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Abstract: The question of beauty has inspired philosophers and scientists for centuries. Today, the
study of aesthetics is an active research topic in fields as diverse as computer science, neuroscience,
and psychology. Measuring the aesthetic appeal of images is beneficial for many applications.
In this paper, we will study the aesthetic assessment of simple visual patterns. The proposed
approach suggests that aesthetically appealing patterns are more likely to deliver a higher amount of
information over multiple levels in comparison with less aesthetically appealing patterns when the
same amount of energy is used. The proposed approach is evaluated using two datasets; the results
show that the proposed approach is more accurate in classifying aesthetically appealing patterns
compared to some related approaches that use different complexity measures.

Keywords: image aesthetic assessment; human–computer interaction; computer vision; evolutionary
art; information theory

1. Introduction

The study of aesthetics started with the work of ancient Greek, and today it is an active
research topic in fields as diverse as neuroscience [1], psychology [2], and computer science.
Baumgarten [3] suggested that aesthetic appreciation is the result of objective reasoning.
Hume [4] took the opposing view that aesthetic appreciation is due to induced feelings.
Kant argued that there is a universality aspect to aesthetic [5]. Shelley et al. [6] studied the
influence of subjective versus objective factors in aesthetic appreciation. Recent studies
on empirical aesthetics [7] show that there is a general agreement on what is considered
beautiful and what is not, despite the subjectivity of aesthetic appeal. Measuring the
aesthetic appeal of images is beneficial for many applications, such as recommendation and
retrieval in multimedia systems. It also plays a key role in enhancing human–computer
interaction by improving the attention, engagement, and the overall user experience. The
development of a model of aesthetic judgment is also a major challenge in evolutionary
art [8,9], where only images with high aesthetic quality should be generated. Automating
the aesthetic assessment is still an open problem, and the development of models of
aesthetic judgment is the main challenge. In this paper, a novel approach to classifying
aesthetically appealing images will be presented. The main contribution of this paper is
showing that aesthetically appealing patterns are more likely to deliver a higher amount of
information over multiple levels in comparison with less aesthetically appealing patterns
when the same amount of energy is used. The proposed approach is evaluated using
two datasets.

2. Related Work

Datta et al. [10] extracted 56 visual features from an image and used them to train
a statistical model to classify the images as “beautiful” or “ugly”. Some examples of the
used features include: mean pixel intensity, relative color frequencies, mean pixel hue, and
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mean pixel saturation. They also used photographic rules of thumb such as the rule-of-
thirds. Other features related to aspect ratio, texture, and low depth-of-field were also used.
Ke et al. [11] used features that describe the spatial distribution of color, edges, brightness,
and blur. Aydin et al. [12] computed perceptually calibrated ratings for a set of meaningful
and fundamental aesthetic attributes such as depth, sharpness, tone and clarity, which
together form an “aesthetic signature” of the image. Other works have also investigated
the role of photographic composition [13–16], colour compatibility [17–19], and the use
of other features such as object types in the scene [20]. Recently, convolutional neural
networks (CNNs), which can automatically learn the aesthetic features, have been applied
to the aesthetic quality assessment problem [21–24]; promising results were reported.

This research is more related to the information-theory-based approaches. Birkhoff [25]
proposed an aesthetic measure, where the measure of aesthetic quality is in a direct
relation to the degree of order O, and in a reverse relation to the complexity C, M = O/C.
Eysenck [26–28] conducted a series of experiments on Birkhoff’s model; he argued that
the aesthetic measure has to be in direct relation to the complexity rather than an inverse
relation M = O × C. Javid et al. [29] conducted a survey on the use of entropy to quantify
order and complexity; they also proposed a computational measure of complexity. Their
measure is based on the information gain from specifying the spatial distribution of
pixels and their uniformity and non-uniformity. Franke [30] proposed a model based on
psychological experiments, which showed that working memory cannot take in more than
16 bits/s of visual information. He argued that artists should provide an information flow
of about 16 bits/s for their works to be perceived as aesthetically appealing and harmonious;
see [31] for more recent developments. Al-Rifaie et al. [32] proposed a nature-inspired,
swarm intelligence technique to quantify symmetrical complexities in visual patterns. The
technique is then used to investigate aesthetically appealing patterns. Javid et al. [33]
investigated the use of Kolmogorov complexity and mean information gain to distinguish
2D patterns. The measures were able to distinguish between random patterns and non-
random patterns. Datasets such as [34–37] are collected from communities where images
are uploaded and scored in response to photographic challenges. The main limitation
of these datasets is that the images are very rich, diverse, and highly subjective, which
will make the aesthetic assessment process very complicated. Therefore, the datasets
in [38] and [39] will be used in this paper to test the proposed approach. Using simple
visual patterns in these two datasets was necessary to simplify the process and filter out
unnecessary information as much as possible. The second reason for using these two
datasets was to reduce the subjectivity of the assessment process as much as possible by
using very simple patterns instead of using real-world images that have a more subjective
nature, such as other datasets [34–37].

3. Proposed Approach

In this section, simple visual patterns will be studied. The images of the dataset in [38],
and the images of the dataset in [39] will be used, the dataset in [38] contains two groups
of images: the first one is “more aesthetically appealing” images (Figure 1), and the second
one is “less aesthetically appealing” images (Figure 2). These two groups are rated by ten
persons. The ten persons were asked to give a binary classification of whether each pattern
is beautiful or not. If the score (the number of persons who selected the pattern as beautiful)
is higher than the average score, then the pattern belongs to the first group, otherwise it
belongs to the second group. The dataset contains simple visual patterns generated by
the same physical process. The propagation of waves inside geometrical structures could
produce very interesting interference patterns, particularly inside symmetrical shapes.
The resulted pattern represents the wave interference pattern inside a closed box. Three
waves were initiated at the center of the box at different time instances. The first wave
was initiated when the value of the counter was 1, the second wave was initiated when
the value of the counter was 5000, and the third wave was initiated when the value of the
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counter was 10,000. The size of the images is 116 × 116 pixels. The images are grayscale
images with 256 possible values.

Entropy 2021, 23, x FOR PEER REVIEW 3 of 17 
 

 

terns generated by the same physical process. The propagation of waves inside geomet-

rical structures could produce very interesting interference patterns, particularly inside 

symmetrical shapes. The resulted pattern represents the wave interference pattern inside 

a closed box. Three waves were initiated at the center of the box at different time instances. 

The first wave was initiated when the value of the counter was 1, the second wave was 

initiated when the value of the counter was 5000, and the third wave was initiated when 

the value of the counter was 10,000. The size of the images is 116 × 116 pixels. The images 

are grayscale images with 256 possible values. 

 

 

Figure 1. Images in the first group. 

 

 

 

Figure 2. Images in the second group. 

Figure 1. Images in the first group.

Entropy 2021, 23, x FOR PEER REVIEW 3 of 17 
 

 

terns generated by the same physical process. The propagation of waves inside geomet-

rical structures could produce very interesting interference patterns, particularly inside 

symmetrical shapes. The resulted pattern represents the wave interference pattern inside 

a closed box. Three waves were initiated at the center of the box at different time instances. 

The first wave was initiated when the value of the counter was 1, the second wave was 

initiated when the value of the counter was 5000, and the third wave was initiated when 

the value of the counter was 10,000. The size of the images is 116 × 116 pixels. The images 

are grayscale images with 256 possible values. 

 

 

Figure 1. Images in the first group. 

 

 

 

Figure 2. Images in the second group. Figure 2. Images in the second group.

To analyze the images of Figures 1 and 2, if we start from the center of the image to
the boundary, we notice that the number of transitions between lighter and darker values
is larger for images in Figure 1; furthermore, the intensity of the transitions is higher. This
will result in increasing the high-energy part of the distribution of the gradient of the image.
Moreover, we notice that the high-energy part of the distributions of the images of Figure 1
is larger than the high-energy part of the distributions of the images in Figure 2 when both
have the same amount of energy, and since the largest part of the distribution is located in
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the low-energy region, this means that increasing the high-energy part of the distribution
will increase the entropy.

The basic idea of the proposed approach is that aesthetically appealing patterns have a
balance between randomness and regularity, and aesthetically appealing patterns are those
which are closer to this optimal point. The entropy and energy will be used as measures
of this balance. The resulted distribution of this optimization process can be uniquely
identified by maximizing the entropy, given that the energy levels are constant, and the
total energy is constant.

The main difference of the proposed approach in comparison with existing approaches
to aesthetic assessment of visual patterns is the use of a statistical mechanics formulation.
The main reason for using this formulation is that it provides a link between the energy
and the entropy, which was a crucial link to constrain the complexity of the pattern by the
energy, and hence achieve a balance between randomness and regularity; this balance was
also suggested by many researchers [40–43]. The approach does not assume any link to
statistical mechanics, it only uses the same mathematical formulation.

Figure 3 shows the Maxwell–Boltzmann distribution, Figure 4 shows the distribution
of the gradient of one image in the dataset; the same distribution has shown up for all the
images in the dataset. We can observe the similarity between the resulting distribution and
the Maxwell–Boltzmann distribution. Furthermore, using the above analysis, our problem
now is exactly the same problem that Boltzmann [44] solved to derive the distribution of
the energies of gas particles at equilibrium. Boltzmann argued that the Maxwell-Boltzmann
distribution [45,46] is the most probable distribution and it will arise by maximizing the
multiplicity (which is the number of ways the particles can be arranged); assuming that
the number of particles is constant, as described by (1), the energy levels that the particles
can take are constant, as described by (2), and the total energy is constant, as described by
(3). The multiplicity is given by (4), and the entropy is given by (5)

∑
i

ni = Constant (1)

ε1, ε2, . . . , εN are constant (2)

Energy = ∑
i

niεi = Constant (3)

Ω =
N!

n1!n2! . . . .nn!
(4)

Entropy = log(Ω) (5)

where N is the total number of particles, ni is the number of particles at the εi energy level.
Maximizing the entropy is equivalent to maximizing the multiplicity. By taking ln (Ω),
we get

ln(Ω) = ln(N!)−∑
i

ln(ni!) (6)

Using Stirling approximation, Equation (6) can be rewritten as follows

ln(Ω) = N ln(N)− N −∑
i
[ni ln(ni)− ni] (7)

The Maxwell–Boltzmann distribution gives the number of particles at each energy
level. Using the Lagrange multiplier method to maximize the entropy using the constraints
in (1)–(3), we get

ni = e−α−βεi (8)
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where α, β are the Lagrange multipliers. The distribution in 3D and 2D spaces can be
written in the form given by (9) and (10), respectively,

f (v) =
( m

2πkT

) 3
2 4πv2 e−

mv2
2kT (9)

f (v) =
( m

2πkT

)
2πv e−

mv2
2kT (10)

where v is the speed of the particle, m is the mass of the particle, T is the temperature and k
is Boltzmann constant. The distribution is shown in Figure 3.
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Similarly, for images, the energy levels ε1, ε2, . . . , εn are the values which the pixels
can take; for grayscale images, the values are 0, 1, 2, . . . , 255. The energy levels must be
constant, as described in (11); ni is the number of pixels at the energy level εi, the total
number of pixels should also be constant, as described in (12). Finally, the total energy,
which is given by (13), must also be constant.

ε1, ε2, . . . , εn are constant (11)

∑
i

ni = Constant (12)

Energy = ∑
i

niεi = Constant (13)
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The constraints given in (11)–(13) are exactly the same constraints used by Boltzmann
to derive the Maxwell–Boltzmann distribution, and by maximizing the entropy, the same
distribution as given by (8)–(10) will arise. Maximizing the entropy will result in a flat
distribution; however, the constant energy constraint will produce a balance between order
and randomness. Maximizing the entropy using constant energy can then be seen as
delivering the highest possible amount of information using the same amount of energy.
Figure 4 shows the distribution of the gradient of an image in the dataset. The Matlab
gradient function is used to calculate the gradient, and then the resulting values are
converted to polar format. Figure 5 shows the distribution of the gradient of the gradient
of the same image.

The same distribution has appeared for all the gradient of the images, and the gradient
of the gradient of the images, which may suggest that the same law must be satisfied at
each level. The multiple-levels approach will be used to cope with energy and entropy
limitation in representing the spatial arrangement of the pattern. Due to the complexity
of the structure of the visual patterns, the gradient over multiple levels will be used to
represent the spatial arrangement of the visual patterns, where the first level represents the
image, the second level represents the gradient of the image, and the third level represents
the gradient of the gradient of the image. The measures of aesthetic quality M propose that
the sum of the entropies of the three levels should be maximum when the energies of the
three levels are the same. The measure is given by (14)

M = ∑
i=1,3

Entropy(Li) (14)

where L1 is the image, L2 is the gradient of the image, and L3 is the gradient of the gradient
of the image. Entropy is Shannon entropy (using Stirling approximation, Shannon entropy
can be used instead of Boltzmann entropy), and the energies of the three levels must be the
same. Figure 6 shows the M values of images in Figures 1 and 2, along with other images
in the same category.

However, comparing images that have the same energy at each level is rather limited;
furthermore, the above analysis does not say anything about the relation between the
energies of different levels. Figure 7 shows the sum of the distances between the energies of
different levels for images in Figures 1 and 2, along with other images in the same category.
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The blue circles represent the images of Figure 1, and the red stars represent the images
of Figure 2, along with other images in the same category. The distances of aesthetically
appealing images are different from the distances of the less aesthetically appealing images.
To relax the above constraint, and to be able to compare images that have the same first-
level energy only, the aesthetically appealing images at different energy levels of Figure 1
are used as reference images, and the distances between the energies of the tested image
should be as close as possible to the distances of the reference image Ri, as described by
(15); furthermore, the equation described by (14) should be also satisfied. In other words,
M should be maximized and Md should be minimized

Md = |∑
i

Distance(Ri) − ∑
i

Distance(Li)| (15)

where Distance(Ri) is the distance between the energy of the ith level and the energy of
the i + 1 level, and the energy of the first level only should be the same. The metrics will
be calculated on the center part of the image, since it gets most of the attention, where
20 pixels from each side of the image will be neglected. Figure 8 shows the combination
of the two metrics where the sum of the entropies and the energies of the three levels is
shown after scaling each energy and entropy to value between 0 and 1.
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4. Results

Due to the small number of images in the two datasets, the proposed approach
cannot be compared to deep-learning-based approaches [47–51]. The proposed approach
will be compared with three related approaches; the first one is based on the Birkhoff
model [52,53], where Shannon entropy and image compressibility are used to represent
the order and complexity of the Birkhoff model. Figure 9 shows the Shannon entropy and
image compressibility (the ratio between the original and the compressed image using the
JPEG method) for the images of Figures 1 and 2. The results show that the two groups of
images cannot easily be classified using this approach.

Then, the proposed approach will be compared with an approach based on Benford
law [54], where the histogram of the image is compared with the histogram described
by Benford law. Figure 10 shows the difference between the histograms of the images of
Figures 1 and 2, and the histogram described by Benford law. The results also show that
the two groups of images cannot be easily classified using this approach.
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To further test the proposed approach, we will test it on the dataset proposed in [39].
Figure 11 shows the patterns of the set. In Figure 11a, the first two lines represent asymmet-
rical patterns and the last two lines represent symmetrical patterns. Fifty-five persons rated
the patterns; the patterns start from not beautiful (left), and move to beautiful (right) line
by line. In Figure 11b, the first three lines represent symmetrical patterns and the last three
lines represent asymmetrical patterns, ordered in lines from the most beautiful pattern
starting in the upper left corner to the least beautiful pattern. The number next to each
pattern in Figures 12–15 represents the line number and the position of the pattern in the
line (starting from left to right). For instance, 43 is the third pattern in line four.

Figure 12 shows the energy and the entropy of the first level; the results show that
the symmetrical patterns of line 3 and line 4 have higher entropy than the asymmetrical
patterns when the same energy is used. This matches with the rating given by the fifty-
five persons and with several studies [55–58], which showed consistent preferences for
symmetry. The patterns 41, 42, and 43 have roughly the same energy, but the entropy of 43
is larger than the entropy of 42, which is larger than the entropy of 41.

Figure 13 shows the sum of the entropies of the first two levels after converting all
levels to black and white images; again, the symmetrical patterns of line 3 and line 4 have
a higher sum than the other patterns when the same energy is used. For instance, patterns
13, 32, and 33 have roughly the same energy, but the sum of 33 is larger than the sum of
32, which is larger than the sum of 13. This also matches with the rating of the fifty-five
persons. We can also see that the patterns 11 and 21 have lower sum than the other patterns.

Figure 14 shows the distance between the energies of the first two levels. The symmet-
rical patterns of line 3 and line 4 have a lower distance than the other patterns when the
same energy is used. For instance, the patterns 13, 32, and 33 have roughly the same energy,
but the distance of 33 is lower than the distance of 32, which is lower than the distance of
13. The patterns 41, 42, and 43 also have roughly the same energy, but the distance of 43 is
lower than the distance of 42; however, 42 has higher distance than 41. We can also see that
the patterns 11 and 21 have higher distance than the other patterns. These results show a
close match with the rating given by the fifty-five persons.

Figure 15 shows the results using the images in Figure 11b; again, the symmetrical
patterns of the first three lines show a higher sum than other asymmetrical patterns when
the same energy is used; however, there are some differences between the sum and the
ranking of the users within these two groups.
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Figure 16 shows the results of applying an information-gain-based approach proposed
in [29] for the images in Figure 11a. The results show a link between information gain
and empirical aesthetic judgement in the case of the asymmetrical patterns, but not for
the symmetrical patterns. We can see that the ordering of the information gain for the
asymmetrical patterns agrees with the users’ rating. However, this is not the case for the
symmetrical patterns.

Figures 17 and 18 show the algorithmic complexity as approximated by the Block
Decomposition Method (BDM) [59,60] after converting the patterns to black and white,
since the method does not yet support a large number of values. The method performs
better on the first dataset than the second dataset, where we can see that aesthetically
appealing patterns tend to have a higher complexity. However, it is still clear that this
method is less accurate in comparison with the proposed approach.
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5. Discussion

The results show that the proposed model is more accurate at classifying aesthetically
appealing visual patterns. The results suggest that aesthetically appealing patterns of the
two datasets are more likely to deliver a higher amount of information in comparison with
less aesthetically appealing patterns when the same amount of energy is used. The results
also suggest that the distances between the energies of the levels are more likely to be
different for aesthetically appealing patterns. One limitation of the proposed approach
is that few aesthetically appealing patterns show a lower M value and higher Md value
than the less aesthetically appealing patterns, as can be seen in Figure 8. Future work will
improve the proposed model to increase the classification accuracy.

To give a more intuitive analysis of the results, we will take two extreme cases: the
first one is an image with only one color, and the second one is an image with equal
probabilities for all colors. The first case will produce a distribution of one pulse at one
energy level, while the second case will produce a flat distribution. In the case of music,
the first case will give a piece with only one note repeated many times, and the second
case will produce a piece with all possible notes; in both cases, no aesthetically appealing
patterns will be produced, as the first pattern will be too regular and the second one will
be too random. The aesthetically appealing patterns represent a balance between these two
extreme cases, and the closer we get to the Maxwell–Boltzmann distribution, the higher
the aesthetic score of the pattern. Now, if we take one aesthetically appealing pattern
and rearrange the pixels randomly, we will obtain a random pattern that has the same
distribution; however, the gradient (which decodes the spatial distribution of pixels) of this
random pattern will produce a distribution closer to the flat distribution than the gradient
of the original pattern. Similarly, if we arrange the aesthetically appealing pattern such



Entropy 2021, 23, 153 14 of 17

that the pixels with the same values are close to each other, the gradient of the resulted
pattern will produce a distribution closer to a pulse than the gradient of the original pattern,
and again the distribution of the gradient of aesthetically appealing patterns represents a
balance between these two extreme cases, and the closer we get to the Maxwell–Boltzmann
distribution, the higher the aesthetic score of the pattern.

The proposed approach agrees with the intuition of many scientists, who link the
concept of beauty with the ability to cover the largest possible number of empirical facts
using the smallest possible number of axioms or hypotheses [61,62]. Similarly, the proposed
approach suggests that aesthetically appealing patterns should deliver the largest possible
amount of information using the same amount of energy. The relation between aesthetically
appealing patterns and the balance between randomness and regularity was also suggested
by many researchers. The proposed approach uses a statistical mechanics formulation that
links the energy and the entropy, which was a crucial link to constrain the complexity of
the pattern by the energy, and hence achieve a balance between randomness and regularity.

The proposed approach has shown an interesting link between information theory and
the aesthetic rating of the users of the two datasets. The meaning and the deeper relation
of the link between information theory and aesthetic are to be further investigated in
future work. Finding the most fundamental law or the optimization process that underlies
aesthetically appealing patterns would be of great interest for the research in this area
and for many applications [63–79]. It is interesting to see whether the proposed approach
has any link to the aesthetic judgment mechanism in the brain, and how is that related to
information theory. Pursuing these research directions holds a great promise for a deeper
understanding of many important phenomena.

6. Conclusions

A novel approach to classify aesthetically appealing images was presented in this
paper. The proposed approach showed that aesthetically appealing images of the two
datasets are more likely to deliver a higher amount of information over multiple levels in
comparison with less aesthetically appealing images when the same amount of energy is
used. The results have shown that the proposed approach was more accurate in classifying
aesthetically appealing patterns. Future work will try to apply this approach to other types
of images.
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