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Abstract 
 

During machining processes, accurate prediction of cutting tool wear is prominent to prevent 

ineffective tool utilisation and significant resource waste. Tool wear conditions and progression involve 

complex physical mechanisms, and a promising approach is to deploy heterogeneous sensors and design 

a deep learning algorithm to conduct real-time tool wear monitoring and precious prediction. To tackle 

the challenge of deep learning algorithms in processing complex signals from heterogeneous sensors, 

in this paper, a systematic methodology is designed to combine signal de-noising, feature extraction, 

feature optimisation and deep learning-based prediction. In more details, the methodology is comprised 

of the following three steps: (i) signal de-noising is carried out by a designed Hampel filter-based method 

to eradicate random spikes and outliers in the signals for raw data quality enhancement; (ii) features 

extracted from heterogeneous sensors in the time and frequency domains are optimised using designed 

recursive feature elimination and cross-validation (RFECV)-based and Isomap-based methods; 

(iii) a convolutional neural networks (CNN) algorithm is devised to process the optimised features to 

implement tool wear prediction. In this paper, a case study showed that 80% features were reduced from 

the originally extracted features and 86% prediction accuracy was achieved based on the developed 

methodology. The presented methodology was benchmarked with several main-stream methodologies, 

and the superior performance of the methodology over those comparative methodologies in terms of 

prediction accuracy was exhibited. 

Keywords: Tool wear prediction, feature optimisation, convolutional neural networks (CNN), 

heterogeneous sensors 

1. Introduction 
 

According to statistics [1], 7%-20% downtime for a computerised numerical control (CNC) machine 

tool system has been caused by cutting tool failures, 3%-12% of machining time has been wasted on 

replacing tools, and only 50%-80% of a tool life has been effectively used. An essential root cause of 

those phenomena is that manufacturing companies usually do not have the capability of accurately 

predicting tool wear conditions so that tools are either over-used or under-used. It is essential to develop 

an effective tool wear prediction so that the entire lifespans of tools can be utilised. 



With regard to tool failure, there are several forms like flank wear, crater wear, plastic deformation 

and fractures. Flank wear and crater wear are two main forms of tool wear [2]. The flank wear is caused 

by abrasion and adhesion, and it occurs at the contact face between the tool flank and the workpiece 

surface [3]. The crater wear happens at the rake face close to the tool edge, which is caused by the high 

temperature chips flow. The crater wear is not a severe deterioration of the cutting tool, as it needs long- 

term accumulation to cause failure and usually show on ductile materials [4]. Thus, flank wear is an 

important factor to characterise the tool wear and commonly used for the tool wear monitoring [5]. 

Physics-based modelling has been actively investigated to predict various tool wears. However, due 

to the dynamic operation environments of machine tool systems, it is challenging to developing the 

relevant accurate physical mechanisms. For the research of flank wear prediction, data-based modelling 

(e.g., by leveraging the latest deep learning technologies) has been actively explored as an increasingly 

popular solution for flank wear prediction [7]. In such a data-based modelling, signals (e.g., vibration, 

acoustic emission (AE) or electricity consumption) from sensors mounted on a CNC machine tool 

system for tool condition monitoring are mined to estimate tool wear conditions and progression. 

However, there are still challenges for the data-based modelling: 

• In view of increasingly complex machining processes and dynamic machining models, factors that 

affect flank wear are not limited to processing parameters. Uncertain parameters such as tool runout, 

lubrication and residual stress will also affect flank wear greatly. Therefore, research on the more 

advanced data-based modelling is imperative to better quantify those uncertainty parameters; 

• Most of the developed research for the flank wear prediction has low scalability in dealing with 

various machining circumstance. For data-based modelling, the sensitivity of each sensor signal to 

the flank wear may vary with different machining conditions, predicting flank wear using solidified 

signal-wear patterns will result in reduced accuracy [6]; 

• Considering that the material and geometry of a tool exhibit non-uniform characteristics 

throughout the tool lifespan, a single type of sensors is not always sensitive and effective. 

Thus, it is a promising approach to deploying multiple types of sensors (called heterogenous sensors 

in this research) onto a CNC machine tool system to provide more comprehensive condition monitoring 

information of cutting tools along the entire tool lifecycles. Based on sensor signals, artificial 

intelligence algorithms have been designed to extract features from the signals to perform tool wear 

analysis. Conventional machine learning algorithms, including the artificial neural network (ANN), 

fuzzy inference system and support vector machine (SVM), have been applied in this research area. An 

important characteristic of the conventional algorithms is that features are explicitly defined and 

extracted to support following reasoning processes. Nevertheless, the performances of the algorithms 

are incompetent in processing complex signals. In recent years, deep learning algorithms, such as 

convolutional neural networks (CNN), recurrent neural networks (RNN), or long short-term memory 

(LSTM), have been actively explored to various engineering applications including tool wear prediction 



[8-11]. The distinguishing advantage of deep learning algorithms is that features can be intelligently 

extracted from highly non-linear and complex signals via a cascade of multiple (deep) layers and leaning 

mechanisms. However, it is challenging for deep learning algorithms to evaluate signals from 

heterogenous sensors. Signals from heterogenous sensors contain some redundant and irrelevant data, 

which will hugely prolong the training time of deep learning algorithms. Moreover, the redundant and 

irrelevant data also result in highly correlated features extracted from the signals, leading to over-fitting 

to particular features in modelling and poor accuracy of tool wear prediction. For features extracted 

from the signals, their importance contributions or relevance to tool wear are not the same, and it is not 

necessary to engage all of features for analysis. Thus, for those features extracted from signals of 

heterogenous sensors, it is critical to pinpoint and eliminate correlated features and less important 

(irrelevant) features in order to maintain essential information to better support deep learning algorithms. 

To address the above challenging issues, in this paper, a novel systematic methodology for tool wear 

prediction is designed. The methodology is innovative in that a deep learning algorithm is hybridised 

with signal de-noising and feature optimisation methods to process complex signals from heterogenous 

sensors for facilitating tool wear prediction. The characteristics and functions of the methodology are 

below: 

• It is essential to de-noise signals of heterogenous sensors in order to provide high-quality raw data 

for tool wear prediction. In this research, a Hampel filter-based method is devised to clean signals 

by eliminating random spikes and outliers in the signals; 

• Based on features extracted from signals of heterogenous sensors in the time and frequency domains, 

recursive feature elimination, cross-validation (RFECV)-based and Isomap-based methods are 

designed to systematically identify the redundancy and relevance of the features to tool wear 

conditions for feature optimisation; 

• A CNN model is developed to process optimised features for tool wear prediction with achieved 

high computational efficiency and prediction accuracy; 

• A case study was employed for the validation of the research methodology. The study achieved a 

80% condensation of correlated or less relevant features from the originally extracted features and 

86% prediction accuracy on tool wear. Moreover, the methodology was benchmarked with several 

mainstream algorithms. Results showed that the methodology achieved a better performance over 

the comparative algorithms in terms of prediction accuracy. 

The rest of the paper is organised as follows. Some relevant literatures are reviewed in Section 2. In 

Section 3, the research methodology is explained in detail. Section 4 elaborates the evaluation processes 

of the methodology and the benchmarking results with comparative algorithms. Conclusions are drawn 

in Section 5. 

2. Literature Review 



During a CNC machining process, the wear progression of a cutting tool can be reflected in the 

fluctuation of the sensor signals used to monitor cutting tool conditions. However, these signals are 

usually enormous in data generation and multi-dimensional. Features, which are extracted from sensor 

signals to create a smaller set of important information in the time and frequency domains, can reveal 

the inherent characteristics of the signals and be easier to interpret tool conditions and predict tool lives 

[12]. For instance, the skewness feature characterises the degree of asymmetry around the mean of the 

distribution of signals, which is affected by tool conditions and tool wear; the maximum and minimum 

feature values of signals can display the fluctuation of the signal amplitude that is closely related to tool 

wear [13]. 

Furthermore, optimisation on signal features has been designed to facilitate tool wear prediction [14- 

15], which is to keep only the critical features with obvious physical and statistical significance to tool 

wear conditions and progression by minimising redundant or irrelevant features. Feature optimisation 

exhibits advantages in the following aspects: (i) the required data storage space for extracted features 

can be reduced; (ii) the computational efficiency for tool wear prediction can be optimised; (iii) the 

correlations between features are alleviated to avoid overfitting and boost the prediction accuracy. 

Developed methods of feature optimisation are generally categorised as filter and wrapper methods [16], 

their cons and pros are summarised in Table 1. 

Table 1: Pros and cons of the filter methods and the wrapper methods. 
 

Method Advantage Disadvantage 

Filter 

method 
• A relatively simpler and faster 

computing process 

• Feature dependencies not considered 

• Low accuracy 

 

Wrapper 

method 

• Feature evaluation with cross-validation 

for ensuring the method reliability 

• Higher accuracy 

 
• Extensive computation 

 

The filtering methods select representative features through a threshold set manually [17]. The 

weakness of the filtering methods is that they only consider individual features and ignore the possible 

interactions and correlations between features. Consequently, the methods may result in the acquisition 

of highly relevant features, which will make the performance of a diagnosis task poor in terms of 

algorithm training efficiency and accuracy [18]. 

The wrapper methods embed an intelligent learning estimator to evaluate feature importance 

sequentially to obtain the best features ultimately. The higher accuracy of the intelligent learning 

estimator, the better performance of the wrapper methods in identifying optimal features [19]. In the 

work of [20], a recursive feature elimination (RFE) method was designed to delete the worst features 

according to the importance ranking of multi-dimensional features. Nevertheless, in REF, a challenging 

issue is how to select a suitable classifier to distinguish features [21-23]. In the work of [24], several 

classifiers, namely t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), 



and SVM, were tested for feature optimisation in an application of the image classification. SVM 

showed a better performance among the comparative methods. In addition, a similar study on feature 

optimisation of breast cancer data based on SVM was conducted in [25]. However, for the above 

research works, there are two issues to be further resolved: (i) the methods are ineffective for processing 

heterogenous sensor signals; (ii) there still exist a number of correlated features unidentified and 

unremoved yet by using REF and SVM. 

Some research works for the above two types of feature optimisation methods are summarised in 

Table 2. 

Table 2: Summaries of some research works for feature optimisation. 
 

Method Algorithm Sensor signal Reference 

 

 
 

Filter 

method 

Pearson correlation 

coefficient (PCC) 

Vibration [8] 

Current [26] 

mRMR Cutting force [27] 

ANOVA Vibration, Cutting force [28] 

Fisher’s discriminant 

ratio (FDR) 

Sound, Voltage [29] 

Vibration, Cutting force [30] 

 

Wrapper 

method 

 

Genetic algorithm 
Cutting force, Vibration, AE [1] 

Cutting force, Vibration, AE [31] 

Stepwise selection Vibration [32] 

Decision tree Vibration [13] 

 

In recent years, deep learning algorithms have been actively applied for tool wear prediction. 

Nevertheless, deep algorithms are unable to highlight the correlations of features and their contributions 

to an application problem explicitly. Besides, deep learning algorithms are ineffective in processing 

heterogenous sensor signals, which hinder the algorithm accuracy and computational efficiency [33]. 

Feature optimisation can be considered as an effective data processing method to be incorporated with 

deep learning algorithms to facilitate decision making [34-36]. Some research works developed feature 

optimisation on deep learning algorithms for biomedical applications. For instance, in a study of the 

cancer image classifications, the impacts of feature optimisation on the performance of three deep 

learning algorithms, i.e., CNN, deep belief network (DBN) and recursive neural network (RNN), were 

evaluated [37]. Experimental results verified that feature optimisation improved the training accuracy 

of the deep learning algorithms. There are also some related research works developed for machine 

diagnostics applications. In the work [38], three feature optimisation methods, i.e., random forest (RF), 

linear SVM, and radial basis function SVM were combined with DNN be applied to three datasets: (i) 

acoustic signals collected in reciprocating air compressors; (ii) vibration signals collected from deep 

groove ball bearings; (iii) signals for steel plate faults. Prediction results showed that significant 

improvements were achieved. 



Nevertheless, though various research works were conducted, majority of the previous research 

works focused on feature optimisation from the signals of homogenous sensors. To the best of our 

knowledge, systematic processes to optimise features extracted from signals of heterogenous sensors, 

which are more effective in monitoring and analysis of tool wear conditions, are still rare. It is 

imperative to conduct research to systematically assess the redundancy and relevance of features related 

to tool wear prediction based on heterogenous sensors. Meanwhile, it is also foremost to validate the 

proposed research methodology on its effectiveness in tool wear prediction using a complex case study 

under an industrial environment. 

3. Methodology 
 

3.1 Overall framework of the methodology 

 

The flow of the methodology, which is depicted in Fig. 1, consists of the following steps: 

 Signal pre-processing: Signals from heterogenous sensors mounted on a CNC machine tool system 

are pre-processed using an Hampel filter-based method to diminish noises in the signals and improve 

the quality of the signals; 

 Feature extraction: A series of features in the time and frequency domains are extracted from the 

pre-processed signals; 

 Feature optimisation: To expedite the computational efficiency and improve the accuracy of tool 

wear prediction, it is necessary to optimise (minimise) the number of features from the above 

extracted features. For this purpose, in this research, two methods are developed: (i) a RFECV-based 

method designed to determine optimal features and remove less important (relevant) features; (ii) an 

Isomap-based method designed to further optimise feature selection; 

 Tool wear prediction: A CNN model is trained and applied to accomplish tool wear prediction. 

The rational and justifications of using Hampel filter, REFCV and Isomap in this research will be 

explained in the following subsections. 

 

 

 

 

 

 

 

 

Fig. 1: The framework of the methodology developed in this research. 

 

In this research, a heterogenous sensors-based dataset for cutting tool monitoring from the NASA 

Ames and UC Berkeley [39] was used as a case study to elaborate and validate the proposed approach. 

In the case study, accelerometers (the ENDEVCO model 7201-50), AE sensors (the WD model 925), 
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and current sensors, were deployed on a CNC machine tool system (the Matsuura machining centre 

MC-510V) to monitor tool conditions. In more details, two different sensors were used to monitor the 

AC (the OMRON K3TB-A1015 current converter) and DC (the CTA 213 current sensor) current of the 

machine tool system. Two accelerometers and two AE sensors were installed on the working table and 

the spindle of the machine tool system respectively, to monitor vibration and acoustic signals. The 

specifications of these sensors are summarised in Table 3. 

Table 3: The specification of the applied sensors. 
 

Sensor model Frequency Measurement Range Sensitivity 

ENDEVCO model 7201-50 [40] 13KHz 0~2000gpk 50 pC/g 

WD model 925 [41] 2MHz 125~2MHz 56 V/(m/s) 

OMRON K3TB-A1015[42] 5KHz 64~160 A - 

CTA 213[43] 1KHz 0-600A - 

 
During the machining process, a 70mm face milling tool with 6 inserts (KC710) was adopted. The 

inserts are coated with multiple layers of titanium carbide, titanium carbonitride, and titanium nitride 

for roughing. The geometrical parameters and technical data of KC710 are given in Table 4. 

Table 4. The geometrical parameters and technical data of KC710 [44]. 

 

Inscribed circle size 

(mm) 
Thickness (mm) 

Cutting edge length 

(mm) 
Corner radius (mm) 

Cutting edges 

per insert 

9.5250 3.1750 9.5250 0.7940 4 

 
 

Fig. 1: The deployment of sensors on the machine tool system. 

 

Fig. 2 shows the deployment of the sensors in the machine tool system. In the following subsections, 

the signals from the sensors are denoted as V_S (vibration signals from the spindle), V_T (vibration 

signals from the table), AE_S (AE signals from the spindle), AE_T (AE signals from the table), AC 

(AC signals) and DC (DC signals). 

The entire dataset of the case study is divided into fifteen machining setups, and each setup is defined 

as a run-to-fail machining process based on the set of parameters (cutting speed, depth of cut, feed and 

workpiece material). According to the guidance of the industrial applicability and manufacturer, which 



is indicated in the third-party dataset used in this research [39], the cutting speed was set to 200m/min, 

corresponds to the 826 rev/min of the spindle speed, and two depth of cut 1.5mm and 0.75mm, two feed 

0.5mm/rev and 0.25mm/rev were employed. The fifteen setups and machining parameters are detailed 

in Table 5. In the table, the specifications of materials used are defined. The definitions are represented 

in standard nomenclature. 

Table 5: Fifteen machining setups in the case study. 
 

 

Setup 
Cutting speed 

(m/min) 

Depth of cut 

(mm) 

Feed 

（mm/rev） 

Workpiece 

material 

1 200 1.5 0.5 Cast iron 

2 200 0.75 0.5 Cast iron 

3 200 0.75 0.25 Cast iron 

4 200 1.5 0.25 Cast iron 

5 200 1.5 0.5 stainless steel J45 

6 200 0.75 0.25 stainless steel J45 

7 200 0.75 0.5 stainless steel J45 

8 200 1.5 0.5 Cast iron 

9 200 1.5 0.25 Cast iron 

10 200 0.75 0.25 Cast iron 

11 200 0.75 0.5 Cast iron 

12 200 0.75 0.25 stainless steel J45 

13 200 0.75 0.5 stainless steel J45 

14 200 1.5 0.25 stainless steel J45 

15 200 1.5 0.5 stainless steel J45 

 
During the entire machining process for each setup, intermediate measurements on tool wear 

conditions were arranged. The period between two consecutive measurements in the machining process 

of a setup is defined as a run. In the experiment, for the fifteen setups, a total of 164 runs were recorded. 

After each run, the flank wear of a tool was measured using a microscope. The flank wears of the 

experiment are shown in Table 6. Moreover, according to the ISO3685:1993, in a metal cutting, the 

standard threshold for a uniform tool flank wear is usually set as 0.4mm. In the subsequent analysis, the 

threshold of the flank wear is set to be 0.4mm. Based on this value, the wear status of a tool is judged 

to be either unworn or worn. For simplicity, in the rest of the paper, the flank wear is called wear. 

Table 6: Measured wears for the experiment of the case study (the worn cases are highlighted). 
 

        Setup        

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Run       Wear (mm)       

1 0 0.08 0 0.08 0 0 0 0 0 0 0.05 0 0 0.08 0.05 

2 0.04 0.14 0.13 0.13 0.16 0.09 0.18 0.1 0.04 0.04 0.08 0.05 0.09 0.15 0.13 



3 0.07 0.14 0.13 0.2 0.29 0.13 0.3 0.14 0.08 0.07 0.1 0.10 0.17 0.28 0.24 

4 0.11 0.14 0.17 0.31 0.44 0.22 0.36 0.19 0.16 0.07 0.12 0.13 0.24 0.37 0.31 

5 0.16 0.15 0.19 0.35 0.53 0.24 0.44 0.27 0.25 0.08 0.17 0.17 0.30 0.48 0.40 

6 0.20 0.16 0.20 0.40  0.34 0.62 0.38 0.36 0.09 0.20 0.32 0.35 0.56 0.62 

7 0.24 0.18 0.23 0.49  0.46  0.47 0.43 0.10 0.24 0.38 0.60 0.70  

8 0.29 0.22 0.23   0.53  0.64 0.47 0.12 0.32 0.49 0.81   

9 0.28 0.26 0.26     0.81 0.53 0.16 0.36 0.56 1.14   

10 0.32 0.31 0.28      0.70 0.18 0.40 0.68    

11 0.38 0.38 0.33       0.2 0.45 0.83    

12 0.40 0.43 0.36       0.23 0.49 0.92    

13 0.43 0.48 0.44       0.26 0.58 1.07    

14 0.45 0.55 0.55       0.29 0.65 1.30    

15 0.5         0.31  1.53    

16 0.53         0.37      

17 0.54         0.40      

18          0.42      

19          0.47      

20          0.57      

21          0.65      

22          0.68      

23          0.76      

 

The purpose of this research is to prove the feasibility of the methodology of heterogeneous sensors- 

based feature optimisation and deep learning for tool wear prediction. On the other hand, tool wear is a 

complicated physical phenomenon and more comprehensive investigations on the mechanism of tool 

wear are necessary. For instance, it is known that the cutting speed is an important influential parameter 

in tool wear. Due to the limitation of the current available data, the relevant research was not carried 

out in this paper. In the future work, more experiences will be conducted to evaluate the impact of 

varying cutting speeds on tool wear and the underlying mechanism. 

 

3.2 Signal pre-processing 

 

During the process of tool condition monitoring, sensor signals may contain random spikes or 

outliers (e.g., caused by erroneous values of sensors, environment-related disturbance, etc.), which can 

adversely affect the prediction accuracy of tool wear. To alleviate the issue, in this research, a signal 

de-noising method enabled by the Hampel filter is adopted. The Hampel filter was proved to have a 

good performance of removing spikes or outliers without affecting the entire signals [45]. The processes 

of the method are below. 

The median and the median absolute deviation (MAD) are two important estimators of the Hampel 

filter. For the signals from a sensor, they are represented as 𝐴 = {𝑥1,𝑥2, … , 𝑥𝑛}. The signals are divided 

into multiple subsets by a moving window with a fixed size (2K+1). The median of the signals under a 

moving window is below: 



𝑚𝐾,𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥𝑗, … , 𝑥𝑗+2𝐾} (1) 
 

where 𝑚𝐾,𝑗 is the median of the subset j of A;  𝑥𝑗 represents the j-th signal in A;  𝐾 is the half- 

width of this subset. 

For instance, K is chosen to be 2 in this paper, and the median of the first subset of A can be obtained 

as 𝑚2,1 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥1,𝑥2,𝑥3,𝑥4,𝑥5} 

The scale estimator MAD of the subset can be calculated by: 

 
MAD = 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑗 − 𝑚𝐾,𝑗|, … , |𝑥𝑗+2𝐾 − 𝑚𝐾,𝑗|} (2) 

 

which is used to estimates the window’s standard deviation σ𝐾,𝑗 below: 

 
σ𝐾,𝑗 = 𝛼 ∙ MAD (3) 

where 𝛼 is the unbiased estimator of a Gaussian distribution, and 𝛼 ≈1.4826 [46]. 

 Thereby, for the above example, σ = 𝛼 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥1 − 𝑚2,1|, |𝑥2 − 𝑚2,1|, |𝑥3 − 𝑚2,1|, 

2,1 
|𝑥4 − 𝑚2,1 |, |𝑥5 − 𝑚 

} 
2,1| 

Next, spikes or outliers in signals can be judged based on the following Equation (4). That is, if the 

difference between a signal 𝑥𝑗 and the median 𝑚𝐾,𝑗 is greater than 𝑡 ∙ σ𝐾,𝑗, 𝑥𝑗 is judged to be a spike or 

outlier signal and it will be replaced with the median 𝑚𝐾,𝑗. Otherwise, the signal remains the same. 

 

𝑥𝑗, |𝑥𝑗−𝑚𝐾,𝑗|≤𝑡∙σ𝐾,𝑗 
𝐻𝐾,𝑗(𝑥𝑗) = {𝑚𝐾,𝑗,  |𝑥 −𝑚     |>𝑡σ 

𝑗 𝐾,𝑗 𝐾,𝑗 

(4) 

where 𝐻𝐾,𝑗 is the Hampel filter; 𝑡 is the scale factor, which equals to 3 in general [47]. For the first 

and last K number of samples, the filter algorithm prepends or appends the frame with zeros respectively 

to have a complete window. 

Fig. 3 shows the result of applying the Hampel filter-based method to the vibration signals in the 

case study of this research. In the original vibration signals of Run 6 of Setup 1 (shown in Fig. 3(a)), 

some spikes can be observed. These spikes would degrade the prediction accuracy of tool wear. After 

the application of the Hampel filter-based method, signal spikes are eliminated from the original signals. 

The processed signals are depicted in Fig. 3(b). 

 

 

(a) Original signals with spikes (b) Processed signals 



Fig. 3: Signal processing using the Hampel filter-based method (t = 3, K = 2, vibration denoted as vib). 

 

3.3 Feature extraction 

 

Feature extraction is an effective means to reduce the complexity of the prediction process. In this 

research, features of signals from the three types of heterogenous sensors are defined and extracted in 

the time domain and frequency domains. Some considerations of the feature extraction are below: 

A feature in the time domain can be either dimensional or dimensionless. A dimensional feature 

refers to one with a measurement unit, such as the means of signals. A dimensionless feature denotes a 

product or a ratio of dimensional features. For instance, the crest factor, which is the ratio of the peak 

to the root mean square (RMS) of signals to detect whether there is an obvious peak in the signals, is a 

dimensionless feature. A dimensional feature could have an intuitive physical meaning, and it can reveal 

the inherent attributes of the signals. However, under complex machining situations, these dimensional 

features may be influenced by various working loads and machining factors. In contrast, dimensionless 

features could be more stable in representing tool wear conditions from certain perspectives, and they 

can be complementary to dimensional features. Hence, in this research, dimensional and dimensionless 

features in the time domain are extracted to minimise the negative influence of dynamic factors 

throughout machining. 

Due to the complexity of machining conditions and working environments, acquired sensor signals, 

especially vibration and AE signals, may contain various noisy information generated during a 

machining process. Even after the de-noising process on signals using the Hampel filter-based method, 

it could be still difficult to extract all the essential information (i.e., features) in the time domain. Instead, 

features in the frequency domain can be complimentary to those features in the time domain to provide 

more perspectives for comprehensive analysis. Therefore, features from the signals of the current, 

vibration and AE sensors are extracted in both the time and frequency domains. The diagram of the 

signal feature extraction is shown in Fig. 4. 
 

 

 

Fig. 4: The process of signal feature extraction. 

 

Feature extraction in the time domain 
 

The time domain refers to the change of the signal amplitude along time. Signals used in this research 

are collected in the time domain. Taking some runs of Setup 10 as examples, the signals of the current, 

AE and vibration in the time domain are shown in Fig. 5. 
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Fig. 5: Signals of some runs of Setup 10 in the time domain. 

 

It can be observed that, with the increased number of cuts, the amplitudes of the signals of current 

and AE rise. However, the vibration signals do not follow the same trend. The tool gradually becomes 

dull from the initial sharpness, and the contact area between the tool and the workpiece is increased 

during the process. The chatter of the cutting tool gets smaller, and thereby, the vibration amplitude 

drops [47]. A similar conclusion from the perspective of materials and cutting mechanisms was drawn. 

As machining proceeds, the processing temperature and plastic deformation of the workpiece increase, 

resulting in reduced cutting forces that will eventually reduce the amplitude of the vibration signals. 

Meanwhile, plastic deformation is difficult to be detected by vibration sensors in some cases, and the 

AE sensor is a better option. This is also deemed to be a reason that signals from multiple sensors are 

indispensable to reflect the overall tool wear trend in a more comprehensive means. Signals for the rest 

of the cases exhibit a similar trend as presented above. 



In this research, eleven dimensional features and six dimensionless features in the time domain are 

extracted from the signals of each sensor, respectively (Table 7). In total, there are 102 features in the 

time domain for all the sensor signals (i.e., 17 features for each of the six sensors respectively). 

Table 7: Features in the time domain 
 

 Time domain   

 Dimensional feature Dimensionless feature 

Feature Formula Feature Formula 

 
Mean 

𝑛 
1 

𝜇 = ∑ 𝑥𝑖 
𝑛 

𝑖=1 

 
Impulse factor 

|𝑇𝑚𝑎𝑥| 
𝑇𝑖𝑓 = 

𝜇
 

Max 𝑇𝑚𝑎𝑥 = max(𝑥𝑖) 
 
 

Kurtosis factor 

 
𝑇𝑘𝑢𝑟 

𝑇𝑘𝑓 = 
𝑇 4 

𝑟𝑚𝑠 Min 𝑇𝑚𝑖𝑛 = min(𝑥𝑖) 

 
Standard 

deviation 

 
 

𝑛 
1 

𝑇𝑠𝑡𝑑 = √  ∑(𝑥  − 𝜇)2 
𝑛 𝑖 

𝑖=1 

 

 

Margin factor 

 

|𝑇𝑚𝑎𝑥| 
𝑇𝑖𝑓 = 

𝑇
 
𝑟 

Peak to peak 𝑇𝑝𝑒𝑎𝑘 = |𝑇𝑚𝑎𝑥| − |𝑇𝑚𝑖𝑛| 
 

 

RMS 

 
 

𝑛 
1 

𝑇𝑟𝑚𝑠 = √  ∑ 𝑥𝑖
2 

𝑛 
𝑖=1 

 

 

 
Shape factor 

 

 

𝑇𝑟𝑚𝑠 

𝑇𝑠𝑓 =   
𝜇

 

 
Skewness 

∑𝑛 (𝑥 − 𝜇)3 
𝑖=1   𝑖 𝑇𝑠𝑘𝑒 = 

(𝑛 − 1)𝑇 3 
𝑠𝑡𝑑 

 

 
Kurtosis 

∑𝑛 (𝑥 − 𝜇)4 
𝑖=1      𝑖 𝑇𝑘𝑢𝑟 = 

(𝑛 − 1)𝑇 4 
𝑠𝑡𝑑 

 

 
 

Crest factor 

 
 

|𝑇𝑚𝑎𝑥| 
𝑇𝑐𝑓 = 

𝑇
 
𝑟𝑚𝑠 Mean absolute 

deviation 

𝑛 
1 

𝑇𝑚𝑎𝑑 = 
𝑛 

∑(𝑥
𝑖  

− 𝜇) 

𝑖=1 

 

 

Median 

𝑛 + 1 
𝑋[  ], 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 

2 
𝑇 = 𝑋 [

𝑛
] + 𝑋 [

𝑛 
+ 1] 

𝑚𝑒𝑑 
2 2 

, 𝑖𝑓 𝑛𝑜 𝑖𝑠 𝑒𝑣𝑒𝑛 
2 

𝗅𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

 

 

 
 

Skewness 

factor 

 

 

 

𝑇𝑘𝑢𝑟 

𝑇𝑠𝑘𝑒𝑓 = 
𝑇 3 

𝑟𝑚𝑠 

 
Variance 

∑𝑛 (𝑥 − 𝜇)2 
𝑖=1   𝑖 

𝑇𝑣𝑎𝑟 = 
𝑛 

  

 

In the above table, 𝑇  = (
1 

∑𝑛 2 
√|𝑥 |) is the root value;; 𝑥 is a signal sample; i=1, 2, ..., n; n 

𝑟 𝑛 𝑖=1 𝑖 𝑖 

is the total sample number of signals. 



In the following subsections, the features in the time domain are named as the acronym of the 

features appended with the acronym of the signals. For instance, mean_AE_S stands for the mean 

feature of the AE signals obtained from the spindle of the machining system. 

Frequency domain processing 
 

Various uncertain factors may distort features in the time domain even after the Hampel filter-based 

de-noising process. To improve the prediction accuracy of tool wear, features are also extracted in the 

frequency domain using the power spectral density (PSD)-based method. PSD is a Fourier 

transformation and describes the powers of signals at different frequencies [48]. The advantages of 

using PSD to analyse the frequency domain include: (i) the irregularity of signals by the wavelength 

and amplitude can be displayed; (ii) frequency distributions hidden in signals with noises can be 

revealed; (iii) signal powers caused by random changes can be minimised; (iv) PSD can help reduce 

spectrum leakage, avoiding signals being not taken into account or signals being mistakenly considered 

as a repeated period. 

PSD can be obtained below: 

 
𝑁−1 

𝐹(𝑓) = ∑ 𝑥𝑛𝑒−i2𝜋𝑓𝑛/𝑁 

𝑛=0 

 

(5) 

|𝐹(𝑓)|2 
𝑃(𝑓) = lim 

𝑇→∞ 𝑇 

 
(6) 

where 𝑥𝑛 is the 𝑛𝑡ℎ sample of the time-series signal; 𝑛 = {0, ⋯ , 𝑁 − 1}; 𝑖 is the imaginary unit and 

𝑖 = √−1 ; 𝑇 is the time period; 𝑓 is the spatial frequency; 𝐹(𝑓) is the Fast Fourier transformation; 

𝑃(𝑓) is PSD. 

Abnormal behaviours of an object usually occur close to the natural frequency of the object. For a 

cutting tool, it will be more effective to capture features near the natural frequency of the tool for tool 

wear prediction. That is, features related to tool wear could be found in the frequency bands with the 

larger amplitude of PSD. Thus, the sensor signals are converted to the frequency domain using PSD for 

analysis. 

The effect of using PSD can be illustrated in Fig. 6, where PSD for the AE_S signals for Setup 11 is 

displayed. Fig. 6 is composed of three axes, i.e., frequency, tool wear and PSD. It shows that dominant 

frequencies appear in the 0-40 Hz and 40-80 Hz frequency bands. Moreover, Fig. 6 presents that the 

amplitude of each frequency band increases with the process of tool wear exacerbation. In particular, 

the PSD increment around 80Hz is more intensive as the tool deterioration than that in the 0-40 Hz 

frequency band. It may attribute to the fact that the frequency of 80 Hz embodies the natural frequency 

of the cutting tool. PSD reflects the increasingly severe friction between the tool and workpiece. 

Based on the above results, changes in tool wear conditions can be characterised by features 

extracted from a specific frequency band in the spectrum, rather than from the entire bands [49]. Thus, 



the frequencies of sensor signals are divided into a lower-frequency band (0 Hz - 40 Hz), a middle- 

frequency band (40 Hz - 90 Hz) and an upper frequency band (90 Hz -125 Hz) in order to choose a 

suitable band to reveal the critical features for tool wear conditions. 

 

 
Fig. 6: PSD of the AE_S signals for Setup 11. 

 

In this research, six features for each frequency band are extracted from the signals of each sensor. 

In total, 108 features are extracted for the signals from the six sensors at the three frequency bands. The 

related information is shown in Table 8. 

 

 

 

 

 

 

 

 

 

 
Table 8: Features under the frequency domain. 

 

Frequency domain 

Feature Formula 

 
Mean 

𝑛 
1 

𝑓
𝑚 

= 
𝑛 

∑ 𝑝𝑖 

𝑖=1 

Max 𝑓
𝑚𝑎𝑥 

= max(𝑝𝑖) 

Min 𝑓𝑚𝑖𝑛 = min(𝑝𝑖) 

 

Root mean square 

 

∑ 
𝑛     𝑓 2𝑝 

𝑓 = √   𝑖=1    𝑖 𝑖 

𝑟𝑚𝑠 ∑𝑛  𝑝 
𝑖=1  𝑖 



Frequency centre 
∑ 

𝑛 
1 𝑓 𝑝 

𝑖= 𝑖 𝑖 
𝑓

𝑓𝑐 
=   

∑𝑛     𝑝 
𝑖=1  𝑖 

 

Root variance 

frequency 

 

∑ 
𝑛    (𝑓 − 𝑓 )2𝑝 

𝑓 = √   𝑖=1      𝑖 𝑚 𝑖 

𝑟𝑣 ∑𝑛   𝑝 
𝑖=1  𝑖 

 

In the table, 𝑓𝑖 is the frequency value with i=1, 2, …, n denotes the spectrum lines,   𝑝𝑖   is the power 

spectrum density at 𝑓𝑖. 

In the following subsections, the features in the frequency domain are named as the acronym of the 

features appended with the acronym of the signals and the frequency band. For instance, 

rms_AE_S_low stands for the rms feature of the AE signals obtained from the spindle of the machining 

system at the lower frequency band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Extracted features of the AE_S signals 

 

 
(b) Trend of tool wear 

 

Fig. 7: Extracted features vs. the trend of tool wear. 

 

By performing feature extraction in the time and frequency domains, a total of 210 features are 

obtained for the signals of vibration, AE and current. Taking the features of the AE_S signals for Setup 

10 as an example, some extracted features and measurement values of tool wear are shown in Fig. 7. It 

can be observed that some extracted features, such as mean and kurtosis in the time domain and RMS 

at the middle-frequency band are more consistent with the trend of tool wear, while other features do 



not follow this trend. It means that features deviated from the trend of tool wear need to be identified 

and removed to improve the prediction accuracy of tool wear. 

Furthermore, Pearson correlation coefficient (PCC) is used to analyse the relationship between 

extracted features. PCC is a simple and effective statistical method to evaluate the relationship between 

variables based on the covariance matrix [50], and it has been widely employed in some research related 

to the feature selection [51-52]. To optimise the computational efficiency and alleviate over-fitting for 

tool wear prediction, the correlation between selected features should be small. PCC is a value between 

[-1, 1] and it can be calculated below: 

 

𝐶𝑜𝑣(𝑎, 𝑏)   ∑𝑛   (𝑎𝑖  − �̅�)(𝑏𝑖  − �̅�) 
𝑃𝑎,𝑏 = = 𝑖=1  

𝜎𝑎𝜎𝑏 
√∑𝑛   (𝑎  − �̅�)2 ∙ √∑𝑛   (𝑏  − �̅�)2 

𝑖=1 𝑖 𝑖=1 𝑖 

 
(7) 

 
where, 𝑃𝑎,𝑏 denotes PCC of two features 𝑎 and   𝑏 ; 𝐶𝑜𝑣(𝑎, 𝑏) denotes the covariance of the 

features; 𝜎𝑎   and 𝜎𝑏   denote the standard deviations of the features respectively; 𝑎𝑖   and 𝑏𝑖 denote 

the samples indexed with i in individual features respectively;  �̅�  and  �̅�  denote the mean values of 

individual features respectively. 

According to PCC, the association between two features presents the positive or negative state. A 

greater value means a high correlation. The correlation matrix based on PCC is shown in Fig. 8. 
 

Fig. 8: The correlation matrix of extracted features. 



REFCV 

𝑖 

Fig. 8 expresses the PCC of the extracted 210 features (102 features in the time domain and 108 

features in the frequency domain) by the shade of the colour. Based on the analysis, it is clearly shown 

that it is necessary to eliminate redundant or less relevant features in order to obtain more efficient 

results for tool wear prediction. 

3.4 Feature optimisation based on REFCV 

 

For the extracted features, some could be less important (irrelevant) to tool wear prediction. It is 

worth identifying and removing those features to maintain the highest prediction accuracy and 

computational efficiency. 

In this research, a RFECV-based method is designed to select optimal features from the initially 

extracted features recursively. The flowchart of the method is shown in Fig. 9. Some major steps of the 

method are depicted below: 

 

Fig. 9: The flowchart of the RFECV-based method for feature optimisation. 

 

1. For all types of sensors, the set of features extracted in both time and frequency domain under 

the 𝑖𝑡ℎ run is modelled as a vector 𝑓𝑖 (𝑖 = 1,2, … ,164, 164 is the total number of runs), and each feature 

in the set is denoted as 𝑓𝑖(𝑗) (j =1, 2, …, m, m is the total number of features for all sensor signal). 

2. In view of the fact that the feature value of a vector  could be in different ranges, a 

normalisation process is performed based on the Nadir and Utopia points. The Utopia point 𝑧𝑈 and Nadir 

point z𝑁 provide the lower bound and upper bound of the value of features, respectively. The 

normalisation process of each feature in a vector fi is as below (the normalised feature is 𝑓′): 
 

𝑓′(𝑗) = (𝑓𝑖(𝑗) − 𝑧𝑈)/(𝑧𝑁 − 𝑧𝑈) 
𝑖 (8) 

3. The set of 𝑓𝑖 is segmented into a training subset and a validation subset randomly according 

to an approximate 7/3 ratio for M times. Each randomly generated group is denoted as 𝐺𝑘(k=1, …, M) 

with the indices of runs denoted as 𝑙 = (𝑘1, … , 𝑘𝐿), L is the total number of runs in each training dataset. 

Fig. 10 shows a schematic diagram of this step. 

Validation 

feature subset 

Extracted 

features 

Training feature 

subset 
Feature importance 

ranking 

Number of 

optimal features 
Optimal 

features 



𝑘𝑙 

164 feature vectors 

 

G1 

G2 

… 

 
 

Gk 

GM 

 

Training subset Validation subset A feature vector 
 

Fig. 10: A schematic illustration for Step 2. 

 

4. For each group 𝐺𝑘, an SVM classifier is used to conduct a binary classification process for 

tool wear (unworn or worn) based on the training and validation subsets of feature vectors according to 

the following procedures. 

In the process, the SVM classifier distinguishes the features for the unworn and worn status of a tool 

in the training subset through a hyperplane, the training stops until an optimal hyperplane is achieved. 

The maximum distance between features and the optimal hyperplane implies the lowest classification 

error [53]. In general, a hyperplane could be defined below: 

 

𝐿 𝑚 

𝑦𝑘 = ∑ ∑ 𝑤𝑘 ,𝑗 ∙ 𝑓′ (𝑗) + 𝑏 
𝑙 𝑘𝑙 

𝑙=1 𝑗=1 

 

(9) 

where 𝑦𝑘   represents the state of tool wear for the 𝐺𝑘   group (𝑦,𝑘 = 1 means the tool is worn, and 

𝑦𝑘 = −1 means the tool is unworn); 𝑓′   is the normalised feature vector with an index of 𝑘𝑙 in the 

training set of 𝐺𝑘 group; 𝑤𝑘 ,𝑗 denotes a weight for the feature j in 𝑓′ ; b is the bias. 
𝑙 𝑘𝑙 

Based on the dataset in the case study, the SVM classifier is trained using the training subset to 

obtain 𝑤𝑗 . After the validation of the SVM classifier, the classification accuracy is assessed by a 

confusion matrix. There are four possible results generated, i.e., true positives (TP), true negatives (TN), 

false positives (FP) and false negatives (FN). These four outcomes can be defined below: 

 TP: The feature indicates the tool is worn, and the tool is actually worn; 

 TN: The feature indicates the tool is unworn, and the tool is actually unworn; 

 FP: The feature indicates the tool is worn, and the tool is actually unworn; 

 FN: The feature indicates the tool is unworn, and the tool is actually worn. 

The classification accuracy of the validation subsets can be assessed using Equation (10), which 

represents the proportion of the correct classification in the total classification. 

 

𝑇𝑃 + 𝑇𝑁 
Accuracy(𝑦𝑘) = 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 



𝑙=1 

5. After each group of 𝐺𝑘 (k=1, …, M) is processed according to the above steps, the average 

classification accuracy for each feature is calculated, i.e.,   1 ∑𝑀   (Accuracy(𝑦 ) . Moreover, the 

𝑀     𝑘=1 𝑘 

importance ranking criterion of features can be calculated as 𝐶𝑗 = ∑𝐿 
2 
𝑘𝑙,𝑗 ( 𝐶𝑗    denotes the 

importance score of the feature j in a vector). Then, the importance of each feature in the group can be 

ranked. 

6. The feature with the least importance is eliminated, so that the number of features in the vector 

becomes m-1. The above steps are recursively repeated until all features are processed. During the 

process, the sets of features are denoted as Sm, Sm-1, …, S1. 

7. For the set of Sm, Sm-1, …, S1, their average classification accuracies are ranked. The number 

of features in the set with the highest classification accuracy is chosen as the optimal number of features. 

According to the importance score and the optimal number of the features, optimal features are selected. 

To illustrate the REFCV-based method, the classification accuracy of all extracted features is shown 

in Fig. 11. 

 

 
Fig. 11: The classification accuracy of features. 

 

According to Fig. 11, the highest accuracy for all signal is achieved with 115 features in both the 

time and frequency domain. 

Furthermore, the contribution degree (score) of each feature to tool wear is shown in Fig. 12. Based 

on the classification accuracy result of different feature number and the importance ranking of each 

feature, the most valuable features corresponding to the optimal number can be selected. After the 

application of the RFECV-based method, the optimal results are 44 features in the time domain and 71 

feathers in the frequency domain (in total 115 optimal features). The results are shown in Table 9 and 

Table 10. 

𝑤 



 
 

Fig. 12: The importance ranking of all extracted features. 

 

 

Table 9: Optimal features in the time domain. 
 

  Time domain 

Signal Feature number Feature 

AE_T 6 RMS, Mean, Median, Standard deviation, Maximum, Variance 

AE_S 5 Max, Mean, RMS, Median, Peak to peak 

 
AC 

 
10 

Kurtosis factor, Impulse factor, Mean, Variance, 

Standard deviation, RMS, Crest factor, Minimum, 

Peak to peak, Mean absolute deviation 

 
DC 

 
10 

Kurtosis factor, Skewness factor, Mean, Variance, 

Standard deviation, RMS, Median, Maximum, 

Minimum, Peak to peak 

V_T 7 
Shape factor, Kurtosis, Variance, Standard deviation, Skewness, Mean 

absolute deviation, Margin factor 

V_S 6 Kurtosis factor, Variance, RMS, Mean, Median, Shape factor 

 
Table 10: Optimal features under the frequency domain. 

 

Frequency domain 

  Lower band Mid band  Upper band 

Signals 
Feature 

number 
Feature 

Feature 

number 
Feature 

Feature 

number 
Feature 

 
AE_T 

 
2 

Max. 

Frequency centre 

 
3 

RMS, Mean 

Root variance 

 
4 

Max., Root variance, 

Frequency centre, 

RMS 



 

AE_S 

 

3 
RMS, Min. 

Frequency centre 

 

3 
Root variance, 

Frequency 

centre, RMS 

 

6 
RMS, Mean, Max., 

Root variance, Min., 

Frequency centre 

 
AC 

 
4 

 

RMS, Mean, Max., 

Frequency centre 

 
4 

 

RMS, Mean, 

Max., Min. 

 
6 

RMS, Mean, Max., 

Root variance, Min., 

Frequency centre 

 

 
DC 

 

 
4 

 

RMS, Mean, Max., 

Frequency centre 

 

 
5 

RMS, Mean, 

Max., 

Frequency 

centre, 

Root variance 

 

 
4 

 
RMS, Root variance, 

Max., Frequency 

centre 

 
V_T 

 
3 

RMS, 

Root variance, 

Frequency centre 

 
3 

Root variance, 

Frequency 

centre, RMS 

 
3 

RMS, 

Root variance, 

Frequency centre 

 
V_S 

 
5 

RMS, Mean, Max., 

Root variance, 

Frequency centre 

 
4 

Mean, Max., 

Root variance, 

Min. 

 
5 

RMS, Mean, Max., 

Root variance, 

Frequency centre 

 

After the above process, PCC on optimal features is evaluated again. Fig. 13 displays the correlation 

matrix of the 115 features. The results show that, compared with Fig. 8, the correlation of features is 

reduced, i.e., the average correlation now is 0.23, which is much smaller than 0.47 in Fig. 8. 

Nevertheless, features from different sensor signals are prone to contain duplicated information, so that 

there could be still correlations between some features that are not eliminated in the above optimisation 

process. To further improve the performance of tool wear prediction, features can be further optimised 

by an Isomap-based method described in the following subsection. 



 

Fig. 13: The correlation matrix of optimal features. 

 

3.5 Feature optimisation based on Isomap 

 

In this subsection, selected optimal features will be further condensed to improve the computational 

efficiency and accuracy of tool wear prediction. The features can be mapped into a multi-dimensional 

space for analysis. Generally, the principal component analysis (PCA) is one of the most prevalent 

methods used for data dimensionality reduction of a multi-dimensional space. However, PCA is not 

suitable for processing data with non-linear correlations [54]. Isomap was introduced which can 

measure the scale of a multi-dimensional space with non-linear data effectively to enhance computing 

efficiency and maintain data accuracy [55]. As shown in Fig. 14(a), the Euclidean distance between two 

points (black line) in the high dimensional space (A 3D example is used for visualisation purpose) 

cannot represent the actual distance along the manifold (geodesic distance) which is indicated in red 

line. By constructing a neighbourhood graph based on the high-dimensional data then mapping it to a 

low-dimensional space using Isomap, as illustrated in In Fig. 14(b), the geodesic distance (red line) and 

the Euclidean distance (blue line) in the lower dimensional space are close, so the Euclidean distance 

can be used as an alternative and the conventional data dimensionality reduction methods can be applied 

to further optimise the feature selection. 



 
(a) The neighbourhood graph in the high dimensional space (b) Lower dimensional embedding 

 

Fig. 14: The illustration of a neighbourhood graph and 2D embedding based on Isomap. 

1. The distance matrix 𝐷 = [𝑑𝑖𝑗]
𝑀×𝑀 

is calculated, where the shortest distance between a feature 

pair 𝑑𝑖𝑗 = min{𝑑(𝑓𝑖, 𝑓𝑗)} is obtained by the Dijkstra's algorithm and Floyd–Warshall algorithm [56], 

and 𝑑 is the geodesic distance between two features; 

2. According to the principle of the multi-dimensional scaling (MDS), the mapped coordinate 

matrix Z in a lower-dimension space can be derived by eigenvalue decomposition from the inner product 

matrix B that is computed by applying the central matrix to the squared matrix of D: 

 
𝑀 𝑀 𝑀 𝑀 

1 1 1 1 
𝐵 = [𝑏𝑖𝑗] 𝑏𝑖𝑗 = −  (𝑑2 − ∑ 𝑑2 − ∑ 𝑑2 − ∑ ∑ 𝑑2 ) 

𝑀×𝑀 2 𝑖𝑗 𝑀 𝑖𝑗 𝑀 𝑖𝑗 𝑀2 𝑖𝑗 

𝑖=1 𝑗=1 𝑖=1  𝑗=1 

 

(11) 

 

In order to remain the information of the original feature set, the predefined number of the desired 

dimension of the lower dimensional space 𝑁′ = 𝑁 − 1. N denotes the dimensions of original high- 

dimensional space. Based on the 𝑁′ largest eigenvalues and corresponding eigenvectors of B, the matrix 

𝑍 can be obtained: 

 

𝑍 = [⋁⋀1/2]
𝑇

 (12) 

 
where ⋁ is the matrix of 𝑁′ eigenvectors of B; ⋀   is the diagonal matrix of the 𝑁′   eigenvalues of 

B. 

The new representative components of features are generated as the columns in the matrix Z. As the 

dimension of the matrix Z is M×𝑁′, the number of the components equals to the number of original 

features, which is 110 in this paper. 

The optimisation of feature selection is conducted based on the new representative components of 

features. The cumulative variance sequentially accumulates the variances of each component to 

evaluate the proportion of the original information contained in the features in different dimensions. As 

shown in Fig. 15, after the cumulative variance calculation, the first 10 components contain about 90% 

of the variance. That is, 90% of the raw information is preserved. When the number of components 



reaches 40, it can be used to describe nearly 100% of the information. Therefore, 40 components 

(features) are finally kept as the optimised features. 
 

 
Fig. 15: The cumulative variance based on Isomap. 

 
In addition, with the determined representative components, Fig. 16 shows the correlation matrix of 

these 40 components (features). Obviously, the correlations between these components are greatly 

reduced. The average correlation coefficient is now 0.025. 

 

Fig. 16: The correlation matrix of Isomap-based components. 

 

4. Method Performance Evaluation 



4.1 Assessment based on different features sets 

 

In this research, a CNN model is adopted for tool wear prediction. An optimised architecture and 

parameters of the CNN model for the tool wear prediction were determined through trials and error 

comparisons. The following four feature sets were used for the training, validation and comparative 

analysis of the designed CNN model: 

 Feature set 1: the set of 210 features (originally extracted features), 

 Feature set 2: the set of 115 features (after feature optimisation by RFECV), 

 Feature set 3: the set of 40 features (after feature optimisation by Isomap), 

 Feature set 4: the set of 40 features from Feature set 3 added by three machining parameters, which 

are depth of cut, feed and workpiece material (considering numerous studies showed that 

machining parameters have significant influences on tool conditions. 

The CNN model is shown in Fig. 17 (using Feature Set 4 as an exemplary input). The model structure 

for four feature sets are summarised in Table 11. In this research, Keras and Tensorflow were utilised 

to establish the CNN model. The CNN model was executed on the Apache spark, which is a cluster- 

computing framework. 
 

Fig. 17: The architecture of the CNN model. 

 

Table 11: Parameter of the CNN model for different feature sets. 
 

Layer Set 1 Set 2 Set 3 Set 4 

Input 210x1 115x1 40x1 43x1 

Convolution layer 1 210x8 115x8 40x8 43x8 

Convolution layer 2 210x8 115x8 40x8 43x8 

Pooling layer 1 105x8 57x8 20x8 21x8 

Drop out 1 105x8 57x8 20x8 21x8 

Convolution layer 3 105x16 57x16 20x16 21x16 



Convolution layer 4 105x16 57x16 20x16 21x16 

Pooling layer 2 52x16 28x16 10x16 10x16 

Drop out 2 52x16 28x16 10x16 10x16 

Flatten layer 832 448 160 160 

Fully connected layer 32 32 32 32 

 

The results of the training and validation accuracy, training and validation loss for the four feature 

sets are displayed in Fig. 18. The validation accuracies of the four feature sets are summarised in Table 

12. It shows that the validation accuracy increases along with the increase of the training accuracy until 

it reaches optimal values. However, the accuracy of feature sets 1 and 2 is relatively low. The reason is 

that, the accuracies of validation on new-in data is poor and overfitting occurs, as correlated features in 

the feature sets are retained. For Feature sets 3 and 4, correlated features in the originally extracted 

features are removed through RFECV and Isomap, so that overfitting issues are eliminated, and 

accuracies are improved significantly. Feature set 4 achieved the highest validation accuracy of 86%, 

which also proves that a feature set enhanced by machining parameters is an effective strategy. 



 
(a) Training and validation for Feature set (1) 

(b) Training and validation for Feature set (2) 

 
(c) Training and validation for Feature set (3) 

(d) Training and validation for Feature set (4) 
 

Fig. 18: The prediction accuracy and loss of the CNN model. 

 

Table 12: The data sizes and validation accuracies of the different feature sets for the CNN model. 
 

Input Data Data size Validation accuracy 

Feature set 1 (Fig. 18(a), (b)) 164×210 68% 

Feature set 2 (Fig. 18(c), (d)) 164×115 70% 

Feature set 3 (Fig. 18(e), (f)) 164×40 79% 

Feature set 4 (Fig. 18(g), (h)) 164×43 86% 



4.2 Comparison of RFECV with other methods for feature optimisation 

 

To assess the performance of RFECV, comparative analyses with three prevalent machine learning 

algorithms, i.e., random forest (RF), extra tree (ET) and logistic regression (LR), were conducted. Both 

of RF and ET consist of a large number of decision trees, where the final decision is obtained taking 

into account the prediction of every tree. In RF, a bagging method is used to train sample data (features) 

and assign weights to each of them to establish a regression model [57]. ET adopts a method different 

from RF: it trains all the features on each decision tree, and then randomly divides these features at the 

nodes of a single decision tree to construct a complete classification model [58]. In addition, LR utilises 

the sigmoid function to estimate the classification probability between the feature and dependent 

variables to build a regression model [59]. 

Based on the three algorithms, the optimal number of features, the importance of each feature and 

corresponding optimal features were determined successively from the originally extracted 210 features. 

The classification accuracy of the feature set in different sizes are shown in Fig. 19, the importance 

ranking of features are shown in Fig. 20. The results of optimised features using RF, ET and LR are 

summarised in Table 13. Finally, the number reductions of features are 26%, 40% and 68% by using 

RF, ET and LR respectively, in comparison with the 45% by using REFCV. 

 

(a) RF model 
 

(b) ET model 



 

 

(c) LR model 
 

Fig. 19: The classification accuracies of all feature sets determined by different intelligent models. 

 
 

 

(a) RF model 
 

 
(b) ET model 



 

 
 

(c) LR model 
 

Fig. 20: Importance ranking of all features by different intelligent models. 

 

Table 13: The number of optimal features by different intelligent models. 
 

Random forest   Extra tree  Logistic regression 

Signals Time 

domain 

Frequency domain Time 

domain 

Frequency domain Time 

domain 

Frequency domain 

 low mid high low mid high low mid high 

AE_S 14 5 4 5 7 4 4 3 2 3 3 1 

AE_T 12 5 4 4 8 3 3 5 5 2 2 1 

AC 11 6 4 6 10 4 5 6 6 4 1 1 

DC 10 4 5 4 11 4 5 4 7 4 1 1 

V_S 12 5 4 5 9 5 4 5 6 1 3 1 

V_T 11 4 6 5 8 4 3 3 6 1 3 1 

Total  155    127    66   

 

Isomap-based optimisation on feature sets generated by RF, ET and LR is performed. Fig. 21 

displays the cumulative variances of the Isomap-based results achieved by the three methods. 

 
 

 
Fig. 21: The cumulative variances of Isomap for the features achieved by RF, ET and LR. 



According to the cumulative variance, for RF, 45 features (representative components) can 

effectively represent the source information of the optimal features (the cumulative variance is close to 

100%). To reach the same percentage, both ET and LR need 30 features. After the application of Isomap, 

on the basis of the extracted features (210), the feature reduction rates of using RF, ET and LR reach 

78%, 85% and 85%, respectively, in comparison with 81% by REFCV. Fig. 22 shows the validation 

accuracy of the CNN model on the optimised feature sets achieved based on RF, ET, LR and REFCV. 

The validation accuracy of RFECV is the highest, which is 86%, in comparison with 77% by RF, 74% 

by ET and 72% by LR. As the validation accuracy is a more critical criterion, it can be concluded that 

REFCV outperforms RF, ET and LR. 

(a) RF model (b) ET model 
 

(c) LR model 
 

Fig. 22: The validation accuracy of the CNN model based on features achieved by intelligent models. 

 

5.     Conclusions 

Tool wear prediction is one of the essential research issues to effectively implement sustainability 

management of CNC machine tool systems. Tool wear progression is governed by complex underlining 

physics of tools and influenced by various machining factors. To process complex signals from 

heterogenous sensors for accurate tool wear prediction, in this paper, a novel methodology of 

incorporating signal de-nosing, feature optimisation and a CNN model is presented. The characteristics 

of the methodology include: 

• In this research, signal de-noising is conducted by a Hampel filter-based method to provide high- 

quality data for tool wear prediction; 



• The quality and relevance of features extracted from heterogenous sensors are optimised based on 

designed REFCV-based and Isomap-based methods, which improve the computational efficiency 

and tool wear prediction accuracy of the CNN model; 

• A case study with signals of heterogenous sensors from a CNC machine tool system was used to 

validate the research methodology. Based on the case study, 80% of features originally extracted 

from the signals were reduced after feature optimisation and 86% of prediction accuracy was 

achieved by the CNN model. The proposed methodology was benchmarked with comparative 

algorithms to demonstrate its better performance in terms of prediction accuracy. 

In the future research, more complex case studies and datasets will be explored to validate the 

proposed methodology, and the developed methodology will be explored to be applied to crater wear 

and other forms of tool failure to develop a more comprehensive toolkit. Meanwhile, it also needs to 

investigate how to handle incomplete or biased datasets using designing appropriate deep transfer 

learning models. 

 

References: 
 

[1] Y. Zhou, W. Xue (2018), A multisensor fusion method for tool condition monitoring in 

milling, Sensors, 18(11), pp. 3866. 



[2] A. A. Thakre, A. V. Lad, and K. Mala (2019), Measurements of Tool Wear Parameters Using 

Machine Vision System, Modelling and Simulation in Engineering, 2019(9), pp. 1–9. 

[3] N. T. Alagan, P. Hoier, P. Zeman, U. Klement, T. Beno, and A. Wretland (2019), Effects of high- 

pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process 

conditions in turning of alloy 718, Wear, 434–435, p. 102922. 

[4] V. D. Patel and A. H. Gandhi (2016), Analytical and Empirical Modeling of Wear and Forces of 

CBN Tool in Hard Turning - A Review, Journal of The Institution of Engineers (India): Series 

C, 98(4), pp. 507–513. 

[5] A. Singh, S. Ghosh, and S. Aravindan (2020), Flank wear and rake wear studies for arc enhanced 

HiPIMS coated AlTiN tools during high speed machining of nickel-based superalloy, Surface 

and Coatings Technology, 381, p. 125190. 

[6] M. Kuntoğlu, A. Aslan, H. Sağlam, D. Y. Pimenov, K. Giasin, and T. Mikolajczyk (2020), 

Optimization and Analysis of Surface Roughness, Flank Wear and 5 Different Sensorial Data via 

Tool Condition Monitoring System in Turning of AISI 5140, Sensors, 20(16), p. 4377. 

[7] G. Serin, B. Sener, A. M. Ozbayoglu, and H. O. Unver (2020), Review of tool condition 

monitoring in machining and opportunities for deep learning, International Journal of Advanced 

Manufacturing Technology, 109 (3–4), pp. 953–974. 

[8] C. Zhang, X. Yao, J. Zhang, H. Jin (2016), Tool condition monitoring and remaining useful life 

prognostic based on a wireless sensor in dry milling operations, Sensors, 16(6), pp. 795. 

[9] A. Kothuru, S. P. Nooka, R. Liu (2019), Application of deep visualization in CNN-based tool 

condition monitoring for end milling, Procedia Manufacturing, 34, pp. 995–1004. 

[10] A.P. Kene, S.K. Choudhury (2019), Analytical modeling of tool health monitoring system using 

multiple sensor data fusion approach in hard machining, Measurement, 145, pp. 118–129. 

[11] K. L. de Calle, S. Ferreiro, A. Arnaiz, B. Sierra (2019), Dynamic condition monitoring method 

based on dimensionality reduction techniques for data-limited industrial environments, 

Computers in Industry, 112, pp. 103114. 

[12] L. Feng, C. Zhao, B. Huang (2019), A slow independent component analysis algorithm for time 

series feature extraction with the concurrent consideration of high-order statistic and slowness, 

Journal of Process Control, 84, pp. 1–12. 

[13] C.K. Madhusudana, H. Kumar, S. Narendranath (2019), Vibration-based fault diagnosis of a face 

milling tool using empirical   mode   decomposition   features   and   artificial   neural network, 

International Journal of Condition Monitoring, 9(2), pp. 25–34. 

[14] T. Mohanraj, S. Shankar, R. Rajasekar, R. Deivasigamani, P.M. Arunkumar (2019), Tool 

condition monitoring in the milling process with vegetable based cutting fluids using vibration 

signatures, Materials Testing, 61(3), pp. 282–288. 



[15] E. G. Plaza, P.J.N. López, E.M.B. González (2019), Efficiency of vibration signal feature 

extraction for surface finish monitoring in CNC machining, Journal of Manufacturing Processes, 

44, pp. 145–157. 

[16] A. Bommert, X. D. Sun, B. Bischl, J. Rahnenführer, M. Lang (2020), Benchmark for filter 

methods for feature selection in high-dimensional classification data, Computational Statistics & 

Data Analysis, 143, pp. 106839. 

[17] Z.M. Hira, D.F. Gillies (2015), A review of feature selection and feature extraction methods 

applied on microarray data, Advances in Bioinformatics, 2015, pp. 1-13. 

[18] W. Chang et al. (2019), A machine learning-based prediction method for hypertension outcomes 

based on medical data, Diagnostics, 9(4), pp. 178. 

[19] Y. Mao, Y. Yang (2019), A wrapper feature subset selection method based on randomized search 

and multilayer structure, BioMed Research International, 2019, pp. 1-9. 

[20] S. Chatterjee, D. Dey, S. Munshi (2019), Integration of morphological pre-processing and fractal 

based feature extraction with recursive feature elimination for skin lesion types classification, 

Computer Methods and Programs in Biomedicine, 178, pp. 201–218. 

[21] B. Pes (2019), Ensemble feature selection for high-dimensional data: a stability analysis across 

multiple domains, Neural Computing and Applications, 32(10), pp. 5951–5973. 

[22] B. Niu, J. Sun, B. Yang (2020), Multisensory based tool wear monitoring for practical 

applications in milling of titanium alloy, Materials Today: Proceedings, 22, pp. 1209–1217. 

[23] C. Zhou, K. Guo, B. Yang, H. Wang, J. Sun, L. Lu (2020), Singularity analysis of cutting force 

and vibration for tool condition monitoring in milling, IEEE Access, 7, pp. 134113–134124. 

[24] C. Lai, S. Guo, L. Cheng, W. Wang (2017), A comparative study of feature selection methods 

for the discriminative analysis of temporal lobe epilepsy, Frontiers in Neurology, 8, pp. 633. 

[25] W. Wu, S. Faisal (2019), A data-driven principal component analysis-support vector machine 

approach for breast cancer diagnosis: Comparison and application, Transactions of the Institute 

of Measurement and Control, 42(7), pp. 1301–1312. 

[26] B. Neef, J. Bartels, S. Thiede (2018), Tool wear and surface quality monitoring using high 

frequency CNC machine tool current signature, Proceedings of the 16th IEEE International 

Conference on Industrial Informatics (INDIN), Porto, 2018, pp. 1045-1050. 

[27] G. Wang, Y. Yang, Z. Li (2014), Force sensor based tool condition monitoring using a 

heterogeneous ensemble learning model, Sensors, 14(11), pp. 21588–21602. 

[28] R. Mali, M.T. Telsang, T.V.K. Gupta (2017), Real time tool wear condition monitoring in hard 

turning of Inconel 718 using sensor fusion system, Materials Today: Proceedings, 4(8), pp. 

8605–8612. 

[29] Z. Zhang, H. Chen, Y. Xu, J. Zhong, N. Lv, S. Chen (2015), Multisensor-based real-time quality 

monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding, 

Mechanical Systems and Signal Processing, 60–61, pp. 151–165. 



[30] Y. Chen, H. Li, L. Hou, J. Wang, X. Bu (2018), An intelligent chatter detection method based on 

EEMD and feature selection with multi-channel vibration signals, Measurement, 127, pp. 356– 

365. 

[31] V. Pandiyan, W. Caesarendra, T. Tjahjowidodo, H.H. Tan (2018), In-process tool condition 

monitoring in compliant abrasive belt grinding process using support vector machine and genetic 

algorithm, Journal of Manufacturing Processes, 31, pp. 199–213. 

[32] G.D. Simon, R. Deivanathan (2019), Early detection of drilling tool wear by vibration data 

acquisition and classification, Manufacturing Letters, 21, pp. 60–65. 

[33] J. Lee, J.Y. Jeong, C.H. Jun (2020), Markov blanket-based universal feature selection for 

classification and regression of mixed-type data, Expert Systems with Applications, 158, pp. 

113398. 

[34] Y. Li et al. (2018), DEEPre: sequence-based enzyme EC number prediction by deep learning, 

Bioinformatics, 34(5), pp. 760–769. 

[35] F. Luo, M. Wang, Y. Liu, X.-M. Zhao, A. Li (2019), DeepPhos: prediction of protein 

phosphorylation sites with deep learning, Bioinformatics, 35(16), pp. 2766–2773. 

[36] J. Ngarambe, A. Irakoze, G. Y. Yun, G. Kim (2020), Comparative Performance of Machine 

Learning Algorithms in the Prediction of Indoor Daylight Illuminances, Sustainability, 12(11), 

pp. 4471. 

[37] Y. Chen, H. Li, L. Hou, X. Bu (2019), Feature extraction using dominant frequency bands and 

time-frequency image analysis for chatter detection in milling, Precision Engineering, 56, pp. 

235–245. 

[38] S. Maurya, V. Singh, N.K. Verma (2020), Condition monitoring of machines using fused features 

from EMD-based local energy with DNN, Journal of IEEE Sensors, 20(15), pp. 8316–8327. 

[39] A. Agogino, K. Goebel (2007), Milling Data Set - NASA Ames Prognostics Data Repository, 

Available: http://ti.arc.nasa.gov/project/prognostic-data-repository (last accessed on 6 December 

2020) 

[40] Endevco, Endevco Model 7201-50, buy.endevco.com. 

https://buy.endevco.com/accelerometer/7201-accelerometer-5 (accessed Mar. 07, 2021). 

[41] Physical Acoustics (2011), WD - 100-900 kHz Wideband Differential AE Sensor, Acoustic 

Emission Systems and NDT Products by PHYSICAL ACOUSTICS, 

https://www.physicalacoustics.com/by-product/sensors/WD-100-900-kHz-Wideband- 

Differential-AE-Sensor (accessed Mar. 07, 2021). 

[42] Electronics datasheets (2011), SET-3B from Omron, www.electronicsdatasheets.com, 

https://www.electronicsdatasheets.com/manufacturers/omron/parts/set-3b#datasheet (accessed 

Mar. 07, 2021). 

http://ti.arc.nasa.gov/project/prognostic-data-repository
http://www.physicalacoustics.com/by-product/sensors/WD-100-900-kHz-Wideband-
http://www.electronicsdatasheets.com/
http://www.electronicsdatasheets.com/manufacturers/omron/parts/set-3b#datasheet


[43] Flex-core, Hall Effect DC Current Transducer w/ Signal Conditioner, FLEX-CORE®. 

https://www.flex-core.com/products/transducers/current-transducers/dc-current-transducers/ctl- 

cta-dc-current-transducer/ (accessed Mar. 07, 2021). 

[44] Kennametal, “KICR - Indexable Inserts,” www.kennametal.com. 

https://www.kennametal.com/us/en/products/p.inserts-for-kicr-speb-inch.1157649.html#tad 

(accessed Mar. 07, 2021). 

[45] Z. Yao, J. Xie, Y. Tian, Q. Huang (2019), Using Hampel identifier to eliminate profile-isolated 

outliers in laser vision measurement, Sensors, 2019, pp. 1-12. 

[46] R. K. Pearson, Y. Neuvo, J. Astola, and M. Gabbouj (2016), Generalized Hampel Filters, 

EURASIP Journal on Advances in Signal Processing, 2016(1), pp. 87. 

[47] M. A. F. Ahmad, M. Z. Nuawi, S. Abdullah, Z. Wahid, Z. Karim, and M. Dirhamsyah (2015), 

Development of Tool Wear Machining Monitoring Using Novel Statistical Analysis Method, I- 

kazTM, Procedia Engineering, 101, pp. 355–362. 

[48] B.K. Pappachan, W. Caesarendra, T. Tjahjowidodo, T. Wijaya (2017), Frequency domain 

analysis of sensor data for event classification in real-time robot assisted deburring, Sensors, 

17(6), pp. 1247. 

[49] P. Krishnakumar, K. Rameshkumar, K. I. Ramachandran (2015), Tool wear condition prediction 

using vibration signals in high speed machining (HSM) of Titanium (Ti-6Al-4V) alloy, Procedia 

Computer Science, 50, pp. 270–275. 

[50] Y. Mu, X. Liu, L. Wang (2018), A Pearson’s correlation coefficient-based decision tree and its 

parallel implementation, Information Sciences, 435, pp. 40–58. 

[51] F. Gottwalt, E. Chang, T. Dillon (2019), CorrCorr: A feature selection method for multivariate 

correlation network anomaly detection techniques, Computers & Security, 83, pp. 234–245. 

[52] B. Kalaiselvi, M. Thangamani (2020), An efficient Pearson correlation based improved random 

forest classification for protein structure prediction techniques, Measurement, 162, pp. 107885. 

[53] M. A. Nanda, K. B. Seminar, D. Nandika, and A. Maddu (2018), A Comparison Study of Kernel 

Functions in the Support Vector Machine and Its Application for Termite Detection, Information, 

9(1), pp. 5. 

[54] A. Caggiano, R. Angelone, F. Napolitano, L. Nele, R. Teti (2018), Dimensionality reduction of 

sensorial features by principal component analysis for ANN machine learning in tool condition 

monitoring of CFRP drilling, Procedia CIRP, 78, pp. 307–312. 

[55] J. Wang, J. Xie, R. Zhao, L. Zhang, L. Duan (2017), Multisensory fusion based virtual tool wear 

sensing for ubiquitous manufacturing, Robotics and Computer-Integrated Manufacturing, 45, pp. 

47–58. 

[56] Q. Liu, Y. Cai, H. Jiang, J. Lu, L. Chen (2018), Traffic state prediction using ISOMAP manifold 

learning, Physica A: Statistical Mechanics and its Applications, 506, pp. 532–541. 

http://www.flex-core.com/products/transducers/current-transducers/dc-current-transducers/ctl-
http://www.kennametal.com/
http://www.kennametal.com/us/en/products/p.inserts-for-kicr-speb-inch.1157649.html#tad


[57] D. Degenhardt, S. Seifert, and S. Szymczak (2019), Evaluation of variable selection methods for 

random forests and omics data sets, Briefings in Bioinformatics, 20(2), pp. 492–503. 

[58] A. Sharaff, H. Gupta (2019), Extra-Tree Classifier with Metaheuristics Approach for Email 

Classification, Advances in Intelligent Systems and Computing, 924, pp. 189–197. 

[59] M. A. Kahya, S. A. Altamir, Z. Y. Algamal (2019), Improving firefly algorithm-based logistic 

regression for feature selection, Journal of Interdisciplinary Mathematics, 22(8), pp. 1577–1581. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

View publication stats 

https://www.researchgate.net/publication/350466475

