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Abstract. X-ray mammography is the gold standard technique in breast cancer

screening programmes. One of the main challenges that mammography is still facing

is scattered radiation, which degrades the quality of the image and complicates

the diagnosis process. Anti-scatter grids, the main standard physical scattering

reduction technique, have some unsolved challenges as they increase the dose delivered

to the patient, do not remove all the scattered radiation and increase the cost of

the equipment. Alternative scattering reduction methods based on post-processing

algorithms, have lately been under investigation. This study is concerned with the use

of image post-processing to reduce the scatter contribution in the image, by convolving

the primary plus scatter image with kernels obtained from simplified Monte Carlo

simulations. The proposed semi-empirical approach uses up to five thickness-dependant

symmetric kernels to accurately estimate the scatter contribution of different areas of

the image. Single breast thickness-dependant kernels can over-estimate the scatter

signal up to 60 %, while kernels that adapt to local variations have to be modified for

each specific case adding high computational costs. The proposed method reduces the

uncertainty to a 4-10 % range for a 35 to 70 mm breast thickness range, making it a

very efficient, case-independent scatter modelling technique. To test the robustness of

the method, the scattered corrected image has been successfully compared against full

Monte Carlo simulations for a range of breast thicknesses. In addition, clinical images

of the 010A CIRS phantom were acquired with a mammography system with and

without the presence of the anti-scatter grid. The grid-less images were post-processed

and the quality of the image was compared against the grid images by evaluating the

phantom’s testers. The results obtained are very positive, showing that the method

reduces the scatter to similar levels than the anti-scatter grids.

Keywords: Monte Carlo simulations, scattered radiation, scatter-to-primary ratio,

digital mammography

1. Introduction

Digital X-ray mammography is the main screening method used for early breast cancer

detection. Although mammography techniques have benefitted from technological

Suggestion: A semi-empirical model for scatter field reduction in digital mammography
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advances in the last decades, there is still scope for image quality improvements and

dose reductions. A mammogram requires good contrast, good resolution, low dose and

large dynamic range (NHS, 2016). The breast is composed of soft tissue, fat, blood

vessels and it may have calcifications or tumours. Some of these tissues have very

similar composition, therefore an X-ray scan must be sensitive to these small differences

in order to provide enough image contrast for an accurate diagnosis.

An X-ray image is composed by a combination of primary and scatter information.

The primary component is formed by particles that arrive to the imager with a certain

amount of attenuation but no deviation. The scatter component, on the other hand, is

made of particles that interact with the matter and deviate from their initial path, so

they arrive to the imager in a range of angles. To maximise visualisation and improve

image quality the scatter component needs to be reduced or, ideally, completely removed.

Scattered radiation is one of the biggest challenges in digital mammography today (Wang

et al., 2015), as it affects the overall image quality by degrading the contrast and signal to

noise ratio, affecting the diagnosis of low contrast lesions (Boone and Cooper, 2000; Ahn,

Cho, and Jeon, 2006; Ducote and Molloi, 2010). Most digital mammography systems

have adopted anti-scatter grids as a physical solution to reduce scattered radiation. This

method, although well established and effective, is not able to block all the scattered

photons and introduces some loss of information by absorbing part of the primary

radiation, which leads to an increase in the delivered dose by up to a factor of 3 (Krol

et al., 1996). Grids also add complexity and cost to the overall manufacturing process

and they are incompatible with most of the current X-ray breast imaging techniques,

such as the majority of Digital Breast Tomosynthesis (DBT) applications (Krol et al.,

1996; Wang et al., 2015; Binst et al., 2015).

Post-acquisition software-based scatter reduction techniques have emerged in the

last years for planar mammography and DBT applications, as a response to the anti-

scatter grid limitations. Most of the available methods work with simplifications of

direct Monte Carlo (MC) simulations, as this approach can be very time consuming and

computational expensive and needs to be case-specific (Dı́az et al., 2012). Alternatives

to full direct MC simulations found in the literature comprise pre-computed libraries

of Scatter-to-Primary ratio (SPR) maps calculated from direct MC simulations (Feng

and Sechopoulos, 2011; Feng et al., 2014; Dı́az et al., 2010), GPU-based fast MC

simulations with tissue-composition ratio estimation techniques (Kim et al., 2015),

scatter normalisation from direct MC simulations using homogeneous phantoms (Diaz et

al., 2019) or convolution-based scatter methods that make use of point-spread functions

(PSF) calculated with simplified MC simulations, obtained by approximating the X-ray

beam to a narrow pencil beam (Boone and Cooper, 2000; Ducote and Molloi, 2010;

Sechopoulos et al., 2007; Dı́az et al., 2012; Marimón et al., 2017).

In this study, the convolution-based scatter field estimation method has been

chosen, as it is one of the most widespread methods and it is faster and less dependent

on the system geometry than direct MC simulations (Sechopoulos et al., 2007; Dı́az et

al., 2012; Binst et al., 2015). Such a method is based on the idea that the scatter in the
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system is spatially diffuse and it can therefore be approximated to a two-dimensional

low-pass convolution filter of the primary image (Ducote and Molloi, 2010). These

2D low pass filters, often referred as scatter kernels or scatter point spread function

(SPSF), are pre-calculated with simplified MC simulations, where the incident beam is

approximated to a narrow pencil beam or a delta function.

The distribution of the SPSFs can be taken as rotationally symmetric (Ahn, Cho,

and Jeon, 2006) or the kernel can be adapted to local variations in object thickness

and attenuation (Wang et al., 2015), i.e. asymmetric SPSFs. It has been seen that

spatially invariant kernels suffer from scatter overestimation, introducing up to 50% of

discrepancies around the breast edge area when compared with pure MC simulations

(Dı́az et al., 2012). Asymmetric kernels can treat the boundary between the object and

the background much better than symmetric kernels. However, this approach introduces

a higher computational constraint and high dependencies with the simulated geometry,

risking the introduction of image artefacts and scatter under or over estimation if the

kernels are not properly computed.

This paper presents an alternative approach, introducing a semi-empirical method

that is less system dependent and, therefore, without the intrinsic complications of the

asymmetric kernels, while adapting to the areas of the breast that are often neglected

in simpler methodologies. This is achieved by an accurate treatment of the background

contribution to the breast edge area, accounting for changes in the materials and,

therefore, in the absorption coefficients. The result is a robust, case-independent and

precise method with the potential to be implemented as a real time technique by using

parallel/ GPU techniques.

2. Methodology

The theory behind the convolution-based scatter estimation method defines the scatter

signal produced in the system as the result of the convolution of the SPSF kernels with

the primary image (Ducote and Molloi, 2010). The input image is the raw mammogram,

either acquired or simulated, formed by a combination of primary and scatter signals:

I(x, y) = P (x, y) + S(x, y), (1)

S(x, y) = P (x, y) ∗ h, (2)

where P (x, y) is the primary image, I(x, y) is the input image containing both primary

and scatter signal, S(x, y) is the scatter image and h is the low-pass filter kernel. The

convolution operator is denoted as ∗.

As the primary image is unknown, the scatter signal can be calculated by

approximating the primary to the input image in the convolution, i.e. defined as the

linear combination of the primary and scattered deposited energies, as suggested first

by Love et al. (Love, 1987).

S∧(x, y) = P (x, y) ∗ h), (3)
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P∧(x, y) = I(x, y) − S∧(x, y), (4)

where the ∧ notation indicates those variables that have been aproximated (Love, 1987).

An accurate definition of the filter is key to accurately predict the scatter image

and, eventually, calculate the primary image, which is our target image. In this study,

the kernels, or SPSF, are obtained with the aid of MC simulations, using a narrow pencil

beam normally incident to a uniform and spatially symmetric geometry. To account for

changes in the geometry, several thickness and area dependent kernels are calculated

and used to convolve different regions of the input image.

The MC simulations needed in this study were performed with the aid of the Geant4

toolkit (version 10.01.p02) (Allison et al., 2006; Feijó Pery and Hoff, 2008). The data

analysis and visualizations were performed with MATLAB, R2013b, and ImageJ, 1.47V.

2.1. Primary Image Recovery

The predicted primary image is the result of subtracting the scatter image from the

acquired uncorrected image, i.e. input image, as described in Equation 4. This work

focuses in presenting a novel methodology, introduced in the following sections, to

estimate the scatter image. The proposed pipeline is shown in the schematic of Figure 1

and described below. To estimate the scatter image, the input image will be segmented

and convolved with a choice of kernels that will account for the changes and non-

homogeneities of the processed image.

The input images used for testing the proposed scatter reduction method are

both simulated and acquired with a mammography X-ray system. To generate the

simulated images, I(x, y), half cone-beam MC simulations are performed using a realistic

mammography geometry and realistic breast phantoms, of different thicknesses and

shapes. In addition to I(x, y), the primary (P (x, y)) and scatter (S(x, y)) images are

also stored to analyse the accuracy of the methodology.

A schematic diagram of the two MC simulation geometries that have been used in

this study, i.e. cone beam and pencil beam is shown in Figure 2. More details of the

geometry are given in Section 3.

2.2. Semi-empirical Method for Scatter Estimation

The chosen scatter estimation process focuses on the idea that the scatter contribution

from different areas of the image can be treated separately and are additive (Boone

et al., 2000). The proposed method consists of estimating the scatter behaviour of

the two distinctive areas of the image, background and breast, using a semi-empirical

modification of the two symmetric kernel approach influenced by the theory behind

the asymmetric kernels (Ahn, Cho, and Jeon, 2006; Wang et al., 2015; Dı́az et al.,

2012). The scatter contribution from each region is estimated individually, accounting

for absorption coefficient variations in the boundaries between both areas and, when

necessary, considering changes in tissue thickness (Boone et al., 2000; Sechopoulos et
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Figure 1: Schematic diagram showing the workflow of the scatter removal method

chosen in this study. The images are depicted as dark rectangles, operations as dashed

circles/ovals, processes as white rectangles and sub-processes as dashed rectangles.The

acquired image is segmented and appropriate kernels are selected for the resulting areas.

The kernels are used to calculate the scatter image which are used for the primary image

recovery.

al., 2007; Seibert and Boone, 2006). All of the scattering occurring outside of the breast

region in the model, e.g. the compression and support paddles, is referred in this study

as background area.

For each of the defined areas, the scatter kernels are estimated independently via

MC simulations. These kernels are used to convolve the clinical image, i.e. I(x, y),

previously segmented using a manual intensity thresholding approach.

The use of one homogeneous thickness-dependent scatter kernel to convolve the

whole image has been reported to introduce large uncertainties in the breast edge area

(Wang et al., 2015; Dı́az et al., 2012). This is partially due to the thinning of the

breast and, principally, to the under-estimation of the background scatter contribution,

which is mainly introduced by the compression paddle and breast support paddle. The

background contribution, frequently neglected, is properly accounted for in the proposed

method as described below.

2.2.1. Scatter kernels for background area. The literature shows that the contribution

of background’s scatter to the projected breast area can be estimated using pencil beam

geometries that simulate the system without the presence of the breast (Sechopoulos
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Figure 2: Schematic diagram of the general geometries followed on the full MC: cone

beam (left) and pencil beam (right) simulations. In all cases, a compression paddle,

support paddle and a direct conversion detector (amorphous Selenium, a-Se) is simulated

as observed in mammography systems, together with the corresponding phantom.

et al., 2007; Dı́az et al., 2014), as shown in Figure 3-a. However, the convolution of

these kernels directly applied to the entire image results in an overestimation of the

scatter in the breast area, as the higher X-ray absorption coefficient of the breast is

not considered. In contrast, an opposite effect can be achieved using a kernel from a

pencil beam hitting the background but surrounded by the object material, as observed

in Figure 3-b. In this case, the scatter signal is absorbed at the rate defined by the

object’s absorption coefficient. This approach under-estimates the scatter if the photon

is scattered far away from the breast edge, but it is accurate when scattered close to the

edge of the object.

The method proposed in this work presents a solution to more accurately estimate

the scattered radiation generated in the background and arriving at the breast

boundaries. This is done by reducing the asymmetric kernel solution to a two-

background symmetric kernel problem: the threshold background area, i.e. non-breast

region, is convolved with the two kernels defined above, i.e. a pencil beam hitting the

background geometry and surrounded by either background (B100B) or breast material

(B0B). The intensity values of the two resulting scatter images, see Equation 3, are then

interpolated to obtain the final background contribution to the breast. A semi-empirical

equation is used to define this interpolation as described below in Equation 10.

In mammography examinations the breast is aligned with the chest-wall (CC

projections). Starting from an image displayed with the chest-wall side in the vertical

direction, the intensity interpolation can be described row by row. Thus for a given

row, n, the intensity profile curves of the predicted scatter images obtained with the

pre-calculated kernels B100B and B0B can be named, respectively, fn(x) and gn(x), where

x is the column variable from the edge of the breast (x = 0) to the chest-wall (x = N,
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(a)
(b)

Figure 3: Proposed geometries to obtain the background scatter kernels. (a) represents

the geometry for the full background geometry (100 %, B100B). (b) is the geometry used

for the 0 % background kernels, B0B.

if N is the breast width at the chosen row). The definition of the equation is based on

the following conditions:

• Condition 1: the predicted scatter values obtained after the convolutions will be in

between the over and under-estimation limits. The intensity profile of a given row

n, tn(x), is assumed to be a linear combination of fn(x) and gn(x):

tn(x) = αn(x)fn(x) + βn(x)gn(x), (5)

where αn(x) and βn(x) are weighting factors that need to be determined.

• Condition 2: the background contribution to the scatter at the edge of the breast

can be predicted by the pure background kernel, i.e. the kernel that is farthest

away from the breast, B100B:

tn(0) = fn(0) : αn(0) = 1, βn(0) = 0 (6)

• Condition 3: the background contribution to the scatter inside the breast, towards

the chest-wall, tends to be the one predicted by the background-breast absorption

kernel, i.e. the kernel that is placed next to the object, B0B:

tn(N) = gn(N) : αn(N) = 0, βn(N) = 1. (7)

Parameters αn(x) and βn(x) decrease and increase respectively with the distance to

the breast edge (x). The intensity profile across the MC simulated breast, from the chest

wall to the breast edge was studied and analysed for a number of simulated phantoms

with different thicknesses. The profile curves of the scatter component, i.e. “ground

truth”, were analysed and it was seen that it is possible to write βn(x) as being directly

proportional to x, while assuming αn(x) to be inversely proportional to the distance led

to scatter under-estimation. Therefore, to account for the experimental data and for

conditions 2 and 3 the parameters can be described as:

αn(x) =
Kα1

(Kα2 + x)
, (8)
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where, constant Kα1 has to be equal or very close to constant Kα2 to ensure that

αn(0) = 1.

βn(x) = Kβx, (9)

where, 1 > Kβ > 0. In particular, Kβ = 1
N

, to ensure that βn(N) = 1.

The constants Kα1 and Kα2 need to be adjusted to represent the entire image

while being consistent across the different mammography geometries and breast shapes,

covering the entire breast thickness range. As described above, the intensity profiles

of the chosen set of scatter images were used as the benchmark. A range of values

for constants Kα1 and Kα2 were analysed against the profiles, the most reproducible

values found that made the weighting factors independent of n were Kα1 = 80 and

Kα2 = Kα1 − 1. Therefore, the equation adopted in this study to estimate the

interpolated scatter signal is:

tn(x) =
80

(79 + x)
fn(x) +

x

N
gn(x). (10)

2.2.2. Scatter Kernels for Breast Area. To estimate the scatter contribution inside

the breast it is important to pay special attention to the area near the breast-edge.

Around this area, the breast reduces its thickness and the photons arrive at the breast

surface with a higher incident angle. Large uncertainties can be introduced if the

scatter estimation model is not carefully chosen, a good model should compensate for

the reduction in the tissue absorption and in the scatter production, and also for the

elongated photon path inside the breast.

It has been found experimentally that the effects that these variables produce, i.e.

reduction in thickness and higher incident angle, balance each other if the compressed

breast is thin (T ≤ 50 mm). In this case, only one kernel of constant thickness is needed

to estimate the scatter produced in the breast. As shown in the results in Section 4.1,

the maximum scatter signal uncertainty introduced for a 50 mm compressed breast,

when compared against a full MC simulation, is ≈ 5 % . This value is reduced further

as the thickness decreases.

As the breast phantom becomes thicker (T > 50 mm), the error introduced by a

constant thickness kernel increases significantly, resulting in relative difference values of

20 % for 70 mm breast thickness. In consequence, additional kernels and corrections

need to be introduced to compensate for the loss of accuracy.

The method followed to correct for the thickness difference around the edge of

the breast is based in the same principle used for the background estimation. For

applying the correction, the breast needs to be separated into an inner and outer area, i.e.

constant and non-constant thickness regions. This is achieved by manually thresholding

the image where the thickness starts to decrease, differentiated in the image by an

abrupt change in the intensity values. The scatter in each area can be split into the

scatter produced in the area itself plus the one arriving from the neighbouring area.

As the outer breast area does not have a constant thickness, an additional

approximation is needed to empirically calculate an equivalent thickness that represents
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Table 1: Geometry parameters of the mammography system used in this study.

Hologic Lorad Selenia

Simulation Parameters Thick. (mm) Material

X-ray tube: Anode Tungsten

X-ray tube: Filter 0.06 Rh or Ag

SID(*) 660 Rh or Ag (70µm)

Geometry (FOV = 340x340 mm) Compression paddle 2.54 Polycarbonate

Support paddle 2.54 Carbon fibre

Air gap 17.46 Air

Detector cover Private info. Carbon fibre

Detector air gap Private info. Air

Detector sensor 200 µm a-Se

(*)SID = Source to imager distance

the whole edge area. A 20 % thickness reduction was found to give the best results,

while being reproducible across different phantom thicknesses.

The scatter signal produced by the breast edge can be estimated from the

combination of the scatter level of the inner region to the scatter arriving on the edge of

the breast, obtained using a kernel with the beam hitting the maximum thickness but

surrounded by the smaller thickness that the beam will encounter.

3. Geometries and experimental set-up

The performance and robustness of the scatter reduction method proposed in this paper

was tested using both MC simulated images and real images acquired with an Hologic

Selenia amorphous selenium (a-Se) mammography system hosted at Barts NHS trust

(London). For the former case, the same clinical a-Se mammography system parameters

were used for the simulations. Additionally, realistically shaped breast phantoms were

simulated to calculate the images recorded in the receptor (I), as well as the primary

(P ) and scatter (S) images independently. For the latter case, clinical images of a

010A CIRS phantom were acquired with and without the use of anti-scatter grids. The

performance of the proposed scatter reduction method was evaluated by comparing the

post-processed grid-less images against the grid images.

The subsections below describe the geometries of both sets of experiments and the

validations performed to ensure that the Geant4 simulations are in line with previously

published data.

3.1. Hologic Lorad Selenia mammography system

The mammography system used both in the simulations and in the clinical exercise

made use of an Hologic Lorad Selenia with an a-Se flat panel detector (Hologic, Inc;

Bedford, Massachusetts, USA). The system parameters are defined in Table 1.
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3.2. Monte Carlo Geometry

For the Monte Carlo geometry, two simulation geometries were used: cone and pencil

beam. A schematic of these two geometries can be seen in Figure 2. Synthetic breast

phantoms of realistic shape and dimension were used in the cone beam MC simulations.

Such phantoms were inspired in the study published by Rodŕıguez-Ruiz et al. based

in mathematical breast modelling (Rodŕıguez-Ruiz, Agasthya, and Sechopoulos, 2017)

where, given a thickness and a glandularity, the shape and dimension of the compressed

breast is characterized and modelled. This shape information was used to simulate the

compressed breast in Geant4, as shown in phantom Figure 4-a.

Four different phantom thicknesses have been tested to validate and study the

robustness of the proposed method. The values chosen were 35, 50, 60 and 70 mm and

cover the most representative range of thicknesses around the mean value, estimated to

be 52 mm (Boone et al., 2000). The composition of the breast, defined as described

by Hammerstein et al. (Hammerstein et al., 1979), was chosen to be 30 % glandular

and 70 % adipose tissue with a 2 mm thick layer of skin. Previous studies indicate that

variations on the composition have negligible impact on the scatter to primary ratio

(Boone et al., 2000; Dı́az et al., 2012), so the glandular-adipose ratio was kept constant

across all thicknesses evaluated. Moreover, the 30-70 ratio was chosen to minimise

the uncertainty introduced with this approximation, as this value is a more common

breast composition than the most commonly used 50-50, as described by Yaffe, Boone

et al. in “The myth of the 50-50 breast” (Nelson et al., 2008; Yaffe et al., 2009).

The breast model was aligned with the chest wall plane in the cone beam simulation

case, while a cylindrical-shaped phantom centred with the beam was used in the pencil

beam methodology (see Figure 2). For simplification, the compression paddles were

approximated to rigid and non-tilted paddles (Dı́az et al., 2017). Refer to Table 1 for

dimensions and compositions.

To gain statistics, for the pencil beam MC method, a total of 20 simulations of 109

particles were run, to ensure a standard error of the mean lower than 1 %. In the case

cone beam MC method, 80 simulations of 109 particles were run for the input images.

In addition, the pixel size of the images was increased from 70 µm to 560 µm, resulting

in a 501 x 501 pixels (280 x 280 mm) kernel that was used to convolve a 650 x 650 pixels

(364 x 364 mm) image. The computational time of the MC simulations was 5 and

10 hours respectively, with the aid of a 48-core computer server. However, once the

kernels are calculated and stored in a look up table, the execution time will be reduced

to a simple image convolution analysis.

Two sets of validations have been performed to ensure that the Geant4 simulations

were accurate. The values given in the report of the American Association of Physicists

in Medicine (AAPM) task group 195, case 3 – Mammography and breast tomosynthesis

(AAPM, 2015; Sechopoulos et al., 2015) and the data published by Diaz et al. (Dı́az

et al., 2014) and Sechopoulos et al. (Sechopoulos et al., 2007) were used as a benchmark

to ensure that both the geometry and the kernels (SPSF) were simulated correctly.
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(a)
(b)

Figure 4: Illustration of the two phantoms used in this study. Figure (a) shows the

Geant4 simulated breast phantom based in Rodŕıguez-Ruiz methodology (Rodŕıguez-

Ruiz, Agasthya, and Sechopoulos, 2017). Figure (b) shows the 010A CIRS phantom

with the testers (highlighted in yellow) used in the clinical analysis.

Table 2: Dimensions of the simulated breast phantoms. All the phantoms were composed

of 30 % glandular - 70 % adipose tissue. The body was not included in the simulations.

T(mm) t4(mm) r1(mm) r4(mm) r6(mm)

35 18.3 64.7 71.7 65.3

50 20.0 80.0 97.0 86.0

60 25.3 94.7 112.0 104.3

70 25.0 100.0 133.0 122.0

The results obtained show excellent agreement with the previously published data.

The validation against the AAPM report gives an average discrepancy lower than 1 %

while the validation of the SPSFs shape leads to discrepancies lower than 3 % when

compared against Sechopoulos (Sechopoulos et al., 2015) and 4 % against Dı́az (Dı́az

et al., 2014). More details of the validation can be found in a previous publication of

these authors (Marimón et al., 2016; Marimón et al., 2017).

3.3. Clinical images with the 010A CIRS phantom

The chosen 010A CIRS antropomorphic breast phantom simulates the shape of a

compressed 50 mm thick breast composed by a 5 mm thick skin, i.e. adipose

tissue-equivalent layer, that surrounds a 40 mm thick block made of 30 % / 70 %

glandular/adipose equivalent tissue. The phantom contains a set of test objects that

simulate calcifications, fibrous ducts, tumour masses, see Table 3 and Figure 4 for more

information.

The Hologic Lorad Selenia system at Barts NHS trust was used to acquire images



A semi-empirical model for scatter field reduction in digital mammography 12

Table 3: Information of the composition and size of the CIRS testers used in this study:

Step wedge, circular details and calcifications testers.

Tester Detail no. Composition Size (mm)

Step wedge 1 to 5 Glandular (%): N/A

0, 30, 50, 70, 100

Circular 1 to 7 55% glandular 1: 4.76, 2: 3.16, 3: 2.38, 4: 1.98,

details 45% adipose 5: 1.59, 6: 1.19, 7: 0.90

1: 0.130, 2: 0.165, 3: 0.196,

Calcifications 1 to 12 N/A 4: 0.230, 5: 0.275, 6: 0.400,

7: 0.230, 8: 0.196, 9: 0.165,

10: 0.230, 11: 0.196, 12: 0.165

of the CIRS phantom with and without the use of the anti-scatter grid at two different

doses, selected by the system’s AEC when the grid was in place (AEC wG) and removed

(AEC w/oG).

The geometry of the mammography system was simulated in Geant4 with and

without the presence of the phantom to obtain the scatter kernels, phantom and

background respectively. The phantom was approximated to a homogeneous object

surrounded by the skin, the testers were not taken into account to allow a fair evaluation

of the model when comparing the results against the grid image (“ground truth”). The

pixel size of the detector was kept at its real size, i.e. 70 µm.

4. Results and Discussion

4.1. Performance comparison with Monte Carlo Simulated Images

The four breast thicknesses under examination comprise the analysis of two thin and

two thick phantoms, described in section 3.2. A total of three kernels, i.e. one breast

phantom kernel and two background kernels, were used to calculate the scatter of the

thinner phantoms, while five were needed for the thicker cases, as explained in section

2.2.

The primary images predicted in this study (PPredicted) have been compared with

the benchmark images (PBenchmark), i.e. full MC simulated primary images. The results

shown in this section present the relative difference from this comparison, calculated

following Equation 11.

Rel.Diff.(x, y) = 100
PBenchmark(x, y) − PPredicted(x, y)

PBenchmark(x, y)
(11)

The results obtained are shown in Figures 5 and 6 and Table 4. Figure 5 shows the

relative difference, Equation 11, for each of the breast phantom studied. Only the pixels

belonging to the projected breast phantom area were analysed, since the background

does not have any clinical relevance. In the plots, the positive values (green/ red)
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correspond to the pixels where the scatter signal is overestimated, whereas negative

values (blues) represent under-estimation of the method, with respect to the “ground

truth” (full cone beam simulations).

Figure 5: False-colour-coded relative differences (in %) between the predicted primary

image and the benchmark image (full cone-beam MC simulations) obtained for the four

compressed breast thicknesses studied. From left to right: 35, 50, 60 and 70 mm thick.

In order to facilitate the visualization, Figure 6 illustrates the distribution of the

relative differences, i.e. histograms.

Figure 6: Histograms showing the distribution of the relative difference images depicted

in Figure 5, for the four thicknesses investigated in this study. From left to right: 35,

50, 60 and 70 mm thick, respectively

Table 4 depicts the area percentage of the images with absolute relative differences

equal or less than various error thresholds, i.e. 2.5 %, 5 %, 7.5 % and 10 %. The mean

relative difference and the standard deviation are also included, the negative values

shown in the mean relative difference column indicate scatter under-estimation.

The results show a worst-case scenario of 10 % relative difference between the

predicted primary image and the full MC (“ground truth”) for the thicker phantoms.

However, the photon fluctuations of the full MC images have not been taken into

consideration. Even with the use of 80 x 109 particles and the increases pixel size,
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Table 4: For each breast thickness, the table shows the fractional area of the phantom

which satisfies the criterion of absolute relative difference values (between the MC

“ground truth” and scatter corrected primary images) lower or equal to the specified

error thresholds (2.5, 5, 7.5 and 10 %). In addition, the last two columns show the mean

relative difference and the standard deviation.

Thickness Fractional area of breast (%) with Mean Rel. STD

(mm) max. relative difference (abs.): Diff (%) (%)

≤ 2.5 % ≤ 5.0 % ≤ 7.5 % ≤ 10.0 %

35 96 100 100 100 -0.3 1.2

50 77 99 100 100 0.3 2.0

60 53 86 98 100 1.3 3.1

70 56 86 98 100 -0.4 3.3

the fluctuations introduce from 1.5 to 5 % uncertainty for breast thicknesses of 35 to

70 mm, respectively. When accounting for this fluctuation, the values shown in Table 4

change to maximum relative differences of 5 % for 35 and 50 mm breast thicknesses

and 7.5 % for 60 and 70 mm thicknesses. The results obtained are very promising and

further improvements could be obtained by introducing extra kernels in the correction

and a more complex segmentation method.

The relative differences in the plots show over and under-estimation fluctuations

around the ideal case (0 value). The image non-homogeneities seen in Figure 5 are a

consequence of the empirical contribution of the model defined by Equation 10 used in

the curve fitting approach, where the scatter across the image is simplified to a function

dependent on the distance. Similarly, the non-homogeneity of the relative difference

distribution seen in Figure 6 for the two thickest phantoms is a consequence of the

additional kernels used to account for the phantom thickness.

The results obtained, with a worst-case scenario of 7.5 % of uncertainty, indicate

a good performance predicting the scatter radiation. To challenge the model further,

its performance has been also tested with non-simulated images. Phantom images were

acquired with a clinical mammography system with and without the presence of the

system’s anti-scatter grid to evaluate the ability of the model against the benchmark

solution.

4.2. Performance comparison with 010A CIRS phantom

The evaluation of the uniform step wedge and the circular details testers was done by

calculating the Contrast to Noise Ratio (CNR), see Equation 12. The circular details

tester was analysed with the use of the variance ratio (Equation 13), as the CNR analysis

introduced big fluctuations that lead to unreliable results.

CNR =
x̄D − x̄Bckg
σBckg

(12)
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where, x̄D = mean pixel value of the detail ROI, x̄Bckg = mean pixel value of the

background ROI and σBckg = standard deviation of the background ROI.

VarianceRatio =
σ2
D

σ2
Bckg

(13)

where, σ2
D = variance of the detail ROI and σBckg2 = variance of the background ROI.

To gain statistics, the measurements were repeated between three to six times,

depending on the tester, using different areas of the testers. The standard deviation of

these measurements was used to estimate the error and a Student’s T-test was performed

to study the statistical significance of the grid vs. processed grid-less comparison. The

null hypothesis considered was the no differentiation of the measurements and a 5%

significance level was chosen.

4.2.1. Uniform step wedge tester The results obtained are shown in Table 5 and

Figure 7.

Table 5: The table gives the values of the CNR for the different steps of the step wedge

tester, for the grid and processed grid-less images acquired at two different doses. The

standard deviation of the three measurements is stated inside the brackets σ.

CNR - Step wedge tester

AEC with grid AEC without grid

Step no. Grid (σ) Proc. (σ) Grid (σ) Proc. (σ)

1 3.66 (0.02) 3.01 (0.09) 2.69 (0.01) 2.19 (0.01)

2 0.06 (0.01) -0.24 (0.08) 0.08 (0.01) -0.17 (0.01)

3 -2.32 (0.01) -2.49 (0.08) -1.70 (0.01) -1.72 (0.01)

4 -4.71 (0.02) -5.10 (0.10) -3.45 (0.01) -3.68 (0.01)

5 -8.56 (0.03) -8.86 (0.08) -6.27 (0.03) -6.50 (0.04)

Step number 1 has higher percentage of adipose tissue than the background and

thus is an area with more scattering and absorption and higher signal when compared to

the background reference area (positive CNR values). For this step, the grid performs

better as the model does not reproduce the total amount of scattering, leading to smaller

CNR values. When the proportion of glandular tissue increases, step numbers 3 to 5, the

process is inverted (negative CNR values). For these cases the proposed model performs

better than the grid. Finally, step number 2 has the same percentage of adipose tissue

than the phantom background. In this case the expected CNR is zero, so the grid gives

a more accurate reading. This is likely related to the difference in scattering that arrives

from the neighbouring testers.

The results obtained are the average of three measurements. They are reproducible

at both energies and the comparison is statistically significant with p-values below the

chosen 5%.
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Figure 7: Bar plot of the CNR results of Table 5 comparing the grid and processed

grid-less images for data acquired at higher dose (left) and lower dose (right). The error

bars show the standard deviation of the three measurements taken per tester σ.

Table 6: The table gives the values of the CNR for the different details of the circular

detail tester, for the grid and processed grid-less images acquired at two different doses.

The standard deviation of the three measurements is stated inside the brackets σ.

CNR - Circular detail tester

AEC with grid AEC without grid

Detail no. Grid (σ) Proc. (σ) Grid (σ) Proc. (σ)

1 -2.64 (0.09) -2.69 (0.03) -1.96 (0.04) -1.90 (0.04)

2 -1.62 (0.04) -1.41 (0.01) -1.16 (0.03) -1.16 (0.03)

3 -0.77 (0.01) -0.62 (0.01) -0.60 (0.01) -0.69 (0.01)

4 -0.47 (0.03) -0.59 (0.06) -0.36 (0.02) -0.72 (0.02)

5 -0.29 (0.03) -0.77 (0.02) -0.30 (0.03) -1.11 (0.01)

6 -0.10 (0.05) -0.64 (0.03) 0.02 (0.04) -1.30 (0.06)

7 0.43 (0.01) -0.40 (0.04) 0.15 (0.03) -1.25 (0.02)

4.2.2. Circular details tester The results obtained are shown in Table 6 and Figure 8.

The CNR values of the biggest details, numbers 1 to 3, oscillate between the grid

and the processed grid-less images and two of the comparisons are not statistically

significant. For the bigger and more difficult to detect details, the processed grid-less

image performs better for both doses. However, the results obtained with the two

last details (numbers 6 and 7) are unrealistically high in the processed image. These

details are placed closer to the edge of the phantom where the non-uniformity increases,

reducing the precision of the CNR measurements.

The results obtained are the average of three measurements. They are reproducible

at both energies and the comparison, except in two cases, is statistically significant with

p-values below the chosen 5%.
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Figure 8: Bar plot of the CNR results of Table 6 comparing the grid and processed

grid-less images for data acquired at higher dose (left) and lower dose (right). The error

bars show the standard deviation of the three measurements taken per tester σ.

4.2.3. Microcalcifications tester The results obtained are shown in Table 7 and

Figure 9.

Table 7: The table gives the values of the variance ratio for the different details of the

calcifications tester, for the grid and processed grid-less images acquired at two different

doses. The measurements have been repeated six times, for each of the calcifications

contained in the details; the standard deviation of the six measurements is stated inside

the brackets σ.

Variance ratio - Microcalcifications teste

AEC with grid AEC without grid

Detail no. Grid (σ) Proc. (σ) Grid (σ) Proc. (σ)

1 Not visible

2 2.38 (0.38) 2.34 (0.42) 1.89 (0.32) 1.78 (0.33)

3 3.40 (0.36) 3.47 (0.25) 2.05 (0.35) 1.91 (0.34)

4 5.82 (2.19) 5.53 (2.25) 3.59 (1.50) 3.57 (1.16)

5 10.51 (1.98) 10.25 (1.93) 6.04 (1.32) 5.67 (1.13)

6 18.77 (5.03) 18.23 (4.89) 10.99 (2.63) 9.94 (2.59)

7 5.66 (1.43) 5.73 (1.33) 3.61 (0.89) 3.32 (0.80)

8 3.26 (0.47) 3.28 (0.55) 2.32 (0.50) 1.97 (0.29)

9 1.84 (0.54) 1.83 (0.52) 1.54 (0.41) 1.32 (0.29)

10 4.10 (1.57) 4.25 (1.28) 2.88 (0.67) 2.69 (0.73)

11 3.02 (0.64) 3.14 (0.86) 2.28 (0.32) 2.15 (0.55)

12 2.08 (0.52) 2.00 (0.56) 1.66 (0.39) 1.36 (0.30)

At the higher dose, i.e. AEC with grid, the higher variance ratio fluctuates between

both images independently of the size of the microparticles. The p-values indicate that
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Figure 9: Bar plot of the CNR results of Table 7comparing the grid and processed grid-

less images for data acquired at higher dose (left) and lower dose (right). The error bars

show the standard deviation of the six measurements taken per tester σ.

the differences are not statistically significant. The performance at lower doses lean in

favour of the grid images, although both results are within the measurements error. The

higher background noise of the processed images affect the variance ratio evaluation as

the detection of the microcalcifications is noise limited.

The results obtained are the average of six measurements, one per each dot of the

same thickness in the tester.

5. Conclusions

Scatter estimation is one of the main ongoing research areas in X-ray mammography.

This study focuses on convolution-based methodologies to simulate the scatter and

predict a primary, scatter-free image, enabling the acquisition of high-quality images

without the use of anti-scatter grids.

The focus of this study is to find a simple and working approach that does

not trade off the removal of the anti-scatter grid for the quality of the final image.

Taking into consideration that the scatter signal is additive, the background and breast

phantom contributions were analysed separately, accounting for the change in absorption

coefficients between material boundaries. With this approach, it was found that it is

possible to estimate the background scatter with only two separate kernels, while the

breast needs 1 to 3 kernels depending on the thickness of the breast / object. This

method benefits from the simplicity and speed of the symmetric kernel approach, as the

kernels can be pre-computed in a database instead of having to be simulated in a case

to case basis, but without compromising the accuracy of the scatter estimation in the

breast edge.

Four breast thickness and shapes were tested against full MC simulations
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(benchmark values or “ground truth”). The results show very good matches, especially

for thin breast phantoms. The maximum uncertainty found was for the 60 and 70 mm

thick breast phantoms and this did not exceed 7.5 %.

In addition to the MC simulations, the method was also tested with non-simulated

images acquired with an a-Se clinical mammography system. Images of the 010A CIRS

phantom were acquired with and without anti-scatter grid. The performance of the

method was therefore evaluated against the current benchmark by analysing the quality

of the processed grid-less and grid images making use of the testers embedded in the

phantom. In the analysis it was seen that the method performs similarly to the anti-

scatter grid, the scores oscillate between the two solutions studied.

The results obtained with the MC simulations and the clinical study are both very

positive. This preliminary study shows that it would be possible to use the presented

anti-scatter method as an alternative to anti-scatter grids without compromising the

quality of the final image.

Future work should focus on testing further the robustness of the method in a

clinical environment making use of additional mammography phantoms, performing a

one to one comparison between the processed grid-less images and the grid images.

One of the limitations of the current study is that it has been proven only for CC

projections, the method should also be extended to include the pectoral muscle in the

mediolateral oblique (MLO) projection, tested against less common breast shapes, such

as mammograms of breasts that have already undergone surgery and extended to include

DBT systems. Further work should also include research in the optimization of the

model to speed up the analysis by improving further the convolution step and creating

kernel reference databases.
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