did not develop thrombosis whereas 

only 57 cases of secondary thrombosis have been recognised with a median time to event of 36 
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days, mean 36,86 days (min 4 -max 85 days). The clinical characteristics of the D1 database are 

presented on Table 2. 

D2 database patient inclusion criteria: All patients aged >15 years old hospitalized in ICU with 

a primary diagnosis of thrombosis. Three main diagnosis groups were identified, as shown in 

Figure 3: pulmonary embolism (n=960), deep vein thrombosis and thrombophlebitis (n=1543) 

and unusual site thrombosis (n=307). Many patients belonged in more than one diagnostic 

category. Exclusion criteria: Age< 15 years (n=3), pregnancy and puerperium complications 

(n=40) and patients with DNR (n=169). Overall 2,468 patients were selected (6.4% of total 

patients in MIMIC III) and split in 3 groups. The first, referred as G1 are 348 patients that died 

during the first ICU admission in which they were diagnosed with thrombosis. The second, 

referred as G2 are 817 patients that died after their discharge from ICU or in a later admission. 

On average this group died 549 days after admission with a median of 225 days. The third, 

referred as G3 are 1,303 patients that remained alive for months after their admission in ICU. 

From these groups two ML tasks were formed, the first is to build a model that distinguishes G1 

vs. G3 patients (called “early mortality” or M1) and the second is a model that distinguishes G2 

vs. G3 patients (called “late mortality” or M2). The clinical characteristics of the D2 database are 

presented on Table 3. 

 

Figure 3. Venn diagram showing included and excluded cases from MIMIC III database in D2 database. 
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Table 2. Demographic and clinical characteristics of D1 database. 

Characteristic Number 

Overall patients with cancer admitted in Intensive Care Units 
- 1st admission with cancer never thrombosis 
- Readmission with thrombosis within 90 days 

5,691 
4,642 (81.5%) 

57 (1%) 

Sex 
- Female 
- Male 

 
2,345( 41.21%) 
3,346 (58.79%) 

Ethnicity 
- White 
- African/Americans 
- Other 

 
4,315 (75.82%) 

418 (7.34%) 
958 (16.84%) 

Age (years) 
- Average (Median) 
- min-max 

 
66,19(66.89) 
18.87-98.86 

Length of stay in days 
- Average (median) 
- min-max 

 
16,68 (10,46) 

0-211,99 

Number of admissions 
- Average (Median) 
- Min-max 

 
1,43(1) 

1-10 

Table 3. Demographic and clinical characteristics of D2 database. 

Characteristic Value Characteristic Value 

Overall patients with 
thrombosis: 

- PE 
- DVT 
- Unusual site 

thrombosis 

 
2,468 

960 (38.9%) 
1,543 (62.5%) 
307 (12.4%) 

LOS, days 
Average (SD): 

Max length stay: 

 
7.06 (10.06), 
153.9 days 

Sex 
-  Female 
- Male 

 
1,024 (41.5%) 
1,444 (58.5%) 

Number of admissions 
- Average (SD): 

- Median: 

 
1.15 (0.46) 

1 

Ethnicity 
- White  
- Black 
- Other 

 
1,801 (73%) 
246 (10%) 
421 (17%) 

Cancer diagnosis: 605 (24.5%) 

Age, years 
Average (SD) 

 
62,64 (16.7) 

[min=17.4 max=98.7] 

Mortality (%) 
G1 or Early (at the first 

admission): 
G2 or Late (1-year 

mortality): 
G3 or “Alive”: 

 
348 (14.1%) 

 
817 (33.1%) 

 
1,303 (52.8%) 

 
 

Time to death (in days) 
Average (SD): 

Median: 

 
390 (647) 

83 

Abbreviations: ICU=intensive care unit, LOS=length of stay, PE=pulmonary embolism, DVT=deep vein thrombosis, 

SD=standard deviation. 
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4.4 Attributes selection 

For each of these patients a very wide selection of attributes (features) was extracted, selected 

manually based on factors that could be associated with thrombosis. In order to potentially 

investigate novel discriminatory attributes, a liberal approach on attribute extraction from the 

database was chosen, that is collecting as much as relevant data as possible. Data extracted 

included demographics (age, ethnicity), length of stay in ICU (in days), number of admissions, 

body weight, vital signs, basic laboratory indices (hematocrit, hemoglobin, white blood cells, 

platelets, renal and liver function tests, hemostasis screening tests, sepsis indices), severity 

scores, transfusion requirements, procedures, medications and mortality.  

These attributes are grouped in 7 categories each representing a different type of medical 

assessment or intervention and one that included all features. The values of five of these were 

directly extracted from the corresponding tables of the database. These were LabEvents, that 

includes laboratory measurements, ChartEvents that includes charted data such as vital signs and 

blood pressure, InputEvents that includes transfusions and parenteral nutrition, Procedures and 

Prescriptions (medications). LabEvents were extracted in two values, the value of the first day 

and the average value (avg) during the admission. There are two types of InputEvents files MV, 

and CV since two different clinical information systems have been used, CareVue (Philips) and 

Metavision (iMDSoft). For these features the number of events and the overall received amount 

were recorded. 91 medications were extracted from Prescriptions and grouped in the following 

groups: vasopressors, antihypertensive, cardiovascular, antidiabetics, chemotherapy, growth 

factors, anticoagulants and antiplatelets.  

4.4.1 Concepts 

Concepts are meta-features containing the values of various scores. These values are not 

stored in the database but are available as SQL queries that estimate them from other features 

77. Concepts include a set of severity illness scores and organ failure scores such as Simplified 

Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA), Glasgow Coma Scale 

(GCS), sepsis scores (Martin, Angus), first day laboratories, first day vital signs and transfusions. 



31 

It also includes comorbidities scores that are described as different Elixhauser indices 78. Overall, 

493 concepts were extracted.  

4.4.2 NoteEvents 

NoteEvents contain unstructured notes written by clinicians in free text format. Since one of 

the objectives of the study was to convert this textual information in numerical that could be 

added in the feature set, all clinically relevant entities from the text were extracted using the 

SABER sequence annotator 79 which is a Deep Neural Network framework, tailored for entity 

extraction from biomedical documents. SABER uses a Bi-directional Long Short-Term Memory 

(LSTM) architecture 80 81 and provides access to pre-trained models for various types of entities. 

One of these is the disease ontology 82 83(DO) which is a structured vocabulary of entities related 

to various pathologies and symptoms.  

For each NoteEvent entry all DO entities were extracted, a process that required 30hrs in a 

computer equipped with 3 Nvidia GPUs, each with 16GB of memory. On average, for each patient 

161 entities with a median of 133 were extracted. Next, these entities were fitted into Latent 

Dirichlet Allocation (LDA) topic model with the Gensim framework84 by using 50 topics. LDA is a 

topic model that generates topics based on word frequency from a set of texts. A topic simply 

contains a probability distribution of entities, i.e. entity “pain”, may belong by 20% in topic 1 and 

by 80% in topic 2. Ideally each topic is a thematic cluster that should contain entities with close 

semantic proximities, e.g. cardiovascular conditions (see Figure 4). Overall, this produced a 50-

dimensional space that contained the topic distribution for each patient, or else, for each patient 

a vector of size 50 with thousands of topic marginal probabilities was obtained. For each patient, 

the extracted Disease Ontology tokens were projected into the 50-dimension Topic-Model space 

and this was used as NoteEvents features. 

  An example of the visualization of this model with the LDAvis tool85 is shown in Figure 4. 

Principal Component Analysis on two dimensions was performed only for visualization purposes 

and this does not take any part in the text processing pipeline. The size of each topic (the circles) 

is relative to the sum of the absolute counts of the tokens that they contain. Overall, this process 
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transformed the textual content for each patient in an easy-to-use numerical format that 

contained the basic thematic topics of these entries.  

 

Figure 4. A visualization of the distribution of topics generated through the LDA topic modelling. Each circle on the 

left is a topic. The red circle is a random topic and the words on the right shows the relative distribution of its 

contained entities. In this example, the topic contains entities akin to cardiovascular conditions.  

The overall number of features, the average and median number per patient, the most 

commonly found features in the patient group are described in details in Table 4. It is obvious 

that each group describes a different view of the clinical picture of the patient. Since one of the 

objectives of the study was to locate subsets of discriminatory features, a stratified analysis for 

each group was applied. Namely for each ML task, subsets were created that contained only the 

features of this group. Yet, all these subsets contained basic demographic information that are 

known to have strong correlation with mortality in thrombosis such as sex, length of stay and 

diagnosis group. Finally, a dataset that contained the entirety of the features was created. In 

total, 16 datasets were created, which correspond to the 2 ML tasks combined with the 8 

groupings (7 groups plus 1 containing all groups).  
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Table 4. Description of clinical and laboratory features selected from MIMIC- III database. The first column 
described the corresponding table from the MIMIC-III database. 

Group Description Features Avg Median Most common features 

Chart 
Events 

Vital signs, 
labs, clinical 
information 

235 433 77 
Common labs, blood gases, blood 

pressure 

Lab 
Events 

Laboratory 
indices 

45 1,237 1,157 

Hematocrit, hemoglobin, white 
blood cells, platelets, red blood cells, 

renal and liver function tests, 
hemostasis screening tests, sepsis 

indices 

Proce 
dures 

Several 
procedures 

including 
transfusion 

and 
mechanical 
ventilation 

526 24.3 6 

Venous catheterization, enteral 
nutrition, endotracheal intubation, 

mechanical ventilation for more than 
96 hours 

Input 
Events 

Transfusion 
and 

parenteral 
nutrition 

12 (MV) 
10 (CV) 

  
RBC transfusion, PLT transfusions, 

plasma transfusions 

Prescri 
ptions 

Medications 
 

91 132 14 
Heparin, insulin, warfarin, aspirin, 

enoxaparin, norepinephrine, 
phytonadione and atorvastatin. 

Note 
Events 

Unstructured 
medical notes 

50 

48 entries, 
2,408 
chara 
cters 

1,382 
chara 
cters 

N/A 

Concepts 

Scores, first 
day labs, first 

day vitals, 
doses and 

durations of 
medications 

493   

Comorbidity indices, severity illness 
scores, organ failure scores, sepsis 
scores, GCS, first day laboratories, 
first day vital signs, transfusions 

 
Abbreviations: Avg=average, RBC=red blood cell, PLT=platelet, MV= Metavision, CV=CareVue, GCS=Glascow Coma 

Scale 

 

4.5 Preprocessing 

MIMIC III has applied an adjustment of the age in patients older than 89 years old to a fixed 

age of 300 years old, in order to adjust with privacy regulations. For that reason, these older 

patients were all assigned as 90 years old, given that risk of thrombosis is homogeneously high 

in ages more than 85 years old 86. The Boolean values were replaced as TRUE:1, FALSE:0, and the 
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gender (male/female) as well as the ethnicity (white/black/other) feature were one-hot encoded. 

Missing values are handled in two different ways. In the autoML approach preprocessing is 

automatically applied, by mean imputation and mode imputation, whereas in the custom 

approach a median imputation mode is adopted to fill the missing values. 

4.6 Automated ML framework description 

 The AutoML platform, JADBIO uses an Artificial Intelligence (AI) Decision Support System 

called Algorithm and Hyper-Parameter Space selection (AHPS) in order to extract predictive 

models and signatures. It employs a recently developed protocol, namely Bootstrap Bias 

Corrected Cross-Validation (BBC-CV), for tuning the hyper-parameters of algorithms while 

estimating performance and adjusting for multiple tries. Standard preprocessing applied by 

JADBIO includes mean imputation, mode imputation, constant removal and standardization. 

JADBIO initially constructs a set of ML configurations consisting of algorithms and 

hyperparameters. The algorithms are Linear, Ridge and Lasso Regression, Decision Trees, 

Random Forests (RF) and Support Vector Machines (SVMs) with gaussian and polynomial kernels. 

This selection is based on the fact that these algorithms are most often the top classifier in 

extensive evaluation studies87. Subsequently it evaluates these configurations through bootstrap 

corrected cross-validation algorithm88. After selecting the “winning configuration” that is the best 

performing combination of preprocessing steps, feature selection algorithm and predictive 

algorithm that were tested during the analysis, it reports the classification statistics like truth 

table, AUC, sensitivity, specificity, precision, selected features along with their classification 

ability, sample predicted/real values. JADBIO applies all good practices of ML in order to eliminate 

any overfitting of the model and any bias in efficiency estimation. Details regarding the ML 

pipeline and statistical analysis can be found on 88. Extensive testing showed that JADBIO’s 

estimations lie towards the lower bound of the efficiency spectrum, or else these metrics are in 

fact conservative compared to the real classification ability of the generated model89. The user 

can select between three different types of analysis preliminary, typical and extensive with the 

latter extensively searching for an optimal model using high computational power. Another 

important and clinically relevant task of JADBIO is that it can identify biosignatures, that is a set 
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of features with predictive ability, that could probably enforce knowledge discovery and further 

identify potentially new biomarkers.  

4.7 Class imbalance 

JADBIO addresses imbalanced classes through stratified cross-validation and diversified class 

weights during SVM learning. For that reason, it is crucial to examine the class balancing effect in 

light of oversampling combined with a state-of-the-art ML classifier, in this case RF classifier, 

which is robust and efficient when dealing with numerical, categorical and Boolean data. Towards 

achieving a balanced ratio between the two classes in both datasets, SMOTE method was 

adopted90. In particular, SMOTE generates synthetic minority class samples along the line 

segments joining randomly chosen m minority samples (i.e., m is the number of minority samples 

to oversample in order to obtain the desired class balancing ratio) and their K-nearest minority 

class neighbors. After defining m and K, SMOTE generates a new synthetic sample s of the form 

s=x+ρ(x-y), where x is the minority sample to oversample, y is one of its chosen nearest neighbors 

and ρ is a random number in the range of [0,1]. An increased generalization capability is expected, 

and thus an enhanced performance, of the used classifier since the generation of similar samples 

to the existing minority samples, creates larger and less specific decision boundaries. The default 

SMOTE implementation included in the Imbalanced - Learn Python package was used 91. 

A shuffled stratified 75% train / 25% test split is applied on both datasets to divide it into a 

training and a test partition. Then, the training partition is divided into five stratified cross-

validation folds (using shuffling). Since one of the objectives of the study was to examine SMOTE 

oversampling effect on the final performance evaluation, SMOTE was applied on all the “training” 

folds during each cross-validation iteration. The motivation towards applying oversampling 

during cross-validation is that similar patterns/instances may appear in both training and test 

partitions when the oversampling is performed prior to cross-validation which can lead to 

overoptimistic error estimates. However, if the oversampling is performed during cross-

validation, only the training patterns/instances are considered both for generating new 

patterns/instances and training the model, alleviating over-optimism. In all cases, grid-search 

hyper-parameter tuning was performed as: the number of estimators 92 was selected out of this 
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set: [10, 25, 50, 100], the maximum number of features was set as 'auto','sqrt' or 'log2', the 

maximum depth was selected from the set [10, 20, 30, 40], the minimum samples split 93 was 

selected from the set [5, 10, 15, 20] and the minimum samples leaf from93 [2, 5, 10, 15].  

The best hyper-parameters combination is computed according to an F1-score rule, i.e., the 

model selection is based on the highest F1-score on the “validation” fold for a specific 

hyperparameters combination. Then, the best (F1-based selected) RF model is trained on the 

entire initial (before the cross-validation iterations) training partition. Towards the final 

performance evaluation, the average ROC curves are computed, where the results are averaged 

over ten Monte Carlo repetitions with different realizations of the train/test split, the 5-fold 

stratified cross validation, and randomizations of the SMOTE method. 

4.8 ML algorithm performance assessment 

Performance of ML classification algorithms is typically assessed by simple statistical methods. 

Assessment of performance is done by the percentage of true predicted cases from the total 

cases. Sensitivity (or recall) is the proportion of true positives (true positives/actual positives or 

else 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) and specificity the proportion of true negatives/actual negatives or 

else 
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 that are correctly identified. Accuracy is the proportion of the times 

which the classifier is correct, according to the following equation: 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
. 

Balanced accuracy is a better metric for imbalanced datasets, since it takes into account both 

positive and negative outcomes, according to the following equation:  

(
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
)/2 , or else  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Precision is defined as the percentage of positive predictive values for each subject category. 

F1 score is the harmonic mean of the precision and recall, thus is another measure of test 

accuracy. Data are also represented in a confusion matrix as shown in Table 5 . Receiver operating 

curves (ROC) illustrate the relationship between sensitivity (plotted on the y-axis) and specificity 

(x-axis). ROC curves can be easily interpreted by using area under the curve (AUC). AUC 
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corresponds to the probability that a random sample would be correctly classified by each 

algorithm. 

Table 5. A confusion matrix describes the performance of a classifier. 

 
Actual outcome 

Negative Positive 

 

Predicted outcome 

Negative True negative False negative 

Positive False positive True positive 
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5 RESULTS 

5.1 Prediction of ICU readmission of cancer patients within 90 days due 

to thrombosis 

Total number of patients included in dataset D1 is 4,699, where 4,642 patients have cancer and 

no thrombosis (cancer_never thrombosis) while 57 patients have cancer when admitted in ICU 

and then they develop thrombosis (cancer_then thrombosis), i.e., the imbalance ratio for D1 is 

1: 81.28. As a result, D1 appears to be an extremely imbalanced dataset which is the basic reason 

for failing to achieve even modest mortality prediction results, using SMOTE and without 

explicitly adopting SMOTE technique. Similarly, JADBIO failed to predict accurately this event as 

shown in Table 6. Between 29,190 trained models the winning algorithm was Classification 

Random Forests training 1,000 trees with Deviance splitting criterion and minimum leaf size = 4. 

Among the most important features selected were concepts such as SOFA and sepsis Martin 

score, insertion of endotracheal tube, MCH (mean corpuscular hemoglobin, an index of red blood 

cells) and red blood cell transfusions (selected by Statistically Equivalent Signature algorithm with 

hyperparameters maxK=2, alpha=0.05). 

In an effort to reduce the imbalance ratio and the dimensionality of the dataset, patients with 

cancer were narrowed down according to the ICD9 codes found in the thrombosis group. So, it 

was possible to reduce the size of the negative group (cancer_never thrombosis) to 2,937 vs 57 

(cancer_then thrombosis), i.e. the imbalance ratio in this case id 1:51.5, which is slightly better 

but still high. Besides that, it was expected that the reduced dataset would be more 

homogeneous regarding cancer diagnosis. Moreover, features such as procedures with many 

missing values and NoteΕvents were discarded, since they cannot be interpreted clinically, ending 

with 1,122 features (instead of the initial 1,471 features). Even with this modification it was 

impossible to improve performance of predictive algorithms (Table 6). As shown, Area under the 

ROC curve (AUC)94 was 59%, which means the probability that the model ranks a random positive 

example more highly than a random negative example is 59%. The accuracy95 or the fraction of 

the number of correct predictions to the total number of predictions, or else the fraction of 

predictions the model got right, has significantly improved from 11% to 98% in the reduced 
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dataset, that is focusing in a more homogeneous patient group according to their diagnosis seems 

helpful. Also, F1 score96 that measures the model's accuracy on the dataset, and is a combination 

of the precision and recall of the model, is quite low 0.04. Even if these results are not significant, 

it is quite interesting that the most important selected features in this case were again packed 

red blood cell transfusions, insertion of endotracheal tube and MCH. 

Table 6. Detailed metrics of the performance for prediction of ICU readmission with thrombosis in cancer patients 
(within 90 days) using all features. 

 
ICU readmission with thrombosis in 

cancer patients (within 90 days) 

ICU readmission with thrombosis 

in cancer patients reduced dataset 

AUC [95% Confidence interval) 0.59 [0.50-0.69] 0.59 [0.46-0.7] 

Accuracy 0.11 0.98 

Balanced accuracy 0.52 0.5 

F1 score 0.04 - 

Precision 0.01 - 

Sensitivity 0.93 - 

Specificity 0.10 1 

Average F1 score  0.52 - 

5.2 Prediction of early and late mortality in ICU patients with 

thrombosis 

5.2.1 Correlation of sepsis, comorbidities, and organ failure scores 

Since MIMIC-III contains a variety of medical scores, the complex interactions between the 

parameters of various sepsis (n=20), comorbidities (n=17) and organ failure (n=12) scores were 

analyzed. For each of these score groups a Pearson pairwise correlation matrix was computed 

and these correlations were visualised with heatmaps. For sepsis and severity scores the “time 

before death” was added as an extra feature, which contains the negative of the time (in days) 

in which patients died after their first admission with a thrombosis diagnosis. For patients that 

were alive, this was left blank. Sepsis scores show a strong correlation between each other, as 

depicted in Figure 5. Surprisingly white blood cells, blood components transfusion and time 

before death do not seem to correlate well with sepsis. As far as it concerns comorbidity indices, 
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presented in Figure 6, the Quan Elixhauer score was used, since both variants of Elixhauer 

measures AHRQ and Quan have comparable efficiency in predicting all-cause mortality 97. 

Correlation between various diseases is shown, such as diabetes and renal failure, hypertension 

and renal failure, liver failure and alcohol abuse, congestive heart failure and chronic pulmonary 

disease, peripheral vascular disease and diabetes. Figure 7 represents correlation between most 

important ICU severity scores. A strong correlation is observed between various severity and 

organ failure scores, although none of these scores showed a strong correlation with time before 

death. 

 

Figure 5.Feature. Feature correlation results (heatmaps) for sepsis scores 
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Figure 6.Feature correlation results (heatmaps) for comorbidities 



42 

 

Figure 7. Feature correlation results (heatmaps) for ICU severity scores. 

Abbreviations: APS= Acute Physiology Score, LODS= Logistic Organ Dysfunction Score, MLODS=Multiple LODS, 

OASIS= Outcome and Assessment Information Set, SAPS= Simplified Acute Physiology Score, SIRS=Systemic 

Inflammatory Response Syndrome, SOFA=Sequential Organ Failure Assessment, QSOFA=Quick SOFA score 

5.2.2 Classification of early and late mortality 

The best ML model chosen by JADBIO to predict early mortality (task M1) was Random Forests 

training 500 trees with Deviance splitting criterion and minimum leaf size = 3. As expected the 

best performance had the dataset containing all groups (AUC=0.925), followed by Concepts 

(AUC=0.923) and Chart Events (0.917), whereas Input Events had the worst performance 

(AUC=0.781), as shown in Figure 8. To further evaluate the performance of individual features in 

task M1, a dataset with all features except Concepts was used. It is surprising that the 

combination of all data preserves its high predictive performance (AUC 0.931). This is probably 

attributed to the equally high predictive performance of Chart Events. 
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Regarding late mortality (task M2), the best ML model was again Random Forests training 500 

trees with Deviance splitting criterion and minimum leaf size = 3. Nevertheless, the task of 

predicting late mortality was less efficient even with the holistic approach (AUC=0.82). Concepts 

in this case had inferior performance (AUC=0.783) (Figure 9), which is expected since known 

severity and organ failure scores are excellent only for predicting early mortality, but it is 

interesting that they had the best performance comparing with the other feature sets. This 

difference can also be attributed to the fact that an unknown number of patients in the “alive” 

(G3) group might in fact have the same mortality risk as in the patients in G2 group due to the 

limited time period that the database tracks mortality status. Table 6 describes the detailed 

metrics of the performance for both tasks M1 and M2 using all features, whereas Table 7 

describes the winning algorithms for each group of features set together with their 

corresponding AUC. Another interesting finding is that Note Events (free text features) had 

almost the same AUC (0.762) as Chart Events (0.768) and Procedures (0.763). This signifies the 

need to treat textual information as having the same importance for the classification task as 

with “traditional” clinical features, at least in ML tasks with a convoluted class distribution.  

 

Figure 8. AUC for early mortality in ICU patients with thrombosis (Random Forest classifier). 
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Figure 9. AUC for late mortality in ICU patients with thrombosis (Random Forest classifier). 

Table 7. Detailed metrics of the performance for prediction of early and late mortality of ICU patients with 
thrombosis using all features. 

 Early mortality Late mortality 

AUC [95% Confidence interval) 0.93 [0.91-0.95] 0.82 [0.79-0.84] 

Accuracy 0.89 0.76 

Balanced accuracy 0.81 0.74 

F1 score 0.72 0.60 

Precision 0.77 0.77 

Sensitivity 0.67 0.49 

Specificity 0.95 0.90 
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Table 8. Selected ML algorithms for each group of features.  

 Early mortality Late mortality 

 Feature selection Predictive algorithm Feature selection Predictive algorithm 

All 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05  

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.925] 

SES algorithm with 
hyper-parameters: 
maxK = 3, and alpha = 
0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.82] 

Chart 
Events 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05  

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.917] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.01 

Ridge Logistic 
Regression with penalty 
hyper-parameter 
lambda = 0.1 
[AUC=0.768] 

Lab 
Events 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 [AUC=0.744] 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.891] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 4 [AUC=0.744] 

Proce 
dures 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 4 [AUC=0.833] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 2 [AUC=0.763] 

Input 
Events 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 

RF training 100 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.781] 

SES algorithm with 
hyper-parameters: 
maxK = 3, and alpha = 
0.01 

Ridge Logistic 
Regression with penalty 
hyper-parameter 
lambda = 10.0 
[AUC=0.714] 

Prescri 
ptions 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 4 [AUC=0.857] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.05 

RF training 100 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.721] 

Note 
Events 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 

RF training 100 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.840] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.01 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.762] 

Conc 
epts 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha 
= 0.05 

RF training 100 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.923] 

SES algorithm with 
hyper-parameters: 
maxK = 2, and alpha = 
0.05 

RF training 500 trees 
with Deviance splitting 
criterion and minimum 
leaf size = 3 [AUC=0.783] 

Abbreviations : RF= Random Forest, SES=Statistically Equivalent Signature 

5.2.3 Mortality prediction based on SMOTE and Random Forest 

    Figure 10 depicts the average ROC curves in the case of M1 (solid lines), where it is obvious 

that SMOTE oversampling (combined with the RF classifier) provides equal mean ROC results 

(0.91 in SMOTE and no-SMOTE case), something that was being expected due to the low 

imbalance ratio 1:3.744. Slightly better mean Precision-Recall (PR) scores are depicted in Figure 

11. Since the imbalance ratio in the case of M2 is even lower (i.e., 1:1.595) it is expected that 
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SMOTE oversampling will achieve almost the same (or slightly worse) performance in comparison 

with the non-oversampling case. This is experimentally confirmed as it can be seen in Figure 10 

(dashed lines) where the mean ROC scores are 0.81 and 0.82 in the case of SMOTE and no-

SMOTE, respectively, while the mean PR is the same for SMOTE and no-SMOTE as depicted in 

Figure 12. 

 

Figure 10. Average ROC curves for early (M1) and late (M2) mortality based on SMOTE and RF. 
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Figure 11.Average PR curves on early mortality (M1). 

 

Figure 12. Average PR curves on late mortality (M2). 
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5.2.4 Feature Discriminative Analysis 

In the next section the top selected features predictive of early and late mortality are shown, 

as well as their discriminative power for each group of features, that is medications 

(Prescriptions), charted patient data (ChartEvents), laboratory measurements for each given 

patient (LabEvents), transfusions and parenteral nutrition (InputEvents), performed procedures 

(Procedures) and known severity and sepsis scores (Concepts). For more details regarding the 

groups of features used in this study and algorithms used for feature selection, refer to Table 4 

and Table 7 respectively. Moreover, how the prediction is enhanced by each selected feature 

when permuting all other features is reported (Table 9 and Table 10). 

Most common features associated with mortality are shown in Figure 13, Figure 14, Table 9 

and Table 10, where their permutation feature importance is shown in numbers. Since 

“NoteEvents” are not directly extracted features from the database, they do not have explicit 

clinical interpretation therefore they were not included in the figure and tables containing the 

most discriminatory features for each feature set. 

Cancer and age at thrombosis were significant predictors in most of the analysis subgroups for 

early as well as for late mortality. Anticoagulation with warfarin in “All” and “Prescriptions” was 

another significant predictor for both M1 and M2. Selected features to predict M1 were features 

related to respiratory distress, renal failure, cardiovascular compromise, severity scores, certain 

medications, transfusions and laboratory indices. In more detail, respiratory distress was 

represented by blood gases (arterial pH, 1st day oxygen saturation), respiratory parameters of 

Martin sepsis score and respiratory rate (RR) in “All”, “Concepts” and “Chartevents” as well as 

mechanical ventilation and insertion of endotracheal tube in Procedures. Renal failure was 

indicated by blood urea nitrogen (BUN) in “All” and “ChartEvents”', urine output in “Concepts”, 

and creatinine in “LabEvents”. Cardiovascular compromise related-features were systolic (SBP) 

and 1st day diastolic blood pressure (DBP) in “Concepts”, extracorporeal circulation, 

cardiopulmonary resuscitation and infusion of vasopressors in “Procedures”, dopamine and 

norepinephrine administration in “Prescriptions”. From all severity scores, SAPS II appeared to 

significantly affect early mortality in "All", and "Concepts". GCS and mental status appeared as 



49 

significant predictors in “ChartEvents”. Finally, well known significant laboratory indices (such as 

red cell distribution width or else RDW, platelets, white blood cells) were recognised in 

“LabEvents'' and "All" datasets. 

Selected predictive features for late mortality were similarly associated with cardiovascular 

and renal failure, medications and laboratory indices. Renal failure was indicated by creatinine 

average, urine output, 1st day anion gap in “All” and “Concepts” and hemodialysis in 

“Procedures”. Cardiovascular compromise was represented by phenylephrine rate, blood 

pressure measurements and Creatine Phosphokinase (CPK) in “All” and “Chartevents” and 

extracorporeal circulation in “Procedures”. It is interesting that hydropneumothorax, a condition 

related to lungs,was a feature extracted from “NoteEvents”. 

 

Figure 13. The discriminative power for the top features selected from JADBIO for Prescriptions, ChartEvents and 

LabEvents. Values represent the relative change of the AUC. Orange bars represent features for early mortality 

(M1) and Gray bars represent features for late mortality (M2). 
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Figure 14. The discriminative power for the top features selected from JADBIO for InputEvents, Procedures, 
Concepts and All features. Values represent the relative change of the AUC. Orange bars represent features for 

early mortality (M1) and Gray bars represent features for late mortality (M2). 

Abbreviations: ALT=Alanine Aminotransferase, Art pO2=Arterial Oxygen Partial Pressure, avg=average, BUN=Blood 
Urea Nitrogen, CaO2=Arterial Oxygen Content, CPK=Creatine Phospho-Kinase, DBP=Diastolic Blood Pressure, 
GCS=Glascow Coma Scale, INR=International Normalized Ratio, KDIGO=Kidney Disease Improving Global Outcome, 
LDH=Lactate Dehydrogenase, MCV=Mean Corpuscular Volume, PLT=Platelet, PTT=Partial Thromboplastin Time, 
RDW=Red Cell Distribution Width, RR=Respiratory Rate, SAPS=Simplified Acute Physiology Score, SBP=Systolic Blood 
Pressure, SpO2=Oxygen Saturation, TPN=Total Parenteral Nutrition, WBC=White Blood Cell. 
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Table 9. Selected most common features to predict early mortality and their permutation feature importance 
(number in brackets) that shows the increase in the prediction error of each selected feature when permuting all 

other features. 

Features 
Prescri-

ptions 
Chart events Lab events Input Procedures Concepts All 

F1 
Warfarin 
(0.224) 

Cancer icd9 
(0,355) 

Glucose (0.186) 
Packed_RBC 

(0,032) 

Age_at_ 
thrombosis ( 

0.245) 

Sepsis Martin 
resp (0.22) 

Warfarin 
(0.279) 

F2 
Age at 

thrombosis 
(0,136) 

Total GCS 
(0,188) 

Creatinine 
(0.06) 

TPN_w/Lipids 
(0,027) 

Cancer_icd9 
(0.171) 

SAPS II (0.102) 
Arterial pH 

(0.235) 

F3 
Norepi-

nephrine 
(0,067) 

Mental status 
(0,151) 

WBC (0.041) 
PLT__amount 

(0,007) 

Cardiopulmonary 
resuscitation, 
not_otherwise 

specified (0.137) 

Glucose_avg 
(0.082) 

Elixhauser-
score-

quan_sid30 
(0.115) 

F4 
Cancer icd9 

(0,04) 
BUN (0.102) RDW (0.027)  

Insertion_of_ 
endotracheal_ 

tube (0.086) 

Cancer Icd9 
(0.073) 

1st day blood-
gas-art spo2 

(0.106) 

F5 
Dopamine 

(0,03) 
Arterial PO2 

(0.08) 
PLT (0.017)  

Extracorporeal 
Circulation 
Auxiliary 

to_open_heart 
surgery (0.078) 

Cookbook/WB
C (0.069) 

Sepsis/martin_
respiratory 

(0.062) 

 

Abbreviations: art (arterial), avg (average), BUN (blood urea nitrogen), DBP (diastolic blood pressure), 

Elixhauser_sid30 (depression), GCS (Glascow coma scale), MCHC (mean corpuscular hemoglobin concentration), PLT 

(platelets), RR (respiratory rate), RBC (red blood cells), RDW (red cell distribution width), SAPS II (Simplified acute 

physiology score II), TPN (total parenteral nutrition), WBC (white blood cells). 
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Table 10. Selected most common features to predict late mortality and their permutation feature importance that 
shows the increase in the prediction error of each selected features when permuting all other features. 

Features Prescription Chart events Lab events Input Procedures Concepts All 

F1 
Warfarin 

(0.175) 

Cancer_icd9 

(0,204) 

Age_at_thromb

osis (0.221) 

Age_at_thromb

osis (0,111) 

Age_at_throm-

bosis (0,194) 
GCS (0.216) 

SAPS_age_score 

(0,228) 

F2 
Phenylephrine(

0,074) 

Creatine 

Kinase_avg 

(0,124) 

Cancer_icd9 

(0.125) 

Cancer_icd9 

(0,005) 
Cancer_icd9 (0,07) 

Cancer_icd9 

(0.115) 

Vasopressors_ 

drugs__phenyleph

rine (0,19) 

F3 
Phytonadione 

(0,018) 
BUN_avg (0,09) RDW_avg (0.05)  

Hemodialysis 

(0,047) 

Elixhauser-ahrq-

v37-no-drg-all-

icd__metastatic_c

ancer (0.106) 

RDW_avg (0,097) 

F4 

Epinephrine 

1:1000 (0,018) 

 

Previous 

Weigh_first 

(0,064) 

PLT Count_avg 

(0.032) 
 

Extracorporeal_cir

culation_auxiliary_

to_open_heart_su

rgery (0,035) 

Organfailure/kdigo

-urineoutput_6hr 

(0.067) 

Cancer_icd9 

(0,067) 

F5 

Growth factor 

filgrastim 

(0,001) 

DBP_avg (0,04) 
Lymphocyte_av

g (0.03) 
 

Central_venous_c

atheter_placemen

t_with_guidance 

(0,02) 

Elixhauser-score-

ahrq__elixhauser_

sid30 (0.028) 

Alkaline 

Phosphatase avg 

(0,057) 

F6 
Glipizide 

(0,0004) 

Age_at_thromb

osis (0,018) 

MCHC_avg 

(0.016) 
 

Regional_lymph_n

ode_excision 

(0,019) 

Dopamine-

duration_hours 

(0.028) 

Antithrombotic_d

rugs__warfarin 

(0,054) 

 

Abbreviations: Comorbidity/Elixhauser-score-ahrq__elixhauser_sid30 (depression), DBP (diastolic blood pressure), 
GCS (Glascow coma scale), MCHC (mean corpuscular hemoglobin concentration), RDW (red cell distribution width), 
SAPS (Simplified acute physiology score).  
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6 DISCUSSION 

The focus of the present study was to explore and assess whether a machine learning 

approach can be applied and further contribute in the prediction of two important research 

questions, that is the prediction of VTE in patients discharged from ICU as well as prediction of 

mortality in ICU patients with VTE. Towards this direction, a big-data driven research approach 

has been applied. One of the main goals of this work was to locate clinically meaningful predictive 

features that could probably contribute in building new models or refining existing scores to 

improve ICU and post-discharge survival rates. Moreover, the effect of balancing techniques on 

the final performance of the model was studied. Part of this study has been published at BIBE 

2020 conference98. 

In this section, the initial aim of the study will be readdressed and results will be discussed. 

First, a summary of what has been published so far and most important problems with these 

studies will be reported. Then the inherent problems of the dataset chosen for this study will be 

presented and what would be done to improve the quality of the data. The use of machine 

learning algorithms to predict the above-mentioned research questions and to select clinical 

features will be analysed, as well as interpretation of the results will be given. Finally, comparison 

with published studies, limitations of this study and future work will be described. 

The use of ML in prediction of DVT has been lagged so far. Only a few studies have recently 

tried to predict thrombosis in cancer patients53, 70, 71 with questionable results and several 

methodological issues, as discussed earlier in the introduction. Several scores exist for prediction 

of VTE risk in hospitalized patients such as IMPROVE99 and Padua100 but no validated VTE risk 

assessment score exists specifically designed for critically-ill patients. Recently an ICU-VTE score 

derived from a retrospective analysis of a large number of patients using multivariate analysis 

has been published but not yet externally validated 101. Similarly, Nafee et al, have used ensemble 

learning algorithms to predict VTE in critically-ill patients and report that their model 

outperforms classic statistical IMPROVE score103. Another important problem in thrombosis 

prediction, is that diagnosis of VTE can be frequently difficult or even masked, since VTE can be 

asymptomatic, or remain undiagnosed in a case of a sudden death following discharge from ICU 
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104. The risk of VTE after discharge from the hospital can be persistent for a significant time of 

period, depending on the reason of hospitalization and has been reported to be extended up to 

3 months 105. For that reason, this study focused on prediction of VTE readmission up to 90 days 

after discharge from ICU in cancer patients.  

Prediction of early and late mortality in ICU patients has been also a central challenge in the 

area of medical informatics. Mortality is a major end point in epidemiological and interventional 

studies in the ICU, although somewhat debatable106. Published studies so far, focus mainly on 

the prediction of in-hospital mortality and use either a limited pre-selected number of features 

22, 107, 108 or explore the feature space with a small range of ML algorithms (i.e., Logistic 

Regression132 , SVM 70, Artificial Neural Networks109, Decision Trees110). Even when more generic 

approaches are used, it is questionable whether proper ML guidelines for overfitting prevention 

and accurate performance metrics reporting are recorded. Moreover, most of the studies focus 

on in-hospital ICU mortality, irrespective of the primary patient diagnosis and their comorbidities. 

Since the initial diagnosis of the patient and the reason for ICU admittance could significantly 

affect overall survival, it would be interesting to study different disease outcomes and try to 

identify specific disease-related clinical features that have prognostic significance. Even more 

importantly, it is necessary to predict post-discharge mortality which is an even more difficult 

task, since patients admitted to ICU usually suffer from a high comorbidity burden. Few studies 

have focused on the prediction of late mortality in ICU patients such as 22.  

Another important limitation of published predictive scores on ICU mortality, is that most of 

them are based on data recorded on the first day of ICU admission or the worst recorded value 

111, 112 ,113. MIMIC-III database gives the opportunity to study post-hospitalization mortality and 

long-term survival, since it collects information even months after discharge as well as 

readmissions to ICU. Using ML, complex algorithms can be trained on time-series data of a large 

population. This approach could possibly identify patterns or therapeutic interventions that could 

improve long-term survival in critically-ill patients114. It has been also shown that medical scores 

lose their performance over the time due to changes in medical practices115. Artificial intelligence 

could be promising in this direction, as it could be used as an adjunct tool that captures “live” 
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data from electronic health records and assists clinicians to handle big-data collected over the 

process of clinical care 116. 

The most difficult part of this study was to initially collect the appropriate database. To 

successfully predict thrombosis, a wide range of clinical, laboratory and genetic data are needed 

as well as clinical notes from prior medical history, comorbidities, known provoking factors such 

as recent surgeries and cardiovascular risk factors, prescriptions such as hormonal replacement 

and family history of thrombosis. This is due to the complex nature of the disease. In that 

direction, this study tried to include as many features as possible, that is a very wide range of raw 

demographic, clinical and laboratory measurements, widely accepted severity, comorbidity and 

organ failure scores (presented here as Concepts) 18 19 20 medications, procedures, transfusions 

as well as information coming from free-text notes. Unfortunately, genetic data, personal and 

family history of thrombosis are missing in the MIMIC III database. Notwithstanding, this holistic 

approach creates a feature space that except from the “curse of dimensionality”, suffers from all 

known problems of real-world clinical data; imbalanced classes, many missing values117 and co-

dependencies between different features. 

Extracting information as keywords or tokens from free medical notes is expected to be quite 

challenging for several reasons. First of all, the structure of notes is not homogeneous between 

different patients with different disease entities and between various caregivers of different 

medical specializations. Clinicians use very frequently different abbreviations or terms for the 

same diseases, either known medical abbreviations for example cerebrovascular accident (CVA) 

or more colloquial such as stroke. Sometimes clinicians describe the absence of symptoms, e.g. 

“without dyspnea”. In this case the algorithm would probably keep the term “dyspnea” 

discarding “without”, an action that could totally change the meaning of the sentence. Another 

example is the phrase “family history of a disease, e.g. stroke”. In this case, the algorithm could 

keep only the word “stroke” without considering the context of the family history which is also 

important but from a different point of view. It would be probably interesting to focus on 

discharge notes, since these summarize the medical problems and the medications given to the 

patients, information quite important especially for post-discharge outcome.  
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Therefore, to incorporate unstructured free medical text, in the feature dataset, it was 

necessary to convert it to a numerical format. SABER 79 was used as a tool for information 

extraction and more specifically a pretrained model called DO which contains several entities 

related to signs, symptoms and diseases. SABER used free notes as input and extracted entities 

or tokens (that belong to the ontology) for each patient, and the final output of this pipeline was 

a vector of 50 topic models or clusters for each patient. One limitation of this method is that 

search is based on general medical terms and not focused on thrombosis-related entities, as 

discussed later in this section. It also produced non-interpretable features but with significant 

predictive abilities in ML algorithms, as shown in the case of early mortality prediction where 

NoteEvents had the same predictive performance as Prescriptions. Moreover, ideally each topic 

model contains tokens akin to specific groups of medical conditions or symptoms, for example 

cardiovascular diseases. A first attempt of predicting VTE in patients from electronic health 

records has been published from Sabra et al 133 using combined semantic and sentiment analysis. 

To construct a robust model, training of two different ML strategies have been employed. The 

first, is an automated ML approach based on JADBIO platform, that has been widely tested in 

biomedical data and follows all good practices for analysis and efficiency reporting 89. This 

platform uses a variety of ML algorithms such as RFs and SVMs that according to the authors 

have strong mechanisms to shield against overfitting. During the experiments, Random Forests 

were consistently found to be the winning algorithm. Besides that, JADBIO can produce 

“interpretable” models that can be intuitively explored and explained by physicians89, as 

confirmed by this study. For feature selection, statistically equivalent signature (SES) algorithm, 

inspired by the principles of constrained-based learning of Bayesian networks, were consistently 

found to be superior against the feature selection method LASSO. All extracted features were 

clinically meaningful since older age, cancer, respiratory, cardiovascular, renal disease, 

vasopressor support and mechanical ventilation are well established clinical predictors of ICU 

mortality 22. Similarly, with Ho et al.22 sex was not found to be a predictor of ICU mortality. 

Moreover, individual feature analysis confirmed that warfarin 118 RDW 119, red blood cell 

transfusions 120 and blood urea nitrogen 121 are significant predictors of early and possibly long-

term mortality. RDW has been shown to play a significant negative predictive role in ICU early 
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mortality through deregulation of erythropoiesis from inflammatory cytokines and oxidative 

stress 122. It has also been reported to be an independent risk factor for cardiovascular diseases, 

dyslipidemia, diabetes, renal and liver diseases. Surprisingly, high RDW has been shown to 

correlate with cancer stage irrespective of comorbidities and with early mortality in VTE patients. 

For all these reasons, it is not paradoxical that RDW could be an easily applicable, new biomarker, 

useful not only for the prediction of early but possibly of late mortality. 

The second ML approach corresponds to a class balancing method which is combined with a 

Random Forest (RF) classifier, towards examining the fact that the results obtained from JADBIO 

are not affected by any class imbalance behavior. Typically, class imbalanced datasets constitute 

a common problem in medical informatics, which might lead to degraded performance 

depending on the type/number of data, features etc., and thus an additional analysis should be 

performed in order to tackle this issue. JADBIO addresses imbalanced classes through stratified 

cross-validation and diversified class weights during SVM learning, and thus an additional ML 

pipeline was implemented by adopting SMOTE method which is considered a state-of-the-art 

class balancing algorithm within the oversampling techniques framework123. 

In the case of the first ML task, i.e., the prediction of VTE-associated readmission in cancer ICU 

hospitalized patients, up to 90 days after discharge, all of the examined ML algorithms (Ridge 

logistic regression, SVM, DT, RF) failed to accurately provide a high predictive performance. 

Efforts to improve imbalance ratio via SMOTE and reduce dimensionality of the dataset were 

unsuccessful and they did not add any drastic change in the overall predictive accuracy. This is 

probably due to the nature of the dataset, since the number of positive cases was really low 

comparing with the number of negative cases. Even if the algorithm failed to predict efficiently 

thrombosis, features selected such as multiorgan failure and sepsis scores, insertion of 

endotracheal tube, and red blood cell transfusions are meaningful in the context of 

thrombosis124. Similarly, in the case of the second task, i.e., the prediction of early and late 

mortality in thrombosis ICU patients, SMOTE did not significantly change the predictive accuracy 

as compared to not applying SMOTE during the ML procedure. Nevertheless, features selected 

like red cell transfusions127 and endotracheal intubation128 are well known correlated with ICU 
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mortality. Further work is needed towards this direction, such as balancing the classes through 

other resampling techniques that might be more successful in cases of extremely high-class 

imbalanced ratios e.g. generative adversarial networks 129. 

There is a growing number of studies that apply ML to optimize early prediction of various 

clinical tasks but unfortunately direct comparison between them is not yet feasible due to 

different methodological approaches, different definitions for the same parameters and 

heterogeneous population 130. In the current study, a thorough analysis of early and late mortality 

ML-based prediction of patients diagnosed with venous thromboembolism is provided. More 

specifically, a multi-feature analysis was performed based on data obtained from MIMIC-III 

database, and textual input via the NoteEvents was added to enrich the features pool. A bias-

free prediction accuracy is also provided based on autoML pipeline. The main outcome of the 

prior analysis is that the concepts, that is meta-features provided in MIMIC III database, seem to 

be indicative for accurate early mortality prediction. However, concepts seem to have an inferior 

performance for late mortality prediction, where additional clinical features need to be added. It 

is quite interesting though, that concepts retain the highest performance comparing with all 

other feature sets, making them promising for future research. It is important to mention that 

late mortality prediction in light of ML binary classification, is far more challenging than early 

prediction, and this seems to be an inherent problem of MIMIC-III database. 

In order to explore the predictive role of various feature groups the analysis was scaled in 8 

distinct groups. For the early mortality, combining all features had the best performance followed 

by Concepts and ChartEvents, whereas regarding late mortality, the prediction task was less 

efficient even with the holistic approach. Prediction of late mortality is expected to be more 

challenging since follow up of patients is suboptimal and presence of other unpredictable factors 

can alter outcome. Another interesting finding is that NoteEvents (free text features) had almost 

the same predictive performance as ChartEvents and Procedures. This signifies the need to treat 

textual information as having the same importance for the classification task as with “traditional” 

clinical features, at least in ML tasks with a convoluted class distribution. InputEvents had the 

worst prognostic value for both early and late mortality. This could be attributed to the 
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redundancy of the two systems used that could possibly affect the prognostic significance of 

these procedures since grouping of the two different systems was not performed. This 

redundancy resulted in a significant number of missing values since patients recorded with the 

one system were not recorded with the other. Overall, it seems that to predict late mortality the 

use of the maximum number of features contributed to improved predictive capability. 

Concepts contain valuable information for predicting early mortality, reaching the same 

efficiency as the complete feature space, with a high AUC (0.923). Nevertheless, when predicting 

late mortality, information from all other groups can significantly increase the AUC from 0.783 to 

0.82. Concepts in this case had inferior performance, which is expected since known severity and 

organ failure scores were originated only for predicting early mortality. As a comparison, one of 

the best existing studies in 442,692 patients for predicting 90-day mortality had AUC of 0.86 by 

leveraging 5,695 features132.The model developed in the present study outperforms Cugno et al 

108 in prediction of early mortality (AUC 0.92 vs 0.77). Also, in a recent review 131 of 43 mortality 

prediction models for critically-ill patients the lowest discrimination AUC was 0.72 and the 

highest 0.91. From these, the only one that used a multi-feature approach 132 had an AUC of 0.86 

for 6-month mortality and 0.88 for 12-month mortality. Regarding ICU scores, Fuchs et al. 37 

report AUC of 0.826, 0.836, and 0.788 for SAPS II, APACHE II, and SOFA scales, respectively, for 

predicting ICU mortality, and 0.708, 0.709, and 0.661 for SAPS II, APACHE II, and SOFA, 

respectively, for post-ICU prognosis. Therefore, there is a need for more precise and reliable tools 

for estimating long-term survival of the VTE patients successfully discharged from ICU. It would 

be probably interesting to focus on discharge data, as well as having a close monitoring after 

discharge which is probably impractical, since many patients are lost during follow-up.  

The correlation study confirmed the hypothesis that different sepsis and comorbidity scores 

convey different types of information 21. Regarding sepsis, it is interesting that there is a quite 

good correlation between the two sepsis scores (Angus and Martin), whereas surprisingly white 

blood cells, blood components transfusion and time before death do not seem to correlate well 

with sepsis. As expected in comorbidities scores, a moderate correlation between liver disease 

and alcohol abuse, renal failure with hypertension, diabetes, and hypertension are shown. 
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Finally, a strong correlation is observed between various severity and organ failure scores, 

although none of these scores showed a strong correlation with time before death.  

Some limitations of this study should be considered. First, the study was retrospective from a 

single US medical center from the previous decade. Since the data were collected in the past, it 

is possible that many medical practices have changed over time, such as the case of warfarin. 

Second, the selection of the patients with thrombosis was based solely on ICD-9 codes74 and DRG 

codes75. This could include some false negative and false positive cases, since confirmation by 

imaging studies was not feasible. Ideally the identification of patients subsequently developing 

thrombosis would be through imaging studies, which are not provided in this database. Third, no 

external validation of our results has been performed, since the primary goal of the study was to 

initially explore the feasibility of various ML approaches in prognostication of such tasks and not 

to provide a new score. Finally, a more focused approach of natural language processing such as 

Semantic Extraction and Sentiment Assessment of Risk Factors (SESARF) could be more effective 

and VTE oriented133. SESARF framework uses an algorithm to extract risk factors based on an 

expert approved list, semantic enrichment through a continuously updating dictionary, 

calculations of risk factors weight, sentiment assessment and development of a scoring model 

and finally prediction through classification with support vector machines (SVM). Another 

alternative approach would be instead of extracting specific ontology-based entities, to use direct 

language embeddings 134 . 

One of the primary goals of future work is external validation of this prognostic model using 

eICU Collaborative Research Database, which is a larger and more recent database from different 

US hospitals 135. Other future directions, include to focus on features extracted on the day of 

discharge to predict early readmission to ICU for patients with VTE, and early readmission to ICU 

of cancer patients. Finally, using LSTM for importing time series data in the model 114 and deep 

learning models to increase predictive performance in the long-term prognosis and possibly 

predict length of stay136.  
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7 CONCLUSION 

This study explored the application of machine learning in the prediction of two important 

clinical questions, the risk of ICU readmission  in cancer patients due to thrombosis and early as 

well as late mortality of ICU hospitalized patients with VTE. It is important to accurately predict 

these two problems, since prompt recognition of thrombosis or mortality risk could re-orientate 

medical clinical practices (e.g. extended anticoagulation in patients with high risk of thrombosis) 

and help clinicians to reasonably allocate health resources in ICUs, which are extremely 

restricted, especially in the era of COVID-19 pandemic. Currently, no universally accepted medical 

scores exist to assist clinicians in decision making, since they have modest performance, limited 

generalizability, low objectivity and limited interoperability, as discussed above.  

A big-data driven research approach was used as well as stratification over the different group 

of features. The study was performed in two retrospective cohort populations derived from an 

open access MIMIC III database. Prediction of VTE readmission within 90 days in cancer ICU 

patients was not feasible with either ML approaches, probably due to the extremely high 

imbalance ratio of the dataset, as well as the inappropriate follow up of patients attributable to 

the retrospective nature of the study, and that readmission was based solely on ICD9 codes and 

not on imaging studies. Moreover, the effect of class balancing techniques was examined to 

overcome the problem of high imbalance ratio, a frequent problem that real-life medical datasets 

suffer of, but without any favorable results. Nevertheless, it is quite interesting that the most 

important selected features in this case, were parameters of respiratory instability (such as 

endotracheal tube insertion), packed red blood cell transfusions, renal and hepatic dysfunction 

and MCH, an index of red blood cells.  

On the other hand, early mortality in critically-ill patients with VTE can be easily predicted by 

Random Forests classifier, which is robust and efficient when dealing with complex data. As 

expected by combining all features (N=1,471) resulted in the highest efficiency, followed by 

concepts, that include organ failure scores and charted documents such as vital signs. Regarding 

the rest of the feature group it is noteworthy that textual information had comparable efficiency 

with medications, so further attention is needed when handling with medical notes. Important 
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clinical predictors of early mortality are parameters of respiratory distress, cardiovascular 

compromise, renal failure, red cell transfusions, hematological parameters (white blood cells, 

RDW, platelets) and organ failure scores (SAPS II, CGS). Prediction of late mortality is slightly 

inferior but acceptable, due to the complexity of this task, the inherent problems of the database 

and the confounding comorbidities. Similarly, with early mortality, important clinical predictors 

are renal failure, cardiovascular compromise, organ failure scores and hematological parameters 

(RDW, platelets). 

The herein research could be used as a proof of concept study that could be further validated 

in prospective or more recent databases. Inclusion of more features such as genetic information, 

personal and family history would be ideal and would probably improve predictive performance. 

The results of this study are promising and most importantly explainable, since the algorithm was 

able to select predictive features that were clinically meaningful, as already mentioned. For 

example, age, cancer, warfarin treatment, sepsis and severity scores, vasopressor support as well 

as RDW and platelet number were significant predictors for both early and late mortality. Sepsis 

and severity scores exert a modest performance in prediction of late mortality as expected, since 

these scores were initially derived for prediction of early mortality. Red blood cell transfusions 

are a negative predictor of early mortality as already known. RDW could be a candidate 

rediscovered easily applicable biomarker, since it is known that correlates with early ICU 

mortality, early mortality from VTE, as well as with other comorbidities, so it would be probably 

interesting to introduce it in current prognostic scores. There is a need for more precise and 

reliable tools in order to estimate late mortality in VTE patients successfully discharged from the 

ICU and risk of VTE in cancer patients discharged from ICU, since this knowledge could alter the 

clinical decisions and therapeutic interventions of medical practitioners. Implementing deep 

learning algorithms for these complex prediction tasks could probably improve performance of 

the model. Finally, although direct comparison of the proposed framework with known Risk 

Assessment Models or published data is not possible due to heterogeneous datasets, different 

study design, even various definitions of mortality, the results of this study lie on the top of 

existing classification performance for these ML tasks. 
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8 ABBREVIATIONS  

AHPS  Algorithm and Hyper-Parameter Space  

AI  Artificial intelligence  

ALT  Alanine Aminotransferase 

ANN  Artificial neural networks  

APACHE  Acute Physiology and Chronic Health Evaluation  

APS  Acute Physiology Score 

Art pO2  Arterial Oxygen Partial Pressure 

AUC  area under the curve 

AutoML  automated machine learning 

Avg  average  

BBC-CV  Bootstrap Bias Corrected Cross-Validation 

BUN  blood urea nitrogen 

CaO2  Arterial Oxygen Content 

CCS  Clinical Classification Software 

CCU  Coronary Care Unit 

CPK  Creatine Phospho-Kinase 

CSRU  Cardiac Surgery Recovery Unit 

CVA  cerebrovascular accident 

DBP  diastolic blood pressure 

DNR  do not resuscitate code 

DO  disease ontology 

DRG  diagnosis-related groups 

DVT deep vein thrombosis 

EHR  electronic health records 

FVL  factor V Leiden 

GCS  Glasgow Coma Scale  

ΗΙPAA  Health Insurance Portability and Accountability Act 

ICD-9  International Classification of Diseases 9th edition 

ICU  intensive care units 
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INR  International Normalized Ratio 

K-NN  K-nearest neighbor 

KDIGO  Kidney Disease Improving Global Outcome 

LDA  Latent Dirichlet Allocation 

LDH  Lactate Dehydrogenase 

LODS  Logistic Organ Dysfunction Score 

LSTM  Long Short-Term Memory 

MCH  mean corpuscular hemoglobin 

MCHC  mean corpuscular hemoglobin concentration 

MCV  Mean Corpuscular Volume 

MICU  Medical Intensive Care Unit 

ML  machine learning 

NLP  natural language processing 

PCA  Principal Component Analysis 

PE  pulmonary embolism 

PESI  Pulmonary Embolism Severity Index  

PLT  Platelet 

PR Precision-Recall 

PTT  Partial Thromboplastin Time  

RAMs  risk assessment models 

RBC  red blood cells 

RBF  radial basis function 

RDW  Red cell distribution width 

RF  Random Forests 

RF  Random Forests 

RO  random optimization 

ROC  Receiver operating curves 

RR  respiratory rate 

SAPS  Simplified Acute Physiology Score 

SBP  systolic blood pressure 

SESARF  Semantic Extraction and Sentiment Assessment of Risk Factors 
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SICU  Surgical Intensive Care Unit 

SIRS  Systemic Inflammatory Response Syndrome 

SMOTE  Synthetic Minority Oversampling Technique 

SOFA  Sequential Organ Failure Assessment 

SpO2 Oxygen Saturation 

SVM  Support Vector Machines 

TPN  Total Parenteral Nutrition 

TSICU  Trauma Surgical Intensive Care Unit 

VTE  venous thromboembolism 

WBC  White Blood Cell. 
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