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ABSTRACT
Background and Objective: Recovering high-quality 3D point clouds frommonocular endoscopic im-
ages is a challenging task. This paper proposes a novel deep learning-based computational framework
for 3D point cloud reconstruction from single monocular endoscopic images.

Methods: An unsupervised mono-depth learning network is used to generate depth information
from monocular images. Given a single mono endoscopic image, the network is capable of depicting
a depth map. The depth map is then used to recover a dense 3D point cloud. A generative Endo-AE
network based on an auto-encoder is trained to repair defects of the dense point cloud by generating
the best representation from the incomplete data. The performance of the proposed framework is
evaluated against state-of-the-art learning-based methods. The results are also compared with non-
learning based stereo 3D reconstruction algorithms.

Results: Our proposed methods outperform both the state-of-the-art learning-based and non-
learning based methods for 3D point cloud reconstruction. The Endo-AE model for point cloud com-
pletion can generate high-quality, dense 3D endoscopic point clouds from incomplete point clouds
with holes. Our framework is able to recover complete 3D point clouds with the missing rate of infor-
mation up to 60%. Five large medical in-vivo databases of 3D point clouds of real endoscopic scenes
have been generated and two synthetic 3D medical datasets are created. We have made these datasets
publicly available for researchers free of charge.

Conclusions: The proposed computational framework can produce high-quality and dense 3D
point clouds from single mono-endoscopy images for augmented reality, virtual reality and other
computer-mediated medical applications.

1. Introduction
Augmented reality (AR) information can help surgeons

overcome the limited field of view and the lack of depth in-
formation duringminimally invasive surgery. The higher the
quality of the underlying 3D point cloud is, the more ac-
curate the augmented information becomes [3]. During an
endoscopic surgery, endoscopes are used to visualize organ
surfaces in the body and the data acquired is the so-called
endoscopic images. Constructing 3D point data from the
endoscopic image is challenging due to occlusions of instru-
ments, the change of brightness of organ surfaces, and the
surface smoothness for feature extractions [16, 4]. Process-
ing an extensive amount of endoscopic image sequences in
real-time is a high computational cost, making it difficult to
generate high-quality 3D point clouds [24, 5].

Missing data or information from the initially recovered
point cloud is common, and it is a shared problem in many
applications that rely on high-quality 3D point clouds, for
example, AR information augmentation, robotic manipula-
tion [31] and scene understanding [7]. 3D point cloud com-
pletion refers to a process that repairs data flaws by filling
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holes and parts of the dataset. To the best of our knowl-
edge, no prior work has been reported on monocular endo-
scopic 3D point cloud completion, and the vast majority of
point cloud completion researches have been focused on ob-
jects, for which specialized 3D shapes (e.g. aircraft, furni-
ture) are learned or manually designed. Large medical in-
vivo databases of 3D point clouds of real endoscopic scenes
are scarcely publicly available. We believe that the avail-
ability of such databases will significantly assist in research
innovations. We generate seven new medical datasets and
make them freely available to research communities.

In this paper, a novel computational framework has been
proposed to recover dense 3D point clouds from single en-
doscopic images using two deep learning neural networks.
One is for monocular depth learning, and the other is for 3D
point cloud completion to recover the missing data from the
initially generated point clouds. Figure ?? shows the work-
flow of our proposed framework. The experimental results
indicate that our 3D reconstruction method outperforms the
state-of-the-art learning-based method and non-learning ba-
sed stereo 3D reconstruction algorithms with an average Ch-
amfer distance 0.01514mmon our syntheticmedical datasets.
3D point cloud Completion results also show a better per-
formance of our Endo-AE compared with the state-of-the-
art learning-based methods. An average Chamfer distance
0.00236 mm has been obtained when the missing input data
rate is 20% on the testing datasets. Even if the missing rate
reaches 60%, the quality of the completion result is still high,
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with the average Chamfer distance 0.00804 mm.
Main contributions of this paper are:
• We propose a novel computational framework to re-

cover high-quality 3D point clouds from single endo-
scopic images by combining two deep learning neural
networks. One is for monocular depth learning, and
the other is for 3D point cloud completion.

• Five largemedical in-vivo databases of 3D point clouds
are generated from public Laparoscopic/Endoscopic
video datasets [12, 22], and two synthetic 3D medical
datasets are also created. Our 3D point clouds are ex-
tracted from every frame of the video datasets. Our
datasets are publicly available at1.

2. Related Work
Our approach is closely related to two categories of prior

works: 1)Monocular Depth Estimation and 2) 3DPoint Cloud
Completion.

3D Monocular Depth Estimation: Depth estimation
is an integral part of 3D point cloud reconstruction. The
state-of-the-art camera tracking and reconstruction systems
(structure for motion systems) that estimate detailed depth
maps with textures at selected keyframes can produce dense
surface maps with millions of points [24]. Some of these
systems rely on powerful commodity GPU processors for
real-time performance and stereo visions. On the other hand,
monocular SLAM (Simultaneous Localization andMapping)
systems that operate with limited processing resources only
generate and track sparse feature-based models [23, 5].

Recent advances in monocular depth estimation have sh-
own results of predicting the depth from a single image [10,
9], which can be used for understanding the shape of a scene
from a single image, a fundamental problem in machine vi-
sion. Thesemethods pose themonocular depth estimation as
a learning problem by training models offline [18, 10, 19].
Among these methods, supervised learning [10, 9] needs to
train models on large collections of the ground truth. Novel
unsupervised learning methods explore easier-to-obtain bin-
ocular stereo footage without the need for explicit depth data
during the training [13, 6]. In our work, since the ground
truth of depth information is unavailable for monocular en-
doscope scenes, we build on our previous unsupervised learn-
ing framework [6] to develop a monocular depth estimation
for 3D point cloud reconstruction from single endoscopic
images. The novelty of our approach is a fully differen-
tial patch-based cost function, and we propose to use the
Zero-Mean Normalized Cross-Correlation that takes multi-
scale patches as a matching strategy. This approach signifi-
cantly increases the accuracy and robustness of depth learn-
ing. However, this method has only been tested with non-
medical public datasets. We further extend the method to
extract the dense 3D endoscopic point cloud based on the es-
timated depth and introduce a colour extraction method onto

1We make the datasets publicly available to researchers at https://

github.com/LONG-XI/Endoscopic-3D-Point-Clouds-Datasets/

a reconstructed 3D point cloud from a single endoscopic im-
age.

3D Point Cloud Completion: Real endoscopic 3D point
clouds present incomplete data (e.g., missing data, holes),
due to limited field of view and occlusions during minimally
invasive surgery where surgical instruments interact with the
organs, as well as the illumination variations caused by the
endoscopic light, tissue hemorrhaging and or surgical smoke
[16]. Hence, we cast the task of filling missing holes and in-
formation for reconstructed 3D point clouds as the task of 3D
shape completion. We devise a new computational method
for 3D endoscopic point cloud completion and evaluate the
effectiveness of the proposed method [32, 1, 15].

Traditional geometry-based approaches use geometric c-
ues to complete 3D shapes from a partial input [21], while
data-driven based methods rely on the assumption that the
database must include a very similar shape [29]. Recently
emerged deep learning-based methods have achieved supe-
rior performance on shape completion using voxel-based tech-
niques [8] or directly operating on point clouds through gen-
erative models based on Auto Encoder (AE) [17, 1, 15, 30]
and Generative Adversarial Net (GAN) [14].

An optimization method has been proposed to select the
best seed for the latent GAN to improve the performance
for point cloud completion [15]. Structural point cloud de-
coder [30] can only generate sparse 3D point clouds since the
decoder consists of most multi-layer perception (MLP) net-
works. EachMLP needs to generate a recovered point cloud,
which limits the number of points to be processed. Achliop-
tas et al. [1] proposed an auto-encoder architecture for 3D
point cloud processing. However, this method focuses on
3D point cloud representation learning and has only been
tested with non-medical public datasets. We apply the auto-
encoder architecture to recover dense endoscopic 3D point
clouds, and our approach is the first attempt of its kind ap-
plied to endoscopic 3D point cloud completion. We conduct
experiments to compare our Endo-AE with raw GAN and l-
GAN to evaluate the completion results (see Section 7.2.2).

3. Overview of the Framework
Figure ?? illustrates the entire computational framework

with three modules: Monocular Image Depth Learning, 3D
Point Extraction and 3D Point Cloud Completion.

Monocular Image Depth Learning Module: In this
module, an unsupervised learning network is developed. Pub-
lic Laparoscopic/Endoscopic stereo video datasets are used
for the network training. Our unsupervised depth learning
method treats the monocular depth estimation as error min-
imization in image synthesis. During the training, the depth
is estimated from the left image of stereo pairs. The depth is
then converted into a disparity map to synthesize the right
image of stereo pairs. The loss function is used to mini-
mize the error between the reconstructed right image and the
original right image. Once trained, the depth information is
generated from monocular endoscopic images in the depth
learning module.
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3D Point Cloud Extraction Module: In the 3D point
cloud extraction module, the depth estimated from the depth
learning module is converted into a dense 3D point cloud. A
coordinate conversion method is used to transform the pixel
coordinates into the 3D world coordinates. To obtain the
colour information, colour attributes of the corresponding
input monocular endoscopic image is extracted and applied
to the 3D point cloud.

The effectiveness of the proposed 3D point cloud recon-
struction framework is evaluated by comparing our method
with a state-of-the-art learning-based method [13], as well
as with two non-learning based stereo image reconstruction
methods [2]. The detailed evaluation is described in sec-
tion 7.1.1.

3D Point Cloud Completion Module: In the 3D point
cloud completion module, a generative Endo-AE network
based on an auto-encoder is performed for the task of 3D en-
doscopic point cloud completion. We split 3D point clouds
generated in the 3D point cloud extraction module into the
training data and the testing data. The auto-encoder, as an
unsupervised network, uses the training data itself as the
ground truth. During the training, the input of the network
is complete 3D point clouds without any missing data, as
shown in Figure ??. The network learns global features of
training datasets through an encoder and converts global fea-
tures into an original 3D point cloud through a decoder. Dur-
ing the testingmode, by randomly deleting consecutive points
in the testing data, our trained model can generate a com-
plete 3D point cloud from the partial 3D point cloud input,
as shown in Figure ??. The colour attributes are also ex-
tracted from the corresponding 3D point cloud in the testing
data.

The effectiveness of the proposed generative model for
3D point cloud completion is evaluated by comparing our
method with a generative adversarial network [1]. The de-
tailed comparison is presented in section 7.2.2.

4. Methods
4.1. Unsupervised Monocular Depth Learning

Building on our previous unsupervised mono-depth net-
work [6], we estimate the per-pixel depth from single im-
age input. We incorporate the patch matching theory and
achieve unsupervised training. The mono-depth network is
based on a VGG-like fully convolutional neural network ar-
chitecture [20], as shown in Figure ??.

During the training, the single left images Il of stereopairs are used as the input data for our DepthNet model to
synthesize per-pixel depth D. The depth D is transformed
into a disparity map d = b×f

D , where b and f are the cam-
era baseline and focal distance, respectively. The disparity
map d is then used to reconstruct the right view of the stereo
pairs Ir_syn and the sampling of patches Ir(Nx−d,y). Finally,a fully differential loss function Ltotal is proposed to train
our mono-depth network. Ltotal, as illustrated in Equation 1,consists of a PatchMatching LossLPM , a View Reconstruc-
tion Loss LV R, a Disparity Smoothness Loss LDS , and a

Disparity Consistency Loss LDC . In addition, another par-
allel ConfidenceNet, as shown in Figure ??, is trained by
using the proposed LPM to evaluate the performance of the
monocular depth estimation. The ConfidenceNet produces
a confidence map that gives a real-time assessment of the
reliability of the predicted depth.

During the testing, the trained mono-depth model does
not need the original right image of stereo pairs to calcu-
late the loss anymore. Thus, the trained model can generate
per-pixel depth only from the monocular image as shown in
Figure ??.

Loss Function: LPM is proposed to maximize the sim-
ilarities between patches in the input left image and shifted
patches in the reconstructed right image by using the Zero-
Mean Normalized Cross-Correlation that takes multi-scale
patches as a matching strategy. LV R minimizes the differ-
ences between the original input left image and its recon-
struction using the L1 norm. LDS regularizes our mono-
depth network to produce more smooth depth by calculating
the sum of the L1 norm of disparity gradients along x and
y directions. LDC attempts to make the left-view dispar-
ity map to be equal to the reconstructed right-view disparity
map using the L1 norm. The loss function Ltotal is definedby Equation 1.

Ltotal = !pLPM + !vLV R + !dLDS + !cLDC (1)
where ! is the corresponding weight to balance the effect of
gradients of the back propagation.

The back propagation is defined to update parameters �
of our mono-depth learning network to minimize the Ltotalusing Equation 2.
)Ltotal
)�

=
)LPM + )LV R + )LDS + )LDC
)Fwarp(Il, d) + )Fsample(Ir, d)

×
)Fwarp(Il, d) + )Fsample(Ir, d)

)d

× )d
)D

× )D
)Fdeptℎ(Il, �)

×
)D = Fdeptℎ(Il, �)

)�

(2)

We refer readers to our paper [6] for more information
about the unsupervised monocular depth learning network.
4.2. 3D Point Cloud Extraction

3D point cloud extraction is the second module of our
proposed framework shown in Figure ??. A 3D point cloud
is extracted from the generated depthD, as described in sec-
tion 4.1. A coordinate conversion method from the pixel
coordinates to the world coordinates is applied to 3D point
cloud extraction. Based on the generated depth D, 3D point
clouds can be extracted using Equation 3.

xw = (u − u0) ∗ D∕fx
yw = (v − v0) ∗ D∕fy
zw = D

(3)

where (xw, yw, zw) is the coordinates of a point in the worldcoordinate system and (u, v) is each pixel in the depth D.
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(u0, v0) are the centre coordinates of the depth D in pixel
coordinate system. fx and fy are the focal lengths of the leftand right camera.

While reconstructing a 3D point cloud from the gener-
ated depthD, the colour attributes of each pixel are extracted
from the corresponding left image and assigned to each point
in the 3D point cloud, as shown in Figure ??.
4.3. 3D Point Cloud Completion

For the point cloud completion task, we train an Endo-
AE network based on Auto-encoder (AE) that includes an
encoder and a decoder to generate complete 3D point clouds
from partial 3D point clouds with missing data. Since our
Endo-AE is an unsupervised network, the ground truth is
the input training 3D point cloud itself. The encoder of our
Endo-AE network is based on PointNet [27], a state-of-the-
art deep learning method on 3D point cloud classification.
PointNet combines point wise multi-layer perceptions with
a symmetric aggregation function that is invariant to permu-
tation, which is essential for effective feature learning on 3D
point clouds. The main differences between PointNet [27]
and our Endo-AE network are the loss function, the ground-
truth and the output of the two networks. PointNet focuses
on 3D point cloud classification, and the loss function of
the PointNet classification network is softmax, which can be
considered a multi-classes classifier. Every 3D point cloud
has a label for classification, and each label is the ground-
truth for PointNet. Thus, the PointNet classification network
outputs the label of an input 3D point cloud. Whereas the
loss function of our Endo-AE network is the Chamfer dis-
tance, as illustrated in Equation 4, which minimizes the dis-
tance between the input and the output of 3D point clouds.
The ground truth of our Endo-AE network is the input train-
ing 3D point cloud itself, and the output is the complete 3D
point cloud.

During the training, the input of our Endo-AE network
is the complete 3D point cloud without missing data, and the
output 3D point cloud is the reconstruction of the input. The
input and output 3D point clouds in training mode are shown
in Figure ??. A 3D point cloud withN points is represented
as aN × 3 the matrix, and each row of matrix is the 3D co-
ordinates of a point defined as Pi = (x, y, z). The encoder
compresses an input 3D point cloud ofN points into a k di-
mensional feature vector v�Rk. Specifically, a shared multi-
layer perception (MLP) with an activation function ReLU
and a batch-normalization are used to transform each point
Pi into a point feature vector F . A point wise max pool-
ing is placed after all MLPs, ensuring the global features are
invariant to any permutations of a 3D point cloud and pro-
ducing a k-dimensional feature vector. The decoder aims to
generate the reconstruction of the input 3D point cloud based
on the learned k-dimensional feature vector by using three
fully connected layers. Thus, the learned global features can
represent the 3D point cloud for the point cloud completion
task.

During the testing, the input of the trained completion
model is partial 3D point clouds, and our trained model can

output complete 3D point clouds based on learned global
features extracted from the encoder. The input and output
3D point clouds in testing mode are shown in Figure ??.

Loss Function: The loss function for 3D point cloud
completion measures the difference between the generated
3D point cloud Spred and the ground-truth Sgt. The loss isdefined to be invariant to any permutation of 3D point clouds
in both Spred and Sgt. We use the Chamfer distance [11]
(CD) to measure the difference between Spred and Sgt, asshown in Equation 4.

CD(Spred , Sgt)=
1

Spred

∑

p�Spred

min
q�Sgt

||p−q||2

+ 1
Sgt

∑

q�Sgt

min
p�Spred

||q−p||2
(4)

TheChamfer distance calculates the average nearest point
distance between Spred and Sgt by finding the closest neigh-bour with O(nlogn) complexity. In addition, Spred and Sgtcan be 3D point clouds with different sizes.

5. Implementation Details
We conduct our experiments in two stages. We train

a mono-depth network to predict depth for 3D point cloud
reconstruction. We then achieve the 3D point cloud com-
pletion based on reconstructed point clouds with a trained
Endo-AE network. Our unsupervised mono-depth network
and Endo-AE network are trained on an Nvidia Titan XGPU
with 12G memory and a CPU with 32G memory. The im-
plementation details for the two networks are explained as
follows:

Hyper Parameters: In terms of training mono-depth
network, all input images are resized to 512 × 256 with a
batch size of four. Adam optimizer with an initial learning
rate of 0.0001 and 50 epochs are used for the training pro-
cess. The weights defined in our total loss are !p = 0.5,
!v = 1, !d = 0.1 and !c = 1, respectively. In addition,
6 skip connections are implemented, preserving intermedi-
ate information during training to ensure the high quality of
per-pixel depth estimation. The first four kernel sizes of the
encoder are 7, 7, 5, and 5, followed by ten kernel sizes of
3. The kernel size of the decoder in each layer is the reverse
order in the encoder.

The encoder of our Endo-AE network consists of five
layers of shared multi-layer perception (MLP) with 64, 128,
128, 256 and 128 filters, respectively. The decoder consists
of three fully connected layers with 256, 256 and 4096 × 3
filters, respectively. We also use Adam optimizer with an
initial learning rate of 0.0005, a batch size of 50 and 500
epochs. Our point cloud completion network is trained with
the input size ofM1×3 and the ground truth size ofM2×3,
generating the output point cloud with the size of M3 × 3,
where M1, M2 and M3 can be any number. In our experi-
ments we setM1 =M2 =M3 = 4096.

Data Augmentation: To increase the robustness of our
mono-depth network and prevent over-fitting, we randomly
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flip images and change the brightness and colour of images.
During the Endo-AE network training, we augment 3D point
clouds by applying a random rotation matrix.

6. Evaluation Metrics
We evaluate the 3D point cloud reconstruction method

with Chamfer distance (Equation 4). We evaluate the 3D
point cloud completion model with three evaluation metrics
[1], which are minimum matching distance (MMD), cover-
age (COV) and Jensen-Shannon Divergence (JSD), respec-
tively.

MMD:MMDcalculates the average distance in thematch-
ing between two 3D point clouds. MMD_CD is based on the
Chamfer distance (Equation 4), and MMD_EMD is about
the Earth Mover’s distance (EMD) [28].

EMD(Spred , Sgt)=min�
∑

p�Spred

‖p−�(p)‖2 (5)
where � ∶ Spred → Sgt is bijection. The EMD distance
minimizes the distance between Spred and Sgt with O(n2)complexity. Note that EMD requires the same sizes of Spredand Sgt.Amajor difference betweenMMD_CDandMMD_EMD
is that calculating MMD_EMD is too expensive with O(n2)
complexity and takes more time than calculating MMD_CD
with O(nlogn) complexity. Another major difference be-
tween them is that MMD_CD can calculate the average dis-
tance between two point clouds with different sizes, whereas
calculating MMD_EMD requires the two 3D point clouds to
have the same sizes.

Coverage: Coverage measures the rate of bijection rela-
tionship between the output point cloud set and the ground-
truth set. For each 3D point cloud xi in output point cloud
set X, we find its closest ground truth point cloud yj in the
ground truth set Y based on the minimum CD or EMD be-
tween them. Assume there is a bijection g ∶ xi�X → yj�Y ,where xi is the output point cloud in the output set X, and
yj is the ground truth point cloud in the ground truth set Y .
G =

{

⟨xi, g(xi)⟩
} is a set that includes all the pairs that meet

the bijection condition, where each g(xi) is the correspond-ing yj with respect to xi. Coverage is defined by Equation 6.
Coverage = CardG

CardY
(6)

where Card means the number of elements in one set.
The range of the coverage result is between 0 and 1, and

the higher coverage value indicates the higher matching re-
sult.

JSD: JSD is a probability value that measures the simi-
larity between two probability distributions and is based on
the Kullback-Leibler (KL) divergence D

KL
(P

A
||P

B
).

JSD(P
A
||PB) andDKL

are defined by Equation 7 and 8:
JSD = 1

2
D
KL

(P
A
||M) + 1

2
D
KL

(P
B
||M) (7)

D
KL

(P ||M) =
∑

P log P
M

(8)

where M = 1
2 (PA + PB), A and B are the generated point

cloud and the ground truth, respectively. PA and PB are two
probability distributions of the generated point cloud and the
ground truth. To calculatePA andPB , we firstly set a 3D grid
with the size of 21952 × 3 and normalize the 3D grid and
3D point cloud between -1 and 1. We then calculate the K-
Nearest Neighbor to find the corresponding points between
the 3D grid and 3D point cloud, where K is 1. We consider
indices of matched points in the 3D grid as the probability
distribution of a 3D point cloud. P in Equation 8 can be PAor PB . The result of JSD will become 0, if P

A
= P

B
. Thus,

the smaller result of JSD indicates the better performance of
the completion result.

7. Results and Discussions
7.1. 3D Point Cloud Reconstruction

In this section, we firstly compare our 3D point cloud
reconstruction method with a state-of-the-art learning-based
method Godar et al. [13] and two non-learning based stereo
image reconstruction methods [2]. Secondly, we generate
3D endoscopic point cloud datasets based on our 3D point
cloud reconstruction method.
7.1.1. Comparison experiments

Evaluation Datasets: There are some endoscopic datas-
ets generated by previous researcher projects, such as En-
doVis 2019 Sub-challenge dataset1, Laparoscopic Image to
Image Translation Dataset [26] and EndoAbS dataset [25].
EndoVis 2019 Sub-challenge dataset may not be publicly
downloadable. Laparoscopic Image to Image Translation
Dataset includes simulated monocular images and the corre-
sponding depth. However, this dataset does not provide cam-
era parameters and ground truth 3D point clouds or ground-
truth stereo correspondences that are required to train our
mono-depth learning network. EndoAbs dataset consists of
images of kidney, liver and spleen, captured under differ-
ent lighting conditions and smoke, and it also contains 20
ground truth 3D point clouds that are captured by a laser
scanner and camera parameters. We thank the authors of
the EndoAbS dataset, who have kindly provided us with 120
stereo images of phantoms and 20 ground truth 3D point
clouds. To minimize the error during the evaluation, we
manually transform (translate and rotate) the ground truth
3D point clouds in the EndoAbS dataset to match the views
of the images.

We also create a synthetic medical dataset for the net-
work training by capturing stereo images and the correspond-
ing ground truth 3D point clouds under the same view using
a 3D computer modeling software2. Specifically, we cap-
ture 200 stereo images and their corresponding depth im-
ages of each left frame from a 3D liver model and a heart
model. The ground truth 3D point clouds are extracted from
200 left frames and 200 corresponding depth images using
Equation 3.

1https://endovissub2019-scared.grand-challenge.org/
2https://www.autodesk.com/products/maya/
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I1

P1

I2

P2

I3

P3

I4

P4

I5

P5
Figure 1: Results of 3D point cloud reconstructions of public Laparoscopic/Endoscopic video: The 3D point cloud is extracted
from every frame of the video. Ii represents Images, and Pi is the corresponding extracted 3D point clouds related to Ii. Note
that I4 and I5 are from the same video stream, but the scene changes from the middle of the video. Thus, we divided it into two
separate datasets.

Comparison with Learning-Based Method: We train
the Godar [13] and our mono-depth networks on the public
available Laparoscopic/Endoscopic video datasets [12] [22].
We first compare the performance of these two methods on
the EndoAbS dataset. The reconstructed 3D point clouds
are shown in (b) and (e) in Figure ??. The Chamfer distance

(CD) is calculated between reconstructed 3D point clouds
and transformed ground truth 3D point clouds. The CD re-
sults on the kidney, liver and spleen for our 3D reconstruc-
tion method are 0.54533mm, 0.41444mm and 0.07512mm,
showing better performance than Godar’s with CD results
0.76253mm, 0.49351mm and 0.09610mm.
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Wealso compare our 3D reconstructionmethodwithGo-
dar’s on our synthetic medical dataset, as shown in (b) and
(e) in Figure ??. The CD results in Figure ?? show that our
method also outperforms Godar’s method on our synthetic
medical dataset. In addition, we also calculate the average
CD on our synthetic medical dataset for our 3D reconstruc-
tion method (0.01514mm), which outperforms Godar’s met-
hod (0.01902mm).

Comparison with Stereo Image Reconstruction Meth-
ods: To assess the effectiveness of learning-based methods
with non-learning based stereo-image reconstruction meth-
ods, we compare our method with non-learning based block
matching method3 (BM) and semi-global block matching
(SGBM) [2]. BM and SGBM directly use low-level image
features to search for matched pixels in the left and right im-
ages of stereo pairs. As a result, the quality of the generated
3D point cloud is usually poor, as shown in (c) and (d) in Fig-
ure ?? and Figure ??. The CD results show that our method
outperforms BM and SGBM on both the EndoAbS dataset
and our synthetic medical dataset. In addition, the average
CD result on the synthetic medical dataset for our method is
0.01514mm, which shows better performance than BM and
SGBM with 0.29784mm and 0.49407mm.
7.1.2. Generated Endoscopic Datasets

We generate 3D endoscopic point cloud datasets based
on depth information generated from public available La-
paroscopic/Endoscopic video datasets [12] [22] using our
3D point cloud reconstruction method.

Five stereo endoscopic videos from the datasets [12] [22]
are chosen to generate depth information, includingAbdomen
Wall, UterineHorn, Liver, Nephrectomy scene 1 andNephrec-
tomy scene 2, respectively. The stereo videos are divided
into 35,000 left frames and 35,000 right frames. We ran-
domly select around 10,000 Nephrectomy left frames and
10,000 Nephrectomy right frames as the input to train our
mono-depth network. Once the model has been trained, our
mono-depth network can generate the per-pixel depth from
the monocular image. We generate approximately 35,000
depth images from 35,000 left frames, as shown in Figure ??.
The five left frames in Figure ?? are randomly selected from
Abdomen Wall, Uterine Horn, Liver, Nephrectomy scene 1
and Nephrectomy scene 2, respectively.

Based on the generated depth images, we generate ap-
proximately 35,000 in-vivo 3D point clouds by using Equa-
tion 3. Our datasets consist of five endoscopic point cloud
categories, including Abdomen Wall, Uterine Horn, Liver,
Nephrectomy scene 1 andNephrectomy scene 2. Our datasets
are made publicly available for researchers, which can be
used for learning-basedmethods as training datasets and eval-
uating 3D reconstruction methods. Each dense 3D point
cloud contains approximately 100,000 points on average. We
divide each category into six parts and display the first frame
of each part, as shown in Figure 1. The margins of endo-
scopic images, i.e., the black margins in I2, are due to the
movement of the instrument that is not horizontally and ver-

3https://opencv.org

tically positioned. Thus, we remove the margins when ex-
tracting 3D point clouds. As shown in Figure ??, we also
synthesize two additional datasets using synthetic 3D mod-
els of a heart and a liver by applying different affine trans-
formation and rotation matrices. Each synthetic dataset con-
tains 2,000 point clouds, while each point cloud is randomly
down-sampled to 4096 points. Thus, our datasets contain
five classes of in-vivo datasets and two classes of synthetic
datasets, including approximately 39,000 3D point clouds in
total.
7.2. 3D Point Cloud Completion
7.2.1. Evaluation of Completion Performance

For the 3D point cloud completion task, we train five
class-specific Endo-AE networks separately with our five cl-
asses of endoscopic point cloud datasets generated in sec-
tion 7.1.2. We also train a two-classes Endo-AE network
with two synthetic 3Dmodels, as mentioned in section 7.1.2.

For each class, we randomly select 90% of 3D point clouds
as the training data and the remaining 10% as the testing
data. To evaluate our trained Endo-AE model on partial 3D
point clouds, we use the remaining 10% of testing data to
create partial 3D point clouds with different missing rates.
First, we randomly select a point from each testing 3D point
cloud with the size of N × 3, where N is the total number
of points in a 3D point cloud. Second, we delete the nearest
N ∗ delete_rate points around that selected point to create
partial 3D point clouds with different missing rates, where
delete_rate is the rate of deletion, i.e., 0.2, 0.4, 0.7, etc.
Third, we randomly sub-sample each partial 3D point cloud
to 4096 points. Finally, for each class of testing datasets, we
generate 7 groups of partial 3D point clouds testing data with
various missing rates of [20%, 30%, 40%, 50%, 60%, 70%,
80%]. The examples of partial 3D point clouds with 60%
and 20% missing data are shown in (c) and (e) in Figure ??.

The visualizations of 3D point cloud completion results
with 60% and 20% of missing data for our five class-specific
Endo-AE networks are shown in Figure ??. All completion
results ofMMD_CD andMMD_EMD in (f) are smaller than
that in (d), indicating that the less missing input data, the
more accurate the recovered 3D point clouds. P1, P2, P3, P4and P5 show the effectiveness of our method with the 20%
and 60% of missing rates. The completion result is unstable
in the dataset of P2 when the missing rate reaches 60%. The
unstable recovery is due to the large deformation of the organ
in the video, which is caused by surgical instruments. Thus,
it is difficult for a neural network to extract common global
features for all different deformation degrees. In addition,
we visualize an example of a completion result on a partial
point cloud with multiple missing areas and a 20% of the
missing rate, as shown in Figure ??, which indicates that our
Endo-AE can process various partial 3D point clouds with
multiple missing areas. Figure ?? and Figure ?? show that
our Endo-AE model can deal with the partial input 3D point
cloud with various missing areas and rates.

We calculate the K-nearest neighbour (KNN) to find the
corresponding points between the ground-truth 3D point cloud
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and our generated 3D point cloud, where K is 1. After find-
ing the nearest neighbour between them, we extract the colour
of each point from the ground-truth and duplicate it to the
corresponding point in our generated 3D point cloud, as shown
in Figure ?? and Figure ??.

We also visualize two-classes Endo-AE network com-
pletion results with 50% of missing regions on simulated
3D heart and liver models, as shown in Figure ??, which
presents superior completion results.

The evaluation results on our datasets with 50% of miss-
ing data are reported in Table 1. The results ofMMD_CD on
the synthetic heart (D6) and liver (D7) are relevantly smaller
than others, and the values of COV are still high with 50%
of missing data, showing a better performance of our com-
pletion model on synthetic data due to the completion result
contains less noise. AbdomenWall (D1) and synthetic heart
(D7) in Table 1 have similar MMD_CD and show different
JSD. There are two possible reasons. First, the scale of the
completed point cloud is relatively small compared with the
original ground-truth when the missing rate reaches 50%,
such as the last image of the completed liver model shown
in Figure ??. Since the JSD is sensitive to the scale between
two point clouds, D1 and D7 show different results of JSD.
Second, the model has been trained with two-classes syn-
thetic liver and heart, which indicates that the scale prob-
lem of the generated point cloud is also caused by the multi-
classes training.

Table 1
Three evaluation metrics on seven datasets with the
missing rate of 50%.

MMD_CD (mm) COV (%) JSD (%)

D1 0.00336 49.0 9.950
D2 0.01464 55.0 15.869
D3 0.00391 41.0 11.557
D4 0.00873 42.0 10.259
D5 0.00765 52.0 12.398
D6 0.00318 66.0 18.992
D7 0.00358 78.0 27.079

Figure ?? shows the average values of each evaluation
metric calculated between the generated point cloud and the
ground truth on our 7 groups of partial 3D point clouds test-
ing data. MMD_CD, MMD_EMD, COV and JSD show that
the error of missing data repairing increases gradually as
more regions are occluded. The average MMD_CD on our
seven datasets is 0.00236mm when the missing rate of in-
put data is 20%. Even if the missing rate reaches 60%, the
quality of our completion result is still good with the aver-
age MMD_CD 0.00804mm. The results of MMD_EMD on
Nephrectomy scene 1 (D4) show better performance when
the missing rate is 40% than 20% and 30%. The reason is
that some partial inputs in testing sets are similar to each
other due to the missing data of incomplete point clouds is
randomly removing consecutive points from original point
clouds. The results of COV show that the completion er-
rors are increasing as the missing rate increases from 20%

to 80%. From the results of JSD, Liver (D3) shows bet-
ter performance when the missing rate is less than 50%, but
the completion error increases rapidly after the missing rate
reaches 60%. The reason is that the scale of the complete
point cloud is relatively small compared with the ground-
truth when the missing rate reaches 60%, and the JSD is sen-
sitive to the scale between two point clouds.
7.2.2. Comparison With GANs

We compare our generative auto-encoder based Endo-
AE with another generative network, generative adversarial
network (GAN), by training a raw GAN and a latent-space
GAN (l-GAN) [1], respectively.

Raw GAN operates directly on 3D point clouds, and the
generator of the raw GAN consists of five fully connected
layers with ReLU, producing a 4096 × 3 point cloud. The
architecture of the discriminator is identical to the encoder
of our Endo-AE with leaky ReLUs and without any batch
normalization, and a sigmoid activation function is placed
after the discriminator.

We train a raw GAN on a single class of Liver and show
one of the completion results in Figure ??. The MMD_CD
and MMD_EMD of raw GAN are 0.00138 mm and 0.14223
mm, showing lower performance than our Endo-AE with
MMD_CD0.50478mm andMMD_EMD0.65328mm. The
average values are also calculated to evaluate the raw GAN
on the testing dataset of the Liver in terms of MMD, COV
and JSD, respectively. When the missing rate of testing data
is 20%, the average values of MMD_CD, COV and JSD are
0.01086 mm, 14.0% and 28.940%, respectively. Whereas
the average values of these three evaluation metrics based
on our Endo-AE are 0.00142 mm, 78% and 5.6%, showing
better performance than raw GAN. In addition, our Endo-
AE also outperforms rawGAN on single-class training when
themissing rate of testing data reaches 30%, 40%, 50%, 60%,
70% and 80% based on the average values of these three eval-
uation metrics.

Raw GAN is not able to generate a specific 3D point
cloudwith respect to the input data formulti-classes training,
which means the output of raw GAN can be similar to any
data in multi-classes datasets. Figure ?? shows the output of
raw GAN and Endo-AE, respectively. The input data (b) is a
3D point cloud of theAbdomenWall. Endo-AE can generate
the complete 3D point cloud (d) according to the input (b),
but the output of rawGAN (c) is similar to the data in Uterine
Horn. We also train an l-GAN, passing data through a pre-
trained Endo-AE, the same problem with raw GAN occurs.
Thus, although raw GAN and l-GAN can produce complete
3D point clouds, it is not reliable for endoscopic 3D point
cloud completion.

In addition, even raw GAN and l-GAN are trained with
a single class of endoscopic 3D point clouds, the same prob-
lem still occurs. One major reason is that GAN randomly
generates data based on the whole training set and does not
find the best representation of the corresponding partial in-
put 3D point cloud. Another reason is the specialist of endo-
scopic data. Because the in-vivo endoscopic data is varied
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and deformable, differences can be large even between the
closest frames in the same dataset.
7.3. Discussion

Figure ?? and Figure ?? indicate that our 3D reconstruc-
tion method outperforms the state-of-the-art learning-based
method (Godar) and non-learning based stereo 3D recon-
struction algorithms (BM and SGBM) on our synthetic med-
ical datasets and the EndoAbS dataset. The limitation of our
mono-depth model is that it will produce inconsistent depth
on low-light and textureless surfaces.

Figure ?? shows the high-quality completion results of
our Endo-AE model on our seven datasets in terms of var-
ious missing rates. Figure ?? and Figure ?? also illustrate
that our Endo-AE outperforms GANs. The limitation of our
proposed Endo-AE network is that the output of the com-
plete 3D point cloud is regenerated rather than repaired by
increasing the number of points in missing areas.

8. Conclusion
We develop a novel framework to recover dense 3D point

clouds from single endoscopic images. Our framework in-
cludes an unsupervised mono-depth network that generates
the depth from a single endoscopic image. Based on the
mono-depth learning network, a dense 3D point cloud can
be extracted from an endoscopic image. We create in-vivo
3D endoscopic point cloud datasets and make the datasets
publicly available to researchers. A generative Endo-AE net-
work is then trained to complete 3D point clouds with vari-
ous degrees of missing data. Our results show the capabil-
ity of our computational framework for producing dense 3D
endoscopic point cloud datasets and its effectiveness in re-
pairing defects of real endoscopic point cloud datasets and
synthetic medical models.

In future work, we would like to extend our 3D point
cloud completion network to generate points only in missing
areas instead of regenerating all points in the output. In ad-
dition, It would also be interesting to deal with multi-classes
training for 3D point cloud completion.

References
[1] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L., 2017. Learn-

ing representations and generative models for 3d point clouds. arXiv
preprint arXiv:1707.02392 .

[2] Boykov, Kolmogorov, 2003. Computing geodesics and minimal sur-
faces via graph cuts, in: Proceedings Ninth IEEE International Con-
ference on Computer Vision, pp. 26–33 vol.1.

[3] Chen, L., Day, T.W., Tang, W., John, N.W., 2017a. Recent devel-
opments and future challenges in medical mixed reality, in: 2017
IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), IEEE. pp. 123–135.

[4] Chen, L., Tang, W., John, N.W., 2017b. Real-time geometry-aware
augmented reality in minimally invasive surgery. Healthcare technol-
ogy letters 4, 163–167.

[5] Chen, L., Tang, W., John, N.W., Wan, T.R., Zhang, J.J., 2018. Slam-
based dense surface reconstruction in monocular minimally invasive
surgery and its application to augmented reality. Computer methods
and programs in biomedicine 158, 135–146.

[6] Chen, L., Tang, W., Wan, T.R., John, N.W., 2020. Self-supervised
monocular image depth learning and confidence estimation. Neuro-
computing 381, 272–281.

[7] Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nießner, M.,
2018. Scancomplete: Large-scale scene completion and semantic seg-
mentation for 3d scans, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4578–4587.

[8] Dai, A., Ruizhongtai Qi, C., Nießner, M., 2017. Shape completion
using 3d-encoder-predictor cnns and shape synthesis, in: Proceedings
of the IEEEConference on Computer Vision and Pattern Recognition,
pp. 5868–5877.

[9] Eigen, D., Fergus, R., 2015. Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,
in: Proceedings of the IEEE international conference on computer
vision, pp. 2650–2658.

[10] Eigen, D., Puhrsch, C., Fergus, R., 2014. Depthmap prediction from a
single image using a multi-scale deep network, in: Advances in neural
information processing systems, pp. 2366–2374.

[11] Fan, H., Su, H., Guibas, L.J., 2017. A point set generation network
for 3d object reconstruction from a single image, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
605–613.

[12] Giannarou, S., Stoyanov, D., Noonan, D., Mylonas, G., Clark, J.,
Visentini-Scarzanella, M., Mountney, P., Yang, G., 2012. Hamlyn
centre laparoscopic/endoscopic video datasets.

[13] Godard, C., Mac Aodha, O., Brostow, G.J., 2017. Unsupervised
monocular depth estimation with left-right consistency, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 270–279.

[14] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversar-
ial nets, in: Advances in neural information processing systems, pp.
2672–2680.

[15] Gurumurthy, S., Agrawal, S., 2019. High fidelity semantic shape
completion for point clouds using latent optimization, in: 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV),
IEEE. pp. 1099–1108.

[16] Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O.,
Cotin, S., 2013. Image-guided simulation of heterogeneous tissue
deformation for augmented reality during hepatic surgery, in: 2013
IEEE international symposium on mixed and augmented reality (IS-
MAR), IEEE. pp. 199–208.

[17] Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 .

[18] Ladicky, L., Shi, J., Pollefeys, M., 2014. Pulling things out of per-
spective, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 89–96.

[19] Liu, F., Shen, C., Lin, G., Reid, I., 2015. Learning depth from single
monocular images using deep convolutional neural fields. IEEE trans-
actions on pattern analysis and machine intelligence 38, 2024–2039.

[20] Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional net-
works for semantic segmentation, in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3431–3440.

[21] Mitra, N.J., Guibas, L.J., Pauly, M., 2006. Partial and approximate
symmetry detection for 3d geometry. ACM Transactions on Graphics
(TOG) 25, 560–568.

[22] Mountney, P., Stoyanov, D., Yang, G.Z., 2010. Three-dimensional
tissue deformation recovery and tracking. IEEE Signal Processing
Magazine 27, 14–24.

[23] Mur-Artal, R., Montiel, J.M.M., Tardos, J.D., 2015. Orb-slam: a
versatile and accurate monocular slam system. IEEE transactions on
robotics 31, 1147–1163.

[24] Newcombe, R.A., Lovegrove, S.J., Davison, A.J., 2011. Dtam: Dense
tracking and mapping in real-time, in: 2011 international conference
on computer vision, IEEE. pp. 2320–2327.

[25] Penza, V., Ciullo, A.S., Moccia, S., Mattos, L.S., De Momi, E.,
2018. Endoabs dataset: Endoscopic abdominal stereo image dataset
for benchmarking 3d stereo reconstruction algorithms. The Interna-

Long Xi et al.: Preprint submitted to Elsevier Page 9 of 10



Dense 3D Point Clouds of Endoscopic Image

tional Journal of Medical Robotics and Computer Assisted Surgery
14, e1926.

[26] Pfeiffer, M., Funke, I., Robu, M.R., Bodenstedt, S., Strenger, L., En-
gelhardt, S., Roß, T., Clarkson,M.J., Gurusamy, K., Davidson, B.R.a.,
2019. Generating large labeled data sets for laparoscopic image pro-
cessing tasks using unpaired image-to-image translation .

[27] Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017. Pointnet: Deep learning
on point sets for 3d classification and segmentation, in: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 652–660.

[28] Rubner, Y., Tomasi, C., Guibas, L.J., 2000. The earth mover’s dis-
tance as ametric for image retrieval. International journal of computer
vision 40, 99–121.

[29] Sung, M., Kim, V.G., Angst, R., Guibas, L., 2015. Data-driven struc-
tural priors for shape completion. ACM Transactions on Graphics
(TOG) 34, 1–11.

[30] Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.,
2019. Topnet: Structural point cloud decoder, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
383–392.

[31] Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P., 2017.
Shape completion enabled robotic grasping, in: 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), IEEE.
pp. 2442–2447.

[32] Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J., 2016. Learn-
ing a probabilistic latent space of object shapes via 3d generative-
adversarial modeling, in: Advances in neural information processing
systems, pp. 82–90.

Long Xi et al.: Preprint submitted to Elsevier Page 10 of 10


