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Abstract

Modern multi-robot systems often need to solve computationally intensive tasks but operate with limited compute resources
and in the presence of failures. Cooperating to share computational tasks between robots at the edge reduces execution time.
We introduce and evaluate a new computation load management technology for teams of robots: Reliable Autonomous Mobile
Programs (RAMPs). RAMPs use information about the computational resources available in the team and a cost model to
decide where to execute. RAMPs are implemented in ROS on a collection of Raspberry Pi-based robots. The performance
of RAMPs is evaluated using route planning, a typical computationally-intensive robotics application. A systematic study
of RAMPs demonstrates a high likelihood of optimal or near-optimal distribution and hence efficient resource utilisation.
RAMPs successfully complete in the presence of simultaneous, or successive, robot failures and network failures, while

preserving near-optimal distribution.
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1 Introduction

Multi-robot systems (MRS) are used in a wide range of
domains, including factory automation, hazardous waste
search, and rescue missions (Kurfess 2004). Many companies
use robots in warehouses to carry heavy goods and assem-
ble parcels, e.g. Amazon,! Ocado®—in fact, it is expected
that the worldwide market for warehouse robotics will grow
from $1.1Bn in 2019 to $2.2Bn in 2024.3 However, despite

! https://roboticsandautomationnews.com/2020/01/21/amazon-now-
has-200000-robots- working-in-its- warehouses/28840/
Zhttps://www.chargedretail.co.uk/2020/01/24/tesco-uses-ocados-
tech-partner-for-automated- warehouse-robots/
3https://www.marketwatch.com/press--release/warehouse-robotics-
market-size-2020-competitive-situation- gross-margin-revenue-and-
trends-forecast-report-2024-2019-12-09
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rapid advances in robotic technology, many robots still oper-
ate with limited compute resources (Wang et al. 2019).

When a robot is overloaded with computational tasks, it
can become a bottleneck in an MRS and lead to overall per-
formance degradation and failures of robots (Garzoén et al.
2017). Sharing the computational workload between mem-
bers of a team of robots can reduce the time to complete
the tasks, and is an example of cooperative robotics. Coop-
erative robotics focuses on a completion of tasks utilising
available resources (e.g. robots, humans, servers) (Cao et al.
1997), rather than on an efficient and safe collaboration with
humans as does collaborative robotics (Breazeal et al. 2004).

Importantly, if not taken into consideration, a failure in
a single robot can be detrimental for the overall success of
an MRS. Research in the area shows that robots are prone
to failures, such as crashes, freezing, unexpected robot shut-
down, and network failures (Crestani et al. 2015; Khalastchi
and Kalech 2019).

This paper investigates a novel multi-robot computa-
tion load management technology: Reliable Autonomous
Programs (RAMPs). RAMPs are inspired by Autonomous
Mobile Programs (AMPs) (Deng et al. 2006), and each
RAMP autonomously decides where to execute in a multi-
robot system. This decision is driven by the program’s
computational requirements, the current resource utilisation
of the robots in the system, and a cost model. RAMPs share
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only computational tasks (and hence work) between robots,
and not physical tasks or actions. To demonstrate RAMPs we
have implemented them on ROS, a widely used robot mid-
dleware (Quigley et al. 2009), but their design is independent
of ROS and other middleware could be used.

RAMPs are specifically designed to address the chal-
lenges of computational load distribution within a MRS by
addressing their distinct characteristics. MRS characteristics
are edge-like, and far from typical of most distributed and
multi-agent systems, such as having limited computational
and energy resources, using wireless connectivity, and peri-
odically losing connectivity due to robot mobility. Of course
RAMPs can also be used for computational offload in less
challenging environments, e.g. systems that offload compu-
tations from robots over a stable network to heavyweight
external compute services (like a cloud) are both simpler and
more common (Nimmagadda et al. 2010; Cano et al. 2018).
RAMPs support heterogeneous compute resources and work-
loads like many other distributed load managers.

The specific features of RAMPs that support computa-
tional load distribution within a MRS are as follows. (1)
The approach is decentralised so any one robot that requires
to solve an intensive task can seek cooperation from the
team to solve it. (2) RAMPs adapt to a dynamic set of com-
pute resources where robots may join or leave the team. (3)
RAMPs adapt to the failures that may occasionally be caused
by hardware or software, but are commonly caused when
a mobile robot has moved out of wireless communication
range.

The performance of RAMPs is evaluated in loaded and
unloaded MRS. Unloaded systems have no computational
tasks other than the RAMPs, while the robots in loaded
systems may have other computational loads in addition to
any RAMPs they execute, e.g. computational tasks without
RAMP wrappers. Such loaded systems emulate typical MRS
where some resources may be permanently or temporarily
unavailable to RAMPs. For example periodic system tasks
or Unix daemons consume computational resources.

Research contributions of this paper include the following:

— The design and implementation of a Reliable Autonomous
Programs (RAMP) architecture—the first fault tolerant
Autonomous Mobile Program load management system.
RAMPs are designed for MRS and implemented using
ROS (Sect. 3).

— Demonstrating that in loaded and unloaded systems
RAMPs are likely to achieve an optimal or near-optimal
distribution and hence efficient resource utilisation in
teams of robots. RAMPs have low overheads compared
to optimal scheduling in unloaded systems (Sect. 4).

— Demonstrating that RAMPs successfully complete in the
presence of simultaneous, or successive, robot failures
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and network failures, while preserving either optimal or
near-optimal distribution (Sect. 5).

2 Background

This section presents an overview of related work on load
management in both distributed systems and in teams of
robots (Sect. 2.1). Autonomous Mobile Programs (AMPs)
are described in more detail (Sect. 2.3), together with the
Robot Operating System, ROS (Sect. 2.4) and state-of-the-
art in robotics’ fault tolerance (Sect. 2.5).

2.1 Load management

Load management and task distribution in robotics have a
number of meanings depending on the area of research and
interest. Often “load management” refers to distribution of a
physical weight by a robot (or within a group of robots) to
ensure stability in handling and carrying objects; while task
distribution often refers to actions (work) that robots per-
form to complete some large task, for example, monitoring a
perimeter while other robots map specific parts of the office
space. In this paper we address distribution of computational
load to enable robots to complete their computational tasks
efficiently and utilise available computing resources.

General Distributed Systems. Load management in dis-
tributed systems has been widely researched, e.g. (Lopes
and Menascé 2016; Casavant and Kuhl 1988; Rotithor 1994,
Coulouris et al. 2011). The taxonomy in (Casavant and Kuhl
1988) focuses on global load management. There, the prob-
lem is deciding where to execute a process, in contrast to local
load management which focuses on how to assign processes
on a single-processor systems. According to this taxonomy,
global management can be further categorised into static or
dynamic.

In static load managers the decision where tasks will exe-
cute is taken before the execution of the program, and the
information necessary for making this decision is assumed
to be known beforehand. This includes task execution times,
processing resources of the different nodes, and communica-
tion times. Unavailability of such information in many cases
is the fundamental drawback of static load managers.

In contrast, in dynamic load managers the decision where
tasks to run happens during program execution. System-state
information is used to make the decisions. The assumption
of prior knowledge about the system in this type of man-
agers is minimal, which is one of the biggest advantages of
dynamic load management. RAMPs provide dynamic load
management.

The taxonomy in Rotithor (1994) further explore dynamic
load management algorithms, categorizing them as cen-
tralised or decentralised. In centralised load managers, one
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agent is responsible for collecting state information of all the
other agents in the system. This central agent then decides
where each task should be allocated. The advantage of this
approach is that there is low overhead during estimation
where to assign tasks. However, the drawbacks are poor
responsiveness in a large scale system and the fact that having
a single central resource is failure-prone.

In decentralised load managers, each agent in the system
is responsible for collecting state information and deciding
where their tasks should be executed. This makes the system
more tolerant to failures, but the overhead of maintaining
accurate state information across all nodes can hinder the
scalability of this approach. Despite the drawbacks of decen-
tralized load managers, its advantages of improved fault
tolerance can prove important when working with teams of
robots. RAMPs provide decentralised load management.

2.2 Multi-robot systems

Lack of computing resources available to a single robot is
a well known issue (Sarker et al. 2019; Lan et al. 2018).
While robots become more and more computationally pow-
erful their computation demands also grow in particular in
the areas of image recognition, navigation, and data analysis.
Approaches used to address the issue can be divided into two
types: algorithm optimisation and computation offloading.
The two types are not mutually exclusive and used simulta-
neously to complement each other.

Algorithm optimisation is widely used to speed-up com-
putation and reduce power consumption (Parhi 2018), how-
ever, it is often not sufficient on its own due to sheer volume
of information and the speed with which robots are expected
to react to events, especially in dependable and safety critical
scenarios (Gouveia et al. 2014; Chen et al. 2018).

Computation offloading explores opportunities to utilise
computing resources outside of the robot (Dey and Mukher-
jee 2016). Depending on the distance to where computation
is sent, the following types of computation offloading are dis-
tinguished: cloud robotics, offloading to local servers, edge
computing.

Cloud or elastic (Hu et al. 2012) robotics approaches
assume an Internet connection that enables the robots to
utilise on-demand hardware and software resources. Cloud
robotics is the focus of significant research effort, e.g. Du
et al. (2017), Afrin et al. (2019), and faces some challenges.
Offloading to the cloud resources raises security concerns,
e.g. the majority of industrial robots operate behind a fire-
wall. Moreover to be effective the internet connection must
be fast and reliable. This is infeasible in many situations, e.g.
in outdoor, urban street, or disaster sites. In such situations
an approach like RAMPs that shares computational load at
the edge is more appropriate.

Computation offloading to local servers is particularly
suitable for latency-sensitive applications, large-scale dis-
tributed control systems, and geo-distributed applications
(Botta et al. 2019). Unlike cloud robotics local computation
offloading does not require an internet connectivity and is less
exposed to the “outside” world (Cano et al. 2018). However,
these approaches still require additional computing resources
other than robots themselves which can be expensive and
technologically difficult to provide when robots work out-
doors (e.g. farming field) or are deployed for a limited amount
of time (e.g. disaster sites, hired (rented) robots).

The limitations of local server offloading are addressed by
distributing computation load at the edge, e.g. to end devices
(like robots), routers, switches, or access points (Yi et al.
2015). In the context of load distribution, teams of robots
are also known as robotic clusters (Marjovi et al. 2012; Gou-
veia et al. 2014). Edge load distribution approaches appeal
to scenarios where neither access to the internet resources is
required (e.g. due to security concerns, lack of stable inter-
net connection) nor other computing resources are available
(e.g. due to security concerns, lack of infrastructure and/or
expertise to set it up computation sharing, costs associated
with acquiring and maintaining servers).

Conceptually RAMPs can offload to the cloud, to local
servers, or to a range of edge devices. In this paper, however,
we focus only on offload within MRS to explore the feasi-
bility of the RAMPs approach for scenarios where no other
computing resources other than the robots themselves are
available, e.g. short-term robot deployment at manufactur-
ing, rescue missions, farming. For RAMPs to work the robots
in the MRS must be able to communicate over a network and
have common software to support RAMP relocation and exe-
cution (Rizk et al. 2019). The robots in the MRS may have
identical or different compute capabilities, and we term these
homogeneous MRS and heterogeneous MRS respectively.
There is extensive evidence that AMPs can effectively man-
age load on both heterogeneous and homogeneous systems
(Deng et al. 2010; Chechina et al. 2010).

2.3 Autonomous mobile programs

Autonomous Mobile Programs (AMPs) have been developed
to manage load of dynamic, and potentially large, networks
(Deng et al. 2006). AMPs are autonomous agents that are
aware of their computational resource needs. They migrate
within a network to reduce program completion time and
fully utilise the network resources.

AMPs aim to reduce their completion time, which makes
them similar to ethological models such as ant colony opti-
misation algorithms (Zhang and Zhang 2010), i.e. while
exploring the space in search for food, ant agents leave
pheromone to communicate to other ants on the path to
the place where the food has been found. The shorter path
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between the colony and the food, the more ants travel that
path, and hence the higher the pheromone level on that track.
However, while ant algorithms seek the fastest path and use
other mobile agents’ feedback to choose the best path, AMPs
estimate the current state of the network and seek better
resources.

A collection of AMPs performs decentralised dynamic
load balancing. This means that there is no central agent that
decides where programs should be scheduled, but rather each
AMP makes the decision where and when to migrate itself.
This decision happens during the execution of the program.
Since AMPs are using constantly updated information about
the state of the system, they can operate on a dynamic net-
work. To decide whether and where to move, AMPs use the
following cost model:

Tcomp?here > TC()mthere + Teomms (1

where Teomp_nere 18 the remaining computation time on the
current location, Tcomp_rhere 18 the remaining computation
time on the best available remote location, T, 1S the com-
munication and coordination time required to move the AMP.
If (1) is true, then the AMP moves. To reduce AMP coordi-
nation time each host has a load server. The load servers are
similar to black boards; they only collect state information
that is later used by the AMPs to decide where to move.

Here we use simple techniques to estimate computation
and communication times using information about the struc-
ture of the tasks. For example measuring how much of the
primary loop nest has been completed, and using informa-
tion from the load server to estimate communication times
(Sect. 3.2). More sophisticated techniques can be used. For
example estimating computation time using profiling tools
(Kattepur et al. 2017), such as Linux perf* or trend
prof (Goldsmith et al. 2007). Other techniques include
performance approximation approaches based on hidden
Markovian models (Abeni et al. 2017), stochastic Marko-
vian and machine learning models (Bhimani et al. 2017),
and performance models (Venkataraman et al. 2016). Com-
munication times could be estimated using techniques like
regression models (Hadidi et al. 2018), or latency prediction
models (Huai et al. 2019).

AMPs, like other distributed load balancing systems
(Schlegel et al. 2006), can exhibit greedy effects as a result of
non-optimal relocation. This happens due to AMPs making a
locally optimal choice, where the information about the state
of each actor in the system can be insufficient or inaccurate.
To ameliorate this problem, a modification of AMPs, called
cNAMPs has been proposed (Chechina et al. 2010).

cNAMPs are negotiating AMPs that use a competitive
scheme to reduce two types of greedy effects: location thrash-

4 https://perf.wiki.kernel.org/index.php/Main_Page
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ing and location blindness. Location thrashing occurs when
two or more AMPs decide to relocate to one particular loca-
tion based on the same information, causing overloading of
the target; while location blindness occurs due to AMPs’ lack
of information about the remaining execution time of each
other. cNAMPs address AMPs’ location thrashing which is
the cause of the majority their of redundant movements,
i.e. rather than moving immediately to the chosen host, a
cNAMPs first sends a request to make sure that the host is still
a suitable option and books a space for relocation. cNAMP
sequence diagram is presented in Table 1.

2.4 Robot operating system

Various robot frameworks have been developed over the last
decade (Kramer and Scheutz 2007; Mohamed et al. 2009),
and the Robot Operating System (ROS) (Quigley et al. 2009)
is one of the most widely used. ROS is an open-source project
and has a large community of contributors who have devel-
oped support for many hardware platforms and programming
languages. The main philosophical goals of ROS include
being tools-based, multi-lingual, thin, and peer-to-peer.

The communication infrastructure of ROS is based on
message-passing (Open Source Robotic Faundation 2018).
Each process in ROS is defined as a “node”. These nodes
form a graph that keeps track of all the processes and the
communication between them. Each component in a robot
that performs some sort of I/O or computation is expected
to be delegated to a separate node, thus reducing the com-
plexity of the system. ROS nodes communicate with each
other using an anonymized form of the publisher-subscriber
pattern (Eugster et al. 2003).

RAMPs are agnostic of the middleware, and we have
chosen ROS only because it is popular robotic middleware.
Although ROS has two major issues for developing scalable
and reliable robotic systems, RAMPs are not dependent on
either limitation.

ROS has a single point of failure: the master node
(roscore). The master node is responsible for naming and reg-
istration of other nodes and acts as a node discovery hub. An
alternative RAMP implementation could avoid having such
a single point of failure, e.g. using multi-master ROS exten-
sions (Tiderko et al. 2016; Tardioli et al. 2019), or ROS2S
or some completely different robotic middleware like (Sahni
et al. 2019).

The ROS communication model has scalability and
robustness limitations. Communication between ROS nodes
can be publish/subscribe, RPC, or via a global parameter
server. As ROS adopts a graph to store and manage node con-
nections, scalability issues arise for large numbers of nodes
(Lutac et al. 2016). To enhance the scalability and robust-

3 https://design.ros2.org/articles/why_ros2.html
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Table 1 cNAMP sequence diagram

Time Location X Location Y
Tl Execute a chunk of work
T2 Request current loads from Load Server
T3 Calculate There, Ttheres Teomm
T4 If NOT(There > Tthere + Tcomm) then
GOTO T1
TS Send a representative to Loc.Y
T6 If representative has returned then GOTO Representative arrives at Loc.Y
T13
T7 Execute a chunk of work Representative requests load from Loc.Y
Load Server
T8 GOTO T6 Representative recalculates parameters
Tex. Tey, Teomm
T9 If (Tex > Tey + Teomm) then Representa-
tive notifies local Load Server of the move
T10 Representative returns to Loc. X
TI11 Representative arrives at Loc.X
T12 Representative records the decision and ter-
minates
T13 If the decision is to stay
then GOTO T1
else cNAMP notifies local Load Server of
the decision and moves to Loc.Y
T14 cNAMP arrives at Loc.Y
T15 Repeat steps from T1

ness of distributed robotics systems (Erés et al. 2019) ROS2
uses the DDSI-RTPS (DDS-Interoperability Real Time Pub-
lish Subscribe) protocol® instead of ROS’s TCPROS and
UDPROS protocols. So adopting ROS2 could improve the
scalability and reliability of a RAMPs implementation.

2.5 Fault tolerance in robotics

The RAMPs concept is closely related to resilience engi-
neering in robotics. However, to date the main approach in
resilient robotics is to use robust controllers (Zhang et al.
2017). While robust controllers have proved to be very suc-
cessful in manufacturing, they are very expensive and require
significant engineering resources to program and modify
even by the standards of large industrial companies. As a con-
sequence various research studies explore opportunities to
distribute control and decision making between various com-
ponents (Bader et al. 2017; Zhou et al. 2020). RAMPs occupy
aradical position in the spectrum of distributed decision mak-
ing where control over where to execute a computational task
is delegated to the task.

6 https://index.ros.org/doc/ros2/Concepts/DDS-and-ROS-
middleware-implementations/

Reliability in robotics commonly refers to the ability of the
robotic system to continue performing tasks while part of the
system has failed, e.g. some component or middleware ele-
ment has failed. Crucially there is no attempt to automatically
recover failed components (Khalastchi and Kalech 2019).
Rather than adapting to system failures, RAMPs provide
computational fault-tolerance by automatically restarting
failed computations to enable them to execute to completion.
This model is widely used in distributed systems.

3 RAMP design and implementation

This section presents the design and implementation of
Reliable Autonomous Mobile Programs (RAMPs) an AMP-
inspired load balancing mechanism for multi-robot systems
operating on unstable networks and without external compute
resources. Key novelties are the lightweight fault tolerance
and decision making mechanisms.

3.1 RAMP design

The design of RAMPs is strongly inspired by Autonomous
Mobile Programs (Sect. 2.3). Here an Autonomous Pro-

@ Springer
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gram (AP) is the main component of the solution. APs
autonomously make the decision where to execute in a net-
work. As with AMPs the choice of where to execute is based
on information about hosts in the network. Moreover, the
AMP cost model is used to calculate the execution time on
different hosts.

There are, however, some important differences between
AMPs and our current implementation of RAMPs. Firstly,
RAMPs use weak mobility—only the program data is sent to
the remote robot instead of the code that needs to be executed,
reducing communication. The reduction in communication
is program dependent: programs may have large or small
code size, and independently large or small data sizes. A dis-
advantage of weak mobility is that the program code must
be available on the remote robot. However, this drawback is
minimal when the team of RAMP robots has a set of prede-
fined tasks and the task code can be distributed to the robots
in advance. Moreover, a great advantage of sending only
the parameters is that communication time and bandwidth
requirements are reduced.

The second difference is that RAMPs do not relocate after
the initial distribution. AMPs, on the other hand, can also re-
balance. That is, AMPs can relocate from their initial host to
resolve scheduling accidents (Deng et al. 2006). Implement-
ing similar relocation strategy for RAMPs can prove useful
and is planned as a future work.

Figure 1 shows the four main components of the RAMP
system, and their interaction, namely Autonomous Programs,
Program Executors, Load Servers, and Load Publishers. The
Autonomous Program describes the computation to be exe-
cuted; a robot may have a number of these. Autonomous
Programs periodically receive information about the load in
the system from their local Load Server and make a decision
where to execute, as in an AMP system. The Load Server is
the other component that is also present in the original AMP
design.

There are some subtle differences between the RAMP and
classical AMP system architectures. When an Autonomous
Program decides where to execute, it offloads the computa-
tion to a Program Executor on the selected host robot. Each
local Load Server collects information about the system’s
load by interacting with the Load Publishers that are present
in each robot. The Program Executor and Load Publisher
are not present in a classical AMP system. The Program
Executor is introduced to facilitate the weak mobility of the
solution, by providing a suitable target for Autonomous Pro-
grams to offload computation. The Load Publisher exploits
ROS’s publish/subscribe message passing.

3.2 RAMP implementation

The implementation of the Autonomous Programs and Pro-
gram Executors utilises ROS’s actionlib package (Eitan
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Fig.1 RAMP system architecture

Marder-Eppstein 2018) that provides tools for creating client-
server interactions for long running tasks. The RAMP code
is open source and is available under the permissive MIT
licence.”

The main components are Action Client and Action Server
which communicate via a protocol built on top of ROS
messages, called “ROS Action Protocol”. Figure 2 shows
the interaction between Autonomous Programs and Program
Executors. A Program Executor contains an Action Server
which can accept tasks that match its specification. The
Autonomous Program uses an Action Client to send com-
putation to the Action Server in the Program Executor.

Before moving an Autonomous Program needs to decide
whether to move, and where to move to. This is done by cal-
culating the cost of executing on each available robot. The
Autonomous Program first requests information about the
load in the MRS from the local Load Server via an exposed
ROS service. Then it calculates the cost using the AMP cost
model (Eq. 1 in Sect. 2.3). The communication and computa-
tion times are specific to the computation to be executed and
are obtained by profiling. For example the computation costs
of the route planning program used in Sect. 4 are obtained
by timing the program on an unloaded robot, and commu-
nication costs by measuring the time to communicate the
parameters on an unloaded network.

The Load Server is implemented as a ROS service that
returns load information about the system when prompted.
The main difference between the RAMP and AMP Load
Servers is the communication patterns. Instead of periodi-
cally querying robots about their load, RAMP Load Servers
use the publisher/subscriber pattern. For that a new compo-
nent is introduced to the system—the Load Publisher. Each
robot contains a Load Publisher that periodically publishes
the current load of the robot to a ROS Topic dedicated to this
robot. The Load Server on another robot can subscribe to this
ROS Topic and receive updates about the CPU and memory
load of this robot.

The RAMP implementation includes a mechanism to min-
imise scheduling accidents, i.e. to address the AMP greedy
effect (Sect. 2.3). A simple form of negotiation is adapted

7 https://github.com/bbstk/offload
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Autonomous Program

Fig.2 Interaction between autonomous programs and program executors

to reduce this effect. Local Autonomous Programs pre-
emptively notify the local Load Server of their intention to
move computation to another robot. Thus, the Load Server
updates the load information about the target robot with min-
imal delay, reducing the possibility for location thrashing.
However, this solution does not completely eliminate the
greedy effect of Autonomous Programs, and is restricted
to Autonomous Programs originating from the same robot.
A more elaborate negotiation scheme, like the one used in
cNAMPs (Table 1), can be utilised in the future.

3.3 RAMP fault tolerance mechanisms

Multi-robot systems are complex with many components that
may fail. Creating a load management system that can han-
dle every possible failure is an enormous task. The RAMP
design includes mechanisms to recover from some failures
and the current implementation recovers from two classes of
failures common in teams of mobile robots: robot and net-
work failures (Carlson et al. 2004). Robot failures include
unexpected shutdown, restart, or loss of power, e.g. due to
an exhausted battery. The network failures that are tolerated
consist of losing network connection between robots, e.g.
due to a hardware/software malfunction or a robot getting
out of range.

Table 2 summarises the failures in multi-robot systems
with respect to whether they are addressed in this solution or
not. In the table, the origin robot is where an AP is created. A
non-origin robot is one which executes an AP that originates
from another robot. The introduction of this concept of origin
is important as the current RAMP implementation makes two
main assumptions:

— An Autonomous Program is relevant only to the origin
robot.

— A failure in a non-origin robot should not prevent an
Autonomous Program completing.

From these two assumptions it follows that there must be a
mechanism for dealing with both network connection failures
and robots crashes in non-origin robots. Moreover, network

sencki ROS Action gz(c;agcrl;tr%
wor
I;rogéie;g > Action | Protocol | Action > I;rogéﬁir:
P < Client Server [« P
Code send send Code
result result

Program Executor

connection failures in the origin robot should not prevent the
completion of Autonomous Program. However, if an origin
robot crashes, the completion of its Autonomous Program
is not important since they are relevant only to the crashed
robot.

All fault tolerance mechanisms are limited, and will not
address all possible faults. Many of the faults encountered
by robot teams are transient as devices and network connec-
tions work only intermittently. Likewise faults may be partial,
for example, communication bandwidth may be severely
reduced at times. The current RAMP implementation utilises
some features of the underlying middleware, e.g. when a
robot connects (manually or automatically) the load server
adds the reconnected (or a newly connected) robot to the list
of available resources.

Failure Detection. Two ways of detecting failures are
implemented: connection timeouts and healthcheck moni-
toring. First, when an Autonomous Program wants to offload
a computation to a remote Program Executor, a connection
needs to be established between the Action Client and Action
Server in the corresponding components (Fig. 2). When the
Action Client tries to establish a connection, there is a time
limit which ensures that an Autonomous Program will not be
blocked indefinitely waiting to offload computation. Once
the time limit is reached, the Autonomous Program recal-
culates where to send the computation, without considering
the robot that failed to connect. Using this approach, both
crash and network connection loss in a remote robot can be
detected. Also, if the origin robot loses network connection
while an Autonomous Program establishes a connection to
a remote Program Executor, this will result in eventually the
Autonomous Program executing in the origin robot.

Periodic healthcheck (or heartbeat) messages are the sec-
ond means of detecting failures in RAMP systems. These
healthcheck messages are implemented as sending simple
pings between an origin and a remote robot. Once again, this
approach allows for the detection of both robot crashes and
network failures. If a remote robot fails during the execution
of an offloaded task, the Autonomous Program can detect
this failure and send the computation somewhere else.
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Table2 Robot team failures

Failure

Mitigation

Tolerated by RAMPs

Non-origin robot failure

Hardware/software failure, power outage, etc.
Non-origin robot communication failure
Origin robot communication failure

Not tolerated by RAMPs

Origin robot permanent or transient failure

Network issues, e.g. reduced bandwidth

Any sensors, motors, cameras, etc.
Fail without causing a robot crash

ROS master node failure

Transient failure treated as permanent

Task replication could be added
Could be monitored for patterns
To get more accurate 7o in (1)

Fault escalation could be added

Could be avoided, e.g. using ROS2

Failure Recovery. When a failure is detected the failed
robot is “blacklisted” on the local Load Server. The Load
Server removes the failed robot from the system load infor-
mation, thus preventing other local Autonomous Programs
from offloading computation there. The failed robot stays
blacklisted until the Load Server receives a message from the
ROS Topic dedicated to the load information of this robot.

Another feature related to the fault tolerance of the solu-
tion is the random back-off period after failure detection.
When afailure is detected by arobot, the robot waits arandom
amount of time up to a configurable maximum. For compu-
tations that require several minutes to complete, a back-off
period of up to 10-20s can prove beneficial, since finding an
optimal robot to execute on can compensate for the additional
waiting time. This approach has two benefits. Firstly, the wait
time allows for other failures in the system to be detected and
the unavailable robots to be removed from the local Load
Server. This is particularly important when a group of robots
fail at the same time, or when the origin robot loses network
connection. Having this back-off period reduces the num-
ber of redundant attempts to move to an unavailable robot.
The second benefit of this approach can be seen when several
tasks are offloaded to arobot which then fails. In this scenario,
all these tasks will try to move from the origin robot again
somewhere else at the same time which may cause location
thrashing. However, the random back-off period reduces the
chance of this happening.

4 Performance evaluation
This section evaluates the performance of RAMPs as a load

balancing technology and investigates the following research
questions:

@ Springer

— How well do RAMPs balance load in unloaded teams
of robots (Sect. 4.1.1), and loaded teams of robots
(Sect. 4.2.1)?

— What is the performance benefit of RAMPs compared to
executing on a single robot for unloaded teams of robots
(Sect. 4.1.2), and loaded teams of robots (Sect. 4.2.2)?

— How close does a system of RAMPs approach the opti-
mal load distribution in an unloaded team of robots?
(Sect. 4.1.2)

— How does RAMP load distribution compare with Round
Robin distribution in aloaded team of robots? (Sect. 4.2.2)

All experiments are performed on a network of homo-
geneous robot hardware, namely a set of five immobile
SunFounder car kit robots. The intention is to conduct the
evaluation on a real, if relatively simple, multiple robot
system. Each robot uses Raspberry Pi 3 Model B with a
Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB
of RAM, Ubuntu 16.04. Robot communicate wirelessly via
a router. Although battery power is available, we simplify
experimentation with large teams by using standard mains
power, and artificially induce the failures caused by mobil-
ity.

The range of robotic hardware means that it is hard to
select a “typical”’ platform, and Raspberry Pi 3 with Ubuntu
has the benefit of being a well studied hardware/OS platform.
While the majority of modern robots have greater computa-
tional power than a Raspberry Pi 3, the load management
principles for an MRS based on this modest architecture
are valid for more powerful architectures. AMPs have been
extensively demonstrated on heterogeneous hardware (Deng
et al. 2010).

For the purpose of the experiments the RAMPs could
perform any substantial computation, e.g. SLAM. Here we
choose route planning, and the planner is encoded in the
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MiniZinc 2.1.6 constraint programming language (Nether-
cote et al. 2007), and uses Gecode (Team 2018) to solve the
model. The RAMPs represent a semi-realistic scenario, e.g.
a warehouse robot encounters an obstruction and generates
RAMPs to explore routes starting from different adjacent
locations. A sufficiently large instance of the problem is
selected to simulate a scenario where an offloading solution
can be beneficial. Solving a single instance of the problem
on one Raspberry Pi takes around 50s. Each experiment is
repeated 3 times. The results of the experiments are available
on github.®

4.1 Unloaded MRS performance

The first set of experiments investigates the load balanc-
ing capabilities of RAMPs in unloaded homogeneous MRS.
Teams of size 2, 3, 4, and 5 identical robots are used to
evaluate how RAMPs scale with different team sizes. In the
experiments, 5, 10, 15, 20, 25, and 30 identical RAMPs are
initiated on a single robot. The runtime is recorded together
with the final distribution of RAMPs among the robots in the
team.

To measure the speedups obtained by offloading work
within the team, the same configuration is executed on a
single robot. To compare with the optimal distribution for
identical task sizes and compute resources, we compare with
Round Robin scheduling. In Round Robin, the tasks are dis-
tributed equally in circular order to the robots.

4.1.1 RAMP distribution

Table 3 shows the distributions obtained for the different
numbers of RAMPs and robots for the median run out of
three. The results show that the distribution is most often
optimal or near optimal. In an optimal distribution, it is not
possible to improve the load balance by moving a RAMP.
In a near optimal distribution, moving a single RAMP will
produce an optimal distribution.

The results of experiments show that 46% of the distri-
bution are optimal (33 distributions), 43% are near optimal
(31 distributions), and 11% are not optimal (8 distributions).
For example, in Table 3, with 5 RAMPS the distribution is
optimal, i.e. the RAMPs are distributed as evenly as possible
among the robots. However the distribution of 10 RAMPs
with team size of 5 is non-optimal as R1 has 1 RAMP and
R3 has 3 RAMPs, so moving a RAMP from R3 to R1 would
produce an optimal distribution. The deviations from the
optimal distribution increases with the introduction of more
RAMPs to the system. The biggest discrepancy in Table 3 is
when there are 25 RAMPs executing on 3 robots—R1 has
9 RAMPs, R2 has 10 RAMPs, and R3 has 6 RAMPs. Such

8 https://github.com/bbstk/offload/blob/master/RawData.xIsx
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Table 3 RAMP distribution on an unloaded system
Robot
RAMPs Size R1 R2 R3 R4 R5
5 5 1 1 1 1 1
4 1 2 1 1
3 1 2 2
2 2 3
10 5 1 2 3 2 2
4 2 3 2 3
3 3 4 3
2 5 5
15 5 2 3 3 3 4
4 3 4 4 4
3 4 5 6
2 7 8
20 5 3 4 4 5 4
4 4 5 5 6
3 7 6 7
2 8 12
25 5 4 6 5 5 5
4 5 6 8 6
3 9 10 6
2 11 14
30 5 7 6 6
4 7 9 5
3 9 10 11
2 15 15

uneven loads are common in distributed load managers, and
can be resolved by sharing more information or by relocating
work, as for example cNAMPs do (Chechina et al. 2010).

We conclude that the distribution of RAMPs in unloaded
MRS is very likely to be optimal or near optimal: 89%
or 64/72 distributions in the experiments above. Given
that other AMP implementations also maintain good load
distributions over networks of loaded/unloaded and homoge-
neous/heterogeneous computers (Deng et al. 2010; Chechina
et al. 2010), the results in this section and the next can be
viewed as demonstrating that RAMPs are correctly and effec-
tively implemented for teams of robots.

4.1.2 RAMP performance

Figure 3 shows the RAMPs’ runtime and speedup relative to
executing on a single robot, and are the median of three exe-
cutions. The corresponding RAMP distributions are shown
in Table 3.

With 5 RAMPs the time to complete is similar in the four
experiments with different team sizes. This is as expected as
the Rapsberry Pis are quad core, and the route planning tasks
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Fig.3 RAMP speedup and runtime on an unloaded system

utilise just one core. Thus, a robot can compute four route
planning tasks with similar speed to computing a single one.
With 10 RAMPs, the team of two robots is outperformed by
the bigger teams. Table 3 shows that at 10 RAMPs, the team
of size 2 has 5 RAMPs distributed to each robot. Therefore,
two RAMPs need to share a CPU core resulting in perfor-
mance degradation. This also occurs with 20 RAMPs on
teams of 4 and 5 robots. Predictably, increasing the num-
ber of RAMPs results in bigger performance penalties for
the smaller teams. With 30 RAMPs the team of 5 robots is
more than twice as fast as the 2 robot team.

Comparison with a Single Robot. The speedup relative to
executing on a single robot is shown in Fig. 3b. It shows that
at 5 RAMPs all team sizes outperform the single robot by
a factor of 2. Increasing the number of route planning tasks
results in increased speedup. The teams of two and three
robots reach maximum speedups of 3 and 4 respectively.
With 4 and 5 robots, there is a steady increase in speedup
until 15 RAMPs, reaching almost a factor of 6. With the
introduction of more RAMPs the 4-Robot team fluctuates
between a speedup of 5 and 6, while the 5-Robot team shows
a continuous gradual increase.

Comparison with Optimal Work Distribution. Round
Robin scheduling of uniform tasks in an unloaded system
is optimal. Figure 4 compares the RAMP and Round Robin
runtimes for the RAMP and Robot configurations used in the
previous experiments

RAMPs have slightly longer runtimes than Round Robin,
at most 23% slower in our experiments. The performance
difference between the two approaches is small with up to
15 tasks and increases for 20, 25, and 30 tasks.

The biggest difference is for 20 RAMPs on 2 robots,
where Round Robin completes in 137s, and RAMPs in 169s.
This discrepancy is caused by a sub-optimal distribution of
RAMPs. Table 3 shows that for 20 RAMPs in the team of size
2, R1 has 8 RAMPs and R2 has 12 RAMPs. This is one of
the biggest deviations from the optimal distribution observed
in these experiments and it shows what impact sub-optimal
distributions can have on the performance.
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(b) Speedup Relative to Executing on a Single
Robot

A comparison between an optimal distribution achieved
by RAMPs and Round Robin can be observed in Fig. 4c,
15 Programs. There the RAMPs are distributed as (3—4-4-
4). Using Round Robin leads to 57s completion time, while
RAMPs take 58s—only around 2% slower. Another result
from perfect distribution can be observed in Fig. 4a, 30 Pro-
grams. There RAMPs are distributed as (15-15) between two
robots and are around 6% slower than using Round Robin -
216s to 204s.

We conclude that, on unloaded MRS RAMPs (a) effec-
tively distribute the work amongst the team, reducing the run-
time (Fig. 3a), and hence produce speedups corresponding
the additional hardware available, e.g. a maximal speedup
of 6.7 on 5 robots (Fig. 3b), and (b) produce similar runtimes
to the optimal Round Robin scheduling in most cases, and
never more than 23% worse (Fig. 4).

4.2 Loaded MRS performance

While experiments on unloaded MRS allow us to analyse
performance against expectations, they are unrealistic for real
robot teams. We investigate the performance of RAMPs on
loaded MRS using 5 robots where 1, 2, 3, and 4 of the robots
are loaded by running 8 CPU intensive tasks using the Linux
stress tool, resulting in 100% CPU usage. 5, 10, 15, 20, 25,
and 30 route planning RAMPs are initiated on a single robot
and the distribution and time to complete are recorded.

Evaluating RAMPs in a system where robots have dif-
ferent level of available resources allows for further inves-
tigation of their load management capabilities. Moreover,
the additional loads emulate heterogeneous teams of robots
since the robots have different available compute capabili-
ties. RAMPs should prefer execution on a host with more
available compute resources.

4.2.1 RAMP distribution

Table 4 shows the mean distribution of RAMPs from 3
runs. When the number of RAMPs and loaded robots is small,
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Fig.4 RAMP and round robin runtime on an unloaded system

RAMPs successfully avoid executing on busy robots. For
example, the distribution of 5 and 10 RAMPs in teams with
up to 3 busy robots results in no RAMPs on the loaded robots.

Increasing the number of RAMPs and the number of
loaded robots leads to some RAMPs eventually executing on
the loaded robots. This can first be seen with 5 RAMPs and 4
busy robots and becomes common when there are more than
20 RAMPs. RAMPs executing on the loaded robots happens
due to the initially non-busy robots reaching a high level of
resource utilisation. When all available hosts for a RAMP
are at maximum resource utilisation, the RAMP randomly
decides where to execute. As 4 RAMPs on a single robot
utilise 100% of the cores, the difference between the number
of RAMPs on a loaded and unloaded robot is often close to
4, e.g. Table 4 shows 15 RAMPs 3 and 4 loaded robots.

We conclude that RAMPs successfully avoid executing on
heavily loaded robots if there are robots with more available
resources.

4.2.2 RAMP performance

Figure 5 shows the runtime and speedup for executing 5, 10,
15, 20, 25, and 30 RAMPs on a system where 1, 2, 3 or 4
of the robots each have 8 CPU intensive tasks as additional
load. The team that has only 1 loaded robot unsurprisingly
shows the best results while the team with 4 busy robots
performs the worst. The difference between the teams with
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2 and 3 loaded robots is small, especially when the number
of RAMPs increases.

Comparison with a Single Robot. Figure 5b shows the
speedup of using RAMPs on a loaded system relative to exe-
cuting all tasks on a single robot with no additional load.
Despite the high resource utilisation on the robots, teams
with up to 4 loaded robots achieve more than three times
speedup when there are more than 20 RAMPs. When there
is 1 loaded robot and 30 RAMPs the speedup reaches 5.

Comparison with Round Robin. Figure 6 shows the run-
time of 5, 10, 15, 20, 25, and 30 route planning tasks using
RAMPs and Round Robin scheduling. RAMPs outperform
Round Robin, which is unsurprising given that Round Robin
does not consider resource availability. This is best observed
when there are 1, 2, and 3 loaded robots (Fig. 6a—c), with
RAMPs finishing more than two times faster in Fig. 6a and
b at 10 programs. When there are 4 loaded robots RAMPs
have only a slight advantage over Round Robin (Fig. 6d).
This is due to the quick exhaustion of available resources
which reduces the effect of subsequent decisions where to
execute.

We conclude that (a) despite having heavily loaded mem-
bers, a team of five robots can achieve up to five time speedup
for 30 RAMPs and (b) RAMPs outperform Round Robin when
there is some additional load on the system.
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Fig.6 RAMP and round robin runtime on a loaded system of 5 robots

5 Fault tolerance evaluation

This section evaluates the fault tolerance of RAMPs on a team
of robots and investigates the following research questions:

— Isit possible for RAMPs executing on a non-origin robot
to eventually complete in the presence of an unexpected
crash or shutdown of an arbitrary number of non-origin
robots? (Sect. 5.1)

— Is it possible for RAMPs executing on a non-origin robot
to eventually complete in the presence of an unexpected
network connection loss between the RAMPs’ origin and
an arbitrary number of non-origin robots? (Sect. 5.2)
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— How well can RAMPs preserve a balanced load in a
multi-robot system in the presence of robot or network
failures affecting a subset of the robots? (Sects. 5.1, 5.2,
5.3)

— Do robot crashes and network connection failures have a
uniform impact on RAMPs? (Sects. 5.1, 5.2, 5.3)

The experiments below are both simple and extreme in the
sense that the robot and network failures are both total
and permanent. Real robot teams more frequently encounter
partial and intermittent failures. However building realis-
tic models of intermittent and partial failures for a given
application domain is non-trivial. Likewise establishing the
properties of collections of RAMPs executing on a team of
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Table 4 RAMP distribution on a loaded system (R*—Robot; L**—
loaded robots)

R*

RAMPs L#* R1 R2 R3 R4 R5

5 UUUUL 0.67 1.34 1.34 1.67 0
UUULL 1 2 2 0 0
UULLL 2.33 2.67 0 0 0
ULLLL 3.67 0.67 0.33 0.33 0

10 UuuuL 1.67 3.33 3 2 0
UUULL 3 3.67 3.33 0 0
UULLL 4 5.67 0 0 0.33
ULLLL 6.67 1 0.67 1 0.67

15 UuuuL 3 4.33 3.33 4.33 0
UUULL 3 4 6.33 1 0.67
UULLL 5.33 5.67 1.67 0.67 1.67
ULLLL 6.67 2.33 2 2 2

20 UUUUL 4 5 4.33 5.33 1.33
UUULL 5.33 6.33 5.67 1.67 1
UULLL 7.67 7.67 1.33 1.33 2
ULLLL 8.67 2.33 3 3 3

25 UUUUL 5.67 6.33 6 5.33 1.67
UUULL 5.33 7.33 7.33 2.33 2.67
UULLL 8.33 9 2.33 2.33 2.33
ULLLL 8.67 4 4.33 3.67 4.33

30 UUUUL 6.67 7 7 7.33 2
UUULL 6.67 8 7.67 3.67 4
UULLL 9.67 12.67 1.67 2.67 3.33
ULLLL 8.33 5 5.67 5.33 5.67

robots operating in such a stochastic environment requires
extensive evaluation and analysis. In short these relatively
simple experiments enable us to establish the fault tolerance
properties of RAMPs simply, understandably, and repro-
ducibly.

The Autonomous Programs executing on the robots each
compute a real robotic task, i.e. route planning as may be
required by teams of robots operating in many environments,
e.g. in a dynamic warehouse. In a real system robots would
periodically encounter a barrier to their existing plan and
require to re-plan. Crucially a failure in a subset of the robots
in a team should not unduly disrupt the functioning of the
remaining robots.

For reproducibility and ease of analysis we do not model
the stochastic arrival of replanning events, and typically
launch a set of APs simultaneously. The route planning
computation is expressed in the MiniZinc 2.1.6 constraint
programming language (Nethercote et al. 2007), and solved
using Gecode (Team 2018). To ensure that the computation
does not finish before the failures are introduced to the sys-
tem, a significantly larger and more time consuming instance

of the problem is used in this set of experiments than in
Sect.ion 4.

In these experiments we use the same set of five homo-
geneous car kit robots with Raspberry Pi 3 Model B as in
Sect. 4. In each scenario all five robots initially do not have
any computation to perform.

Each experiment is repeated 3 times and consists of two
distinct stages: initial distribution and post-failure distribu-
tion. All experiments start by initiating 15 RAMPs on one of
the robots. The RAMPs then move to other robots, reaching
a stable state. This state is recorded as the initial distribution.
Due to following a weak mobility paradigm, after moving to
a new location RAMPs restart their computations.

The next stage of the experiments is the introduction
of failures to the system. This is done using two different
approaches: sequential failures and simultaneous failures.
With sequential failures a set delay of 20s between indi-
vidual failures is introduced. This allows sufficient time for
RAMPs to move to other robots. The value for the delay was
chosen to guarantee moving of RAMPs before the next fail-
ure. In reality, failure detection and moving in RAMPs takes
significantly less than 20s. With simultaneous failures the
robot crashes or network failures occur at the same time in
multiple robots.

5.1 Robot failures

The first type of failure that is examined is unexpected robot
crashes and shutdowns. Being able to recover from this kind
of failure is important because they are relatively common
in practice. Battery exhaustion, hardware faults, and soft-
ware errors may all cause a robot to shutdown unexpectedly.
When this happens to a robot which is executing a RAMP,
the failure should not prevent the RAMP from completing.
The robot crash in this experiment is produced by switching
off the power supply for a robot. Two different scenarios are
examined where the robot crashes occur either sequentially
(Sect. 5.1.1) or simultaneously (Sect. 5.1.2).

5.1.1 Sequential failures

Table 5 shows the RAMP distribution in a group of
five robots where robots fail in succession. Each failure
happens after a 20s delay, which is long enough for the
RAMPs affected by the crash to move. D1 shows initial dis-
tribution before any failures occur, and then D2-D5 show
re-distributions as robots fail one by one. The distributions
from three independent runs are presented.

The results show that after a robot failure the RAMPs that
were running on the affected robot are successfully restarted
on the remaining robots. Moreover, the RAMPs distribution
after restarting computation on a new location is near opti-
mal. The biggest discrepancy between the number of RAMPs
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Table 5 RAMP distributions after sequential robot crashes

Robot
Dist. R1 R2 R3 R4 RS
Run 1 D1 3 3 3 3 3
D2 3 4 4
D3 4 6 5
D4 7 8
D5 15
Run 2 Dl 2 3 4
D2 3
D3 4
D4 6
D5 15
Run 3 D1 2 3 4 3 3
D2 3 4
D3 6 5
D4 7 8
D5 15

on different robots from all three runs is 3. This can be seen
in Table 5, Run 2, D4, where R1 has 9 RAMPs and R2 has 6
RAMPs. However, even this distribution differs only by one
RAMP from the optimal distribution, which is § RAMPs on
one robot and 7 RAMPs on another robot.

We conclude that (a) The RAMPs on a robot that has
failed are successfully restarted on other robots, possibly
repeatedly and (b) the new distribution is optimal or near
optimal.

5.1.2 Simultaneous failures

Table 6 shows the mean distribution of RAMPs from three
experiment runs in a system that experience simultaneous
robot failures. In these experiments, a number of robots are
shut down together without allowing for moving of RAMPs
between individual shutdowns. First, the results show that
simultaneous robot crashes do not prevent RAMPS from
moving to another robot. Moreover, the results are similar to
the RAMP distribution when the robot crashes are sequen-
tial as shown in Table 5. The distribution of RAMPs in this
experiment is also near optimal with a maximum discrepancy
of 3, with 15 RAMPS on 2 robots.

We conclude that (a) The RAMPs on a collection of robots
that fail simultaneously are successfully restarted on other
robots and (b) the new distribution is optimal or near optimal.

5.2 Network failures

The second type of failures that is examined is unexpected
network connection loss between robots. This may occur in
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Table6 Mean RAMP distribution after simultaneous robot crash exper-
iment

Robot

Failed R1 R2 R3 R4 R5
none 2.67 3 3.25 3.08 3
RS 3.67 3.67 3.67 4

R4,R5 5 5.33 4.67

R3,R4,R5 7.33 7.67

R2,R3,R4,R5 15

Table 7 RAMP distributions after sequential failures of network con-
nections

Robot
Dist. R1 R2 R3 R4 RS
Run 1 D1 3 3 3 3 3
D2 4 3 4
D3 5 5 5
D4 9 6
D5 15
Run 2 D1 3 4 3
D2 3 4 4
D3 4 5 6
D4 7
D5 15
Run 3 D1 3 4 3 2
D2 3 4 4 4
D3 5 5 5
D4 7 8
D5 15

teams of mobile robots due to hardware, e.g. network card,
failures or the robot moving out of range of a WiFi signal. If
the affected robot is a non-origin robot, the RAMPs should be
able to recover from such failures. The network connection
failures are invoked by switching off the robots’ network
cards. Again, two different scenarios are examined where the
network connection failures occur sequentially (Sect. 5.3.1)
and simultaneously (Sect. 5.2.2).

5.2.1 Sequential failures

Table 7 shows RAMP distribution when robots lose
network connections sequentially. D1 shows distribution
before the failures occur, and then D2-D5 show RAMP re-
distributions as network connections fail one by one. The
distributions from three independent runs are presented.

The results show that RAMPs are able to successfully
restart computation on a different location after their host
robot loses network connection. Another similarity with the
results from the robot crash experiment observed in Table 7 is



Autonomous Robots (2021) 45:351-369

365

Table 8 Mean RAMP distribution in experiments with simultaneous
network connection failures

Robot

Failed R1 R2 R3 R4 R5
none 2.92 3.08 3 3.08 2.92
RS 3.33 3.67 4 4

R4,R5 4.33 5.33 5.33

R3,R4,R5 7 8

R2,R3,R4,R5 15

the fact that the distributions in all three runs are near optimal.
As before (9-6) distribution of 15 RAMPs on two robots is
the worst case distribution.

We conclude that (a) RAMPs successfully move from a
robot that has lost a network connection by restarting com-
putation on a different location, these new distributions are
either optimal or near optimal, and (b) sequential robot
crashes and network connection failures of non-origin robots
have the same impact on RAMPs re-distributions.

5.2.2 Simultaneous failures

Table 8 shows the mean distribution of RAMPs from three
runs in a system that experiences simultaneous network con-
nection failures in robots. The distribution of RAMPs in this
experiment is once again near optimal. The results are similar
to those shown in the previous experiments (Tables 6 and 7).
The results and conclusions are are the same as in Sect. 5.2.1.

5.3 Mixed failures

Mixed failure experiments examine cases when system
experiences both robot crashes and network connection
failures. Again, two different scenarios are analysed here:
failures occurring sequentially (Sect. 5.3.1) and simultane-
ously (Sect. 5.3.2).

5.3.1 Sequential failures

Table 9 shows the distribution of RAMPs in a group of
five robots where robots fail sequentially. In this experiment
network connection failures and robot crashes occur one after
another. That is, robot R5 first loses a network connection,
then robot R4 crashes, then robot R3 loses a network con-
nection, and finally robot R2 crashes. Between each failure
there is a 20-s delay for the affected RAMPs to move. The
distribution from three independent runs is presented.

We conclude that, as in the previous experiments (a)
RAMPs are able to successfully restart after their host robot
either fails or loses network connectivity. Moreover, (b) the

Table 9 RAMP distributions after sequential mix failures (NF—
network failure, RC—robot crash)

Robot
Dist. R1 R2 R3 R4 RS
Run 1 D1 2 4 3 3 3
D2 3 4 4 NF
D3 6 5 4 RC NF
D4 7 8 NF RC NF
D5 15 RC NF RC NF
Run 2 D1 3 3 3
D2 3 4 4 4 NF
D3 5 4 6 RC NF
D4 6 9 NF RC NF
D5 15 RC NF RC NF
Run 3 D1 3 3 3 3 3
D2 4 4 4 3 NF
D3 5 5 5 RC NF
D4 8 7 NF RC NF
D5 15 RC NF RC NF

resulting re-distributions are once again either optimal or
near optimal.

5.3.2 Simultaneous failures

Table 10 shows the mean distribution of RAMPs from three
runs of the experiment in a system that encounters mixed fail-
ures: network connection failures and robot crashes. In total
four different scenarios are examined. Each scenario begins
with initial distribution where no failures are present. Then
failures are introduced in one of the following ways. First,
robot R5 loses network connection. In the second scenario
simultaneously robot R5 loses network connection and robot
R4 crashes. In the third scenario simultaneously robots R5
and R3 lose network connection, and robot R4 crashes. In the
last scenario simultaneously robots R5 and R3 lose network
connection, and robots R4 and R2 crash.

We conclude that (a) RAMPs successfully tolerate simul-
taneous failures in a system that encounters both robot
crashes and network connection failures, and (b) the result-
ing distributions are either optimal or near optimal.

6 Related multi-robot load managers

To the best of our knowledge no previous MRS load manage-
ment system has been designed for fault-tolerance. That is,
RAMPs are the first mechanism for distributing load within
robot teams that adapts to hardware and network failures.
RAMPs do so by recording tasks offloaded, and redistribut-
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Table 10 Mean RAMP distribution in experiments with simultaneous
mixed failures (NF—network failure, RC—robot crash)

Robot

Failed R1 R2 R3 R4 R5
none 3 2.92 2.92 3.25 2.92
R5 3.67 4 4 3.33 NF
R4,R5 4.33 5.67 5 RC NF
R3,R4,R5 7.33 7.67 NF RC NF
R2,R3,R4,R5 15 RC NF RC NF

ing them after a failure. Below we discuss related robot load
managers.

In many MRS load managers robots offload to servers or
to the cloud (Nimmagadda et al. 2010; Cano et al. 2018),
whereas RAMPs share load within the MRS, i.e. at the edge.
A server-based system that is similar to RAMPS is (Nimma-
gadda et al. 2010): it exploits weak mobility and relocation
decisions are based on a similar cost model. However unlike
AMPs that will distribute any computational task that can
be costed, the cost model is specialised for motion detection
tasks, e.g. it uses the number of frames and the number of
pixels to calculate communication and computation time.

In contrast to server/cloud based systems the crowdsourc-
ing manager presented in Huai et al. (2019) exploits idle
compute capacity only within an MRS. Like RAMPs the
communication latency and computational resources of the
remote robots are checked before distributing a computa-
tion. In contrast to RAMPs this is another specialised load
manager designed for deep-learning computations, i.e. the
computation is partitioned into deep-learning layers and
latency prediction is for individual layers.

Where RAMPs primarily use dynamic cost and load
information, some MRS load managers use far more static
information. For example by assuming that computation
speed remains constant on a given device, the results of offline
profiling can be used to predict task execution time. For
example the Deep Neural Network (DNN) system (Hadidi
et al. 2018) takes this approach: profiling every hardware
system and DNN layer. The optimal distribution of layers
can then be precomputed for a given set of devices. Sys-
tems exploiting such static information are very effective,
and sometimes optimal, for applications with static and fixed
task sizes. However RAMPs can effectively distribute tasks
with dynamic and varying sizes, albeit with higher runtime
overheads e.g. to collect current MRS load information.

7 Conclusion

We propose Reliable Autonomous Mobile Programs (RAMPs)—

a novel computation offloading technology for multi-robot

@ Springer

systems. RAMPs decide on which robots to execute using
a cost model that considers the program’s computational
requirements and the load in the team. RAMPs are the first
ever fault tolerant Autonomous Mobile Programs. Failures
are detected using connection timeouts and health-check
monitoring; RAMPs recover from the failures by restarting
on other robots. Failure prevention is done by “blacklisting”
the failed robots; that is, removing the failed robots from the
pool of candidates, until they function again (Sect. 3).

The runtime and distribution of a route planning RAMP
implementation have been evaluated on loaded and unloaded
MRS. The route planning RAMP represents a semi-realistic
scenario of a warehouse robot encountering obstructions
and generating RAMPs to explore routes with different first
moves.

The evaluation on unloaded MRS shows that RAMPs are
likely to achieve optimal or near optimal distributions (e.g.
in 89% of the 72 distributions measured), and hence achieve
good speedups relative to the available hardware, e.g. a max-
imal speedup of 6.7 on 5 robots. Moreover, in most cases
RAMPs exhibit similar runtime to the optimal Round Robin
scheduling (Sect. 4.1).

On loaded MRS, RAMPs successfully avoid allocating
work to busy robots if there are robots with more available
resources. RAMPs on 5 robots achieve variable speedups
of 5 with 1 loaded robot, and up to 3.5 with 4 loaded
robots. Unsurprisingly RAMPs have better runtime than
Round Robin scheduling when any additional load is present
(Sect. 4.2). As other AMP implementations also maintain
good load distributions over networks of loaded/unloaded
and homogeneous/heterogeneous computers (Deng et al.
2010; Chechina et al. 2010), these results demonstrate that
RAMPs are correctly and effectively implemented for teams
of robots.

Fault tolerance is a key novelty in RAMPs, and they are
able to successfully detect and recover from robot and net-
work failures in non-origin robots. In a series of experiments
exploring 15 route planning RAMPs, they preserve near-
optimal or optimal distribution after either simultaneous or
successive failures. There is no difference in RAMPs’ toler-
ation of robot failures, network failures, or both (Sect. 5).

Although most of the RAMP configurations in Sect. 4
achieve optimal load distribution, 11% of the distributions
are non-optimal. This is a common issue arising from the
incomplete information available in distributed load bal-
ancing systems. Some negotiation between RAMPs, as in
cNAMPs, could alleviate this problem. That is, before relo-
cating, cNAMPs send a request to ensure that the host is still
a suitable option and books a space for relocation (Table 1).
cNAMPs are shown to be less prone to this location thrashing
than AMPs (Chechina et al. 2010).

A feature in the original AMP design, but not currently
implemented in RAMPs, is the ability of programs to relocate
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after the initial distribution. Implementing this for RAMPs
would allow them to better handle dynamic system load and
recover from non-optimal initial distributions. That is, if a
RAMP executes on a robot that becomes overloaded and
there are other more suitable robots, the RAMP could relocate
to reduce its completion time. We are currently working on
adding this feature in RAMPs.

While this paper shows that RAMPs are likely to achieve
optimal or near-optimal distribution and have low overhead
in small to medium sized teams, RAMPs have yet to be eval-
uated in large teams of robots, and we are currently seeking
to do so. Some other interesting future research directions
include exploring the potential of RAMPs to allocate physical
actions within a robot team and adopting software containers
like Docker (Ismail et al. 2015) for RAMP execution.
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