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Explainable recommendation: When design meets trust 
calibration – Research protocol 

Calibrated trust has become an important design goal when designing Human-AI collaborative 
decision-making tools. It refers to a successful understandability, reliability and predictability to 
the AI-based tool behaviour and recommendations. eXplainable AI (XAI) is an emerging field 
where explanations accompany AI-based recommendations to help the human-decision maker 
understand, rely on, and predict AI behaviour. Such an approach is supposed to improve humans’ 
trust calibration while working collaboratively with an AI. However, evidence from the literature 
suggests that explanations have not contributed to improved trust calibration and even introduced 
other errors. Designers of such explainable systems often assumed that humans would engage 
cognitively with AI-based explanations and use them in their Human-AI collaborative decision-
making task. In this paper, we devise XAI design techniques and principles for XAI interfaces to 
enhance the role of explanations in calibrating users’ trust. We focus on model-agnostic 
explanations in high stake applications. We used screening prescription as a Human-AI 
collaborative decision-making task where the human medical practitioner uses the AI to check 
whether the prescription can be approved to a given patient. Such a task reflects an everyday 
Human-AI collaborative decision-making task where trust calibration errors are possible. We 
follow a multi-stage qualitative research method, including think-aloud protocol and co-design 
sessions with medical practitioners. Our results shed light on the nuances of the lived experiences 
of users of XAI and how the design can help their trust calibration.  

First, we conducted a systematic literature review to identify what can be explained to end-users 
given a black-box AI model. Second, we conducted a think-aloud session to observe and 
understand how human decision-makers interact with AI-based explanations during a Human-AI 
collaborative decision-making task, i.e., what kind of errors could happen in real-time interaction. 
Finally, we conducted a co-design study with end-users to identify techniques and principles to 
guide the XAI interface to help trust calibration and mitigate errors. Figure 1 summarises the 
research method.  The following sections describe each phase and its used material.  
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1. Systematic literature review for model-agnostic explanation.  
The research aims to identify different explanation classes used in the literature of interpretable 
machine learning. 

1.1. Research methodology 
Given the diversity of the terminologies and the multidisciplinary nature of the explainability, 
bottom-up approach with the aid of content analysis approach (Elo and Kyngäs, 2008) was used 
to create an initial taxonomy. Thematic analysis (Hsieh 2005) has been adopted to infer some 
conclusions. Expert checking method was used to provide an in-depth evaluation of the emerged 
themes and concepts as well as trustworthiness. To increase the credibility of the methodology, 
the coder did not start analysis the data unless the text identification step was completed. This 
meant to eliminate any biased coding, such as refusing non-supportive inference (Hsieh 2005). 
This study conducts a systematic review in the field of explainable machine learning models to 
analyse and classify the literature and identify the different explanation capabilities.  

1.1.1. Search strategies 
To find relevant studies that are related to this systematic review, the research selected databases 
proved in Table 1, where the research ran different search queries. Other research databases that 
gather research paper automatically from different sources, such as GoogleScholar, or provide 
nor-reviewed papers such as arXiv, were excluded from the study search scope. The research 
adopted databases that include peer-reviewed papers published in computer science. This strategy 
meant to provide some evidence regarding the quality of the relevant papers. 
 

Table 1 Selected research databases 

Source URL 
ACM Digital Library http://portal.acm.org  
IEEE Xplore Digital Library http://ieeexplore.ieee.org  
ScienceDirect http://www.sciencedirect.com  
Springer Link http://link.springer.com 

 

1.1.2. Selection Criteria 
Relevant papers retrieved from the selected databases were filtered using a set of criteria. The 
research considers three inclusion criteria (IC) and four exclusion criteria (EC) to select relevant 
papers relevant to the scope of this study. The inclusion criteria and the exclusion criteria are 
described and summarised in the following points:  

1- Novelty (IC1): The study proposes a novel technique for explaining machine learning 
model. 

2- Foundation (IC2): The study presents an investigation towards the foundations of the 
explanations in machine learning systems. 

3- Language (EC1): This paper is not written in English. 
4- Duplicated (EC2): The content of the paper was published in another completed form.  
5- Full content (EC3): The research excluded the papers with no access to the full content. 
6- Domain-related (EC4): The paper must be centred around explainable models and 

techniques in machine learning.  For example, the search results introduced papers 
addressing the explanations from psychology, social science and education without direct 
relation to machine learning; these papers were excluded.  



3 
 

Concerning EC3, the research proceeded as follows. To obtain the papers in which they were 
published, the search strategy started to access them through the Bournemouth University 
network. If the full text was not available, the search strategy searcher for the paper on the web 
using the author websites, Google search and other repositories of scientific papers such as 
Google Scholar and ReasearchGate. 

1.1.3. Search String Construction 
The search string in this study is based on two main concepts of interest and their synonyms, 
which both have to appear in the protentional selected papers. The first concept is explanations, 
which is the main term of this study. However, this stage identified that the research community 
had used different terminologies to describe the explanations, and those were added as synonyms 
of the concept explanation. The second concept is machine learning, which is an umbrella term 
that covers different domains. As synonyms, the research considers sub-classes of machine 
learning, including, in particular deep learning, neural networks, reinforcement learning, 
supervised learning and unsupervised learning. The final search string is shown in Table 2. 

Table 2 Final search string 

(explanation OR justification OR interpretation OR intelligibility OR explainable OR 
interpretable OR intelligible) AND (machine learning OR reinforcement learning OR 
supervised learning OR unsupervised learning OR deep learning OR neural networks)  

 
The search string was not capable of being applied in all the target databases due to the syntax 
restrictions. In these cases, the search string was customised according to the new syntax. The 
search within the abstract was also available in all the databases except the Springer Link database 
due to API limitations. The research thus searched for the terms in the keywords of the papers in 
this case. 

1.1.4. Selection of relevant studies 
After conducting the search through four selected databases on January 12, 2019, the search 
resulted in 1285 papers (excluding duplicates). The detailed descriptive statistics for each 
database are shown in Table 3.  

Table 3 descriptive statistics for each data base search results 
Database Number of studies 
ACM Digital Library 378 
IEEE Xplore Digital Library 356 
ScienceDirect 344 
Springer Link 207 
Duplicates  25 
Total (including duplicates) 1285 
Total (excluding duplicates)  1310 

 
Then, the research conducted two main filtering procedure. In the first filtering step, the research 
analysed the paper title and abstract for each 1285 paper. If the title and the abstract presented an 
explicit relation to the inclusion criteria, the paper was selected to be further analysed in detail. 
Then, the research applied full text read for each of the papers selected in the first step. The 
research checked each of the exclusion criteria and re-evaluation the relevance of the paper to the 
research. Each abstract and paper was analysed by the author of this thesis, following a specific 
predefined protocol. When there were some doubts about the paper's relevance to the research 
questions, the opinion of a member of the supervisory team was requested to minimise potential 
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bias. Following the previous procedure, the filtering stage ended up with a total of 190 selected 
papers.  

1.2. Results.  
Analysing the literature has led to the identification of two categories of explainable models 1) 
those that are to explain any machine learning models (Model-agnostic); and 2) those that are 
designed for reverse-engineered specific machine learning model, thus cannot be used for other 
ML models. The research excludes the papers that only generate explanations for specific ML 
models. Model-agnostic explanation models are techniques that are designed to interpret the 
prediction of any machine learning model with the aim of generating some information from its 
prediction. The main purpose of such models is to provide extracted knowledge from the ML 
model, simplify the underlying logic and provide generalisability for other predictions.  The 
results identify a list of five main explanation classes that supported by current model-agnostic 
explanations. Five main explanation classes that emerged from the literature review are presented 
in Table 4.  

Table 4 Five main explanaion classes 
Category of 
explainable 
methods 

Definition Examples 

Explain the model 
(Global) 

The explanation presents the weights of global 
features used in the model. This includes different 
visualisations of the feature’s weights, such as 
approximate the model into interpretable global 
decision-tree or set of rules i.e., if-else. 

(Henelius et al., 2014, Lou et al., 
2013, Nguyen et al., 2016, 
Tolomei et al., 2017, Bastani et al., 
2017, Johansson and Niklasson, 
2009, Krishnan et al., 1999, Dash 
et al., 2018) 

Explain a local 
prediction (Local) 

The explanation describes the contribution of the local 
instance features to the model prediction. This also 
includes different visualisations such as pointing out 
single part of the image, local decision tree and local 
if-else rules. 

(Lundberg and Lee, 2017, Ribeiro 
et al., 2016b, Ribeiro et al., 2018) 

Counterfactual 
explanation 

This explanation class shows how the prediction will 
change with regards to a change in the features’ 
values. This also includes the changes in the 
prediction in the absent or present of specific features.  

(Friedman, 2001, Apley, 2016, 
Dhurandhar et al., 2018, Wachter 
et al., 2017) 

Example-based  The explanation presents examples that are similar or 
have small differences to the current prediction.  

(Bien and Tibshirani, 2011, Kim et 
al., 2014, Koh and Liang, 2017) 

Confidence The explanation indicates the certainty values given a 
prediction.  

(Subbaswamy and Saria, 2018, 
Gal and Ghahramani, 2016) 

 
Explain the model.  The global explanation model is developed to generate an explanation from 
a black-box model through an interpretable and explainable model. The generated explainable 
model is an approximation of the black-box model that explains the global behaviour of the 
model. This model should have similar accuracy and performance to the black-box model. 
Various papers in our literature review described novel techniques to solve the global explanation 
problem and generate an explainable model derived from the black-box model. The analysis of 
such methods introduced three sub-classes of global explanation models. 
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Figure 2 Global Interpretable example introduced by (Guidotti et al. 2018b) 
 
1- Global feature importance. This category aims to find a group of data features that affects the 

performance and the prediction of the machine learning model. For instance, recent work 
presented a naïve Bayes classifier that can derive the dependencies between the data features 
attributes from any machine learning model (Henelius et al., 2014, Henelius et al., 2017). 
Their approach is able to generate importance score for each feature and reveals the 
association between different data features. Lou et al. (2013), Nguyen et al. (2013) and 
Tolomei et al. (2017) developed an explainable technique to rank all possible data features 
that contributes to the model overall prediction.  Furthermore, the work proposed by (Datta 
et al., 2016) presents an explanation model that measures the degree of influence that a data 
feature input to the overall prediction of the model. 

2- Decision tree approximation. This category of contributions presents an explainable model 
that is able to generate a global decision tree given a black-box model. For example, the 
following contributions (Bastani et al., 2017, Johansson and Niklasson, 2009, Zhou and 
Hooker, 2016) proposed approaches based on model extraction techniques that approximate 
any machine learning model to a simple and explainable decision tree model.  Krishnan et al. 
(1999) overcome the limitation of the complexity of such generated decision tree by 
controlling the size of the decision tree. Their approach used a genetic algorithm to propose 
decision trees with varying sizes. In the same direction, Thiagarajan et al. (2016) developed 
a TreeView approach with the aim to generate a human-friendly decision tree by an iterative 
rejection of unlikely prediction label until the correct prediction appears. 

3- Rule approximation. In the same way of the decision tree approximation, the explainable 
model generates set of rules that explain the global reasoning of the model. Dash et al. (2018) 
and Aung et al. (2007) developed an explainable model that learns the boolean rules in either 
disjunctive normal form (OR-of-ANDs) or conjunctive normal forms of (AND-of-ORs). 
Similarly,  the following contributions (Wei et al., 2019, Tan et al., 2018) proposed 
generalised linear rule model that detects the interaction and the relationship between data 
features in the forms of decision rules. Also, Zhou et al. (2003) developed REFNE, an 
interpretable model that can extract rules with strong generalisation ability or with high 
fidelity and conciseness. The other type of rule extraction is if-then form (Johansson et al., 
2004, Quinlan, 1987). Figure 2 presents an example of the generated rules in both types of 
rules. 
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Figure 3 Two examples of rule extraction models presented in Zhou et al. (2003) and Johansson et al. (2004) 
Explain a local prediction (Local). In the context of a single prediction or a recommendation, 
the explanation model is able to indicate reasons for specific prediction. Model agnostic derives 
the explanation from a local model that approximates the machine learning model well in a 
neighbour cluster of data points around a specific data point (Ribeiro et al., 2016b). The analysis 
of the literature identifies two main categories of explaining local prediction: 
1- Local feature Importance. The explanation shows how data features of a prediction contribute 

to the machine learning model prediction such as including parts of an image or text. Among 
the different contributions in this category, the results identified LIME (Ribeiro et al., 2016b) 
and all its variation (Mishra et al., 2017, Ribeiro et al., 2016a) as a novel technique that can 
explain any machine learning classifier by learning an interpretable model locally around the 
prediction. Also, Lundberg and Lee (2017) developed a novel technique called SHAP 
(SHapley Additive exPlanations) framework as a unified measure of feature importance that 
various methods approximate. Similarly, Zhou et al. (2003) developed a general method that 
perturbs all subsets of features to deal with the shortcomings of other existing feature 
importance explanation methods. Their approach was focused on considering the interaction 
between data features. Other contributions such as (Simonyan et al., 2013, Fong and Vedaldi, 
2017, Dabkowski and Gal, 2017) proposed an image saliency method, which is applicable for 
differentiable image classifiers.  

2- Local rules and trees. These techniques for model-agnostic explanations are designed to be 
plugged into any machine learning model to extract some information from its local 
predication and present it as local rules and trees. For instance, the following contributions 
(Konig et al., 2008, Johansson et al., 2004) developed a rule extraction method (termed G-
REX) based on genetic programming. In line with rule extraction, (Ribeiro et al., 2018) 
presents a novel method (termed Anchors) with high-precision rules representing sufficient 
condition for a single prediction. Local decision trees are another example of an explanation 
model to explain a single prediction through local rule extraction. This approach was 
preferable for many researchers in the analysis as it has a human-friendly nature (Guidotti et 
al., 2018, Krishnan and Wu, 2017) 

Example-based explanation. Example-based explanation models select instances from the 
dataset to explain the behaviour of the black-box machine learning model. These models come to 
mimic the explainability behaviour between humans, and can be effective for explaining complex 
connotations (Renkl, 2014, Renkl et al., 2009). Example-based explanations could potentially 
give the users some intuition about the black-box model that is complex to be understandable 
through other model-agnostic models. Table 5 presents a categorisation of the reviewed papers. 
The analysis reveals three categories of explaining black-box models through examples:   
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1- Prototype: The examples in this category are representative samples of instances from the 
dataset with the same record as the prediction (Bien and Tibshirani, 2011, Kim et al., 2016). 
Prototype methods seek a minimal selection of similar instances as a general performance 
and accuracy goal (Kim et al., 2014). Furthermore, the following contributions (Kim et al., 
2016, Kanehira and Harada, 2019) emphasis that explaining through prototype can lead to 
over-generalisation or misunderstanding of the presented explanations. They argued that 
examples might be useful when the distribution of the training data is clean, i.e., prototypical 
examples represent the current recommendation. However, this case is rare in real-world 
scenarios. Therefore, to help human decision making, their approach was to select and 
classify examples in the dataset into good examples and bad examples. Good examples 
represent the model behaviour in high accuracy, whereas bad examples do not fit the model 
reasoning.   

2- Counterfactual. This refers to the explainable model that explains the black-box behaviour 
providing similar instances to the prediction with small differences (Laugel et al., 2017, 
Mothilal et al., 2020). It also answers the question “What-if” an input changes through 
examples; example provided in Figure 4 by (Wachter et al., 2017). Some researchers used 
heuristics for generating counterfactual explanation by amending some input features  
(Martens and Provost, 2014, Chen et al., 2017). 

The prediction for a woman with Pima heritage are at risk of diabetes is 0.5. 
Other persons that have similar score:   

A. If your 2-Hour serum insulin level was 154.3 like Person 1, you would have 
a score of 0.51.  

B. If your 2-Hour serum insulin level was 169.5 like Person 2, you would have 
a score of 0.51.  

C. If your Plasma glucose concentration was 158.3 and your 2-Hour serum 
insulin level was 160.5 like Person 3, you would have a score of 0.51.  

 

Figure 4 Counterfactual example-based explanation example (Wachter et al.2017) 
3- Influential example. This explains the model prediction based on training instances that most 

responsible for influencing the prediction (Koh and Liang, 2017). Influence explainable 
models capture the idea of inspecting the black-box models through the lens of their training 
dataset. For instance, Goodfellow et al. (2014) identify that influence examples could be 
applied for various data science tasks such as understanding the model behaviour, debugging 
the black-box model and detecting errors. Similarly, the following contributions (Yuan et al., 
2019, Dong et al., 2017, Szegedy et al., 2013) developed adversarial examples which are 
example-based methods with small, intentional feature perturbations that influence the black-
box to false prediction. Although the literature provided theoretical foundations for the 
usefulness and effectiveness of influential examples on humans’ decision-making, the 
research lacks user studies to understand the effect of influential examples on trust and 
calibrated trust.   
 
Counterfactual explanation. This refers to explainable models that address the question of 
how the prediction would have been changed with a different set of input (Woodward, 1997).  
Counterfactual statements are usually taking the form: Prediction P was made because the 
feature F has the value f1. However, if F had the value f ’1, where other features had remained 
constant, Prediction P1 would have been returned (Wachter et al., 2017). They are designed 
in a way to convey a minimal amount of information capable of amending a prediction. 
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Researchers argues that counterfactual explanations are human-understandable explanations 
and they do not require the user to understand the underlying logic of the model (Arrieta et 
al., 2020). Designers and developers of such models often assume a clear and relation from 
recommended changes in feature values to actions in the real world (Barocas et al., 2020). 
However, in many cases such as medicine this assumption will fail counterfactual, e.g., an 
explanation might ask the doctor to change the age of the patient. The analysis identifies two 
main categories of counterfactual explainable models: 

1- Feature Influence. It refers to explainable model that show how a prediction could change 
regarding to a change of a feature either in static way (Apley, 2016, Friedman, 2001, 
Goldstein et al., 2015) or interactive way (Krause et al., 2016) . Furthermore, it supports a 
localised inspection and feature tweak of a prediction to answer how and why specific 
prediction is predicted.   

2- Counterfactual features are techniques aim to describe the features that will change the 
prediction when it is amended or deleted (Dhurandhar et al., 2018, Wachter et al., 2017). This 
method is argued to be efficient to support the user with a feedback when the model prediction 
is different from the desired prediction e.g. rejected loan application(Zhang et al., 2018). 

Confidence explanations. It is an explanation class that shows the rationale of a given 
recommendation by presenting its certainty score. Confidence score can be generated from 
the machine learning models from two main sources (Gal and Ghahramani, 2016): model and 
data. Researchers generated confidence score at the model level by computing the 
distributional differences during the model training stage (Gal and Ghahramani, 2016, 
Schulam and Saria, 2019). Whereas, data confidence scores can come from noisy, missing or 
predefined assumptions on the data (Josse et al., 2019). The common technique in the 
literature to assess the confidence is using Bayesian methods e.g. (Graves, 2011, Blundell et 
al., 2015). There has also been work other techniques such as Dropout (Srivastava et al., 
2014), tree-based density (Hooker, 2004) and simple heuristic using SoftMax (Hendrycks and 
Gimpel, 2016). Researchers argued that such confidence explanations can be used for trust 
calibration goal, when the designer of the system wants to inform the user about appropriate 
level of trust (Bussone et al., 2015, Helldin et al., 2013).  

Table 5 The categorisation of the reviewed papers 

 
 
 
 
 
 
 
 
 
Global 
explanations 
 

 
 
 
 
Global feature 
importance 
 

Ranking the data features. 
 

(Lou et al., 2013, Nguyen 
et al., 2016, Tolomei et al., 
2017) 
 

Dependencies between data 
features  
 

(Henelius et al., 2014 
Henelius et al., 2017) 
 

Influence Function 
 

(Datta et al., 2016) 
 

 
Decision tree 
approximation 
 

(Bastani et al., 2017, Johansson and Niklasson, 2009, 
Krishnan et al., 1999, Bastani et al., 2017, Johansson and 
Niklasson, 2009, Zhou and Hooker, 2016, Thiagarajan et 
al., 2016) 
 

 
 
 

AND-OR rules 
 

(Dash et al., 2018, Aung et 
al., 2007, Wei et al., 2019, 
Tan et al., 2018, Zhou et 
al., 2003) 
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Rule 
extraction 
 

 
If-then rules 

 
(Johansson et al., 2004, 
Quinlan, 1987) 
 

 
 
 
Explain a 
prediction 

Local feature 
importance  

(Ribeiro et al., 2016b, Lundberg and Lee, 2017, 
Simonyan et al., 2013, Fong and Vedaldi, 2017, 
Dabkowski and Gal, 2017, Zhou et al., 2003, Mishra et 
al., 2017, Ribeiro et al., 2016a) 

Local rules 
and trees 

(Guidotti et al., 2018, Krishnan and Wu, 2017) (Ribeiro 
et al., 2018) (Konig et al., 2008, Johansson et al., 2004, 
Soares and Angelov, 2019) 

 
 
 
 
Example-
based 

Prototype (Bien and Tibshirani, 2011, Kim et al., 2016) (Kim et al., 
2014) (Kim et al., 2016, Kanehira and Harada, 2019) 

Counterfactual 
example 

(Wachter et al., 2017) (Martens and Provost, 2014, Chen 
et al., 2017) (Laugel et al., 2017, Mothilal et al., 2020) 

Influential 
example 

(Koh and Liang, 2017) (Goodfellow et al., 2014) (Yuan 
et al., 2019, Dong et al., 2017, Szegedy et al., 2013) 

 
 
 
Counterfactual 

Feature 
Influence 

(Woodward, 1997) (Apley, 2016, Friedman, 2001, 
Goldstein et al., 2015) (Krause et al., 2016) 

Counterfactual 
features 

(Wachter et al., 2017) (Dhurandhar et al., 2018, Wachter 
et al., 2017) (Zhang et al., 2018) (Krause et al., 2016) 
(Barocas et al., 2020) 

Confidence  (Zhang et al., 2020, Bussone et al., 2015)  (Gal and Ghahramani, 2016, 
Schulam and Saria, 2019) (Josse et al., 2019, Graves, 2011, Blundell et 
al., 2015) (Srivastava et al., 2014) (Hooker, 2004) (Hendrycks and 
Gimpel, 2016). 

2. Phase 1: think-aloud protocol.  
Our study design and analysis of the data are situated within a two-dimensional space: everyday 
Human-AI collaborative decision-making task where trust calibration errors are possible, and 
AI-based explanations to support trust calibration. Through multi-stage qualitative research, we 
aim to answer the following questions: 

RQ: How to design for explainability that enhances trust calibration? What design 
techniques could be implemented, and what are suitable principles to guide the design? 
To this end, the research method of this paper included two phases: Exploration and Co-design. 
The exploration phase aimed to explore how users of everyday Human-AI collaborative decision-
making tasks interact with AI-based explanations and why explanations are not improving trust 
calibration. The co-design phase goal was to investigate how users of XAI systems would like to 
integrate AI-based explanation in their everyday decision-making task. Co-design phase helped 
us to understand how the solution would look like from users’ perspective. The following sections 
describe the research method. 

2.1. Use case and underpinnings 
Screening prescription is a process that medical experts in a clinic follow to ensure that a 
prescription is prescribed for its clinical purpose and fit the patient profile and history. The main 
workflow of the prescribing system shown in Figure 5. 
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Figure 5 Screening prescription classification AI-based system classification 

To help our investigation, we designed an AI-based decision-making mock-up meant to help 
classify the prescriptions into confirmed or rejected. We chose this case study to reflect an 
everyday Human-AI collaborative decision-making task where trust calibration errors are indeed 
possible. We designed the mock-up based on templates and interfaces familiar to our participants 
in their everyday decision-making tasks (See Figure 6). Our mock-ups mimic a web-based tool 
and are meant to simulate the user experience when working on an existing system. As the medical 
expert clicks on a prescription, the tool shows the patient profile and the recommendation from 
the AI-supported decision-making tool (confirmed or rejected). The user has access to AI-based 
explanations to understand the AI rationale of why the prescription should be confirmed or 
rejected. 

2.2. Exploration 
This stage included two sub-stage: Think-aloud and follow-up interviews. 

2.2.1. Think-aloud stage 
We aim to provide explanatory information that supports the medical practitioners in their trust 
calibration during Human-AI collaborative decision-making task.  Our participant's inclusion 
criteria were based on their experience of using clinical decision support systems in their settings 
and experience in screening chemotherapy prescription (See Appendix A). We designed ten 
recommendations accompanied by ten different explanations. The adopted recommendations 
were generated to be non-trivial, which was based on a literature review on related work and 
medical expert judgment. We tested the material and activities with two participants and refined 
them to optimise their fulfilment of these criteria (See Appendix B). Also, we validated the 
material with a medical oncologist with a focus on the border cases that need an investigation 
from the participants in the actual study. This ultimately helped put our participants, who were 
medical experts, in a realistic setting: exposing them to an imperfect AI-based recommendation 
and its explanations where trust calibration is needed and where errors in that process are possible. 
We consulted with one AI expert and one medical expert, presenting them with ten explainable 
interfaces, and asked them for their expert opinion regarding the relevance of the explanations 
and the validity of the recommendation. We used these opinions, as well as the results from our 
pilot study, to refine the interface design. Each scenario considered a hypothetical patient profile 
and AI-recommendations that suggests either rejecting or accepting a chemotherapy prescription 
for the patient. Patients have been initialised with fictional names and profiles to make it more 
realistic to our practitioners. Each scenario was accompanied by one different explanation class 
and was meant to be either correct recommendation or incorrect recommendation. We used our 
five main explanation classes revealed from our previous literature review. We encouraged them 

Prescribers

Medical Expert

Prescription 
Approved?

Prescription 
classification 

tool

Patients

Prescription

Approved

R
ej
ec
te
d

Recommendation
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to think aloud during their decision-making process. Then, they were asked to think freely and 
encouraged to make optimal decisions. Examples of explainable interfaces used in our study 
settings are shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig 2. Five explanation classes mock-up interface presented to our participants. (a) confidence 
explanation. (b) Example-based explanation (c) Local feature importance (d) Counterfactual 

explanation (e) Global feature importance. 
 
 
 
 

2.3. Post-interview questions. 
 
 
 
 
 
 
 
 

Figure 6 Mock-up interfaces used during think-aloud study- Each interface represent one explanation type. 
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2.3.1. Follow-up interview 
At this stage, follow-up interviews were used to clarify the collected observations and participants 
think-aloud data and gather insights from the participants about their lived experience with AI 
explanations. This helped us to understand the nature of the users’ errors and confirm our 
observations. The following questions summarises the questions asked to the participants. 
 

General questions.  
1. How would you summarise why the AI-supported decision tool made the 

recommendations? 
2. What did you think of this explanation?  
3. Can you explain the results of the AI recommendation in your own words? 
4. How do you think the explanation could help you in your everyday decision-making 

activity?  

Questions regarding a specific action during the think-aloud protocol. 
 

1. Can you tell us why did you do that ….?  
2. What did you think about that scenario? 
3. What would you do in that scenario if you were in your clinic?  

 

2.4. Co-Design.  
We conducted two co-design sessions with eight participants, i.e., four participants in each 
session. The main aim of this stage was to explore how the design can play an effective role in 
enhancing users’ trust calibration during a Human-AI collaborative decision-making task. We 
used the same inclusion criteria employed in the exploration stage, i.e., expert users in the studied 
task. We chose to recruit different participants to avoid the learning effect (Lazar et al., 2017) and 
increase the credibility of our findings as existing users already learned the objective of the study 
and were part of the underpinnings for this next study.  Co-design method enables users who 
might be potential users in future AI-supported decision-making tools to reflect their experience 
in the design process, and this is supposed to increase the acceptance of the proposed solutions 
(Poole et al., 2008). Co-design can lead to a better understanding of the end-user needs, which 
enhances the possibility of the designs’ acceptance (Song and Adams, 1993). In this phase, we 
discussed and negotiate how to embed AI explanations to serve users’ needs, task workflow and 
trust calibration. Together with the participants, we conceptualised and sketched design features 
to support users in utilising AI explanation and reduce trust calibration errors revealed from the 
exploration phased. This was achieved by giving the participants initial prototypes or mock-ups 
(Clement et al., 2012) of the problem to help them visualise the idea and then provoke 
brainstorming related to the research problem.  All these dynamics were hard to capture during 
the exploration phase. Therefore, co-design method helped us to come up with innovative designs 
of how the solution should look from a user perspective.  

Participants were divided into two design sessions based on their availability. Due to the COVID-
19 situation, we chose to conduct the study online using FreeHand tool from Invision1. Also, it 
has been shown that online tools for co-design can make the process easier, cheaper and flexible 
for participants (Näkki and Antikainen, 2008). To mitigate any potential issues that could arise 
from using online platforms, e.g., readability of the instructions and the tool usability issues, we 
conducted a pilot study with two post-graduate researchers and one academic in an 
interdisciplinary research group residing in the departments of Computing and Psychology in 
Bournemouth University. This also helped us in the preparation of the training and induction stage 
for the participants in the real study. All participants attended a training session to familiarise 

 
1 https://freehand.invisionapp.com/freehand/new. 
 



13 
 

themselves with the tools’ functionalities and how they can communicate online. The training 
session lasted for 15-20 minutes. Then participants were invited to try the tool till they felt all 
capable of using it. They had the ability to ask questions and one of the authors answered them.  

We adopted four techniques during the co-design sessions in order to reach the goal of our study 
(See Figure 2); researcher presentation, participants discussion, sketching-up exercise and focus 
groups. This also helped to enhance the credibility of the study and to ensure that data bias was 
eliminated. Each of the sessions lasted for around 2 hours. Both sessions, including the four main 
steps, were audio-recorded and transcribed.  Audio recording for the design session helped the 
authors analysing main design needs and issues revealed from participants discussions. The 
following sections describe each technique that we used in our design sessions.  

1) Researcher presentation (10 mins). The researcher gave a 10-minute presentation on AI-based 
decision-making tools and an overview regarding the first phase findings, particularly those about 
different types of errors that emerged during the exploration study. This helped to immerse the 
participants in the research problem, and it involved a warming-up activity in getting the 
participants involved in the design sessions.  

2) Explanation and scenario discussion (25 mins): In this stage, participants started by introducing 
themselves. We then asked each participant to talk about how AI-based tools could help their 
everyday decision-making process. Then, we provided a definition for explainability methods 
introduced in previous interpretable machine learning surveys (Adadi and Berrada, 2018).  We 
provided different e-cards describing different explanation types in simplified examples. This was 
meant to illustrate explainability definition and potential uses of these explanations. To answer 
our research question, the participants needed first to immerse in a fictional problem as 
recommended in (Buskermolen and Terken, 2012). In our study, the fictional problem was 
collaborative decision-making between the medical expert and the AI. Specifically, a screening 
prescription using and AI-based tool. The researcher invited participants to discuss the designed 
scenario of an AI-based collaborative decision-making tool of a screening prescription and its 
generated explanations. We used a random forest classifier as an ML algorithm to train our model. 
We then generated explanations from current state-of-art model-agnostic explanations to examine 
how users would like to receive these explanations and develop prototypes for effective utilisation 
for such explanations in real-world scenarios. This stage was meant to scope the discussion and 
facilitate focused conversations using the provided scenario. This was also meant to immerse the 
participants with the research problem and facilitate their understanding of the researcher 
presentation. Our participants discussed a wide range of trust calibration scenarios using the 
explanation interfaces through the provided material in this stage. This stage provided a sense of 
realism to the problem and encouraged careful consideration of solutions to cater to different 
contexts and usage styles. The following scenario and explanations were presented to our 
participants and discussed in this stage. We asked our participants to use the output from five 
explainable models and sketch up designs that help them to have appropriate trust in the AI 
recommendation and help them in their everyday Human-AI collaborative decision-making task. 
Below we describe the provided scenario and how we generate the explanations.  
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John is a doctor using AI-supported decision-making tool that recommends if a prescription shall be 
confirmed or rejected. While John was trying to understand why the AI is recommending that, he wanted 
to make informed decision using the below explanations. This might trigger two circumstances: either 
to reject correct AI recommendation or follow incorrect AI recommendation. (See Figure 7 that 
describes patient scenario).  

 
Figure  7  Provided patients’ profile in the design sessions 

Using the provided explanations, please answer the following questions: 
1. How do you think each explanation should be designed to help you understand the AI 

recommendation?  
2. How would you design the explanation to help you assess of the reliability of AI explanations?  
3. How would you design the explanation to help you in judging the accuracy of the AI 

recommendation and its explanation?  
 
Global feature importance.  We used eli52 library in python to generate the global feature 
importance explanation.  Below we see the importance features in the overall model 
recommendation. 

 
2 https://eli5.readthedocs.io/en/latest/overview.html 
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Figure 8 Global feature importance 

 
Local Feature importance. We used LIME3 to generate local feature importance given a patient 
record. Our model recommended that the patient does not have a cancer with 72.6% confidence. 
Figure 9 shows the generated local feature importance that shows why our system provide this 
recommendation (Minus values contributed to patient has a cancer, whereas positive values 
contributed to patient does not have caner). 

 
3 https://github.com/marcotcr/lime 
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Figure 9 Local feature importance explanation 
 
Counterfactual explanations. We used Alibi4 library to generate counterfactuals given the 

same patient record. Below the generated counterfactual explanation that shows why our 

system provide this recommendation. Figure 10 shows the generated counterfactual 

explanation.  

The patient would have a cancer with 67% confidence, if the First sexual intercourse=29 and 
Hormonal Contraceptives (years) = 13. 

Figure 10 Counterfactual explanation 

 
Example-based explanation. We used K-nearest neighbour algorithm to retrieve the k 

neighbours for the same patient record.  

 
4 https://pypi.org/project/alibi/ 
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Figure 11 Example-based explanations using KNN. 
 

Confidence score. For confidence score, we used the function predict_proba implemented in 

the Random forest library. The algorithm confidence score for the patient record was 72%. 

3) Sketching-up exercise (40 mins): Participants were then encouraged to start sketching-up their 
designs using FreeHand tool from InVision.  We gave each participant a blank e-page to sketch 
up designs considering five explanation types ( Local, Global, Example-based, Counterfactual and 
Confidence explanations). The online platform provided several creation tools (e.g. coloured 
pens, shapes and sticky notes). The participants were also asked to not limit themselves to the 
given explanation classes and consider any extra features they would like to see in XAI interfaces 
to help them in utilising the explanation during a collaborative decision-making task. We 
deliberately asked our participants to work individually, think outside of the box, and consider 
different kinds of potential solutions. In this stage, our participants designed their explanations 
and provided multiple usage scenarios for them. They created a wide variety of usage scenarios 
covering different purposes and task requirements, e.g., grouping data features in Local 
explanations to reduce the explanation complexity. Below we provide a screenshot of the design 
space provided to our participants (Figure 12).  

 

4) Focus group (45 mins). After each participant completed the sketching activity, each 
participant presented their ideas to the group. This was meant to critically analyse and evaluate 
the ideas by the participants in order to formulate robust solutions. This activity allowed our 
participants to explore and discuss various ways of using AI explanations in their work 
environment, considering trust calibration as the primary goal.  Figure 13 shows a sample of the 
designs generated during the focus-group stage.  
 
 

Figure 12 Design space provided to our participants 
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Figure 13 Sample of the collected data. 
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 Appendix A. Screening Survey 
  

 
• Please provide your age category.  

§ 20-30  
§ 30-40  
§ 40-50  
§ 50-60  

• Please provide your gender.  
§ Male  
§ Female  

  
• Approximately how long have you been practicing clinically?  

§ 0-5  
§ 5-10  
§ 10-15  
§ 15-20  
§ More than 20  

  
• Please check all statements that apply regarding your level of experience screening 
chemotherapy prescriptions.  

§ I know what screening prescription.   
§ I have used a clinical decision support software.  

  
Please indicate your level of agreement with the following statements.   
  Strongly 

Disagree  
Disagree  Neutral  Agree  Agree 

Strongly  
Artificial Intelligence will play an 
important role in the future of medicine   
  

          

There are too many complexities and 
barriers in medicine for AI to help in 
clinical settings.  
  

          

I have reservations about using AI in 
clinical settings.  
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Appendix B. Scenarios’ characteristics 
 

Scenario Number Explanation class Type of recommendation 
SC1 Confidence  Correct 
SC2 Confidence  Incorrect 
SC3 Counterfactual Correct 
SC4 Counterfactual Incorrect 
SC5 Global  Correct 
SC6 Global  Incorrect 
SC7 Local  Correct 
SC8 Local  Incorrect  
SC9 Example-based  Correct 
SC10 Example-based  Incorrect 

Table 1 Scenarios characteristics. Scenarios numbers do not represent the order of presentation. 
 

 
SC1 
Male:54  
CHF 

SC2 
Male:47 
CHF 

SC3  
Female:56 
CHF 

SC4  
Male: 44  
not CHF 

ER Positive Positive Positive Negative 

No prior treatment 
with CDK 4/6 

Yes Yes Yes Yes 

Adequate renal and 
hepatic function 

Yes Yes Yes  Yes 

ECOG PS 2 0 1 2 

Neutrophils 1.20 0.9 1.00 0.7 

Plt  80 74 33 84 

Hepatic 
impairment A B A C 

Other Toxicities Grade 1 Grate 2 Grade 1 Grade 4 

Table 2 Four examples of four patients’ profiles presented in the scenarios. 
 
 


