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Abstract

Motion data has been extensively used in the computer animation indus-

try, feature films, pedestrian tracking, and surveillance. The capacity to

understand and predict humans’ future movements is much sought-after,

for it would have a range of practical applications in fields such as au-

tonomous vehicles and interactive robotics. The complicated constraints

of the human body and its high-dimensional dynamics, however, mean

that human motion prediction is extremely challenging.

A growing body of approaches are being used to develop various mod-

els for motion prediction. Traditional methods, such as Boltzmann ma-

chine and Markov chains, proposed possibility models for predicting the

sequences of human movement. Furthermore, deep-learning models are

introduced and most of them treat motion prediction in similar ways

to machine translation problems. However, recent deep learning ap-

proaches adopted RNN, CNN, or Fully Connected Networks to learn

motion features that do not fully exploit the hierarchical structure of

human anatomy. Existing models suffer from the mean pose problem,

and oversmoothing problem. Mean pose problem is the models prone to

produce the fix pose for a time period. The oversmoothing problem is

spefic exist in the graph neural network models for motion prediction.

It means that when the neural network goes deeper, the feature learned

from network are not distinguished anymore.

In this PhD research, these problems are pursued and two new models

for motion prediction are proposed. These models are state-of-the-art:

not only are they highly efficient in computation and memory, but they

produce realistic motion visualizations too. The first model used the

hierarchical structure of human body to reduce the parameter size sig-

nificantly. The second model introduced a densely connected GCN model

to reduce the oversmoothing problem.

To be more specific, a convolutional hierarchical autoencoder model

for motion prediction is proposed. Its novel encoder incorporates 1D con-

volutional layers and hierarchical topology. The new network is smaller

and faster than existing deep-learning models. The qualitative and quan-
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titative results show that these models outperform state-of-the-art meth-

ods in both short-term and long-term prediction.

Following the recent success of graph neural network, an advanced

GCN based framework for motion prediction is proposed which connects

all the GCN blocks directly. Therefore, the output feature of each GCN

block skips the middle layers and jumps to the final layers. Compared

to the existing GCN model for motion prediction, this model requires

almost the same level of parameters. But it significantly enlarged the

feature maps utilization and increased the impact of earlier layers’ feature

map. Moreover, this densely connected structure makes the model for

motion prediction easier to train and able to go deeper.

All these models are evaluated by conducting extensive comparison

experiments on the standard benchmarks for motion prediction, which

are Human3.6M and the CMU. The performance evaluated from both the

angle and 3D position aspects, demonstrated these models’ superiority

over the state-of-the-art works.
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Chapter 1

Introduction

1.1 Background

Motion prediction is a crucial task for animation production, which aims

to forecast humans’ future movements based on input sequences. The

question of how to predict motion is one of the most important contem-

porary research problems which also has applications in many different

areas such as Interactive Robotics, Autonomous Vehicle, Surveillance

and Animation Generation (described in the followings).

There are four main areas in which motion prediction can be applied:

1. Interactive Robotics. Robots that interact with humans and

virtual characters in computer games are supposed not only to

respond to opponents’ movements, but also be able to predict and

pre-empt future movements. To give an example from adversarial

sports, such as badminton and fencing, or collaborative scenarios,

such as paired figure skating and Waltz dancing. In these fields, an

intelligent agent is expected to anticipate human athletes’ actions

accurately and rapidly using historical data [Gui et al. [2018b],

Pérez-D’Arpino & Shah [2016]].

2. Autonomous Vehicle. Research into autonomous vehicles has

attracted tremendous attention in both academia and industry,

due to its large potential commercial benefits. One of the essential
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challenges in this area is that autonomous vehicles must be able to

predict pedestrians’ impending movements on the road. Through

this capacity, they will be able to take advance actions to avoid traf-

fic accidents. An effective motion prediction algorithm is therefore

necessary for autonomous vehicle systems [Liang et al. [2019]].

3. Surveillance. Visual surveillance systems are usually installed in

public areas or individual houses to track targets’ behaviour. They

can be used, for example, to detect abnormal behaviour, manage

crowds, and ensure public security. Motion prediction techniques

can contribute to fulfilling these goals by providing an enhanced

capacity for understanding human behaviour with stationary cam-

eras [Ristic et al. [2008] Golda et al. [2019]].

4. Animation Generation. In animated productions, the anima-

tors create gesticulations for virtual characters, such that they

move like human beings. Traditionally, motion sequences are gener-

ated by interpolating keyframes or recording the actions of human

beings. Lots of contemporary films that feature visual effects apply

motion data generated indoors, such as The Avengers, Avatar, and

Doctor Strange, etc. However, these methods require expensive

equipment and intense manual effort. Motion prediction technol-

ogy, in contrast, can be used in tools that animate motions auto-

matically. For example, the user can simply draw a route that a

given visual character is to take and the tool will generate running

or walking movements automatically [Holden et al. [2016];Holden

et al. [2017]]. This new technique saves a great deal of time and

labour for the animation industry.

In a conclusion, motion prediction techniques have broad impacts and

applications. What is more, these techniques are pivotal to understand-

ing and reusing MoCap data. MoCap data is widely used in visual effects

and athletic training (Böhm et al. [2001] Huang et al. [2012] Feng et al.

[2014] and Xiao et al. [2015]). Given the great commercial benefits of

MoCap data, and the growth of feature films and animations, demand for

motion data has increased. Hence, understanding motion data is crucial
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Figure 1.1: Global 3D Motion Capture System Market Research Report -
Global Forecast 2023. Please refer to Web [2020]

for both academia and industry. Existing data suggests that the motion

market will continue expanding as it allows artists and other users to

capture and model diverse motions conveniently ( Figure 1.1).

Human beings can forecast human motion as part of their natural

intelligence. It remains challenging, however, because human motion

data is high dimensional and is subject to bio-mechanical constraints.

The task of motion prediction is extremely challenging, for it involves

techniques for representing, analysing, and generating motion. Existing

models suffer from the mean pose and oversmoothing problems. Demand

for an efficient and effective motion prediction algorithm is increasing day

by day, along with the development of artificial intelligence systems. It is

imperative, therefore, that researchers develop an effective and efficient

motion prediction method, which produces realistic and high-fidelity mo-

tion sequences. This is the key motivation behind this PhD research.

1.2 Main Challenges

Although existing approaches have taken a painstaking effort to address

the motion prediction problem, thus far they have had limited success.

This is because motion prediction is a very challenging problem. The

main challenges are as follows (CL refer to Challenge):

CL1: Efficiency Since the amount of motion data is increasing

rapidly, existing motion modelling methods require a huge amount
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of memory. The existing motion prediction methods are not fast

enough to meet industry requirements. For the most part, ex-

isting methods are based on RNNs or Fully Connected Networks

(FCNs), which are hard to train because the models converge very

slowly. Moreover, large models and parameters that run into the

millions are costly, requiring significant computational and memory

resources.

CL2: Temporal Spatial information modelling Motion data

contains both temporal and spatial information. Therefore, the

motion models that either treat motion data as images or lan-

guage do not exploit the temporal as well as spatial dependencies,

nor the ways in which temporal and spatial data interact. Un-

like images and language, motion data has a distinct hierarchical

spatial structure, as well as unique temporal relationships.

CL3: Complex human body constraints modelling Motion

data is captured from real human beings, allowing for realistic

motion data that adheres closely to body and sports mechanics.

Although humans can intuitively recognise these constraints, com-

puters struggle to define and understand them precisely, due to the

complex scenarios in question.

CL4: Oversmoothing problem Recently, researchers have pro-

posed Graph Neural Networks (GNNs) for motion prediction. As

the Graph Convolutional Network (GCN) layers go deeper, the dis-

tinctiveness of the graph’s node features diminishes. This is usually

called the oversmoothing problem.

CL5: Generalization Predicting a single type of action is much

easier than predicting multiple types because the model can more

readily learn the hidden rules. However, in practice, human actions

are diverse in types. Multiple forms of motion data significantly

increase the complexity involved in prediction. It is therefore both

necessary and challenging that researchers build a single model

that can be generalised for all kinds of actions.
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1.3 Research Aims

The aim of this research is to explore a motion modelling method that

addresses the aforementioned challenges to understand and predict mo-

tions. This research will model motion sequences in a novel way, offering

a more effective and efficient solution for motion prediction. This the-

sis explores new ways to model the spatial-temporal characteristics of

motion data. To validate the performance of the proposed methods,

this thesis presents qualitative and quantitative experiments. Accord-

ingly, this research will benefit the animation industry and research on

motion.

1.4 Research Objectives

To achieve the aim set out above, this thesis pursues the objectives out-

lined below (OBJ refers to Objective):

OBJ1: Literature Review Review current approaches to motion

classification, retrieval, prediction, and refinement; identify the lim-

itations and challenges of existing motion modelling methods, and

review state-of-art deep learning methods, especially research on

spatial-temporal modelling.

OBJ2: Motion Modelling Propose an effective and efficient

motion modelling method, which can represent motion sequence

information and improve the accuracy of motion prediction.

OBJ3: Improve the efficiency of the Motion Prediction

Model Develop a motion prediction model that is more efficient

than the existing model from both perspectives of time and memory

consumption and can generate accurate results at the same time.

OBJ4: Alleviate the oversmoothing problem Deeply investi-

gate the existing oversmoothing problem and tackle this challenge

by exploring a new motion prediction model and preserve the pre-

diction performance at the same time.

OBJ5: Analyse Each Components and Strategies of Model
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To validate the proposed idea and understand the problems this

PhD research face in more depth, ablation studies have been con-

ducted. In this way, we sought to determine the impact of the

model’s components and parameters and the contribution made

by each of its parts. Accordingly, this thesis establishes a clear

understanding of how the model works.

OBJ6: Model evaluation and results visualization Conduct

experiments to investigate the proposed model and evaluate their

effectiveness and limitations.

1.5 Contributions

The key contributions from this PhD research are the following:

1. To address motion prediction problems and outperform the pre-

vious state-of-the-art methods, a new Convolutional Hierarchical

Autoencoder (CHA) model is proposed. This model is significantly

more efficient than the CNN model. It generates high-fidelity mo-

tion sequences for both short-term and long-term prediction using

the CMU and H3.6M datasets. Being mindful of motion data’s

characteristics, 1D convolutional layers are incorporated with hier-

archical structures to exploit the the human body constrains.

2. A new Densely GCN-based model is proposed so as to address the

problem of motion prediction. This model reuses the multi-scale

feature maps from every block to enlarge the receptive field and

reduce the overfitting problem.

3. Extensive comparison experiments have been conducted on the

standard benchmarks for motion prediction: Human3.6M and the

CMU motion capture dataset. Having been evaluated with regard

to both angle and 3D position, the model surpasses the state-of-

the-art performance on all datasets.
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1.6 Structure of Thesis

This thesis is organised into five chapters. The relationship between each

chapter and the research questions and objectives are as follows:

• Chapter 2 presents a literature review. This chapter has four parts

relating to motion data, motion features, motion prediction meth-

ods, and related deep learning methods. In the first section, a

detailed description of motion data is put forward and recent pub-

lic motion datasets are presented. The second section discusses

how existing approaches conduct motion feature engineering by re-

viewing research on motion recognition, retrieval, and synthesis.

The third section reviews previous approaches to the motion pre-

diction problem and outlines their limitations. Finally, relevant

deep learning methods are summarised. This chapter developed a

range of insights that feed into this research. Therefore, objective

1 has been addressed in this chapter.

• In Chapter 3, a new framework is described, which is able to predict

motion efficiently. This is unlike existing frameworks, which bor-

row ideas from RNNs and CNN structures. This new framework

has a network architecture that has been specifically designed for

motion data. In this chapter, objectives 2, 3, 5 and 6 are achieved

and contributions 1 and 3 are presented. This chapter also ad-

dresses challenge 1, 2, and 3 by elaborating a hierarchical structure

and incorporating 1D convolutional operations. What is more, it

presents details relating to the CHA.

• In Chapter 4, a densely connected GCN model is introduced. The

chapter fulfils objectives 2, 4 and 6 by designing a GNN to address

the motion prediction problem. It is able to do this because the

human body itself is an intuitive natural graph. This framework

is related to contribution 2. The chapter addresses challenge 4

by introducing a dense link for the motion prediction framework.

The related ablation and comparative studies of the heavily bench-

marked datasets demonstrate that this model addresses challenge

5 as well. The chapter discusses and evaluates the model.
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• Chapter 5 presents ideas about the future ideas so as to improve the

research. The assessment of future work that is to be undertaken

consists of the following: 1. The long term error accumulation

problem is considered. A Cycle Strategy Motion Prediction Model

(CSMPM) will be designed to address this challenging problem so

that the performance of motion prediction can be lifted. 2. The

multi-possible future of human motion prediction is considered and

exploited deeper. The latent vector in this framework will be delved

to find an interpretable representation. 3. The oversmoothing

problem of the existing framework will be further pursued. A new

network structure will be proposed in the future to enhance the

feature map utilization. 4. Explore a better loss function rather

than the existing 3D coordinate loss function and Euler Angle loss

function. New loss functions will be designed to minimize the visual

difference and numerical errors at the same time.
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Chapter 2

Literature Review

This chapter reviews motion-related literature that bears upon four themes.

First, existing work on motion data and MoCap systems are introduced,

presenting widely used motion datasets. In this PhD research, evalu-

ations based on these datasets have been conducted. Usually, motion

prediction includes three steps: motion feature engineering, future pre-

diction, and the synthesis of future motion sequences. Therefore, the

current work related to motion feature engineering are reviewed, such as

motion recognition and retrieval, in section 2. This section summarises

approaches to motion synthesis. Then, in section 3, existing models for

motion prediction and their limitations are discussed. Finally, we re-

view recent deep learning methods in section 4, so as to inspire motion

prediction research.

2.1 Motion Data

In computer vision, human motion capture was defined as “the process

of capturing the large scale body movements of a subject at some res-

olution.” (Moeslund & Granum [2001]). Motion data is widely used in

academia and various industries for the purposes of robotics, education,

and filmmaking. The human motion data used for this PhD research

work is a sequence of 3D skeletons poses, as presented in Figure 2.1.

The 3D human skeletons always have a hierarchical structure.
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Figure 2.1: The Motion Data Example: a ballet action. Here, a stick figure
performs a ballet dance in the window.
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2.1.1 3D skeletal data

MoCap data is usually provided in three formats: depth images, RGB

images, and 3D skeletons. A lot of 3D human skeleton MoCap databases

have been released to the public. Given their convenience, robustness,

and realtime performance, these have been widely used in researches.

This report focuses on studies of skeleton-based MoCap data. 3D skele-

tal data usually derives from two sources: it is either captured directly

using equipment or reconstructed from images/videos by means of com-

putational methods. The following sections summarise these two ways

of acquiring 3D human skeletal data.

Capturing by Special Equipment

Skeletal data can be directly obtained using equipment such as Kinect

v1/v2, PrimeSensor. Three main types of equipment are used to detect

the position of joints and movement, as well as record 3D skeletal data.

These are motion capture systems, structured-light cameras, and time-

of-flight sensors.

There are two traditional ways of producing Motion Capture data:

through the Optical 3D Motion Capture System and through the Non-

Optical 3D Motion Capture System. The Optical 3D Motion Capture

System has several subcategories: active, passive, markerless, and under-

water. The Non-Optical 3D Motion Capture System has three subtypes:

mechanical, inertial, and electromagnetic. A number of results pertain-

ing to their performance and properties have been listed in table 2.1:

The markerless, active and passive variants of the first system are used

to capture motion indoors. The inertial version of the latter system is

used capable to capture motion outdoors. Whereas indoor capture sys-

tems are expensive, the outdoor system is cheaper. Because conditions

are most suitable indoors, the markerless, active, and passive subcat-

egories are more accurate than the inertial system. Moreover, inertial

equipment captures the largest scope of movement. When it comes to

capturing the movement of multiple targets, the performance of passive

systems remains unsurpassed.
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Table 2.1: The comparison of different methods of Motion Capture (Please
ref to MoC [2020])

Property Markerless Active Passive Inertial
Accuracy High High High High
Efficiency Low Low Low High
Scope of Move-
ment

Small Medium Medium Large

Multiple Target
Capture

Low Medium High Medium

Environment
Requirements

Sunlight,
heat source
interfer-
ence

Strong
light inter-
ference

Sunlight
interfer-
ence

Sensor
Noisy in-
terference

Cost Low Medium Medium Low

Current motion capture systems attach markers or sensors to human

joints, thereby immediately providing a 3D skeleton. If participants per-

form actions naturally while wearing the devices, the coordinates of their

joints transmit into the computer. Whereas optical systems use cameras

to track joints’ positions by analysing light, inertial systems record the

rotations of inertia sensors. Although optical systems are usually more

accurate, inertial systems can work outdoors and capture a larger scope

of movement. Motion capture systems are effective when it comes to

producing high quality 3D skeletal data. That said, they are expensive

(optical cameras systems range from $150,000 to $250,000 ).

Another way to acquire 3D skeletal data is to capture information

related to colour and depth using structured-light cameras. Structured-

light cameras do not require markers because they estimate the surface

area of 3D objects by projecting infrared light. Some software, such as

NITE, construct a 3D skeleton model using colour-depth information.

These are cheaper than motion capture devices, for they do not entail

wearing special equipment. However, they only work indoors.

Time-of-flight cameras obtain depth information in a different way

than structured-light cameras. These systems use light in a manner

comparable to the way in which a radar uses sound, calculating reflection

times. They reconstruct depth images at around 160 frames per second,
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more quickly than structured-light cameras. They detect joints in the

colour-depth data, from which a 3D skeleton data can be constructed.

Kinect v2 (released in 2014) is a typical camera that works in this way.

In comparison to Kinect v1, it is significantly faster and more accurate.

Reconstruction from Images

Additionally, 3D skeleton data can be reconstructed from image data.

Media data that involves human actions and poses has grown rapidly.

Given its great practical value, the topic of 3D skeleton reconstruction

has attracted increasing attention on the part of researchers and software

developers. The 3D positions of joints can be estimated from depth image

data, single image data, and multi-perspective image data.

Most approaches to estimating 3D skeletons using depth RGB images

consist of two steps. The first is to classify the position of each pixel on

the surface of an image. The second is to minimise errors in matching

data to a 3D skeleton. Recent approaches to deep learning have per-

formed remarkably in this area by improving the first of these two steps.

These approaches try to detect the joints either by using visual descrip-

tors or by matching an existing 3D pose to the human body. Wohlhart &

Lepetit [2015] have used CNN to classify the descriptor of object views

and assign the related 3D skeleton to images. Porzi et al. [2017] have

designed a depth-CNN to predict the position of pixels on a depth image.

They classify pixels very accurately, using a random sample consensus

(RANSAC)-based scheme, which is simpler than traditional optimisa-

tion.

It is expensive to generate depth images using special cameras. It

is unfeasible, then, to generalise this process such that it can be used

by private individuals. Another way to provide depth information is

to use multi-perspective images. Gall et al. [2009] have proposed an

optimisation method for detecting underlying 3D skeletons from multi-

view silhouette sequences. Liu et al. [2011] have presented a framework

that uses image segmentation and the probability estimation method to

reconstruct the 3D skeletons of two people from a multi-view interaction
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video.

Like depth images, multi-perspective images involve strict restrictions

on the recording environment. Accordingly, it is much less accessible to

individuals than the single image method. The challenge post by the

latter is that it does not capture depth information. Therefore, many

researchers only consider extracting 2D skeleton information. Some ap-

proaches use physical and somatological constrains (such as limb length

or limited rotation angles) to estimate depth data. This thesis focuses

on 3D motion data; accordingly, only 3D skeleton reconstruction work is

discussed here.

Early approaches represented images by means of local descriptors,

such HoG or SIFT. In this way, they matched descriptors to 3D skeletons.

Li & Chan [2014], for instance, have used a CNN to detect human body

parts in monocular images. In this case, however, the descriptors are not

robust and matching accuracy is low. Another solution for estimating

3D skeleton from single images is to annotate a set of training images

and apply a regression model or deep learning framework.

However, it is much harder to collect a large amount of annotated im-

ages with 3D skeletons compared to collecting a dataset with 2D skele-

tons. To address the limitations posed by having insufficient training

data for detecting 3D skeletons in images, researchers have tried to re-

trieve 3D skeletons from estimated 2D skeletons. For example, Yasin

et al. [2016] has trained a pictorial structure model (PSM) to estimate

the position of a 2D skeleton from a single image initially and then use

an iterative procedure to searching the 3D skeleton with the projected

2D similar skeleton. Recently, Tome et al. [2017] have proposed a CNN

architecture that extrapolates 3D skeletons from 2D skeletons by cal-

culating probabilities under mechanical and somatological constraints.

This framework achieved state-of-the-art results using the Human3.6m

dataset, being able to generate 3D skeletons from single images in real-

time.

Summary. This section reviews the basic forms of motion data and

the typical technologies for obtaining motion data. Motion capture sys-
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tems are common in the industry. Nowadays, researchers are trying new

approaches to obtain motion data from videos or images. This thesis

focuses on motion-related problems. As part of this broader focus, this

review section establishes the basic knowledge necessary for understand-

ing motion data.

2.1.2 Motion Dataset Benchmark

MoCap datasets containing 3D skeletal data are widely used in motion

research. Some key datasets in this area are as follows:

Msr-Action 3D This dataset, which contains 20 actions, was col-

lected by Li et al. [2010]. They found 10 volunteers, who performed

each of the actions several times to create a database of 567 sequences.

This dataset not only offers skeleton information but depth images as

well. The human skeleton structure used in this dataset contains 20

joint points.

Berkeley MHAD This dataset was presented by Ofli et al. [2013]. It

contains 11 actions performed by 12 individuals (7 men and 5 women).

Each participant was asked to perform each action 5 times, allowing

the researchers to collect 660 motion sequences in total. They used 8

motion capture cameras to trace 43 LED markers, 12 Dragonfly2 cameras

to capture multi-view video data, and two Kinect cameras to acquire

depth images. Therefore, this dataset provides skeletal, depth, and RGB

information. Moreover, they asked each participant to strike a T pose,

which they recorded to provide a marker for the skeleton structure.

CMU This dataset is freely available to the public online. (Please

refer to the website: The CMU dataset ) It presents a large amount

of skeleton based MoCap data, including around 2,605 sequences that

have been divided into 6 categories and 23 subcategories (actions). The

skeletons that it uses consist of 31 joints and related limbs. Unlike the

MsrAction 3D and Berkeley MHAD, this dataset contains not only single

actions but also interactive actions (including interactions both between

peoples and between people and environments. The actions feature var-

ious sports and physical activities, such as dancing, football, and golf.
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Each category includes a range of different performances: the “walk-

ing” category, for example, has more than 100 kinds of different motion

sequences, which offer many fine details.

HDM05 Müller et al. [2007] have presented MoCap Dataset HDM05,

which has more than three hours’ worth of footage spanning five cate-

gories. It has 22 subcategories (action types) and each category contains

between 10 and 15 motion sequences (action style and direction, in both

C3D and AMC data formats). The skeleton that this database uses

consists of 31 joints. The actions that it contains were performed by

individuals against a clear background (except for a chair and table). It

has many actions in common with other CMU datasets, such as walking,

running, jumping, etc.

Human3.6m This dataset is provided by Ionescu et al. [2014]. It

contains 3.6 million 3D human poses and corresponding images. 11 pro-

fessional actors were asked to perform in certain scenarios, such as a dis-

cussion, and enact certain actions, such as smoking, etc. Their pose and

actions were then captured by a depth camera, 3D laser scans, and Kinect

Systems. Therefore, this dataset provides motion data with depth, RGB,

and skeleton information, as well as a huge range of pose image data. It

uses a skeleton of 32 joints to represent all of the participants.

NTU RGB+D Shahroudy et al. [2016] have provided a large dataset

including more than 56,000 video samples of actions that were performed

by 40 participants. These actions span 60 categories and were recorded

in 4 million frames from 80 viewpoints. This data includes all of the

modes considered so far: RGB, depth, infrared frames, and skeletal data.

The skeleton used in this dataset has 25 major body joints. Unlike all

the other dataset mentioned before, which used Kinect V1 only, the

researchers enrolled Kinect V2. The recorded actions include various

forms of locomotion and a range of sports. Moreover, the dataset includes

interactive actions, which also appear in CMU.

3DPW von Marcard et al. [2018] have introduced a new dataset

named 3D Poses in the Wild, which contains challenging scenarios. In-

deed, the dataset provides more than 51,000 frames annotated ground
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truth 3D poses from 60 natural videos for further analysis. All of these

sequences have been sampled at 30Hz. Unlike existing datasets, 3DPW

contains videos from more complex situations, such as waiting for a bus,

buying coffee, etc.

Summary. This section reviews widely used datasets of motion data.

They differ in terms of the number of motion trials conducted and ac-

tion types. Building a motion dataset is expensive and labour intensive.

Therefore, this thesis conducts experiments based on existing bench-

marks. In this thesis, Human3.6m and CMU are selected for experi-

ment, for these two datasets are used mostly widely in recent approaches.

Accordingly, this makes it possible to compare our proposed methods

with recent approaches.

2.2 Motion Related Topics

Crucial research questions relating to motion data include how motions

can be recognised, how motion data can be edited and reused, and how

new motion data can be synthesised. With this in mind, the following

review addresses the following three topics: motion synthesis, motion

recognition (and motion retrieval).

Motion data are usually high dimensional and complex. Therefore,

motion-related research typically strives to establish a low dimension

manifold to represent motion data and then manipulate its features on

the manifold. The same goes for motion prediction, in which finding a

representative motion feature is an important step. For this reason, this

section reviews motion recognition methods, for they provide abundant

insights for motion feature engineering. Moreover, understanding motion

properties is essential for the study of motion undertaken in this PhD

research. To help establish an understanding of the properties of motion,

this section discusses literature on motion retrieval. Finally, motion pre-

diction is a kind of motion synthesis. Accordingly, this section reviews

work on motion synthesis so as to offer ideas for motion generation as

part of this PhD research.
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2.2.1 Motion Recognition

How to recognise the type of a given motion is a basic problem for com-

puter vision. This issue has attracted a lot of attention from researchers

over the last few decades. In large part, this is because motion recog-

nition has great potential benefits for developing computer interaction,

producing animations, searching for sports videos, developing robotics,

and analysing crowds.

The overarching idea of this research is to transform motion recog-

nition into a form of classification. There are usually two steps in a

pipeline. The first is the extraction of features from a given motion. The

second is the application of classification methods from the field of ma-

chine learning, which serves to categorise features according to predefined

labels. The challenge is to find a feature that is capable of representing a

motion’s semantic information, for there is a big gap between high-level

semantic meanings and the representation of numerical features. There

are two types of feature: handcraft and deep features. Through obser-

vations and experiments, researchers manually design handcraft features

by setting a suitable metric for representing motion. Deep features, in

contrast, can be learned automatically by training a neutral network us-

ing labelled data. Comparing these features reveals that whereas deep

features can extract abundant information, handcraft features cannot.

What is more, although deep features are more generalised than hand-

craft features, they always require a training dataset that is extensive

enough to train a converged network.

Handcrafted features

Methods for presenting handcrafted features often have three steps. First,

researchers explore the visual information of motion that determines the

type of motion or seek to identify those features that are most discrim-

inative in different categories of motions. These features might include

moving directions, angles between legs and arms, or the speed at which

limbs rotate. Second, researchers convert the visual information into

mathematical form, which can be computed. This means that the iden-
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tified information will be encoded in a numerical vector, which enables

the computer to automatically recognise motions. Third, researchers

employ a classification method to categorise numerical features using ex-

isting motion labels. Recognition errors occur in this pipeline in three

ways: the identified information does not allow for effective discrimina-

tion between different motions, the numerical features cannot represent

the visual information accurately, and the classification method only

finds an approximate decision boundary, not the real one.

Handcrafted features typically adhere to the following ideas:

Keypose

Using keyframes to represent a whole sequence is a standard method

of information compression, capable of reducing 2,000 to 3,000 frames

data to 10 to 30 frames. This transforms comparisons between different

motions into comparisons between images’ series. This method is rea-

sonably appropriate given that we can imagine few kick pose frames that

enhance a system’s capacity to recognise a kicking motion. These key

poses can be regarded as entries in a codebook or dictionary, or basic

chemical elements. Various types of motions can be recognised by using

the way of the statistical histograms contained in these codes. Numerous

researchers have proposed frameworks premised on this idea. One such

framework, Sequence of the Most Informative Joints (SMIJ) encoded

motions using a few skeletal joints, thereby surpassing previous motion

recognition models (Ofli et al. [2012]). Through semi-supervised learning

and by counting Gaussian mixture models (GMM), every pose can be

described as a vector (Qi et al. [2013]).

Markerable subset of joints

In coordinating the joints that determine poses and actions, researchers

also trace how joints move to help discriminate different actions. Eweiwi

et al. [2014] have proposed a framework that employs a partial least

square method for learning a compact representation. All of the joint

features will be put in a soft bin and then combined together in a matrix,

which is used for classification analysis. A genetic algorithm is presented

19



to determine the relevance of each joint point to how motions are classi-

fied (Climent-Pérez et al. [2012]). Using data mining techniques, Wang

et al. [2012] have introduced an action representation that captures spa-

tial and temporal cues by grouping all joints into five body parts. Af-

ter extracting features, researchers use a kernel Supply Vector Machine

(SVM) to classify them. In this “bag-of-pose” approach, joints are de-

fined by kinematic chains, while separate body parts are classified using

the nearest-neighbour method.

Geometric Transformation

Another approach considers the geometrical relations between joints.

Müller et al. [2005] have designed a series of Boolean features to de-

scribe the spatial relations between limbs, with the aim of distinguishing

motions at a semantic level. They regard two motions are similar if

they have similar features. When it comes to computing, this method

is less complex than the dynamic time warping (DTW method, which

operates at the level of frames. Similarly, Evangelidis et al. [2014] have

introduced a Fisher feature that records the geometrical relations be-

tween joint quadruples. By way of a GMM, they generated “skeletal

quads” before classifying motions using a SVM model. Furthermore,

Vemulapalli et al. [2014] propose a new skeletal representation based on

a Lie group. Given that each limb’s movement can be mapped as an

element in Euclidean Group SE(3), a body movement is a curve in a Lie

Group. This method achieved a new peak of accuracy in motion clas-

sification on account of its precise numerical presentation of motions.

Wang et al. [2012] have presented an “Action Let Ensemble” model to

capture intra-class variance in human motion and human interactions

with objects. The evaluation of three benchmark datasets – CMU Mo-

Cap, MSR-Action3D, and DailyActivity3D – outperform existing meth-

ods. In this model, they designed invariant features to record 3D joint

positions and a limb occlusion pressure (LOP) feature for local “depth

appearance”. After that, they described the dynamics variation using a

Fourier temporal pyramid, before applying SVM to recognise motions.

Another idea is that of using the trajectory of a given motion to aid

recognition. Shao & Li [2015] have used integral invariants to represent
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motion trajectories and defined a kernel function to measure similarities

between trajectories.

Frames spatial information

One set of approaches focuses on capturing spatial information, whether

by measuring the distance variation between joints or dissimilarities be-

tween frames. Ellis et al. [2013] have proposed algorithms for balancing

latency and accuracy in motion classification. They computed a feature

set from frame data by choosing the current frame, preceding frame, and

first frame in a sequence. If joints in frame t are linked to the same joints

in frame t+ 1, a skeleton graph will be obtained naturally. Both Kerola

et al. [2014] and Hammond et al. [2009] have proposed wavelet trans-

form functions to extract features from skeleton graphs. This method

has significantly improved the performance of motion recognition.

Deep Features

Given that deep learning neural networks (DNN) have achieved a signifi-

cant breakthrough in image classification (Wan et al. [2014]), researchers

have been inspired to apply it to motion classification. A DNN can au-

tomatically extract more informative features by training on a dataset.

The deep features generated in this way far surpass their handcrafted

equivalents (Yu et al. [2015]). Despite this, the DNN framework is more

robust and can therefore be generalised so as to solve diverse questions.

Spatial-temporal Convolutions. These methods trained a Recur-

rent Neural Network (RNN)(Mikolov et al. [2010]) or 3D CNN (Ji et al.

[2013]) to identify the position of 3D skeleton joints in order to capture

temporal information and use a Spatio-temporal feature for classifica-

tion. RNN is designed for objects that combine temporal and spatial

data, such as videos and languages. Accordingly, its structure is able

to accumulate information over time. It is especially effective in captur-

ing periodic data. It is quite straightforward, therefore, to employ RNN

such as LSTM networks in extracting motion features (Zhu et al. [2016]).

Aperiodic motion data such as “dancing” or “kicking”, however, are not

appropriate objects for RNN-based analysis. In view of this, some re-
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Figure 2.2: The comparison of Classification accuracy different architectures
(Du et al. [2015]), the HBRNN-L beats down all the other methods in two
benchmarks.

cent research has trained separate models for different motions. This

framework is redundant, however, and works only for a specific problem.

What is more, as the complexity of a neural network increases, it needs

more time and training data, which is not always available. Baccouche

et al. [2011] have employed a 3D CNN to encode motion sequences into

features, which they have used to train an RNN to classifies motions.

When applied to the KTH dataset, their work is 94.4% more accurate

than previous approaches. A similar work is the BLSTM-RNN that has

been proposed for 3D Gesture Classification by Lefebvre et al. [2013].

Furthermore, Du et al. [2015] presented the first RNN framework for

combining feature learning with classification. This framework achieved

the highest accuracy in skeleton-based motion recognition on the MSR

Action3D dataset, reaching 94.49%. Their architecture (HBRNN-L) di-

vided the body into five parts and fed them in five subnets. They fused

the features extracted from five hierarchical parts of the body and ob-

tained a classification result using the softmax layer. In addition, they

compared the performance of different architectures. This comparison is

presented in Figure 2.2.

Fully Connected Neural Network (FCN) In approaching the

hierarchical structure of human skeleton data, the fully connected neural

network does not break down the hierarchy by means of convolution.

Rather, it extracts informative features by means training as well. A

fully connected network structure has serval layers and all of the nodes in

each two adjacent layers are interconnected. Recently, researchers have
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also presented an FCN framework for encoding temporal information.

Bütepage et al. [2017] have designed three FCNs – S-TE, C-TE, and H-

TE – which have achieved 92% accuracy in prediction and 78% accuracy

in classification on the 1035 CMU database. S-TE is a symmetrical

structure with five layers. Of these five layers, C-TE and H-TE change

only the first. C-TE replaces it with a time scale convolutional bottleneck

layer; H-TE with a hierarchy bottleneck layer. This outperforms the deep

sparse autoencoder method, which is able to extract features with around

94% accuracy.

Summary. This section reviews relevant motion recognition methods.

Motion Recognition is a basic classification problem. The success of

approaches to it are highly dependent on feature engineering methods.

The first of these approaches reviewed here are handcrafted features.

However, today deep features are the most usual approach. This section

surveys abundant sources of inspiration and insight for our research on

how to encode motion into features. Following ongoing trends, this thesis

extracts deep features for encoding input motion clips.

2.2.2 Motion Retrieval

To address the problem of motion retrieval, researchers have been devel-

oping methods that fall into the following three categories: text-based

motion retrieval, motion clips-based motion retrieval, and sketch-based

motion retrieval. Text-based motion retrieval requires a large number

of labels, which are laborious to collect. What is more, text input is

not comprehensive when it comes to describing high-dimensional motion

data. Accordingly, this review focuses mainly on motion clips-based mo-

tion retrieval and sketch-based motion retrieval (SBMR). Motion clips-

based retrieval always requires input in the form of motions performed

by a human or puppet. SBMR requires that the user draws several free-

hand sketches for motion searches. In retrieving targeted motion capture

data, motion clips are the most precise information to use as input. Re-

trieving a target motion from a large repository is very challenging due

to the complexity of data structures and the fact that semantically simi-
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lar motions are not always numerically similar too. In designing motion

clip-based motion retrieval frameworks, researchers usually incorporate

the following steps:

1. Extracting motion features or finding low-dimensional representa-

tions of motions.

2. Proposing a metric function to measure the differences between

two motions.

3. Searching for a target motion in a large database according to a

similarity ranking.

Given that motion features have already been summarised in the pre-

ceding section, this section focuses on reviewing methods that aim to

match similar motions and search for a target motion in large databases.

Approaches to motion retrieval compare similarities in two ways. (1) By

designing a distance function so as to measure the difference between

two motions and select the closest motion to the query motion from a

repository. (2) By applying ranking or learning methods, such as DNN

and SVM. These models are trained to learn the parameters that are best

suited to finding the metric. Finally, the result for the query motion can

be found.

Distance-based methods A distance function can be defined man-

ually by measuring differences between key poses, joint angles, posi-

tions, Euclidean distance, or trajectories. The most straightforward way

to measure the difference between two motions is to establish the Eu-

clidean distance between two representations. This method is not effec-

tive enough, however, because two motions can be semantically similar

but have different length sequences. To cope with a tolerated level of

temporal variance, the DTW and its variants have been widely applied

in motion retrieval processes. (DTW is a time series technology that uses

optimisation methods to match two series that differ in length.) For ex-

ample, Qi et al. [2014] have represented motions by using strings, which

allowed them to match the similar strings with different lengths by means

of DTW. Barnachon et al. [2014] have employed dictionary methods to
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represent motions by means of histograms of poses and DTW to compare

features. Müller & Röder [2006] and Müller et al. [2009] have proposed

a motion template representation. This involves constructing a matrix

of Boolean features and using DTW in the training process. The DTW,

however, has a quadratic complexity and its effectiveness depends on the

consistency of semantic periods. Motion clips can be semantically simi-

lar but not temporally aligned. Recently, other time warping technolo-

gies have been proposed to address this misalignment problem, such as

Isotonic Canonical Correlation Analysis (ISOCCA) (Shariat & Pavlovic

[2011]), Canonical Time Warping(CTW) (Zhou & Torre [2009]), and

Correlation-Optimized Time Warping(CoTW) (Etemad & Arya [2015]).

But the computational complexity of these methods is high and it is

time consuming to set their parameters. Another idea is to measure

similarities by means of histogram matching (Barnachon et al. [2012],

Eweiwi et al. [2014], Fotiadou & Nikolaidis [2014]). Barnachon et al.

[2012] among others, have constructed pose histograms for a number of

motions and defined Bhattacharyya distances so as to measure the dif-

ferences. Fotiadou & Nikolaidis [2014] compared two pose histograms

by comparing pose matrixes. Histograms can address the misalignment

problem by jettisoning the rich information contained in particular dy-

namics.

Large scale searching methods Given that computing complex-

ity dramatically increases in tandem the volume of data, it is neces-

sary to have an effective method that searches for target motions in

a large dataset. Previous work has proposed several searching meth-

ods. The most commonly used method is called K-nearest neighbour

searching. However, it cannot be applied to real-time searches of large

databases due to the increasing computing time and memory. Because

motion sequences are segmented into motion clips to allow for compari-

son, the database size will increase to two million level. Therefore, many

approaches use index techniques for speeding up searching processes.

Krüger et al. [2010] Tang et al. [2014] , for example, have employed

KD-Trees to structure the data. Sedmidubsky et al. [2018] have used

the M-index method to search sequences that contain certain keyframes.
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What is more, they have addressed the real-time searching problem by

means of a fast and effective disoriented method, enabling their frame-

work to search for the target motion in 20-million data in minutes.

Summary. This section reviews prevailing approaches to motion re-

trieval. Two steps are usually needed to address the motion retrieval

problem. First, a representation of motion trials is required. Second,

a metric is needed so as to find the best matching query. This thesis

benefits from this review in that it has allowed for a better understand-

ing of motion properties. The metric proposed for motion retrieval has

inspired us to measure similarities between the predicted motion and

ground truth motion in this thesis.

2.2.3 Motion Synthesis

In reusing MoCap data, a typical problem is that of new motion data,

which satisfies users’ needs, can be generated. For example, animators

may want to create new motion by controlling trajectories or producing

kicking and punching motions by offering the target location. Therefore,

motion synthesis has attracted increasing attention in recent years. Mo-

tion synthesis is very challenging because the techniques need to both

generate realistic motions that resemble the captured data and adhere to

users’ control information (such as trajectories and style). There are two

groups of methods for synthesising new motions: data-driven methods

and physical simulation methods. Whereas data-driven methods gener-

ate new motions by reusing existing data, physical simulation computes

skeletons’ positions by means of mechanical and somatological knowl-

edge. This review focuses on data-driven methods, because they usually

offer more user interactions and entail less computing complexity. This

section surveys two aspects of motion synthesis approaches that relate

to our work: stylised motion synthesis and deep learning-based motion

synthesis.
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Stylized Motion Synthesis

This method aims to generate new motions with certain styles, such

as “old”, “proud”, and “drunk”. Similar to image, researchers applied

style translation to motions so as to generate new sequences by com-

bining styles from one sample and the content from another. Stylising

the motion synthesis problem is challenging for two reasons. First, the

time-invariant style information is hard to extract and define; second, it

is extremely difficult to automatically produce a synthesised motion that

looks natural. Usually, there are two kinds of solution to these issues:

style translation and parameterising style factors.

Hsu et al. [2005] have proposed a system for motion style transfers and

an iterative motion warping (IMW) technique for eliminating temporal

misalignments between two motions. Their system, which combines a lin-

ear time-invariant (LTI) model and post-processing techniques, is able

to expose time-invariant stylistic differences and translate the style of

one motion to another online. Ikemoto et al. [2009] have employed the

similar heuristic technique to produce plausible synthesised motions in

their motion editing system. Using Gaussian process models, their sys-

tem is also able to generate a stylised motion by generalising an input

edit of a short clip to an entire sequence. That said, this work has only

addressed labelled, homogeneous motion data. In the case of such ho-

mogeneous data, correctly aligning two motions with different styles is

vital for translation performance. Recently, another project on motion

style transfer [Xia et al. [2015]] has employed a deep learning framework

(instead of the linear time-invariant model) to generate realistic results

using unlabelled, heterogeneous motion data.

Xia et al. [2015]’s research on motion synthesis elaborates an innova-

tive approach to generating stylistic human motion in real time. They

have also applied an online learning algorithm used to build a series of

local mixtures of auto regressive models (MAR), capturing the complex

relationships among motion styles. They produced local MAR models

by searching for examples from the database that most closely resembled

each input pose. One of the model parameters have been estimated from
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the training data; the model is capable of adapting to a current pose us-

ing linear transformations. In addition, they introduced an efficient local

regression model to predict the timings of synthesised poses in the output

style. A demonstration has been provided for the purpose of testing this

approach, in which stylistic human motions have been transferred for a

wide variety of actions, such as walking, running, punching, kicking, etc.

Another method is that of parameterising style factors by using statis-

tical models to establish the difference between motion causes according

to factors such as style, gait, identity, etc. Brand & Hertzmann [2000]

, for instance, have used a Hidden Markov Model (HMM) to control

several stylistic parameters and thus generate various stylistic motions.

Similarly, Wang et al. [2007] have found a set of low-dimensional factors

with which motion styles can be parameterised. By employing nonlinear

basis functions in a multifactor Gaussian process model, they identified

style-specific distributions. Min et al. [2010] have presented a gener-

ative motion model with two parameters for controlling variations in

“identity” and “style”. As compared with the two previously mentioned

approaches, this generative model can reduce visual artefacts to a re-

markable degree. What is more, users can edit “style” and “identity”

more explicitly, given that the style parameters are hidden in the other

two approaches. Ma et al. [2010] have employed a geo-statistical model,

Universal Kriging, to generate motions according to style and variation

at the same time. They introduced a latent parameter for each group of

joints and used Bayesian networks to analyse the relationship between

user-defined styles and latent parameters. This model is able to generate

unlimited variants of a certain style in real time.

Deep Learning based Motion Synthesis

In adopting the deep learning method, researchers have done much to

address analogical synthesis problems, such as image and speech syn-

thesis. In the light of this, a group of approaches have been developed

to employ or design deep learning frameworks for motion synthesis too.

As mentioned above, RNN, CNN, and hybrid methods have achieved a

state-of-art skeleton-based motion classification accuracy when used on
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benchmark databases. This section focuses on summarising the deep

learning approaches applied to motion synthesis problems.

Although generating realistic motion sequences allows one to avoid a

great deal of labour and expenditure, it poses a very challenging prob-

lem. Motion data can be manually segmented and combined together

to generate new sequences by alignment and labelling. Afterwards hu-

mans need to manually smooth the synthesised sequences. But these

processes are infeasible in an automatic process. Automatic techniques

are necessary, therefore, in addressing two challenges: that of designing a

method that generates motions by controlling information and of finding

a method able to make sequences appear plausible.

Taylor & Hinton [2009] and Taylor et al. [2011] have used a Condi-

tional Restricted Boltzman Machine (CRBM) model to design a stylistic

motion sequence from a set of parameters. The CRBM method has a

similar structure to a three-layer neutral network. Mittelman et al. [2014]

have adjusted a probabilistic time-series model (SRTRBM) to learn the

dependency structures in the datasets and demonstrated its performance

in motion data simulation. The experiment validating this model can

reduce motion prediction errors. Fragkiadaki et al. [2015] propose a

recurrent network model for motion prediction, surpassing the best op-

tical flow method. Their deep learning framework, Encoder-Recurrent-

Decoder (ERD), is a variant of a typical LSTM network and it is trained

jointly. Furthermore, Jain et al. [2016] have proposed an S-RNN, which

considered spatial-temporal graphic information and RNN features at the

same time. Their framework employs an RNN for each spatial-temporal

factor and uses “factor sharing” to maintain learning capacity. Hence,

this extended RNN outperforms the ERD method in motion prediction.

However, this framework combined a set of RNNs to allow the model

to manage significant computational complexity. Bütepage et al. [2017]

have designed three fully connected deep learning frameworks composed

of five layers for motion prediction. Their DNN structure is relatively

simple and does not need to train jointly. As such, it outperforms the S-

RNN. Besides, CNN and FCN can generalise easily and are unaffected by

previous frames. For example, users prefer to edit current frames without
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propagating the influence on remaining sequences. Accordingly, Holden

et al. [2016] adopted the CNN structure proposed by Holden et al. [2015]

rather than RNN structures. They presented a framework that uses

high-level parameters to synthesise character movements, while respect-

ing the human motion manifold trained on a large motion dataset. The

network can produce realistic motion sequences from parameters, such

as a target location for punching and kicking. The user can easily switch

between feedforward networks, in accordance with their desired inter-

face, without retraining the motion manifold. This is made possible by

the fact that both the network and manifold are trained independently.

The generated motion can be edited by performing optimisation in the

space of the motion manifold. This allows the user to enforce kinematic

constraints or transform the motions’ style, while guaranteeing that the

rewritten motion remains natural.

Summary. This section reviews previous approaches to motion synthe-

sis methods. They usually find a motion manifold and reconstruct new

motion sequences from this manifold’s data. Motion prediction is among

the typical motion synthesis problems. Therefore, this thesis can learn

from technologies and methods of motion synthesis.

2.3 Motion Prediction Methods

This section presents a comprehensive survey of existing research works

related to motion prediction. Attempts to understand and predict mo-

tion sequences have a long history. Various approaches have been painstak-

ingly applied in previous efforts at addressing this problem. We sum-

marise existing methods based on their different ways of modelling se-

quences. First are traditional approaches, which use statistic methods

to model sequences. In the deep-learning era, researchers have proposed

diverse models based on RNN, CNN, or GCN frameworks.
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2.3.1 Traditional method

Motion data is a typical time series. Accordingly, traditional research

follows the HMM statistic model [Brand & Hertzmann [2000]] , which is

widely used in machine translation and speech recognition.

However, the HMM method is based on a single, discrete K state

multinomial. As input information increases, this method gives rise to

the exponential explosion problem. Therefore, a series of CRBM meth-

ods have been introduced in this field. Taylor et al. [2007] , for exam-

ple, use binary latent variables to address both the exponential explo-

sion problem and the task of modeling non-linear dynamics at the same

time. Furthermore, Urtasun et al. [2008] and Wang et al. [2008]have

proposed Gaussian processes models, which map human motions into a

low-dimension latent space.

Following this approach, Taylor & Hinton [2009] have developed the

CRBM by introducing a three-way interactions scheme, which simulta-

neously reduces the size of parameters and extends the model’s ability.

Another impressive work by Taylor et al. [2010] puts forward their design

for an implicit mixture CRBM model, which has an enhanced ability to

express multiple activities and difficult sequences.

Moreover, Sutskever et al. [2009] have studied the existing Temporal

Restricted Boltzmann Machine (TRBM) model, though its exact infer-

ence ability is limited. What is more, it encounters numerous com-

plexities when computing a Gibbs update. Based on this observation,

Sutskever et al. have modified the original TRBM model by introducing

a recurrent design that enhances expressiveness.

In addition to the Boltzmann Machine method, Lehrmann et al. [2014]

have used a nonlinear and non-parametric method based on an expressive

Markov model. As compared to existing HMM-based models, it provides

more realistic results when it comes to inference.

These traditional models have achieved impressive feats in modelling

human motions. However, all of them are hard to generalise to more di-

verse and complicated actions. Modifications to these traditional models
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seem to have very limited capacity to address real, high-dimensional, and

complex human movements.

Recently, a growing body of research has been dedicated to devel-

oping a deep learning framework for motion prediction. These works

have significantly improved performance, both quantitatively and qual-

itatively. Recent deep learning approaches to motion prediction can be

summarised in the following way:

2.3.2 RNN based models

Most existing network architectures adopt the RNN module so as to solve

time series problems such as those of machine translation (Kalchbren-

ner & Blunsom [2013] Kalchbrenner et al. [2016]) and stock forecasting

(Kamijo & Tanigawa [1990] Rather et al. [2015]).

The Encoder-Recurrent-Decoder (ERD) Fragkiadaki et al. [2015] is a

typical encoder-decoder model. To incorporate representation learning

and temporal dynamics learning, it installs an encoder and a decoder

network before and after recurrent layers. The cyclical way of predicting

frames iterates errors and generates unrealistic poses. They also consid-

ered a noise schedule as a means of tackling these problems. However,

the noise schedule is very inconvenient in practice.

Jain et al. [2016] have proposed an SRNN model that combines multi-

ple RNN structures with the spatial-temporal graphs to improve perfor-

mance. However, it is very time consuming to train these multiple RNN

models. ERD and SRNN are action-specific models which are trained

separately for each action type, meaning that these models do not enrol

the real strength of deep learning techniques: namely, that one can ben-

efit from a large dataset. Furthermore, other researchers have developed

multi-action models to predict motions for diverse types of actions.

Ghosh et al. [2017] have introduced a Dropout Autoencoder Network

(DAE) to learn inherent human body structures along with a 3-layer

LSTM to learn temporal dynamics. Martinez et al. [2017] have achieved

high accuracy in both short-and long-term motion prediction by apply-
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ing three changes to the typical RNN model. They have introduced a

sequence-to-sequence and residual architecture, as well as a sampling-

based loss plan to ensure robustness and avoid hyper-parameter tuning.

Following Martinez’s work, Gui et al. [2018a] have added two discrim-

inators to their system to improve the quality of the predicted motions

and alleviate the error accumulation problem. Although these RNN ar-

chitectures surpass traditional Markov methods, they are still very com-

plex and their performance is limited when it comes to aperiodic actions.

Moreover, they are prone to generate mean poses in long-term prediction.

2.3.3 CNN & FC Net & GCN based Models

Given RNN architectures’ inability to extract spatial information and

tendency to produce noisy data, researchers have proposed supplements,

such as co-training, handcrafted spatial graphs, and adversarial net-

works. These strategies alleviate but do not completely solve the lim-

itations of RNNs. Some recent approaches have therefore considered

different encoder layers so as to replace recurrent layers entirely.

Li et al. [2018] have proposed a first convolutional sequence-to-sequence

model for predicting motions and validating effectiveness. It has been

applied to both the HM3.6M and CMU datasets. Going beyond a typical

encode-decode model, they have designed a long-term and a short-term

encoder for all of the input frames and short-term neighbouring frames

respectively. In addition, they have added a simple two-layer fully con-

nected network to serve as a discriminator and thus enhance the quality.

However, Bütepage et al. [2017] have argued that convolutional layers

are less effective than hierarchical layers, for 2D convolutional compu-

tation does not correspond to the human body’s hierarchical structure.

They prove that the fully connected hierarchical layer works significantly

better in prediction tasks. But the deep fully connected networks are of

a high computational complexity and prone to overfitting. Moreover, the

decoder’s design means that their framework sacrifices qualitative per-

formance so as to improve quantitative performance. Limb length varies

during training and prediction. What is more, noise may disturb the
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output sequence, for the reason that the framework lost logical coherent

information between frames in the decoder.

Researchers (Du et al. [2015]; Shao et al. [2018]; Garbade & Gall

[2016]) have also used a hierarchical human structure made up of five

body parts. However, this hierarchical structure increased computation

complexity. Therefore, in Chapter 2 we propose a new model, which

contains a more reasonable convolutional hierarchical encoder structure.

Indeed, this structure is much less complex than all of the other mod-

ules and achieves a state-of-the-art performance both quantitatively and

qualitatively.

2.3.4 Stochastic Motion Prediction

All of the aforementioned models are deterministic in that they take hu-

man motion prediction as one solution task. However, they generate few

possible results for future motions in the real case. Therefore, researchers

have introduced a latent vector to generate multiple possible prediction

results. To do so, they are mostly inspired by Generative Adversarial

Networks (GAN) or Conditional Variational Autoencoders (CVAE).

The first class of model introduced GAN models. By randomly sam-

pling the distribution factor, their generator synthesises multiple possible

sequences. For example, Barsoum et al. [2018] have modified Wasserstein

generative adversarial networks (WGAN-GP) such that they address the

human motion prediction problem. Their model, HP-GAN, employs a

RNN as generator and a multilayer network as discriminators.

Compared to the HP-GAN, which only introduces the latent factor

as input for the generator, Kundu et al. [2019] have proposed a novel

BiHMP-GAN model that also takes account of the latent factor in the

conditional discriminator. Their discriminator simultaneously regresses

the latent vector and supervises the output sequence. Extensive experi-

ments show that this BiHMP-GAN has achieved significant advances in

comparison to HP-GAN.

All of the existing GAN frameworks are effective at short-term pre-
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diction but less effective when it comes to long-term prediction. Having

noticed this, Hernandez et al. [2019] have introduced a motion inpainting

framework: a conditional GAN model that produces not only body poses

but also absolute positions. The GAN hosts three discriminators that

cooperate to enhance the model’s ability to predict long-term sequences.

Their motivation to design these discriminators are learned from real

human beings.

Another body of work learns from the Variation Auto Encoder (VAE)

to build frameworks.

To address the limitations of results generated by existing models,

Walker et al. [2017] have estimated several future poses by VAE models,

which they used as initial frames to generate multiple possible video

motions.

Bütepage et al. [2018] have proposed a model based on a conditional

variational autoencoder, so as to predict human motions from RGB

depth images. Their framework is able to extract a few samples of future

possible movements to facilitate interaction between humans and robots.

All of these models, however, are prone to generating discontinuous se-

quences. Furthermore, Yan et al. [2018b] have designed a Motion Trans-

formation Variational Auto-Encoder (VAE) to generate future motion

sequences. Compared to the existing VAE based model for motion pre-

diction, their model produces results of a much higher quality. It does

so by using the RNN’s hidden states as a conditioning variable and con-

catenating it with the latent vector.

Aliakbarian et al. [2020] have comprehensively studied existing stochas-

tic motion prediction methods. They pointed out that these models

consider the random latent vector through the descriminator’s manner,

meaning that the model can ignore the latent vector. To tackle this issue,

they proposed a stochastic conditioning scheme that randomly combines

the latent vector with past pose information. In the experiments, this

scheme drastically improved the accuracy of human motion prediction.

Summary. This section reviews state-of-the-art motion prediction meth-
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ods. Deep learning methods are presented here largely because they

overwhelmingly outperform traditional methods. However, existing deep

learning models for motion prediction have limitations, such as the mean

pose and oversmoothing problems. This thesis therefore develops deep

learning models, proposing new models for addressing the task of motion

prediction.

2.4 Deep learning methods

2.4.1 Convolutional Neural Networks

The invention of CNNs has revolutionised the field of computer vision.

It has achieved tremendous breakthroughs in image recognition and ben-

efits a wide range of applications related to images. The parameter size

of existing fully connected networks is growing exponentially, greatly

limiting their ability to train and making them easy to get overfitting.

Researchers have proposed pooling layers and convolutional operations

as a way of addressing these limitations.

Researchers have learned from the organisation of animals’ visual cor-

texes and came up with the receptive field for convolutional operations.

Hubel & Wiesel [1962] first created this concept by studying the be-

haviour of individual cells. They revealed that the functional architecture

of the visual cortex is complex and overlapping. Following this observa-

tion, researchers have introduced the receptive field in neural networks

for image recognition as well. In the convolutional layers, the neurons in

the same receptive field share weights, allowing for a significant reduc-

tion in the model’s parameter size and the network’s complexity. Normal

GPU devices can therefore simultaneously train CNNs more efficiently

and maintain high performance.

In 1998, LeCun et al. [1998] first proposed a graph transformer net-

work (LeNet) to allow for the recognition of handwritten characters. It is

the first network to contain basic components of CNNs: a pooling layer,

FC layer, and convolutional layer. The following approaches have built

on this structure in improving CNN networks.
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One famous work in the development of CNNs is the AlexNet proposed

by Krizhevsky et al. [2012]. AlexNet significantly outperforms all exist-

ing traditional methods on the large benchmark ImageNet LSVRC-2010,

improving recognition accuracy by 10.9%. As compared with LeNet,

it proposed important changes to the network, which are still widely

used. First, it introduced a ReLU function (replacing a Tanh function)

to address the gradient vanishing problem. Second, it proposed a reg-

ularisation strategy named Dropout to reduce the overfitting problem.

Krizhevsky et al. designed the network to incorporate five convolutional

layers and three fully connected layers. What is more, they proved that

performance is quite sensitive to a given network’s depth.

There is a trade-off problem for CNN networks. If a network goes

deeper, the accuracy of a training dataset will improve. This is because

the model will have a better fitting ability. The overfitting problem

will increase, however, because the size and complexity of the model

will also increase drastically. To deal with this problem, remarkable

approaches have sought to make the network go deeper while maintaining

performance when working with a test dataset. In 2014, Simonyan &

Zisserman [2014] introduced a VGG network with 19 layers. It outdid

what was the state-of-the-art in terms of performance. They used smaller

convolutional filters (3× 3 as compared with the 7× 7 used in AlexNet)

to reduce each layer’s parameters. Moreover, they designed the single

convolutional filter in the network to increase the model’s nonlinearity

without affecting the receptive field. Furthermore, they reorganised the

combination of activated functions and convolutional layers to improve

performance.

Another important challenge restricting the depths of CNN models is

the limitation posed by computational resources. When the model goes

deeper and becomes larger, it requires hardware with very large capac-

ity. This is sometimes not feasible in practical scenarios of application.

Therefore, Szegedy et al. [2015] have introduced an inception network

(GoogLeNet) with 22 layers, which increase depth and performance while

simultaneously maintaining the computational budget. Crucially, they

changed the layers’ cascading structure to parallel connection. Multi-
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scale convolutional filters were used at the same layer and the output

features were then concatenated. Furthermore, they used a 1 × 1 con-

volutional filter to reduce the parameter numbers as well. Finally, their

model only has 1/12 of the parameter size of AlexNet. This was achieved

by significantly reducing the fully connected layers.

Researchers observed that a model’s fitting ability does not always

increase in tandem with depth. This is called the degraded problem.

ResNet (He et al. [2016]) have addressed this problem perfectly, achieving

the best performance yet in the tasks of ImageNet detection and localisa-

tion, COCO detection, and COCO segmentation. In comparison with the

existing network, which learns the unreferenced functions H(x) directly,

ResNet learns the residual function F (x), in which H(x) = F (x) + x.

This residual link allows for identity mapping and maintains the pa-

rameter size. This simple idea has proven very effective in improving

performance and addressing the gradient vanishing problem.

In a study of ResNet, Huang et al. [2017] have come up with Densely

Net, which densely connects all layers so as to increase the use of feature

maps. In this way, the model reuses feature maps efficiently and is able

to reduce its parameter size too. Inspired by their work, we have also

introduced dense links in our framework for motion prediction as a means

of enhancing performance.

Summary. This section presents the history of CNNs, reviewing the

most representative CNN models to establish references for our work.

Chapter 3 describes how we have invented a CNN-based encoder to cap-

ture the constraints of the human body and temporal relationships si-

multaneously. In addressing the motion prediction problem in Chapter

4, we get inspiration from one of the most advance CNN models, the

DenseNet.

2.4.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) play an important role in the

forms of generation involved in computer vision, such as image genera-

tion and translation, music generation, and time series synthesis. Motion
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prediction is a typical synthesis task. Accordingly, researchers have bor-

rowed ideas from GAN models to generate plausible motion sequences.

Goodfellow et al. [2014] have introduced GAN as a means of image

generation. In using an adversarial approach as a means of generation,

they proposed a network with two components. The first subnetwork is

a generator, G, which synthesises fake images. Another subnetwork is

a discriminator, D, which is designed to distinguish between fake and

real images. During the training process, generator G is trained to fool

discriminator D, while the discriminator D continues improving its abil-

ity to discern fake from real images. Optimising the two components

together forces the generator’s distribution, Pg , to become similar to

the real data’s distribution, Pr. As a form of synthesis, this adversarial

method has been hugely successful in the processing fields of both im-

ages and natural languages. This has prompted an increasing number

of researchers to propose various GAN models in recent years. Some of

these variants include a remedy strategy designed to address the insta-

bility problem during the GAN training process. Some deployed GAN in

real-life applications. We summarise the most important of these variant

GAN models in the following.

Radford et al. [2015] have investigated how constraints and convolu-

tional layers can be used for stable GAN training. Their model is called

DC-GAN (Deep convolutional GANs). By introducing a convolutional

generator, they have caused this GAN framework to learn more effective

representations of images. As a result, it significantly improved perfor-

mance in the task of image classification. Furthermore, Radford et al.

visualised the features during GAN learning so as to understand the in-

ner mechanism of the GAN framework in more detail. However, given its

limited capacities, their DCGAN model is only effective when it comes

to low-resolution images belonging to a fairly limited range of types.

In some classes, the DCGANs perform well. They do significantly

worse, however, on multi-class datasets such as ImageNet. To address

this problem, Zhang et al. [2019] have introduced a Self-Attention Gen-

erative Adversarial Network (SAGAN), which combines the advantages
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of different attention mechanisms to capture long-range dependency in-

formation. The DCGANs’ limitations in relation to ImageNet, in their

opinion, derive from the convolution operator, which only captures lo-

cal information in a receptive field of a limited size. The self-attention

strategy can work, therefore, as a complement to the conditional GAN

framework. This makes it possible to extend the model’s ability to cap-

ture long-term dependencies. Finally, SAGAN outperformed existing

methods by a significant margin on various comparison experiments.

One of the biggest disadvantages to GANs is that they are very un-

stable and hard to converge during training. Usually, they need to be

carefully set to achieve a balance between the generator and discrim-

inator in training the model. Arjovsky et al. [2017] have noticed this

drawback and proposed a Wasserstein GAN framework to address the

problem. They introduced the Wasserstein distance and designed a new

loss function for the original GAN. Elaborating the new network drasti-

cally reduced the model dropping phenomenon (which is characteristic

of GANs) and made GAN training easier and more stable.

While recent approaches have achieved excellent performance in gen-

erating images, the creation of high-resolution and multi-category images

has been held back – that is, until Brock et al. [2018] proposed a BigGAN

framework. Their work is based on modifying SAGAN and introducing

the interesting “truncation trick”. By expanding ideas, this research

has surpassed all state-of-the-art models on ImageNet. Moreover, the

“truncation trick” offers an explicit way of controlling the trade-off be-

tween fidelity and variety in image generation. BigGAN’s performance

also greatly benefits from extensive training, an increased batch size and

more channels.

Beside the stability of training processes and fidelity in generation,

another prominent issue in GAN development is that of how to control

the generation results in an explicit way. Usually, GAN has a random

noisy z as input for the generators so as to produce various results. For

example, the synthesised digital numbers from the Modified National

Institute of Standards and Technology (MNIST) dataset can have dif-
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ferent writing styles and angles. Owing to the random latent vector z,

the output style and angles are random too. The human user, however,

might hope to control number’s output style or angles by setting certain

parameters. To achieve this, Chen et al. [2016] have proposed an Info-

GAN, which is able to learn interpretable disentangled representations

in completing unsupervised tasks.

This GAN’s benefits have made the introduction of many image gen-

eration applications possible. One of the most interesting of the GAN’s

applications is that of the image style transfer. A major problem in im-

age style transfers is a lack of paired training data. Therefore, Zhu et al.

[2017] have proposed a CycleGAN that addresses this issue. The idea at

the heart of their approach is simple. Assuming that the mapping func-

tion from domain X to domain Y is G and the inverse mapping function

denoted as F , Zhu et al. introduced a cycle consistency loss to enforce

F (G(X)) = X. This strategy enhanced the quality of generated images

and can be trained with unpaired datasets.

Summary. This section reviews the most typical GAN frameworks.

GAN has been developed to make it more stable, easy to train, and

ensures high resolution. GAN is one of the most important deep learning

frameworks. As such, it is widely employed to address the synthesis

problem. In Chapter 3 of this thesis, discriminators are used to supervise

the fidelity of synthesised motion sequences.

2.4.3 Graph Neural Networks

Recently, researchers concerning with GNNs have become increasingly

active, on account of their marked ability to tackle irregularly shaped

data. Convolutional operations on graphs have also been investigated.

Researchers designed Graph Convolutional Networks (GCN) from spec-

tral (Henaff et al. [2015]; Duvenaud et al. [2015]; Li et al. [2016]; Berg

et al. [2017]) and spatial (Denton et al. [2014]; Niepert et al. [2016])

perspectives. The human body can be regarded as a natural graph. Ac-

cordingly, recent approaches have been successful in using GCN to ap-

proach skeleton-related problems. Here, we focus on reviewing existing
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GCN-based work for problems relating to human poses.

Yan et al. [2018a] introduce a Spatial-Temporal Graph Convolutional

Network (ST-GCN) to improve motion classification accuracy and ad-

dress its problems. As compared with existing CNN-based models for

motion, their spatial-temporal graph is more capable of exploiting re-

lationships between joints. Two types of edges have been designed for

this framework, the “spatial edge” and the “temporal edge”. The graph

convolution is used to integrate the spatial and temporal information for

feature extraction. On this basis, Yan et al.’s ST-GCN has reached a

new level in terms of performance on heavily benchmarked datasets.

Furthermore, Li et al. [2019] have considered the relationship between

edges and human joints, as well as enhanced the classification accuracy.

In comparison with ST-GCN, their work extends the idea to exploit more

relationships among joints. In addition to the spatial and temporal edges,

they considered the implicit “action links” and “structure links” in the

model. For example, hands and feet are not connected by a spatial

edge. In the walking scenarios, however, hand and feet movements are

quite related to each other. They are therefore connected by “action

links”. In this way, this model contributes toward the task of recognising

motions. Li et al.’s proposed network, the Actional-structural Graph

Convolution Network (AS-GCN), outperforms all existing approaches

by a large margin.

Unlike the indirect graph used for the skeletons, Shi et al. [2019] have

introduced a direct graph for the human body so as to exploit depen-

dencies between bones and joints. The indirect graph usually models

information relating to joints and bones separately, ignoring directional

relationships between joints. Therefore, Shi et al. proposed a directed

graph neural network (DGNN) to exploit the dependencies more fully.

Their two-steam framework is significantly better than existing work.

GNNs have not only achieved significant success in motion recogni-

tion; they have also inspired a new task: that of human pose regression.

Zhao et al. [2019] have designed a SemGCN operation for 3D human pose

regression. Existing GCN operations lack the ability to capture global
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information, for their receptive fields are usually very small. To address

this problem, Zhao et al. have introduced a channel-wise weighting vec-

tor to the original graph convolution operation. The new SemGCN oper-

ation captures a more implicit local and global relationship of the human

body to enhance the accuracy on evaluation.

Mao et al. [2019] have proposed a GCN-based approach to motion

prediction. This approach has predicted future sequences within the

trajectory space instead of the pose space, outperforming all existing

RNN-based, FCN-based, and CNN-based approaches. Drastically differ-

ent in relation to previous work, Moa et al. have formulated the spatial-

temporal problem in a new way. They first use a discrete cosine transform

(DCT) to encode the trajectory of each joint into feature vectors. The

feature vectors are then regarded as node features on the graph. They

designed a GCN framework with residual links so as to learn the output

feature vectors. Finally, the DCT transforms the output features back

into trajectories. This novel framework has significantly outperformed

state-of-the-art works.

Summary. This section reviews important recent approaches to GCN.

To further investigate the GCN-based model for motion prediction, in

this thesis, we describe how we constructed a densely connected GCN-

based model. In comparison to the work of Mao et al. [2019], our model

is more effective in learning feature maps and less likely to overfit and

experience gradient vanishing problems.
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Chapter 3

Efficient Convolutional

Hierarchical Autoencoder

3.1 Motivation

Inspired from the striking breakthrough of deep learning technology,

the researchers introduced neural networks to model motion dynam-

ics. Recently, Fragkiadaki et al. [2015] and Martinez et al. [2017] regard

motion prediction as a sequence-to-sequence problem [Sutskever et al.

[2014];Gehring et al. [2017]] similar to machine translation. Therefore,

the researchers propose recurrent neural networks (RNN) and variants,

to address motion prediction problems. Although these RNN models

achieve promising results, they have intractable limitations such as: high

computational complexity, less effective for the aperiodic motions, and

error accumulation. Essentially, the basic assumption of RNN models

ignored the major difference between motion data and language data:

motion data contains not only the temporal information but also spatial

information, which resembles the complicated human body structure and

mechanical restrictions.

Li et al. [2018] proposed a CNN based autoencoder system which

tries to capture both the temporal dynamics and the human body struc-

ture constraints. However, the 2D convolutional kernel is not able to

precisely capture the human body hierarchical structure information as
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well. To be more specific, convolutional kernel is designed for images

because a rectangular patch of images usually represents a meaningful

signal. However, the human body has a completely different spatial

constraints, which the joints are linked in an articulated tree structure.

Bütepage et al. [2017] demonstrate in their experiments that the convolu-

tion structure is not as effective as the fully connected structure and the

hierarchical layers can improve the performance significantly. However,

their work has limitations where the limbs’ length may change in the

predicted motion. Meanwhile, the fully connected networks have high

computational complexity and are prone to overfitting. Moreover, their

decoder results in a shaky and noisy output sequence because the logical

dependency between adjacent frames is completely lost.

Considering the limitations above, a novel Convolution Hierarchical

Autoencoder (CHA) framework is proposed to address the motion predic-

tion problem. A new encoder network incorporated Hierarchical struc-

ture with 1D convolution layers is designed. Therefore, it captures the

tree structures of the human body and temporal information at the same

time. Compared to RNN, FCN and CNN networks, it has much lower

computational complexity and a very small size but converges faster

and more effective. This convolution hierarchical module is adopted for

motion prediction and classification task. Extensive experiments are

conducted in CMU data and HM3.6 datasets to demonstrate the CHA

model’s ability to improve the motion prediction performance and break

the long-term error accumulation limitation.

This framework contributes to the field in four-fold: (1) A new Adver-

sarial Hierarchical Autoencoder (AHA) model is proposed with a much

lower computational complexity to address the motion prediction prob-

lem. (2) A convolution Hierarchical module is proposed which captures

the human body tree structure and temporal information at the same

time. (2) A novel D-loss function is introduced to address the mean pose

and error accumulation problem. (3) Two hierarchical discriminators

are proposed for this framework. (4) One general model is trained for

diverse actions contained in CMU/ HM3.6m and generates high fidelity

predicted motion sequences both for short-term and long-term predic-
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tion.

3.2 Overview of Methodology

An overview of the Convolutional Hierarchical Autoencoder (CHA) model

is shown in Figure 3.1. The seed motion clip (input) will be propagated

in an autoencoder system to generate the future frames. In the au-

toencoder, two encoders with Convolutional Hierarchical modules are

designed, which consist of three hierarchical layers and one fully con-

nected layer, to extract both the temporal and spatial information in

the human dynamics. One long-term encoder is used to extract the in-

formation of the whole input sequence, while the short-term encoder is

used to extract the information of C (C = 20 in this experiment) neigh-

bouring frames close to the current frame. The deep features generated

by the two encoders will be concatenated into one feature. The decoder

utilized two fully connected layers to restore the deep feature to a single

human pose. In this decoder, a residual link is also incorporated to avoid

the gradient vanishing problem. Therefore, the decoder will produce the

output sequences recursively. To address the mean pose problem and

accelerate convergence, a D-loss function is designed to assign a series of

diminished weights to the frames.
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Figure 3.1: The architecture of the Convolutional Hierarchical Autoencoder Model. The orange and green solid boxes are the initial
state of the short-term encoder and decoder. They will produce the future frame recursively. The orange and green dashed boxes are the
final stage of short-term encoder and decoder. They will stop moving after predicting all the frames.
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Figure 3.2: The diagram of the network architecture.
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3.3 The mathematical formulation

The human motion data in this chapter refers to the mocap 3D skele-

ton data with joints. A sequence of motion data can be written as

X = {f1, f2, ..., ft, ...., fn}. ft = (a1, a2, ..., aK) ∈ R3K denoted the frame

at time t, K is the number of joints and ai is the exponential map

representation [Bregler & Malik [1998]] of joints. Similar to the stan-

dard procedure [Gui et al. [2018a]; Jain et al. [2016]; Li et al. [2018];

Martinez et al. [2017]], the exponential map is normalized so that ai

only contains the relative joints’ rotations without the global rotation

and translation. Therefore, the motion prediction problem can be for-

mulated in a mathematical way. A set of motion clips are denoted as

A = {X i, i = 1, ..., N} . In the training stage, if the input motion

X i = {f1, f2, ..., ft, ...., fn} ∈ A has a length n, the m future ground

truth frames are denoted as Xf = {fn+1, fn+2, ..., fn+m}. This algorithm

aims to generate the future frames X̂ = {f̂n+1, f̂n+2, ..., f̂n+m}, which

makes the distance function D(Xf , X̂) as small as possible.

3.3.1 The representations of the rotations of limbs

3D rotation matrix

In the 2D rotation situation, every rotation can be denoted by a real

2× 2 special orthogonal matrix, which is given as follows:

(
cosθ −sinθ
sinθ cosθ

)
(3.1)

Similarly, every 3D rotation can be represented as a real 3× 3 special

orthogonal matrix. For example, a counterclockwise rotation around the

z− axis with degree θ can be formed as:

Rz(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.2)
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Therefore, every rotation in the three dimensional space can be de-

noted as a 3 × 3 rotation matrix R(n̂, θ). n̂ is the axis of rotation, and

θ is the counterclockwise rotation degree. All the 3D rotation matrixes

consist of a Lie group SO(3).

Then the rotations of each limbs in the motion sequences can be de-

rived out. A frame is determined by the coordinate of K joint points,

that is Ft = {J1
t , J

2
t , ..., J

K
t } ∀t ∈ {1, ..., T}. For every limb r in Ft, it

can be regarded as a vector r̂t = (xt, yt, zt) = J it − J
j
t in <3, where i is

the parent joint and j is the child joint. So in the t + 1-th frame, the

limb’s position can be written in the form (Bregler & Malik [1998]) by

homogeneous coordinates:


xt+1

yt+1

zt+1

1

 = Rt ·


xt

yt

zt

1

 (3.3)

Therefore, the limb vector r̂t+1in Ft+1 can be determined:
xt+1

yt+1

zt+1

1

 = RtRt−1...R1 ·


x1

y1

z1

1

 (3.4)

Euler Angle

Every 3D rotation can be one rotation θ from an axis n̂, or obtained

from a three times rotation, which uses x−axis, y−axis, z−axis in turns.

Therefore, the following formulation can be deduced:

Rt = Rx(αt)Ry(βt)Rz(γt) (3.5)

Similar to the 2D rotation, positive rotation was identified when α, β, γ >

0, and negative rotation was identified when α, β, γ < 0. For a human

skeleton, their limbs are rotated with restriction so that the interval of
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α, β, γ is much less than the 360 which is freedom. The α, β, γ are called

Euler Angles to represent a 3D rotation. Note that for one rotation, the

Euler Angle coefficients are not unique. But one tuple of Euler Angle

can determine a unique 3D rotation.

The unique rotation axis n̂ has relationships to the Euler Angle α, β, γ:

n̂ = ±(sin(β/2)cosα, sin(β/2)sinα, cos(β/2)) (3.6)

The Euler Angle exists by mathematic proof, which can be referred

to [http : //scipp.ucsc.edu/ haber/ph216/rotation12.pdf ].

Quaternion & Exponential Maps

In 2D rotation case, xy plane can be also regarded as a complex plane.

Therefore, every rotation is accosiated with a exponential expression:

z = x+ iy = |z|(cosθ + isinθ) = |z|eiθ (3.7)

Similarly, every 3D rotation matrix can be expressed in the exponen-

tial way. The exponential map on SO(3) refers to the following mapping

function: {
exp : so(3)→ SO(3)

A 7→ eA = Σ∞k=0
1
k!
Ak = I + A+ 1

2
A2 + ...

(3.8)

In the equation, so(3) is a group of skew-symmetric matrixes. Every

3D rotation can be defined by the exponential formulation uniquely. As-

suming that there is a unit vector u =< x, y, z > in R3. The 3D rotation

around unit u by the angle θ can be formulated as:

exp

θ


0 −z y

z 0 −x
−y x 0


 (3.9)

The above equation can be computed to obtain the final 3D rotation
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matrix. (Please ref to 3DRotationWIKI)


2(x2 − 1)s2 + 1 2xys2 − 2zcs 2xzs2 + 2ycs

2xys2 + 2zcs 2(y2 − 1)s2 + 1 2yzs2 − 2xcs

2xzs2 − 2ycs 2yzs2 + 2xcs 2(z2 − 1)s2 + 1

 (3.10)

Where c = cos θ
2

and s = sin θ
2
.

The benefits of using the exponential map instead of the Euler Angle

is that the exponential map expression is unique. Usually, R3 maps to

SO(3) is always with singularities. However, these kind of inevitable

singularities in the exponential map are often avoidable.

3.4 The convolutional hierarchical module

(CHM)

Different from the existing work, this network contains neither a typical

2D CNN nor RNN components but a Convolutional Hierarchical Module

(CHM), which is particularly designed for human motion data (Figure

3.3). This module has a network topology similar to the human body

tree structure, and every node in the network is a 1D convolutional

layer. The network topology is better at preserving the special human

body hierarchical constrains in deep features. The RNN did not exploit

the spatial information in motion data enough and the human body has

more sparse nodes and an articulated structure compared to images.

Therefore, this CHM module is more capable to capture both the local

and global features of motion data than RNN and CNN. 1D convolutional

layers are utilized to capture the temporal information along with the

spatial constraints and reduce the model complexity at the same time.

The convolution hierarchical module consisted of four layers, three

convolutional hierarchical layers H1, H2 and H3, which are illustrated

in Figure 3.3, and a fully connected layer. Intuitively, H1 stands for

the information of each joint link in the human body. And H2 extracts
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Figure 3.3: The convolution hierarchical layers in this framework. The first
layer contains the same number of neurons M2 as the input frame feature
dimension. Then the neurons from adjacent joints are linked together to one
neuron in the secondary layer. Two neurons are linked together if and only if
the related ai and aj represent the data from two adjacent joints in the human
skeleton. After that, the two neurons input feature will be concatenated as a
sub matrix and operated by 1D conv. Therefore, the output of each neuron will
be 1×M1 (M1 is the input frame number). In the same way, the output of H1

will be sent in to the H2 layer. H2 consists of five neurons and H3 consists of
two neurons. All the nodes’ outputs have explainable semantic meanings.
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Figure 3.4: The five body components. Note that the joints in the figure
do not equal to the same number of joints used in experiments because differ-
ent datasets have different skeletons. The skeleton of CMU and H3.6M are
demonstrated in the following section.

information separately for five parts of the human body, which is illus-

trated in Figure 3.4. H3 extracts the deep representations for two parts

of the human body, Upper and Lower. Therefore, the deep features in

the layers have semantic explanations as well.

The input sequence is a matrix of dimension M1×M2, referring to M1

frames and each frame is represented by a feature of M2 dimension. Each

element from this feature comes from an exponential representation of

a joint. The input matrix will be reconstructed by separating the con-

nected joints into a group. For example, joints J1 and J2 are connected

by one bone, then the related input feature M1 × j1 and M1 × j2 are

combined together as a sub matrix M1 × (j1 + j2). A 1D convolution

kernel will operate each sub matrix along the time axis M1. If there is

L joint links in the human body tree, then the H1 layer consists of L

nodes. The output feature of each node represents each joint link.
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H2 and H3 are built in the same way. In the layer of H2, the features

of joint links are concatenated into five sub matrixes related to five body

parts (Figure 3.4). The sub matrixes are operated by the 1D-convolution

as well. H3 only has two nodes, which represent the upper body action

and lower body action respectively. The setting details are shown in

Table 3.1.
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Table 3.1: The architecture of the Adversarial Hierarchical Autoencoder

Scope Layer NodesNumber NodeType KernelSize FilterNum Stride Pad

Encoder

H1 20(22 for CMU data)
Conv1D 5 64 1 ‘Same’

LeakyRelu(0.2) - - - -
Dropout(0.8) - - - - - -

H2 5
Conv1D 5 256 1 ‘Same’

LeakyRelu(0.2) - - - -
Dropout(0.8) - - - - - -

H3 2
Conv1D 5 320 1 ‘Same’

LeakyRelu(0.2) - - - -
Dropout(0.8) - - - - - -
FullyConnect 256 - - - - -

Decoder
FullyConnect 256 - - - - -
FullyConnect 54(70 for CMU data) - - - - -
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This design structure brings two benefits. Firstly, the hierarchical net-

work structures blend the human body constrains in feature extraction.

Compared to the CNN model [Li et al. [2018]], the CHA model captures

more precise spatial structures and generates more meaningful deep fea-

tures. Since the semantic meaning of deep feature is a very important

research question, the CHA model will contribute to the researches by

producing more explainable deep features. Secondly, the 1D convolu-

tional layers can capture the temporal information in a much more effi-

cient way than RNN models and CNN models. The less complex model

can prevent overfitting problems better. It is the most efficient network

for motion modelling based on our knowledge. The model complexity

will be discussed in detail in Section 3.12.

3.5 The autoencoder framework

A deep sparse autoencoder system [Li et al. [2018]] is widely used for

synthesis problems. In this work, an autoencoder system is used as the

generator to produce X̂.

Two encoders are employed in this autoencoder system. The first

encoder network aims to map the whole n frame in the input sequence

X = {f1, f2, ..., ft, ...., fn} into a deep feature Vl which extracts the long

term information such as the action type, the global tendency and the

motion style. The second encoder aims to map the adjacent C frames

X t
C = {ft−C+1, ft−C+2, ...., ft} of the current frame ft into another deep

feature V t
s which contains the short term information to predict the frame

ft+1. Finally, Vl and V t
s is concatenated to be one feature V t and propa-

gated into a decoder. The two encoders are denoted as functions El and

Es respectively.

Vl = El(X|Wl),Wl is the parameters of El (3.11)

V t
s = Es(X

t
C |Ws),Ws is the parameters of Es (3.12)
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V t = [Vl, V
t
s ] (3.13)

The predicted motion sequences are generated recursively. The Xn
C

will encode the information to inference the first future frame f̂n+1,

Therefore, the window of the short term encoder can move to Xn+1
C ,

where

Xn+1
C = {fn−C+2, fn−C+3, ...., f̂n+1}

So that the next frame f̂n+2 of f̂n+1 can be produced.

By following this methodology, all of the m future frames can be

generated by this scheme. A decoder with two fully connected layers is

used in the pipeline to restore the human pose from the low dimension

representation V t. The mapping function of the decoder is denoted as

D, so that the f̂t+1 can be written as follows:

f̂t+1 = D(V t|WD),WD is the parameters of D (3.14)

In recursive cases, the residual link usually works better than produc-

ing the next status directly. So the decoder is designed with a residual

link as well. The formula of equation 3.14 is rewritten as:

f̂t+1 = D(V t|WD) + f̂t,WD is the parameters of D (3.15)

Therefore, the three networks are combined together to encode the

spatial-temporal information of long seed motions and relate the short

neighbouring motions into a deep feature representation. Then the de-

coder maps the deep features back into the human body joints, relative

to the rotation exponential map representations and produces the future

frames iteratively.
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3.6 The objective function

Inspired by Fragkiadaki et al. [2015], Jain et al. [2016], Martinez et al.

[2017], Li et al. [2018], the l2 loss function of two motions is used, which

measures their difference by summing up the mean squares error (MSE)

of the Euler angles of all frames.

The objective function of the Convolutional Hierarchical Autoencoder

model is:

minLE(X̂,Xf ) + λ‖W‖2 (3.16)

The predicted motion is written as:

X̂ = {f̂n+1, f̂n+2, ..., f̂n+m} (3.17)

And the ground truth of the predicted motion represents the following:

Xf = {fn+1, fn+2, ..., fn+t, ...., fn+m} (3.18)

The original Euclidean distance loss function is defined as:

LE(X̂,Xf ) = ‖X̂ −Xf‖ =
n+m∑
t=n+1

‖f̂t − ft‖2 (3.19)

So the objective function can also be written in a frame level:

min

n+m∑
t=n+1

‖f̂t − ft‖2 + λ(‖WE‖2 + ‖WD‖2) (3.20)

Where the λ controls the balance of different loss sources. The WE

and WD are the parameters of the encoder and decoder in the Hierar-

chical Convolutional Model. The increase in pramameters can improve

the fitting accuracy, but the accuracy on the test dataset may decrease.

Therefore the term λ(‖WE‖2 + ‖WD‖2) is introduced with an l2 regular-

izer to prevent overfitting.

Remarks
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A D-loss function is designed in this thesis to accelerate convergence.

The idea is to assign gradually diminishing weights for each frame in the

sequences. From the experiments, this D-loss function does not affect

the result, but it prevents to produce the mean pose. We designed a

diminishing weight 0 < η < 1. The error between the generated frame

and the ground truth frame is denoted as ‖f̂t − ft‖2. We assumed that

the importance of the error will decrease when the predicted frame goes

further since the initial error will propagate during iteration. Therefore,

the error of each frames will be assigned different weights and be summed

up, then normalized to obtain the final loss:

LA(X̂,Xf ) = (
n+m∑
t=n+1

ηt−n‖f̂t − ft‖2)/(
n+m∑
t=n+1

ηt−n) (3.21)

where η ∈ (0, 1) is a parameter very close to 1. During the training

process, the networks will put more efforts to decrease the error of earlier

generated frames since they have more iteration steps which will amplify

the initial error. The frame level distance ‖f̂t − ft‖2 can use l2, l1 or the

geodesic loss [Gui et al. [2018a]] as well.

3.7 Implementation Details

The input sequence has a length of 50 frames so that the first hierarchical

layer has an input vector of 50×54 (50×70 for CMU) and the predicted

sequences have a length of 25. The short-term encoder is set to have an

input length of 20. A small batch size 16 and a learning rate of 5e−5 is

used. For the parameter η, which aims to control the error generation

during the experiment, 0.9 is found to be a good value during experiment

experience. A NVIDIA GPU 1080Ti is used and the full model is trained

in Tensorflow [Abadi et al. [2016]].

3.8 Evaluations

To validate the CHA model, extensive experiments of motion prediction

are conducted on the existing benchmarks- H3.6M and CMU motion
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dataset. Generally, the previous motion prediction research follows the

same standard of experiments, which tests their models for short-term

prediction and long-term prediction. The state-of-the-art baselines of

motion predictions are included as the comparison. The experiments’

results demonstrated that the prediction accuracy of the CHA model

beats down the state-of-art baselines on diverse actions of H3.6M and

CMU. Meanwhile, it is illustrated that the CHA model also produces

more plausible human-like movements than baselines. Besides, the ef-

ficiency of the CHA model is also discussed in terms of computational

complexity and parameters in Section 3.12.

3.9 Benchmarks

Following the standard comparison [Li et al. [2018]], motion prediction

experiments are provided on the two widely used motion benchmarks,

H3.6M [Ionescu et al. [2014]] dataset and CMU motion dataset.

H3.6M- This dataset is the largest motion dataset which provides

3.6 million 3D human poses and corresponding images in three kinds of

formats. The 3D skeleton format is used, which has 32 joints in total to

represent the human body structure. In the data process, each frame is

recorded as the relative rotation of each joint, which is mathematically

converted into an exponential map. There are performances of 11 pro-

fessional actors in certain scenarios such as discussion, smoking, etc. Six

actors’ trails and all the 15 types of actions are selected in the experi-

ment. Each type of action has two performance trials among 3000-5000

frames. Therefore, 180 trials of H3.6M are selected in total. The train set

is five times to the test set as the previous work. Four types of actions,

walking, smoking, eating and discussion are the most widely evaluated

in these motion prediction mechanisms. The experiments are provided

not only on these four but also on all the other actions as well. In the

Figure 3.5, the skeleton structure of H3.6M is presented.

CMU- This dataset has a wider range of action types than H3.6M.

It gives out a large amount of skeleton based MoCap data around 2605

sequences which represent 6 categories and 23 subcategories (actions).
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Contrast to H3.6M, each action type contains different amounts of trials

and their 3D-skeletons consist of 38 joints (The skeleton used in Li et al.

[2018]). There are various sports and physical activities included, such

as basketball, soccer and jumping. The same subsets are selected by Li

et al. [2018] under the prescriptions, in which the action type should be

a single type and should contain enough training trials. Finally, eight

action types are selected and each of them contains more than five trials.

Besides walking, all the other action types have 5 trials for training and

1 trial for testing. In the Figure 3.6, the skeleton structure of CMU (used

in Li et al. [2018] and this thesis) is presented.
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Figure 3.5: The whole body of the H3.6M. The dimension will be reduced after normalization.
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Figure 3.6: The whole body of the CMU. The dimension will be reduced after normalization.
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The two datasets are pre-processed in the same way. Due to data

normalization being an important factor affecting the network’s perfor-

mance, all the human pose data is normalized into mean values resulting

to 0, and standard deviation resulting to 1. Therefore, the root point of

all poses are set at the same point and the global orientation of the whole

body is fixed. After that, every normalized human pose is represented by

a 54 dimension feature for H3.6M and a 70 dimension feature for CMU.

All the trials are down sample to 25Hz, so that every seed motion clip

has 50 frames, equivalent to 2 seconds of information. The seed motion

clip will be imported in the long-term encoder, and the neighboured 20

frames of the currently predicted frame will be imported in the short-

term encoder. Note that, although all the models present their evaluation

results by Euler Angles, their loss functions do not calculate Euclidean

differences of Euler Angles directly. For example, Martinez et al. [2017]

and Gui et al. [2018a] use losses which calculate the exponential maps

and the orientation groups’ difference between the predicted motion and

the ground truth respectively. In this thesis, the Euclidean difference of

the exponential maps in the loss function are considered as well.

3.10 Baselines

Five of the-state-of-the-art deep learning models are included in the com-

parative evaluation. Those are the following:

1. Encoder-Recurrent-Decoder model for human motion recognition

and prediction (ERD) [Fragkiadaki et al. [2015]]

2. Dubbed the Dropout Autoencoder LSTM (DAELSTM) [Ghosh

et al. [2017]]

3. Residual Recurrent sequence to sequence Model for human motion

modelling (RRNN) [Martinez et al. [2017]]

4. Convolutional Sequence to Sequence Model for Human Dynamics

(CNNHD) [Li et al. [2018]]

The experiments of CNNHD and RRNN from their public implementa-
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tion on GitHub are reproduced. However, the remaining models do not

public their implementation code. Therefore, their results are quoted

from the existing publications [Martinez et al. [2017]] for error compari-

son. The quality of the predicted sequences with CNNHD are also com-

pared. For the short-term prediction, the results reported from CNNHD

[Li et al. [2018]] are quoted. For the long-term prediction, the CNNHD

model from their public code are implemented and their model is trained

with the same settings in Li et al. [2018]. Because all these models follow

the standard procedure of data processing and the same evaluation, this

comparison is impartial.

3.11 Evaluation Methods

From a practical perspective, the predicted motion should be accurate

and look plausible at the same time. Therefore, the CHA model is eval-

uated in three aspects: complexity, qualitative and quantitative perfor-

mance. All the short-term results of diverse action types are presented

and also the more challenging long-term prediction accuracy.

1. To evaluate the efficiency of the CHA model, the discussions in

Section 3.12 are conducted. Usually, RNN models have a higher

complexity compared to CNN models. The CHM’s complexity and

size with the-state-of-the-art CNN based model are compared. Li

et al. [2018] proposed a CNN based Autoencoder system with a

convolutional encoding module (CEM) which outperformed all the

RNN models.

2. To evaluate the prediction performance, the average mean square

error (MSE) of the Euler angles between the predicted motion and

ground truth are provided. Short term prediction for different du-

rations: 80ms (2 frames), 160ms (4 frames), 320ms (8 frames),

400ms (10 frames) are conducted. In addition, the long term pre-

dictions for four durations: 560ms (14 frames), 720ms (18 frames),

840ms (21 frames), 1000ms (25 frames) are also conducted. The

results and analysis are shown in section 3.13 and 3.14 with Table

3.2-3.7.
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3. To evaluate the quantitative performance of the CHA model, the

representative prediction sequences are illustrated in Figure 3.7–

3.9 following the same settings in Bütepage et al. [2017], Gui et al.

[2018a], Li et al. [2018], Martinez et al. [2017].

3.12 Size and Speed

CNN has the lowest model complexity compared to the FCN and RNN

structures. But the design of the convolution hierarchical network greatly

reduced the model complexity compared to CNN. The complexity of

CEM and the CHM are calculated here.

For a normal convolutional layer with a kernel size K1×K2, it takes an

input M1in×M2in×Cin and generates an output of M1out×M2out×Cout.
Here, M1in and M2in represent the width and height of the input tensor.

The same for M1out and M2out. Cin and Cout are the numbers of input and

output channels respectively. For simplification, it is considered that all

the convolutional layers have the same output size of input and strides

equal to 1. Therefore, M1 ×M2 both for input and output are denoted.

CEM consists of three 2D convolution layers and one fully connected

layer. CHM consists of three hierarchical layers and one fully connected

layer. The computational complexity A and the parameters’ number B

for each layer will be calculated separately and then summed them up.

3.12.1 Comparison of computational complexity

The computational cost of a 2D convolutional layer in CEM is calculated

as:

A = M1 ×M2 × Cout × ((K1 ×K2 + 1)× Cin + (Cin − 1)) (3.22)

The number of nodes are denoted in each hierarchical layer as hi, then

the computation cost of one Hi layer in CHM is calculated as:

Ai = hi ×M1 × Cout × ((K1 ×K2 + 1)× Cin + (Cin − 1)) (3.23)
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In the equations, (K1 ×K2 + 1) is the calculation in one patch of con-

volution. Here, the bias weight are considered. ((K1 ×K2 + 1)× Cin +

(Cin− 1)) means the total calculation to produce a point on the output.

M1 ×M2 × Cout means the number of output points.

If the same kernel value for two models are set, the ratio of compu-

tational complexity of each convolution layer can be deduced from the

equations above :

ACEMi : ACHMi = M2 : hi (3.24)

For the last fully connected layer, the bias for simplicity is not in-

cluded. CHM is more efficient than CEM as well:

ACEMF = M1 ×M2 × Cout × F
ACHMF = M1 × Cout × F
ACEMF : ACHMF = M2

(3.25)

Since hi is much smaller than M2, the CHM module has much lower

computational complexity under the same settings. For experiment con-

venience, a CHM with slightly different parameters is used, which are

written in Table 3.1. The computational cost ratio of two networks will

be obtained:

Computational cost of CEM
Computational cost of CHM

≈ 1,240M
302M

≈ 4.1 (3.26)

The computational cost of the model affects the total running time of

the model. Usually, researchers and data engineers need to train a deep

learning model dozens or hundreds of times to modulate it. Therefore,

the time efficiency of the CHA model allows them to implement ideas

and tasks faster.
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Table 3.2: The short-term prediction error of four action types on H3.6M dataset

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ERD Fragkiadaki et al. [2015] 1.30 1.56 1.84 N/A 1.66 1.93 2.28 N/A 2.34 2.74 3.73 N/A 2.67 2.97 3.23 N/A
DAELSTM Ghosh et al. [2017] 1.00 1.11 1.39 N/A 1.31 1.49 1.86 N/A 0.92 1.03 1.15 N/A 1.11 1.20 1.38 N/A
RRNN Martinez et al. [2017] 0.33 0.56 0.78 0.85 0.26 0.43 0.66 0.81 0.35 0.64 1.03 1.15 0.37 0.77 1.06 1.10

CNNHD Li et al. [2018] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

CHA 0.27 0.45 0.65 0.74 0.20 0.34 0.53 0.66 0.26 0.48 0.89 0.93 0.28 0.62 0.85 0.91

Figure 3.7: The illustrate of the prediction result of 1000ms on H3.6M dataset. The blue and red skeletons are groundtruth frames. The
green and purple skeleton on the top is the prediction result of CHA model.
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Table 3.3: The short-term prediction error of 12 action types on H3.6M dataset

Directions Greeting Phoning Posing
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.44 0.70 0.86 0.97 0.55 0.90 1.34 1.51 0.62 1.10 1.54 1.70 0.40 0.76 1.37 1.62
CNNHD 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37

CHA 0.40 0.62 0.79 0.88 0.53 0.87 1.28 1.44 0.60 1.12 1.51 1.64 0.27 0.56 1.16 1.41

Purchases Sitting Sittingdown Takingphoto
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.59 0.83 1.22 1.30 0.47 0.80 1.30 1.53 0.50 0.96 1.50 1.72 0.32 0.63 0.98 1.12
CNNHD 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06

CHA 0.60 0.84 1.10 1.15 0.40 0.64 1.03 1.21 0.41 0.79 1.15 1.30 0.26 0.51 0.80 0.93

Waiting Walkingdog Walkingtogether Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.35 0.68 1.14 1.34 0.55 0.91 1.23 1.35 0.29 0.59 0.86 0.92 0.43 0.75 1.12 1.27
CNNHD 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

CHA 0.32 0.63 1.12 1.31 0.54 0.90 1.24 1.38 0.26 0.53 0.75 0.80 0.37 0.66 0.99 1.11
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3.12.2 Comparison of the parameters

The number of parameters of a convolutional layer is calculated as:

B = K1 ×K2 × Cin × Cout (3.27)

The parameter number of an Hi layer is calculated as:

Bi = K1 ×K2 × Cin × Cout × hi (3.28)

The parameter number of the fully connected layers are:

BCEM
F = M1 ×M2 × Cout × F

BCHM
F = M1 × Cout × F

BCEM
F : BCHM

F = M2

(3.29)

The total cost of a network is to sum up the cost of each layer:

Total parameter =
∑L

l=1Bl (3.30)

Because B and Bi are significantly smaller than BCEM
F and BCHM

F ,

the CHM will have a smaller size under the same settings as well. To be

more specific, the precise number of parameters are calculated with the

setting in Table 3.1:

The parameters in CEM

The parameters in CHM
≈ 177M

11M
≈ 15.1 (3.31)

It is an intractable problem in deep learning models that more data

is required when the model has more parameters. Due to motion data

being expensive and inconvenient to obtain, the samples for each type

of action is limited. It is observed that complex models are prone to

overfitting on the small amount of motion data. Therefore, the CHA

model alleviates this problem and it is more suitable for small sample

learning.
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3.13 H3.6M experiment results

There are four types of actions: walking, eating, smoking and discussion

which are commonly used as benchmarks in comparison. Therefore the

CHA model’s results of the short term prediction of these four actions

are presented in Table 3.2. The accuracy of other baselines is compared

in this table as well. Note that all the results come from the model

which is trained generally for the loss of 15 actions in the long-term.

The CHA model beats down all the results of four actions in terms of

80ms, 160ms, 320ms and 400ms, except one. For the 400ms walking

prediction, the CHA model actually achieved 0.735 which is almost the

same to 0.73 of the CNNHD model. For the 80ms and 160ms walking

prediction, the CHA model improved 0.06 significantly. Even for the

aperiodic action discussion, the CHA model outperforms all the other

baselines completely with a maximum of 0.8 Euler Angle error reduction.

For a more general comparison, the 12 remaining actions’ results are

displayed in Table 3.3. Compared to ERD, DAELSTM and RRNN the

CHA model almost outperforms on every action. However, compared to

CNNHD, the CHA model shows a different preference of actions. Half

of the actions improved, but half decreased. Therefore, the average error

is calculated to demonstrate a fair comparison. It shows that the CHA

model achieved the best average error in terms of all prediction lengths.

The general model CHA even beats the other action specific models like

ERD.
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Figure 3.8: The illustration of the prediction result of 1000ms on H3.6M dataset. The blue and red skeletons are ground truth frames.
The green and purple skeletons on the top are the prediction result of the CHA model.
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Figure 3.9: The illustration of the prediction result of 400ms on CMU dataset. The blue and red skeletons are ground truth frames.
The green and purple skeletons on top represents the prediction results of the CHA model.
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Table 3.4: The long-term prediction error of 15 action types on H3.6M dataset

Walking Eating Smoking Discussion
milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 0.86 0.92 0.97 0.86 1.09 1.33 1.04 1.38 1.70 1.34 1.71 1.79
CHA 0.84 0.91 0.92 0.82 1.02 1.21 1.02 1.35 1.66 1.29 1.65 1.72

Directions Greeting Phoning Posing
milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 0.96 1.33 1.40 1.69 1.82 1.84 1.59 1.82 1.86 1.89 2.30 2.50
CHA 0.97 1.34 1.40 1.72 1.82 1.83 1.58 1.91 2.03 1.72 2.15 2.40

Purchases Sitting Sittingdown Takingphoto
milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 1.61 1.88 2.39 1.30 1.60 1.71 1.58 2.02 2.19 1.08 1.24 1.32
CHA 1.55 1.84 2.33 1.34 1.59 1.67 1.50 1.89 2.05 1.06 1.19 1.27

Waiting Walkingdog Walkingtogether Average
milliseconds 560 840 1000 560 840 1000 560 840 1000 560 840 1000

CNNHD 1.66 2.24 2.36 1.71 1.87 1.91 0.86 1.00 1.36 1.33 1.61 1.77
CHA 1.65 2.23 2.34 1.65 1.86 1.90 0.88 0.99 1.32 1.31 1.58 1.74
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Table 3.5: The short-term prediction error of 8 action types on the CMU dataset

Basketball Basketball Signal Directing Traffic Jumping
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.50 0.80 1.27 1.45 0.41 0.76 1.32 1.54 0.33 0.59 0.93 1.10 0.56 0.88 1.77 2.02
CNNHD 0.37 0.62 1.07 1.18 0.32 0.59 1.04 1.24 0.25 0.56 0.89 1.00 0.39 0.60 1.36 1.56
CHA(H) 0.37 0.61 0.97 1.07 0.27 0.50 0.89 1.05 0.24 0.49 0.79 0.92 0.41 0.66 1.46 1.66

Running Soccer Walking Washwindow
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.33 0.50 0.66 0.75 0.29 0.51 0.88 0.99 0.35 0.47 0.60 0.65 0.30 0.46 0.72 0.91
CNNHD 0.28 0.41 0.52 0.57 0.26 0.44 0.75 0.87 0.35 0.44 0.45 0.50 0.30 0.47 0.80 1.01
CHA(H) 0.29 0.44 0.53 0.56 0.23 0.42 0.81 0.95 0.33 0.43 0.45 0.50 0.28 0.44 0.74 0.94

Table 3.6: The long-term prediction error of 8 action types on the CMU dataset

Basketball Basketball Signal Directing Traffic Jumping
milliseconds 560 720 840 1000 560 720 840 1000 560 720 840 1000 560 720 840 1000

CNNHD 1.75 2.20 2.39 2.51 1.47 1.62 1.65 1.67 1.51 1.68 1.78 1.93 1.93 1.92 2.20 2.10
CHA 1.21 1.37 1.47 1.54 1.30 1.44 1.47 1.52 1.49 1.70 1.80 1.97 1.91 1.94 2.20 2.10

Running Soccer Walking Washwindow
milliseconds 560 720 840 1000 560 720 840 1000 560 720 840 1000 560 720 840 1000

CNNHD 0.51 0.48 0.54 0.59 1.11 1.27 1.32 1.46 0.55 0.65 0.75 0.79 1.17 1.23 1.40 1.36
CHA 0.56 0.59 0.57 0.55 1.19 1.36 1.39 1.47 0.58 0.68 0.77 0.78 1.17 1.21 1.37 1.32
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The long-term prediction result is shown in Table 3.4. Because the

ERD, DAELSTM and RRNN models did not provide their long-term

accuracy and CNNHD achieved the best performance of them all, it is

only compared here using the CNNHD model. The results regarding the

long term prediction of CNNHD model are obtained from their public

implementation and use the same setting in their paper. From Table

3.4, the CHA model improves all the performance of diverse actions

especially in the long term. In the most challenging long term task,

motion prediction for 1000ms, the CHA model outperforms significantly

on almost every action.

The visualization is shown in Figure 3.7 and 3.8. Both for periodic

motions like walking and aperiodic motions like discussion, the CHA

model produces plausible and high fidelity predictions which looks very

similar to the ground truth. Besides, the CHA model avoids generating

mean poses in long term prediction like RNN models (Figure 3.8).

3.14 CMU experiment results

In order to demonstrate the CHA model’s generalization ability, this

model is trained from CMU dataset which includes eight actions as well.

Only one existing work, CNNHD, provides their results on the CMU

dataset. The prediction error of these actions are given out in Table 3.5

and Table 3.6. The ability of short term prediction is compared firstly. It

shows that almost all the action improved their accuracy in some terms.

More than 60% of the CHA model’s results outperform the CNNHD. In

the 80ms and 320ms of Running, the errors are 0.285 and 0.525 precisely,

which are very close to CNNHD. The average error of these eight actions

are also calculated, and they demonstrate the CHA model achieved a

better performance than CNNHD.

For long term prediction, the CHA model outperforms more than half

of the results of the CNNHD model. Similar to the H3.6M dataset,

the CHA model produces an unbalanced improvement. Therefore, the

average error of the 8 actions are provided. The results in Table 3.7

demonstrate that the CHA model outperforms the CNNHD model in
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terms of all length of prediction. It improves significantly for long term

prediction around 0.10. The experiments show that the CHA model has

the ability to alleviate the error accumulation in long term.

The visualization of the data is shown in Figure 3.9. Compared to the

Human3.6M dataset, the prediction results of the CMU are not always

completely similar to the ground truth. The purple skeleton data at

bottom is the result of CNNHD model. This model predicts the left arm

and left foot more accurately than the CNNHD model.

3.15 Summary

A novel convolutional hierarchical module which combines 1D convolu-

tional layers in a tree structure is designed. This module is utilized as

an encoder and built up as an autoencoder system. The CHA model can

extract the temporal and spatial information effectively and greatly re-

duce the model’s computational complexity and size. It is demonstrated

that the CHA model outperforms the state of the art accuracy on the

Human3.6M and CMU benchmark by extensive experiments. In the ex-

periments, the CMU prediction is not completely similar to the ground

truth and the CHA model demonstrated an unbalanced preference of

actions. In the future, this research plans to explore the data augmen-

tation method on the CMU and introduce more expressive concatenated

features of the three H layers.

Table 3.7: The Average error of all types of actions in the CMU dataset

milliseconds 80 160 320 400 560 720 840 1000
CNNHD 0.32 0.52 0.88 0.99 1.25 1.38 1.50 1.55

CHA 0.30 0.50 0.83 0.96 1.18 1.29 1.38 1.41
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Chapter 4

Densely Connected GCN

model

In the last chapter, it explored how to design a model to reduce the com-

putational complexity and model size while retaining the performance of

prediction at the same time. During the PhD research period, Graph

Neural Networks have been proposed for modelling human poses and

achieved trenmendous success since they are usually light weight and

effective. Following the trend, this chapter develop the idea to use GCN

models for motion prediction problem and further improved the state-

of-the-art work.

4.1 Motivation

Recently, Graph Neural Networks(GNN) attracts increasing attention

and achieved a significant margin of improvement on human motion tasks

[Yan et al. [2018a]; Li et al. [2019]; Mao et al. [2019]]. The reason is

because the human body is a natural graph, i.e. the joints are nodes

of the graph and connectivity is defined by the limbs. The existing

GCN based work [Mao et al. [2019]] significantly outperforms those of

the LSTM or CNN based models for motion prediction. However, the

existing GCN based models are limited in performance as an emerging

topic. When the GCN layers go deeper, the gradient is prone to vanish.
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Moreover, the features extracted from earlier layers contain the different

scales of graph information. The GCN layers usually have a receptive

field with size 1, i.e. only operating on the 1-nearest node. However,

the impact of the 1-nearest feature will diminish when the layers go

deeper. On the contrary, the nearest joints on the human body are

vitally important for prediction movement.

To address these limitations in a simple but effective way, a new GCN

based framework is proposed for motion prediction which connects all

the GCN blocks directly. Therefore, the output feature of each GCN

block skips the middle layers and jumps to the final layers. In details,

the DGCN model formulates the graph as the 3D skeleton of the human

body by following the previous work. Then the trajectory of each joint is

encoded and fed as node input features. Each GCN block consists of two

GCN layers and LeakyRELU layers. The first layer is used to preserve

the feature map size. Similar to Huang et al. [2017], the different scale of

features are concatenated. Therefore, if the DGCN model has N GCN

blocks, and the first GCN block has an output feature with size F , then

the input features for the last GCN blocks will have size F × (N − 1)

and N(N+1)
2

links between blocks are built in total in the DGCN model.

Compared to the aforementioned GCN model proposed by Mao et al.

[2019], the DGCN model requires almost the same level of parameters.

But it significantly enlarged the feature maps utilization and increase the

impact of earlier layers’ feature map. Moreover, this densely connected

structure makes the model for motion prediction easier to train and able

to go deeper. Another important factor decreasing the performance of

motion prediction is that the models are prone to be overfitting due to

the motion data amount being small. However, the DGCN model has

a regularizing effect and LeakyRELU layers reduce the overfitting on

training.

In conclusion, the contribution of this work comes from two aspects:

1. A new Densely GCN based model (DGCN) is proposed to address

the problem of motion prediction. It reuses the multi-scale feature

maps from every block to enlarge the receptive field and reduced
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the oversmoothing problem.

2. Extensive comparison experiments are conducted on the standard

benchmarks for motion prediction, which are Human3.6M, the

CMU motion capture dataset and 3DPW. The model is evaluated

both from the angle and 3D position aspect, and it surpasses the

state-of-the-art performance on all datasets.

4.2 Methodology

In this section, the details of the methodology are given out to address

the motion prediction task. Firstly, the mathematic formulation of the

motion prediction is described. Then the definition of the DGCN model’s

graph networks is depicted. After that, the structure of the DGCN

networks and how it has been densely connected are shown in Fig 4.1.
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Figure 4.1: The overview of the DGCN model. Dense link shows how the feature maps propagate. The input of each node of the graph
is the DCT of the trajectory.
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4.3 Problem Formulation

In this section, the mathematic formulation details of the motion pre-

diction problem are provided. Assuming that the sequence of the 3D

skeleton is X1:T = [x1, x2, ..., xt, ..., xT ], t is the time step that ranges

from 1 to T so that xt is the related pose at time t. Every pose xt con-

tains K joints and each joint can be represented as a 3D position (x, y, z)

or (α, γ, β) in angle space (the data usually removes the global rotation

and translation). Therefore, xt ∈ R3×K are denoted.

This task aims to predict the future sequences XT+1:T ′ . The ground

truth future sequences are denoted as GXT+1:T ′ and the synthesised se-

quences from the model are denoted as SXT+1:T ′ . Therefore, the objec-

tive of the problem is to minimize the error of ‖GXT+1:T ′ − SXT+1:T ′‖
and also make the SXT+1:T ′ look realistic like the real human actions.

Most of the traditional methods predict the future sequences by gener-

ating poses recursively. However, this type of method suffers from great

error accumulation. For example, if the generated x′t has an error, the

next pose xt′+1 is generated based on the information of x′t, so it will

accumulate the error as well.

Therefore, this research follows the recent approach [Mao et al. [2019]],

predicts the future sequences in the trajectory space and generates the

whole trajectory of each joint at once. Moreover, a padding strategy is

employed to predict the residue of the sequences rather than the abso-

lute value of the sequences because zero-velocity [Martinez et al. [2017]]

is proved to have better performance. Specifically, a padding sequence

is obtained by repeating the last pose xT in the sequence (T ′−T ) times,

which can be written as PT+1:T ′ = [xT , ..., xT , ..., xT ]. The input se-

quences for the DGCN model are the concatenation of X1:T and PT+1:T ′ ,

which is denoted as Input1:T ′ = [x1, x2, ..., xT , ..., xT ]. The target se-

quences of the DGCN model are the concatenation of X1:T and GXT+1:T ′ ,

which can be denoted as Target1:T ′ = [x1, x2, ..., xT , ..., xT ′ ]. Therefore,

the DGCN model is designed to take the Input1:T ′ and produce a syn-

thesis sequence Output1:T ′ . Then the objective function of the DGCN

model measures the error between Output1:T ′ and Target1:T ′ .
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4.4 Graph Neural Networks

In this approach, a GCN-based model is proposed to predict future move-

ments in the trajectory space. As the aforementioned denotations, a

human pose contains K joints and every joint is represented as the 3D

position or Euler Rotation Angle.

4.4.1 Graph Formulation

The human body is a natural graph. Graph Neural Network-based meth-

ods achieved remarkable success on a lot of human pose related tasks in

recent years because of their ability to exploit the implicit dependencies

between joints. Therefore, this graph model is formed intuitively. Re-

calling that the human pose has K joints and the graph is defined as

G = (V,E). Here the node-set V contains K joints {J0, J1, ..., Jk+1} and

the edge set E contains the graph edges which correspond to the limbs

on the human skeleton. Usually, the adjacent matrix of this graph G

is denoted as A. In the matrix A, element aij on ith row jth column

has the value 1 if and only if Vi and Vj are connected on this graph

or i = j. In the experiment, this model is used to predict the graph

connectivity, in other words, the edge is set E rather than give out the

predefined E. Due to that, the model has a stronger fitting ability by the

flexibility. Moreover, every joint is treated as three nodes on the graph,

for they have the position < x, y, z >. So the node set V is actually

{J0x, J0y, J0z, J1x, J1y, J1z, ..., Jkx, Jky, Jkz} for practical use.

In the DGCN model, the input feature Fix for node Jix is obtained

from the trajectory data of Jix from time period 1 to T ′. It is a one-

dimensional continuous function. Following Mao et al. [2019], this tra-

jectory is transformed into a series of Discrete Cosine Transform (DCT)

representations which are compact in the space to benefit the training.

The DCT method uses cosine trajectories as a basis to represent the

original trajectory. Any continuous trajectory can be represented by a

series of the linear combinations of these bases uniquely. Therefore, every

trajectory can be represented by the DCT representation’s coefficients.

In other words, the input feature Fix of the Graph model is the DCT
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method’s coefficients. The Graph model will output a feature F ′ix, which

are the DCT coefficients as well. Then the F ′ix will be transformed back

to the trajectory by the linear combination because the basis is prede-

fined. Therefore, the Graph model takes in the trajectory information for

every joint and then produces the output trajectory for every joint. As

evident in literature and experiments, predicting the residual data rather

than the exact data will greatly reduce the gradient vanishing problem

and gradient explosion problem, therefore, achieving better performance.

Based on this knowledge, the coefficients Fix + F ′ix as the final results

are actually used and then use it to reconstruct the output trajectory.

Therefore, not only the future movements are predicted from time T + 1

to T ′ but also the movements are reconstructed from time 1 to T . The

part of the generated sequence from 1 to T can be used as an identity

regularizer to guide the model training. In the next section, the details

of the layers used in obtaining output features F ′ from the input features

F will be given out.

4.4.2 Graph Convolutional Layers

There have been various kinds of convolutional layers introduced for

graph data. Here, the graph convolutional layer Kipf & Welling [2016]

designed in the spectrum perspective is adopted.

Laplacian Matrix

Firstly, this section will introduce the concept of the Laplacian Matrix

of graphs. For example, a graph G like the following is given:

The related Degree Matrix of this graph G is defined as:

D =



1 0 0 0 0 0

0 3 0 0 0 0

0 0 1 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(4.1)
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Figure 4.2: The example of a graph.

Where aii in this matrix means the number of edges which connected

ith node.

The related Adjacency Matrix of this graph G is defined as:

W =



0 1 0 0 0 0

1 0 0 1 0 1

0 0 0 1 0 0

0 1 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0


(4.2)

In this matrix W , ai,j = 1 if and only if the ith node and the jth node

are connected by an edge.

The Laplacian Matrix L of a graph G is defined as L = D −W . In

this case, the Laplacian Matrix is:

L = D −W =



1 −1 0 0 0 0

−1 3 0 −1 0 −1

0 0 1 −1 0 0

0 −1 −1 3 −1 0

0 0 0 −1 2 −1

0 −1 0 0 −1 2


(4.3)
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Laplacian Matrix is symmetric positive semidefinite matrix. This kind

of matrix has n non-negative eigen values. Therefore, the Laplacian Ma-

trix can be eigen decomposition, which is called Spectral decomposition.

U is the matrix which is composed of the eigenvectors of L.

L = UΛU−1 = UΛUT = U


λ1

...

λ2

UT (4.4)

Graph Convolution

The graph convolutional layer is designed based on the idea that the

convolutional operation of the two signals x and g is actually the dot

product of them in the Fourier domain. The following formulation can

be formed.

x ∗ g = F−1(F (x)� F (g)) (4.5)

Where x stands for the input signal on the graph and g is the convolu-

tional kernel signal respectively. F is the Fourier transformation function

to project the signal on the graph to their Fourier domain. Due to the

existing knowledge, Fourier transforms F (x) on the graph that can be

written as UTx, where U is a matrix obtained from the Laplacian matrix

of the graph. Every row of U is the eigenvector of the Laplacian matrix.

Therefore, the equation 4.5 can be rewritten as:

x ∗ g = U(UTx� UTg) = UgθU
Tx (4.6)

Where gθ = diag(UTg). Therefore the formulation can be written as
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the following:

x∗g = UgθU
Tx = U


ĝ(λ1)

...

ĝ(λn)



x̂(λ1)

x̂(λ2)
...

x̂(λn)

 = U


ĝ(λ1)

...

ĝ(λn)

UTx

(4.7)

Therefore, the gθ is the convolutional kernel of the graph convolution

operations. Different types of graph convolutions use different methods

to approximate gθ. In this thesis, the model adopted one of the state-of-

the-art GCN methods[Kipf & Welling [2016]] to approximate gθ, which

is described in the following.

Graph Convolution Kernel

In math theory, every smooth function can be approximated by the

Chebyshev polynomials. The Chebyshev Polynomials are a series of

functions defined as T0(x) = I, T1(x) = x, Tn+1(x) = 2LTn(x)− Tn−1(x).

The function gθ can be approximated by a linear combination of

Chebyshev Polynomials:

gθ(x) =
K∑
k=0

βkTk(x) = β0T0(x) + β1T1(x) + ...+ βKTK(x)

In this way, the original convolution operation changes to be:

x ∗ g = UgθU
Tx = U

K∑
k=0

βkTk(Λ̂)UTx =
K∑
k=0

βkTk(U Λ̂UT )x (4.8)

The function U Λ̂UT are denoted as L̂ in the following discussion.

ChebNet [Defferrard et al. [2016]] first proposed to use Chebyshev

Polynomials to approximate gθ. In this way, the graph convolutional
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layer only needs to learn the K + 1 parameters rather than the n pa-

rameters. It greatly reduced the network complexity. Moreover, the key

benefits of this strategy is that the Laplacian Eigen decomposition is not

necessary anymore, which greatly reduced the computational complexity.

Furthermore, Kipf & Welling [2016] simplified the formulation by only

considering the first order of the Chebyshev Polynomials so that the

learnable parameters of each convolutional operation is significantly re-

duced to one.

If only the first order of the Chebyshev polynomials are considered,

the equations can be written as [Quote from Kipf & Welling [2016]]:

x ∗ g =
∑1

k=0 βkTk(L̂)x = β0T0(L̂)x+ β1T1(L̂)x

= (β0 + β1(L− In))x

= (β0 − β1(D−1/2WD−1/2))x

(4.9)

This equation can be further simplified by assuming β0 = −β1 = θ.

Then the final graph convolution operation can be written as [Quote

from Kipf & Welling [2016]]:

x ∗ g = θ(D̂−1/2Ŵ D̂−1/2)x (4.10)

The Graph Convolutional Layers

In this thesis, the graph convolutional operations mentioned before are

adopted. These graph convolutional layers can be described as the fol-

lowing:

L is a matrix related to the trainable parameters and the degree matrix

of the graph. Finally, it is assumed that the input feature of lth GCN

layer is F l ∈ RK×C (C is the channel number of the input features)

and the output feature is F l+1 ∈ RK×C′
. The trainable parameters

of the neural network is denoted as W ∈ RC×C′
, the matrix related

to the Lapalian Matrix of graph is denoted as Z̃ ∈ RK×K , then the
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convolutional operation can be derived out:

F l+1 = σ(Z̃ lF lW ) (4.11)

σ is an activation function. The LeakRELU() as function σ is used

here rather than Tanh() used in previous work [Mao et al. [2019]]. In this

experiment, Z̃ is set as trainable to improve the performance because it

can reduce overfitting.

4.5 The Densely Connected Network Struc-

ture

After this problem formulation and layer operations are explained, the

network architecture will be described in this section, which is the main

contribution. The input feature for the model is F , then it will pass

through N GCN blocks and generate the final output feature FN .

Residual GCN Blocks. Each GCN block contains two GCN lay-

ers and every GCN layer will append a BatchNorm layer, a LeakRELU

layer and a Dropout layer. Inside every GCN block, the residual part

of features are estimated. Then the procedure passing through the lth

GCN layer can be formulated as:

F l+1 = GCN(F l) + F l (4.12)

Densely Connection. In the previous work Mao et al. [2019], the

output of each GCN block is directly fed into the next block. It can

be believed that the approach does not exploit the feature maps of each

layer sufficiently. For example, the first layer offers feature maps obtained

by operating convolution on the 1-nearest node. Then the next feature

map has a receptive field 2 because every node’s feature contains the

2-nearest information. The key idea is to produce a more informative

input feature by fusing multi-scale feature maps with a different size of

the receptive field. Instead of feeding F l feature maps for the lth block,
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we try to feed all the feature maps F 0, F 1, ..., F l into the lth block to

enlarge the ability of layers to exploit the hidden dependencies between

joints in a different level.

Therefore, the network structure is reconstructed by adding dense

links on the network to increase its ability. Firstly, the GCN blocks do

not have residual links anymore, because the input feature size is not

matching the output feature size anymore.

Assuming the input feature map F 0 of the model has feature size C,

then the output feature map of lth GCN block has size C as well. The in-

put feature map for lth GCN block is actually not the same anymore, but

the concatenation of the output feature of all the previous GCN blocks.

Therefore, the input size of lth GCN block is (l+ 1)×C. Consequently,

the formulation of the lth GCN block can be described as:

F l+1 = GCN([F 0, F 1, ..., F l]) (4.13)

Compared to Huang et al. [2017], this is the first time a dense structure-

based GCN network is proposed for the motion prediction task. In this

way, the feature maps of each layer contribute more significantly to the

final results since the final layer is getting backpropagation directly to

all the other GCN blocks. Therefore, it is less likely to get a gradient

vanishing and gradient explosion problem as well.

Another significant advantage of this kind of structure compared to

Residual GCN blocks is that the residual GCN block requires size match-

ing but the dense structure does not. For example, the channel size of

every output feature map F l can be actually set differently. Assuming

their channel sizes are C0, C1, C2, ..., CN , then the input feature of lth

GCN block has feature size
∑l

k=0C
k. The benefit of this is that the

network can use the same size of parameters but actually goes much

deeper. For a special case, C1, C2, ..., CN can set to be the same size

but narrower than C0, such as half of C0. Then the network can have

twice the deeper layers than before and also keep the model size at the

same level. Meanwhile, the narrower middle layers also help to reduce
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the overfitting problem.

4.6 Evaluation

For evaluations, the proposed DGCN models’ effectiveness can empiri-

cally be demonstrated on the widely used benchmark Human3.6M Ionescu

et al. [2013], CMU-Mocap1 and 3DPWvon Marcard et al. [2018]. Com-

prehensive experiments have been carried out to validate the superior

ability of the DGCN model in accuracy. The error results are reported

both in the aspect of Euler Angles and 3D coordinates. The comparison

results to the state-of-the-artwork including RNN-based model RRNN

[Martinez et al. [2017]], CNN-based model convSeq2Seq [Li et al. [2018]],

and GCN-based model LearnTraj [Mao et al. [2019]] are reported. In the

end, ablation evaluations are conducted to investigate the impact of the

proposed strategy.

4.7 Implementation Details

For a fair comparison, the same set of other prior works [Mao et al. [2019]]

are used in the experiments. The input feature size of the model is 15

and every GCN layer outputs a hidden feature with size 256. Every GCN

block contains 2 GCN layers and 12 GCN blocks employed in total. The

dropout rate of each layer is set to be 0.5. The learning rate is 0.0005 and

batch size is 16. An Adam optimizer is used for training and the results

are trained after 50 epochs. The whole framework is implemented in

PyTorch and trained on an NVIDIA GeForce GTX 1080 Ti with 11GB

memory. The approximate training hour is 50 hours.

4.8 Benchmarks

Human3.6M Almost all of the existing motion prediction models are

evaluated on the benchmark Human3.6M since it provides the largest

amount of human poses. Following the typical settings [Martinez et al.

1http://mocap.cs.cmu.edu/
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[2017]; Li et al. [2018]; Mao et al. [2019]], 15 actions performed by six

actors are selected for the experiment from Human3.6M(H3.6M). Three

kinds of format are provided by H3.6M. Here the 3D skeleton format with

32 joints are used to represent the human structure. The global rotation

and translations are removed and all sequences are downsampled to 25

HZ. The trials from five actors are used as training dataset and the rest

trials of one actor are used as testing dataset.

CMU-Mocap This dataset is firstly introduced for motion prediction

evaluation by Li et al. [2018]. It contains a wider range of action types

than H3.6M. Similar to H3.6M, the global rotations are removed and

translations as well and normalize it. In total, eight actions (such as

basketball, soccer, jumping and etc.) are selected under the prescriptions

[Li et al. [2018]]. Every action set contains more than 5 trials. For the

experiments, the same dataset splitting strategy is used like Li et al.

[2018].

3DPW The 3D Pose in the Wild (3DPW) dataset is a new large-scale

dataset with more than 51, 000 poses proposed by von Marcard et al.

[2018]. These poses are extracted from challenging sequences such as

going up-stairs and taking the bus. Mao et al. firstly introduced this

dataset for motion prediction evaluation. This dataset is downloaded

from the public resources and follow the same settings as the previous

work.

4.9 Evaluation baselines and metrics

Baselines. The existing approaches for motion prediction can be broadly

categorized as RNN-based, CNN-based, and GCN-based methods. The

models with the best performance are selected and public codes so far

in these three domains accordingly, which are RRNN [Martinez et al.

[2017]], convSeq2Seq [Li et al. [2018]] and LearnTraj [Mao et al. [2019]].

For the errors reported directly in the Euler Angle space and 3D coordi-

nates, their results are quoted directly from papers. For the visualization

comparison, only LearnTraj [Mao et al. [2019]] are compared and the re-
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sults are obtained from the public code2.

Metrics. Two kinds of evaluation protocols are used in the experiments.

Firstly, the traditional Euler angle error [Martinez et al. [2017]; Li et al.

[2018]; Mao et al. [2019]] which represents the input and prediction data

in the Euler Angle space and measures their Euclidean distance. How-

ever, some researchers find this kind of loss incapable to completely re-

flect the visual similarity – the zero-velocity baseline has a smaller error

but looks different at visual aspect. Therefore, another Mean Per Joint

Position Error (MPJPE) [Ionescu et al. [2013]] is used as an evaluation

metric in this work as well. This error calculates the displacement be-

tween the groundtruth and predicted sequences from the 3D coordinates

representation.

2https://github.com/wei-mao-2019/LearnTrajDep
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Table 4.1: The short-term prediction error of four action types on H3.6M dataset

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN Martinez et al. [2017] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
CNNHD Li et al. [2018] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

LearnTraj Mao et al. [2019] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85

Ours 0.20 0.32 0.54 0.61 0.18 0.32 0.54 0.66 0.22 0.41 0.87 0.83 0.22 0.59 0.92 1.00

LearnTraj(3D) 8.9 15.7 29.2 33.4 8.8 18.9 39.4 47.2 7.8 14.9 25.3 28.7 9.8 22.1 39.6 44.1
Ours(3D) 8.4 15.3 28.3 33.2 8.6 18.2 38.3 46.5 6.9 13.4 24.2 29.0 10.1 23.3 43.0 49.6
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Table 4.2: The short-term prediction error of 12 action types on H3.6M dataset

Directions Greeting Phoning Posing
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48
CNNHD 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37

LearnTraj 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24

Ours 0.38 0.80 1.35 1.49 0.37 0.65 1.10 1.30 0.57 1.04 1.46 1.59 0.39 1.03 1.87 2.19

LearnTraj(3D) 12.6 24.4 48.2 58.4 14.5 30.5 74.2 89.0 11.5 20.2 37.9 43.2 9.4 23.9 66.2 82.9
Ours(3D) 12.9 24.2 57.0 72.4 14.0 29.8 71.9 87.4 11.3 19.1 35.8 40.4 8.0 22.8 65.5 82.1

Purchases Sitting Sittingdown Takingphoto
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05
CNNHD 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06

LearnTraj 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70

Ours 0.60 1.24 1.84 2.00 0.29 0.49 0.86 1.05 0.32 0.67 0.97 1.07 0.15 0.36 0.59 0.71

LearnTraj(3D) 19.6 38.5 64.4 72.2 10.7 24.6 50.6 62.0 11.4 27.6 56.4 67.6 6.8 15.2 38.2 49.6
Ours(3D) 21.6 40.5 67.1 78.0 10.7 25.0 53.2 66.6 10.5 23.0 51.8 65.6 6.8 15.6 40.7 52.9

Waiting Walkingdog Walkingtogether Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

RRNN 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15
CNNHD 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

LearnTraj 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95

Ours 0.22 0.48 0.90 1.12 0.67 1.03 1.95 2.32 0.15 0.32 0.52 0.60 0.33 0.65 1.09 1.24

LearnTraj(3D) 9.5 22.0 57.5 73.9 32.2 58.0 102.2 122.7 8.9 18.4 35.3 44.3 12.1 25.0 51.0 61.3
Ours(3D) 9.5 22.3 59.6 76.6 22.8 48.3 95.8 116.3 8.3 18.2 34.2 43.1 11.36 23.93 51.1 62.7
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Table 4.3: The short-term prediction error of 8 action types on the CMU dataset

Basketball Basketball Signal Directing Traffic Jumping
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LearnTrajMao et al. [2019] 0.33 0.52 0.89 1.06 0.11 0.20 0.41 0.53 0.15 0.32 0.52 0.60 0.31 0.49 1.23 1.39
Ours 0.31 0.49 0.85 1.04 0.09 0.16 0.34 0.44 0.17 0.33 0.50 0.60 0.33 0.70 1.74 1.63

LearnTraj(3D)Mao et al. [2019] 14.0 25.4 49.6 61.4 3.5 6.1 11.7 15.2 7.4 15.1 31.7 42.2 16.9 34.4 76.3 96.8
Ours(3D) 10.5 19.0 38.9 49.0 2.3 4.4 10.1 13.9 6.0 12.4 30.1 38.8 12.0 27.0 70.7 94.6

Running Soccer Walking Washwindow
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LearnTraj Mao et al. [2019] 0.33 0.55 0.73 0.74 0.18 0.29 0.61 0.71 0.33 0.45 0.49 0.53 0.22 0.33 0.57 0.75
Ours 0.24 0.35 0.43 0.49 0.16 0.30 0.70 0.84 0.30 0.40 0.38 0.45 0.21 0.29 0.60 0.78

LearnTraj(3D)Mao et al. [2019] 25.5 36.7 39.3 39.9 11.3 21.5 44.2 55.8 7.7 11.8 19.4 23.1 5.9 11.9 30.3 40.0
Ours(3D) 20.5 32.3 49.5 54.7 9.8 21.9 49.1 63.2 5.7 10.2 18.4 21.1 4.9 10.1 27.9 37.2
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Table 4.4: The Average error of all types of actions in the CMU dataset

milliseconds 80 160 320 400
LearnTraj 0.25 0.39 0.68 0.79

Ours 0.23 0.38 0.69 0.78

LearnTraj(3D) 11.53 20.36 37.81 46.80
Ours(3D) 8.96 17.16 36.84 46.56

4.10 Results

In this section, the performance of the DGCN model is reported in these

tables. The results of both the long-term (> 400ms) prediction and

short-term (80ms, 160ms, 320ms, 400ms) prediction of each dataset are

given out.

Human3.6M Typically, walking, eating and smoking and discussion ac-

tions are most widely evaluated as they are basic and ubiquitous in daily

life. Firstly, the results of these four types of actions are shown in Ta-

ble 4.1. Four baseline performances in the Euler Angle spaces are given

out in this table. It shows the DGCN model lifting the performance in

that term. However, it has been found out that the Euler Angle error

does not reflect the similarity visually [Mao et al. [2019]]. So the model

in the 3D coordinate space is trained and their comparison results are

reported. LearnTraj achieved the smallest error in terms of 3D errors

compared to the existing trending work. However, it can be seen from

Table4.1 that the DGCN model surpasses it with a significant gap. More-

over, the results of the rest 12 types of actions are reported in Table 4.2.

The DGCN outperforms LearnTraj on all the action types and average

which demonstrates the effectiveness of the DGCN model. Besides the

short term prediction results given by Tabel 4.1 and 4.2. For the more

challenging long term prediction task, the DGCN model surpasses the

state-of-art method both in Euler Angle error and 3D error.

CMU-Mocap Similarly to H3.6M, both the short-term and long-term

prediction results of the CMU-Mocap dataset are shown in Table 4.3

and 4.4. Firstly, the Euler Angle error and 3D error of eight actions

are shown in Table 4.3. More than 80 % of the errors are smaller after
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using the DGCN model, except for Jumping and Soccer. This might

happen because of the unbalance of the dataset, i.e. some actions achieve

their best value while other action may get overfitting. To investigate

further, the average values of different time intervals are reported. Table

4.4 demonstrates that the DGCN model is generic for the CMU-mocap

dataset as well.

4.11 Summary

In this work, a densely connected GCN based model is firstly intro-

duced for the motion prediction task which enhanced the feature maps

utilization and reduced the overfitting problem. Experiments on three

databases validate the effectiveness of the DGCN model. The perfor-

mance of 3D joints’ representation is better than the representation in

angle space. The DGCN model beats down the state-of-the-art method-

ologies, therefore, shows that the dense strategy has the ability to in-

crease the feature utilization therefore enhance the performance of the

prediction accuracy.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Human motion prediction has been a longstanding problem in the fields

of computer vision and computer graphics. The model that can perform

this task successfully will have significant impacts and various applica-

tions in the industry and commerce. It will allow for artificially intelligent

robots and virtual agents, for example, that perform smoother interactive

movements when engaged in forms of cooperation or sport with human

users. This is because they will be forecasting users’ actions more pre-

cisely. Moreover, this research is also important for autonomous driving

systems. Autonomous cars can predict pedestrians’ future movements

much earlier than they otherwise would and more accurate in order to

enhance their security level.

In this thesis, existing work on motion prediction and related deep

learning methods have been extensively investigated. Two novel motion

prediction frameworks have also been proposed, which have achieved

state-of-the-art performance.

In Chapter 2, an overview of existing works related to four areas are

presented : motion data, motion-related topics, motion prediction meth-

ods, and deep learning methods. The first section discussed previous

feature engineering strategies concerning motion and the related prob-
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lem of motion research. The second focused on current research progress

on the motion prediction problem and pointed out its limitations. The

research conducted as part of this PhD work is motivated by a desire to

address these limitations. The last section summarised prevailing deep

learning models, which provided a range of insights and ideas taken up

in this research.

In Chapter 3, a novel efficient convolutional hierarchical autoencoder

framework to address the efficiency problem in motion prediction is pro-

posed. The majority of existing models put forward for motion prediction

are either RNN- or CNN-based; as such, they are usually expensive and

complex in terms of computation. In practice, however, this involves

a large amount of motion data, reaching more than 200,000. a new

encoder has therefore been designed, which combines 1D convolutional

operations with a hierarchical tree structure. This new encoder captures

information for motion prediction, greatly reducing parameter size and

computational complexity. This new framework is evaluated on two ex-

isting heavily benchmarked datasets, H3.6M and CMU. Its performance

is on par with state-of-the-art works, yet it uses much less memory and

computes much faster. A visualisation of prediction results for quali-

tative comparison is also provided; it shows that this model generates

smooth and realistic results for prediction.

Chapter 4 delves deeper into the motion prediction problem, following

up on the recent success of GNN. To address the oversmoothing problem

that attends the existing graph network in motion prediction, dense links

are introduced into the framework to enhance its use of features. When

compared with previous networks, the densely connected framework is

of the same model size, but reuses feature maps much more extensively.

The first layers of feature maps skip over the middle layers to propa-

gate in the last layers. Therefore more useful information is captured.

The experiments also analysed the relationship between performance, the

number of blocks and size of dense links. Following protocol, this chapter

also provided qualitative and quantitative comparison experiments with

existing baselines. These confirm that introducing dense links into the

framework can ensure performance that exceeds that of state-of-the-art

101



works, thus validating the effectiveness of the proposed model.

5.2 Future Work

Although the two models proposed in Chapter 3 and Chapter 4 address

the challenges which are set out in the Introduction, there remain prob-

lems in the path of motion prediction. The following ideas are therefore

proposed for addressing these limitations in future works.

5.2.1 Long term error accumulation problem

Various models have been proposed for motion prediction and promising

results have been achieved [Fragkiadaki et al. [2015]; Jain et al. [2016];

Ghosh et al. [2017]; Gui et al. [2018a]; Li et al. [2018]]. Like most exist-

ing models, the ECHA model (described in Chapter 3) predicts future

movements in a recursive way. Specifically, these models generate a first

frame and use generated results to predict the next frame. In this way,

the errors generated in synthesising the first frame will propagate during

the synthesising process and affect the accuracy of the next frame. The

longer the predicted sequences need to be, the more these errors will accu-

mulate. For this reason, previous work reported very good performance

when it comes to short-term prediction. When applied to long-term pre-

diction, though, it will incur more errors. This problem, which is called

the long-term error accumulation problem, afflicts most prediction tasks.

Some research works [such as Bütepage et al. [2017]] have abandoned the

recursive approach to synthesising output sequences. Although this move

greatly reduces the error accumulation problem, it may also produce un-

realistic prediction sequences, such as quivering or unnatural motions.

This is because it ignores the temporal causal (which implicitly lies in

the sequence). The challenging question of how researchers might ad-

dress the error accumulation problem, therefore, is pivotal to motion

prediction.

In the future, a Cycle Strategy Motion Prediction Model (CSMPM)

is planned to be proposed, which would alleviate the error accumula-
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tion problem by adding an identity regularisation function to the task

of prediction. A cycle loop will be proposed to build through which

the model can predict future sequences and then use these to infer the

original input sequences. In addition to the generator G, therefore, an

inverse generator G∗ will be designed to map future sequences back onto

the input domain. Assuming that GG∗ = I, a cycle loss can be added to

the objective function as a means of alleviating the error accumulation

problem. In the future design, the G is adopted from the state-of-the-

art motion prediction model. Although the G∗ has the same network

architecture as G , they have different learning difference parameters.

The loss function consists of two parts, the mean square error of the pre-

dicted sequences and the reconstruction errors. To map input sequences

onto future sequences, G would be trained to be the effective generator.

Similarly, G∗ would be trained by using the same dataset, but revers-

ing the input and output domains. Finally, the whole model would be

fine-tuned to train GG∗ together. What is more, new Discriminators will

be designed, Da and Db for this model to supervise the quality of the

synthesised sequences.

This idea might be advanced through two potential innovations: (a)

proposing a new CSMPM for motion prediction for the first time, so as

to address the long term error accumulation problem, and (b) design-

ing a cycle loss and two novel discriminators to strengthen the model’s

performance.

5.2.2 Multi-possible future of Motion prediction

In this thesis, just one possible solution for future prediction is provided.

It is important to bear in mind, though, that the problem of human mo-

tion prediction might have a variety of possible solutions. This means

the future developments might lead to multiple possible results. Existing

work has used a predefined latent vector z ∼ (0, 1) to evoke different pos-

sible futures. When it comes to predicting the multimodal future, how-

ever, they are unable to fully assimilate complex prior spatial-temporal

information. It can be believed that the latent factors affect future move-
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ments in human intentions. The question of how to design a framework

that considers human intentions in producing the multimodal future of

human motion, then, remains problematic.

Aliakbarian et al. [2020] have proposed a conditional variational au-

toencoder block to force the model to take account of random noise.

Their model is therefore more able to explore the possibility of stochas-

tic futures. Li [2019] has proposed a novel imitative decision learning

(IDL) approach for pedestrian trajectory prediction. Their whole frame-

work uses a ConvGRU subnetwork to predict future movements and a

Fully Convolutional subnetwork to infer the latent vector z, which rep-

resents human decisions about their next step. This work has a similar

architecture to InfoGAN, which has been proposed by Chen et al. [2016].

InfoGAN also investigates the latent vector more deeply. Chen et al’s

latent vector is factorised, meaning that they obtained interpretable rep-

resentations that disentangled writing style and digital shape during the

MNIST generation task. Similarly, the goal for the prediction task is

that of finding interpretable representations of z, as opposed to random

noises.

In the future, this research will focus on addressing multiple solutions

to the problem of human motion prediction. A possible solution is that

of designing a new decision-based framework, which would incorporate

human intentions with history sequences. A subnetwork will take the

history sequences as inputs and produce a predicted latent Gaussion dis-

tribution z ∼ (x, y) as the human intention. Then the other prediction

subnetwork will generate future movements based on the history infor-

mation and a noise vector. The predicted latent distribution will be ran-

domly sampled and fed into the motion generation subnetwork. Finally,

the loss will be the minimised error of the multiple possible prediction

results and ground truth. A discriminator or multiple discriminators will

be designed to evaluate the level of realism of the generated sequences.
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5.2.3 Oversmoothing problem on the Motion Pre-

diction framework

As we have laid out in the preceding literature review, one emerging

approach to the motion prediction problem is that of using GNNs. An

existing approach proposed a residual graph neural network to model the

spatial and temporal modalities of motion data and achieved significant

progress. However, this field remains underexploited. One of the most

challenging issue is the oversmoothing problem that attends GCN, which

still limits the accuracy of motion prediction. A densely connected GCN

network has been proposed; however, that can only alleviate the over-

smoothing problem. In the future, this research will continue to focus on

addressing the oversmoothing problem. One possible solution is that of

building up a natural U-structure graph network for motion prediction,

which can achieve better performance by addressing the oversmoothing

problem.

In 2015, Ronneberger et al. [2015] proposed the idea of U-net, demon-

strating that they had made surprising advances when it came to the

ISBI cell tracking challenge. Their framework introduces a simple idea:

that of using a symmetrical expanding path to reuse the feature maps.

Numerous researchers have taken up this idea and achieved remarkable

results in various applications. However, the key difference of the image

and graph tasks is that the convolutional network has natural upsam-

ple and downsample operations, which are not trivial according to the

graph data. To address this problem, Gao & Ji [2019] have proposed

novel graph pooling (gPool) and unpooling (gUnpool) operations, which

select the subset of the node in an adaptive way. Their experiments

have demonstrated that their work outperforms state-of-the-art research

by a large margin. Furthermore, Yu et al. [2019] have proposed a Spatio-

Temporal U-Net (ST-UNet), which learns more global and local spatial

and temporal information from the graph series data. Their framework

outperforms existing work because ST-UNet captures features at multi-

ple scales.

In the future, a new graph-based framework will be proposed for mo-
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tion prediction to address the oversmoothing problem. It might have

upsample and downsample structures. For example, five layers might

be used to encode input motion sequences; accordingly five layers might

be used as decoders to generate future motion sequences. Every layer

will therefore produce a feature map, which would represent the origi-

nal motion clips. The feature maps will be copied directly from the five

layers in the encoder and sent to the related decoder layers. The whole

process will be similar to a U-Net structure. In this way, existing fea-

ture maps would be increasingly use, thus reducing the oversmoothing

problem. The key challenge is how to design a U-structure graph neural

network for motion prediction. The network will be trained on exist-

ing benchmarks to learn the proper parameters and generate prediction

results.

5.2.4 Loss Function for Motion Prediction

One key problem, which limits the practical uses of motion prediction, is

that of loss function. Today, two loss functions are used in mainstream

research. One is the 3D coordinates loss function. Another is the Euler

Angle format loss function. The 3D coordinate loss function usually ob-

tains more accurate results and produces results that are visually similar.

The output skeleton may have limbs of slightly different lengths; however,

for their length is not fixed by the 3D coordinate representation. This

small difference might not be tolerated in practical applications, such

as in robotics. Euler Angle representations are not hampered by these

disadvantages because they use a fixed limb length and it is evaluated

on angles. It has been found that this kind of representation, however,

does not always lead to results that are more visually similar than those

provided by alternative approaches [Martinez et al. [2017]]. The Euler

Angle error may be small, but the visual difference can be significant. A

new loss function should therefore be introduced so as to measure the

distance between motions more accurately in the future.

Coskun et al. [2018] have observed that the L2 distance of motion data

cannot reflect the real similarity between two motion clips. For example,
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even if the L2 error is small, yet two clips may still look markedly dissim-

ilar. Coskun et al. have therefore proposed a triplet RNN network that

can learn a new metric to evaluate the similarity between two motion

clips. Gui et al. [2018a] have put forward a framewise geodesic loss by

projecting a motion clip as a curve on a Lie surface. Their loss function

is more geometrically meaningful because it reflects the distance on a Lie

manifold. In their experiments, the geodesic loss performed better than

the Euclidean loss. Gopalakrishnan et al. [2019] have introduced a new

loss function, Normalized Power Spectrum Similarity (NPSS), to help

evaluate the model’s capacity for long-term prediction. This metric con-

tains a frequency shift and a phase shift design, which can complement

the Euclidean loss in long-term evaluation.

In the future, this research will focus on developing a new loss func-

tion that better fits the properties of motion. Consider four ideas for

the future development of this research. The first idea that we might

explore is that of investigating the whole motion sequence in Lie Alge-

bra Space and designing mathematical distance in the Lie manifold. The

second possible idea is that of designing a hybrid representation of 3D

coordinates and Euler angles to both avoid their drawbacks and take

up their advantages. For example, a multi-task structure network with

two branches can be designed. Each branch might use a different loss

function, fusing them together in the last layer. The third idea is to use

the trained deep metric of [Coskun et al. [2018]] for the task of motion

prediction. The fourth is to design a new loss function, which would

evaluate the error in the coodinated space but train the model in the

space of Euler angles. Among these four ideas, the third one needs a

lot of effort on building up new architectures and the first one cannot

guarantee the leveraging of performance. The second idea lacks novelty

in this domain. Therefore, the fourth one could be the first priority to

try for this task.
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