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Abstract
Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as
those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging
analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application
of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness,
surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium.
We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the
neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%.
Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI= 63.47–67.00, ROC-AUC= 71.49%, 95%
CI= 69.39–73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI= 56.70–60.63). Meta-
analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the
regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen’s
Kappa= 0.83, 95% CI= 0.829–0.831). Treatment with anticonvulsants and age were associated with greater odds of correct
classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair
and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of
BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples
was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/
voxelwise neuroimaging data.

Introduction

Bipolar disorders (BDs) are lifelong conditions, which tend to
start in adolescence or early adulthood and consequently rank
among the leading causes of morbidity and disability world-
wide [1, 2]. Despite substantial advances in our understanding
of the neurobiology of BD, the diagnostic system in psy-
chiatry continues to be based on description of behavioral
symptoms. This often results in delayed or inaccurate diag-
nosis of BD [3–5], which in turn leads to delayed or

ineffective treatment [6]. Objective, biological markers could
aid significantly in the clinical management of mental dis-
orders [7], might reduce stigma, facilitate research and
expedite the development of new treatments [8].

Brain imaging offers the unique ability to non-
invasively investigate brain structure and function. Pre-
vious brain-imaging meta-analyses and large-scale multi-
site studies have demonstrated that adults with BD had
robust and replicable neurostructural alterations in sub-
cortical, that is, hippocampus, amygdala, thalamus
[9–11], as well as cortical regions, including inferior
frontal gyrus, precentral gyrus, fusiform gyrus, middle
frontal cortex [12–14]. Despite these advances and the
relatively broad availability, the diagnostic potential of
magnetic resonance imaging (MRI) in psychiatry has not
been fully realized.

The translation of brain imaging from bench to the
bedside has been hindered by the low sensitivity and
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specificity of between-group differences, by clinical het-
erogeneity and limited generalizability of findings from
relatively small samples. The problem of low sensitivity and
specificity may be overcome by novel analytical tools, such
as machine learning (ML) [15, 16]. Traditional mass-
univariate methods of MRI data analysis focus on localized
and spatially segregated patterns of between-group differ-
ences [17]. The effect sizes of such changes (Cohen’s d=
0.15–0.29 [11, 14]) tend to be many times smaller than the
effects needed for clinical application (Cohen’s d= 1.50–
3.00 [18, 19]). In contrast, the ML techniques increase
predictive power by targeting multivariate alterations dis-
tributed throughout the whole brain, which may
better characterize the abnormalities found in psychiatric
disorders [15, 20, 21]. Thus, ML brings neuroimaging
analyses to the level of individual subjects, and with some
caveats, potentially allows for diagnostic use. When pre-
viously applied to structural MRI, ML differentiated BD
from control participants with accuracies between 59.5%
[22] and 73.00% [23].

However, ML approaches typically require large samples
to optimize the performance of the classifier, provide a
generalizable snapshot of the studied disorder, decrease the
risk of sampling effects and allow for application of rigor-
ous cross-validation approaches [19]. Single-site studies
may provide high site-specific accuracies [24], which,
however, may not generalize across samples [25, 26]. Small
studies may also yield a wide range of classification per-
formances and inconsistencies in regions, which contribute
to the overall classification [25–27]. Previous ML structural
MRI studies in BD have typically included <50 BD parti-
cipants recruited in a single site [23, 28–34]. The largest
currently available neurostructural ML studies investigated
128–190 BD and 127–284 control participants [35–37],
from up to two sites [22, 23, 38].

Large, multi-site datasets will necessarily be more het-
erogeneous than single site, carefully controlled samples. In
fact, heterogeneity is one of the defining characteristics of
big-data [39]. Single-site studies with rigorous inclusion/
exclusion criteria may help isolate sources of heterogeneity,
but they will represent only a small fraction of the “patient
space.” In contrast, a large, multi-site study will primarily
target generalizable alterations, which are shared among the
participants, regardless of illness subtype, effects of treat-
ment and other clinical variables. This is related to the fact
that different sources of heterogeneity (i.e., presence of
psychosis, neuroprogression, exposure to medications)
affect different brain regions and often act in opposing
directions [11–14, 40–42]. In addition, individual sources of
heterogeneity, which are present only in some participants,
are unlikely to systematically bias the findings in large,
multi-site investigations. Thus, smaller, carefully controlled
studies and large, multi-site datasets are complementary and

ask different questions. BD is a broad and heterogeneous
condition. Therefore, it is all the more important to quantify
the extent to which ML can classify large, ecologically valid
datasets based on neuroanatomy.

Researching generalizable brain alterations has only
recently become possible through research consortia com-
mitted to aggregation and sharing of brain-imaging data
across research groups. Despite the inherent limitations,
retrospective data sharing initiatives create an optimal
environment for application of ML strategies and for a fair
and realistic estimation of the utility of MRI for classifica-
tion of neuropsychiatric disorders. This approach has been
utilized to improve predictive models of autism or Alzhei-
mer dementia [26], but has not yet been applied to BD. The
Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) consortium is an international multi-cohort
collaboration, which, by combining datasets from multiple
sites, has allowed for more accurate testing of the repro-
ducibility of disease effects in participants with schizo-
phrenia [43], BD [11, 14] or major depression [44]. Due to
the multi-site nature, methodological harmonization and
access to some of the largest neuroimaging datasets to date,
the ENIGMA platform provides an ideal opportunity to test
ML on sufficiently large and generalizable samples.

In collaboration with the ENIGMA-BD Working Group,
we applied ML to structural MRI data from 3020 partici-
pants recruited in 13 independent sites around the world.
We attempted to differentiate BD from control participants
based on brain structure. In addition, we studied the effects
of different data handling strategies on classification per-
formance, described the neuroanatomical features, which
contributed to individual subject classification and investi-
gated the effects of clinical variables on classification
performance.

Materials and methods

Samples

The ENIGMA-BD Working Group brings together
researchers with brain imaging and clinical data from BD
participants and healthy controls [11, 14]. Thirteen of the
sites from previously published ENIGMA studies [11, 14]
provided individual subject data for this ML project. Each
cohort’s demographics are detailed in Supplementary
Table S1. Supplementary Table S2 lists the instruments
used to obtain diagnosis and clinical information. Supple-
mentary Table S3 lists exclusion criteria for study enroll-
ment. Briefly, all studies used standard diagnostic
instruments, including SCID (N= 10), MINI (N= 2) and
DIGS (N= 1). Most studies (N= 7) included bipolar
spectrum disorders, five studies included only BD-I and a
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single study only BD-II participants. Substance abuse was
an exclusion criterion in 9/13 studies. Most studies (10/13)
did not exclude comorbidities, other than substance abuse.
A single study recruited medication naive participants. The
remaining studies did not restrict medication use. Conse-
quently, the sample is a broad, ecologically valid and gen-
eralizable representation of BD.

All participating sites obtained approval from their local
institutional review boards and ethics committees, and all
study participants provided written informed consent.

Image processing and analyses

Structural T1-weighted MRI brain scans were acquired at
each site and analyzed locally using harmonized analysis
and quality control protocols from the ENIGMA con-
sortium. Image acquisition parameters are listed in Sup-
plementary Table S4. All groups used the same analytical
protocol and performed the same visual and statistical
quality assessment. These harmonized protocols were used
in the previous publications by our group [11, 14] and they
have been applied more broadly in large-scale ENIGMA
studies of other disorders. Briefly, using a freely available
and extensively validated FreeSurfer software, we per-
formed segmentations and parcellations into 7 subcortical
and 34 cortical gray matter regions per hemisphere (left and
right), based on the Desikan–Killiany atlas. Visual quality
controls were performed on a region of interest (ROI) level
aided by a visual inspection guide including pass/fail seg-
mentation examples. Diagnostic histogram plots were gen-
erated for each site and outlier subjects were flagged for
further review. All ROIs failing quality inspection were
withheld from subsequent analyses. Previous analyses from
the ENIGMA-BD Working Group showed that scanner
field strength, voxel volume and the version of FreeSurfer
used for segmentation did not significantly influence the
effect size estimates. Further details regarding these ana-
lyses, as well as forest plots of cortical and subcortical effect
sizes from individual sites can be found here [11, 14].

Data preprocessing

Input features were ROI cortical thicknesses (CT), surface
area (SA) and subcortical volumes, a total of 150 features,
and intracranial volume. As SA and CT are genetically
distinct [45], influenced by different neurobiological
mechanisms [46] and sometimes affected in opposite
directions [47], we used both as input features. Prior to
fitting of the ML classifier, we imputed missing data using
mean values of the respective features, as well as centered
and scaled each continuous feature.

Using statistical harmonization to reduce heterogeneity
of data could improve accuracy [48], but at a cost to

generalizability. Such approaches may compromise the
train/test separation and may introduce additional assump-
tions, which are difficult to verify. Thus, in keeping with
other studies [23, 38, 49], instead of statistical harmoniza-
tion, we modeled between-site effects by using several
different data handling strategies and investigated the
association between relevant variables and classification
accuracy, as described below.

Support vector machine classifier

We a priori chose to use support vector machine (SVM
[50]), which is the most frequently used ML method in
psychiatric brain imaging [15, 51]. The present analyses
implemented a linear kernel, because this limits the risk of
overfitting, contains only a single parameter, see below, and
the coefficients of a linear classifier can be interpreted as
relative measures of feature importance. However, we also
performed sensitivity analyses to determine the impact of
using a non-linear kernel (radial basis function) on results.
All ML analyses were implemented in the Python pro-
gramming language v. 3.6 using the Scikit-Learn package v.
0.19 [52].

The linear kernel SVM has only a single parameter, C,
which controls the trade-off between having zero training
errors and allowing misclassifications. We decided to a
priori fix the hyperparameter at C= 1, for the following
reasons. First, this setting is a common choice in the
existing literature [53–56]. Second, SVM performance is
relatively robust to changes in C values [57]. Third, the
decision to perform hyperparameter optimization has data
costs, as one must perform a further nesting of cross-
validation, resulting in smaller effective training sets [58].
Also, hyperparameter optimization involves many steps,
which have not been standardized and which may con-
tribute to vibration of effects, including introduction of
further hyperparameters (of the optimizers), selection of
the best objective function over which to optimize,
selection of constraints over the hyperparameter being
optimized and of the hyperparameter optimization algo-
rithm. Nevertheless, we also performed sensitivity ana-
lyses to determine the impact of hyperparameter
optimization in a nested cross-validation procedure, see
Supplementary material.

As the features used in the present study are engineered
(i.e., the feature set does not consist of raw, voxelwise
images), we opted against further feature selection. This
decision was also supported by the large sample size and the
fact that we had 20 times more participants than features.
Importantly, in the above-described methods, the SVM
models are independent across folds and no statistical har-
monization, model selection or comparison was done prior
to splitting the samples into testing and training.
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Consequently, we have minimized the potential for infor-
mation leak.

Classification performance was measured using standard
metrics including accuracy, sensitivity, specificity, positive
predictive value, negative predictive value and area under
the receiver operating characteristic curve (ROC-AUC).

Data handling

The first application of the above-described classifier was to
the classification of cases versus controls in individual sites,
referred to as site-level analyses. For each site, we fit an
SVM and measured its performance using a stratified K-fold
cross-validation procedure. This method is stratified insofar
as the proportion of cases and controls (in respective folds)
is similar in both training and validation sets. The number of
folds was selected independently for each site, such that the
validation set on each fold would have approximately 3
( ±1) cases.

To further study how overall classification performance
relates to different methods of data handling, we imple-
mented three approaches. The first was a meta-analysis of
diagnostic accuracy from site-level analyses, referred to as
meta-analysis. This models the typical method of analyzing
data in a multi-site collaboration [11, 14]. The meta-
analyses were done using the hierarchical summary receiver
operating characteristic, implemented in HSROC package
v. 2.1.8 [59], in the R programming language, see Sup-
plementary material.

Second, we evaluated the same linear SVM para-
meterization used in all other analyses on a leave-one-site-
out (LOSO) cross-validation procedure, referred to as
LOSO analyses. In each fold of cross-validation, one site’s
data were completely excluded from the training partition.
The SVM was then trained on the training partition and
predictive performance was evaluated on the data from the
held-out site.

Third, we fit an SVM classifier to the data pooled across
all sites, using the same linear SVM parameterization as in
the site-level analyses, and the same cross-validation pro-
cedure. This yielded a total of 284-folds and is further
referred to as aggregate subject-level analysis.

We corrected for the effects of imbalanced data in all
analyses and thereby trained the SVM classifiers on an
effectively balanced dataset. To do this, we implemented
the Synthetic Minority Oversampling Technique with
Tomek link [60, 61] using the imblearn package v. 0.3.0.
dev0 [62], in the Python language v. 3.6. The computer
code for the above-described analyses will be provided
upon reasonable request.

Feature importance

To determine feature importance, we plotted the SVM
coefficients learned (over a total of K-folds per sample)
based on the aggregated data and the SVM coefficients
learned from the site with the highest ROC-AUC perfor-
mance. To quantify whether similar features contributed to
classification in different analyses, we computed Cohen’s
kappa for agreement in ranking of feature coefficients of
individual regions between these two models, see Supple-
mentary material for details of this calculation.

Investigation of clinical heterogeneity/potential
confounding factors

We investigated whether any confounding factors con-
tributed to the classification by examining the relationship
between clinical/demographic variables and classification
results using mixed-effects logistic regression – glmer
function in the lme4 package of the R Statistical Program-
ming Language [63]. Variables listed in Table 1 and

Table 1 Descriptive statistics of the whole sample

Controls Cases p-Value

N 2167 853

Age mean (SD) 34.89 (12.41) 37.43
(11.64)

< 0.001

Sex, N (%) female 1201 (55.4) 516 (60.5) 0.013

Diagnosis, N (%)

BD-I - 582 (68.63)

BD-II - 234 (27.59)

BD-NOS - 13 (1.53)

SZA - 19 (2.24)

Treatment at the time of scanning, N (%)

Li 265 (33.5)

AED - 339 (43.1)

FGA - 32 (4.1)

SGA - 313 (39.9)

AD - 281 (35.5)

Mood state, N (%)

Euthymic - 475 (75.5)

Depressed - 131 (20.8)

Manic - 11 (1.7)

Hypomanic - 9 (1.4)

Mixed - 3 (0.5)

Age of onset mean (SD) - 22.36 (9.08)

Duration of illness mean
(SD)

- 14.64
(10.45)

History of psychosis, N (%) - 372 (61.1)

AD antidepressants, AED antiepileptics, BD-I bipolar I disorder, BD-II
bipolar II disorder, BD-NOS bipolar disorder not otherwise specified,
FGA first-generation antipsychotics, Li lithium, SD standard deviation,
SGA second-generation antipsychotics, SZA schizoaffective disorder
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intercepts were taken as random effects varying between
sites about a group mean, see Supplementary material. For
numerical stability, age, age of onset and duration of illness
were scaled to have mean 0 and unit variance.

Results

We included 3020 participants (853 BD cases and 2167
controls), see Table 1.

The classification accuracy in individual sites ranged
from 45.23% (95% confidence interval (95% CI)= 35.91–
54.57) to 81.07% (95% CI= 78.68–83.46), see Fig. 1a. The
classification performance was closely associated with the
method of data handling. Meta-analysis of individual site
results yielded the lowest performance, which did not
exceed chance level, see Fig. 1b, Table 2. The LOSO cross-
validation provided above chance classification, but per-
formed worse than the aggregate subject-level analyses.
Aggregating the data across sites yielded the highest and

Fig. 1 a Performance of SVM classifiers independently trained on
each sample – mean with 95% confidence interval. Each row denotes a
site in the data set, whereas each column denotes a specific perfor-
mance metric. b Meta-analytic (summary) receiver operating char-
acteristic (SROC) curves. Site-level sensitivity (Sn) and specificity
(Sp) are empty circles of radius proportional to sample size. The red
point is the median estimate of Sn and Sp. The solid black line is the

SROC curve. Dashed diagonal represents chance performance. The red
ellipse is the 95% posterior credible region, and the blue dashed line is
the 95% posterior predictive region. c Receiver operating characteristic
(ROC) curves for the aggregate subject-level analysis. Faint gray lines
are the ROC curves for individual validation folds, and blue lines
represent the mean ROC curve
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statistically significant classification performance, see
Fig. 1c, Table 2.

Feature importance

Ranking of features, which contributed to classification in
the site with the highest ROC-AUC and the aggregate
subject-level analyses, see Fig. 2, showed substantial
agreement (Cohen’s Kappa= 0.83, 95% CI= 0.829–
0.831).

Effects of clinical heterogeneity

Among BD participants in the aggregate subject-level
analysis, both age (odds ratio (OR)= 1.4, 95% CI= 1.05–
1.88, p= 0.02) and antiepileptic use (OR= 1.73, 95%
CI= 1.07–2.78, p= 0.02) were positively and additively
associated with correct classification. There was no asso-
ciation between correct classification and diagnostic sub-
group, treatment with first-, second-generation
antipsychotics, lithium (Li), age of onset, history of psy-
chosis, mood state or sex, see Supplementary Table S5. Age
was necessarily co-linear with duration of illness (r(782)=
0.66, p < 0.001), but there was no univariate association
between the duration of illness and correct classification
(OR= 1.18, 95% CI= 0.98–1.43, p= 0.09).

Treatment with anticonvulsants was negatively asso-
ciated with Li treatment (OR= 0.39, 95% CI= 0.19–0.80,
p= 0.01), but not with any other clinical features, see
Supplementary Table S6.

In the whole sample, both age (OR= 1.46, 95% CI=
1.17–1.81, p < 0.001) and status (BD versus controls;
OR= 1.60, 95% CI= 1.28–2.01, p < 0.001), but not sex
(OR = 1.21, 95% CI = 0.99−1.48, p=0.06) were inde-
pendently associated with being classified as a BD
participant.

Sensitivity analyses

Using the radial basis function kernel yielded accuracy of
68%, 95% CI= 67–69%. Hyperparameter optimization
resulted in training set accuracy of 65.9%, 95% CI= 65.7–
66.0 and testing set accuracy of 57.5%, 95% CI= 49.1–
65.9. Thus, it is unlikely that substantial classification per-
formance was sacrificed by forgoing kernel nonlinearity or
hyperparameter optimization.

In the LOSO analysis, when we left out the sites with the
highest ROC-AUC curves, i.e., Halifax, Marburg
(FOR 2107), Cape Town (CIAM), we acquired ROC-AUC
of 65.42%, 66.18%, 63.07%, respectively, see Fig. 3, which
was comparable to the overall ROC-AUC of 60.92% in the
LOSO. Thus, the overall results did not appear to be overly
influenced by the best performing sites.

Discussion

When applied to structural brain-imaging data, ML differ-
entiated BD participants from controls with above chance
accuracy even in a large and heterogeneous sample of 3020
participants from 13 sites worldwide. Aggregate analyses of
individual subject data yielded better performance than
LOSO or meta-analysis of site-level results. Despite the
multi-site nature, ML identified a set of plausible brain-
imaging features, which characterized individual BD parti-
cipants and generalized across samples. Age and exposure
to anticonvulsants were associated with greater odds of
correct classification.

Previous studies employing raw structural MRI data
have yielded accuracies between 59.50 and 73.00% [22,
23] for differentiating BD from control participants. A
single study using results from automated segmentation
reported accuracy below 60.00% [37]. Although direct

Table 2 Summary of
classification results from meta-
analysis of sample-level
classifiers, leave-one-site-out
and aggregate subject-level
analyses

Statistic Meta-analysis Leave-one-site-out Aggregate subject-level

Accuracy (%) - 58.67 (56.70–60.63) 65.23 (63.47–67.00)

ROC-AUC - 60.92 (58.18–63.67) 71.49 (69.39–73.59)

Sensitivity (%) 42.60 (13.40–71.57) 51.99 (48.20–55.78) 66.02 (62.71–69.33)

Specificity (%) 59.14 (30.59–87.94) 64.85 (61.91–67.79) 64.90 (62.86–66.93)

PPV (%) - 47.25 (37.67–56.84) 44.45 (42.04–46.86)

NPV (%) - 67.67 (60.36–74.98) 83.73 (82.21–85.26)

Note that meta-analytic results of the HSROC package include only sensitivity and specificity of the overall
meta-analytic classification. Results for meta-analytic summary are the posterior predictive value of the
performance metric, reported as mean (95% credible interval; the Bayesian analog of 95% confidence
intervals). Results for the aggregate subject-level and leave-one-site-out analyses are reported as mean and
95% confidence interval

NPV negative predictive value, PPV positive predictive value, ROC-AUC area under receiver operating
characteristic curve
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comparison is complicated by methodological and sample
size differences, the modest accuracies in previous studies
are in keeping with our results. Thus, the presented find-
ings appear realistic and there is little evidence for
overfitting.

The classification performance in the aggregated dataset
was significantly above chance level and the ROC-AUC of
71.49% (69.39–73.59) reached acceptable discrimination
[64, 65]. However, the accuracy of 65.23% (95% CI=
63.47–67.00) fell short of the 80% threshold, which is
deemed clinically relevant [66]. We need to consider several
issues when interpreting these findings. BDs are difficult to
diagnose even by standard methods. The Cohen’s kappa for
reliability of the BD-I diagnosis is 0.56 and as low as 0.40
for BD-II [67]. In addition, the illness shows marked clin-
ical and neurobiological heterogeneity [10, 12]. Perhaps
most importantly, we worked with regional brain measures,
not raw/voxelwise data. This approach necessarily involves
some information loss in the feature engineering process.
Analyses of experimenter-defined features are increasingly
outperformed by models capable of learning abstractions
from raw data alone [68]. Applying deep learning [69] to
raw data would likely offer the greatest increase in classi-
fication accuracy.

This study provides important clues about the impact of
data handling on the classification performance. As expec-
ted, the meta-analysis of individual site results, typically the
first method of data analyses in multi-site collaborations,
yielded the lowest accuracy, which did not exceed chance
level. The LOSO analyses performed better than the meta-
analytic approach, but worse than when individual subject
data were aggregated and analyzed jointly. These differ-
ences in performance are likely related to the way each

method handles the conditional relationships between the
sites. Meta-analyses essentially model these relationships
after the fact. The LOSO analyses are hindered by the fact
that data are partitioned along some factor that is not ran-
dom. In contrast, pooling of data allows for random parti-
tioning and incorporates the relationships between the sites
in their raw form. In addition, the classification performance
is closely linked to the size of the training sample [49, 70],
which increased from individual site through LOSO to
aggregate analyses.

Thus, the empirical pattern of findings is convergent with
theoretical prediction of how each of these methods should
perform. It is also congruent with previous studies in autism
[49], schizophrenia [70] and Alzheimer dementia [26],
which also showed increasing performance with increasing
size of the training set. It is a question whether this would
also be the case in more heterogeneous conditions, such as
major depression or anxiety disorders. Regardless, aggre-
gate analyses provided the best classification performance
in BD. Future multi-site brain-imaging studies should
attempt to move towards sharing of individual subject data,
not only site-level results.

The linear SVM kernel allowed us to visualize the con-
tribution of individual regions to the overall classification. It

Fig. 2 Violin plot of feature importance across cross-validation (CV)
folds for aggregate subject-level analysis (left), and the site, which
yielded the highest ROC-AUC (right). At each CV iteration, we
extracted linear support vector machine (SVM) coefficients. The set of
all coefficients from our SVM models are centered about 0. Deviation
of coefficients from zero is an indication of the relative importance of
individual features in the data. Features with positive and negative
coefficients have positive and negative associations, respectively, with
probability of classification as a case. The y axis lists variables for
which SVM coefficients were strictly non-zero throughout all cross-
validation iterations

Fig. 3 Bar plot of the area under
the receiver operating
characteristic curve (ROC-AUC)
for the leave-one-site-out
(LOSO) analyses. The sites
listed along the x axis are those
that were held-out at each fold
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is of note that the results of a backward model should not be
used for localization [71]. We used this approach to broadly
verify the neurobiological plausibility [26], not to infer
pathophysiology. Our findings showed good validity, as
many of the same regions, which have previously shown
differences between groups of BD patients and controls,
contributed to the classification on individual subject level,
including hippocampus, amygdala [9–11], as well as cor-
tical regions, such as inferior frontal gyrus [12, 14] and
precentral gyrus [13].

In addition, we wanted to determine whether similar
features were used for classification across different ana-
lyses. Indeed, there was a substantial agreement between the
regions, which contributed to the classification in the site,
which yielded the highest ROC-AUC and in the aggregate
dataset, with Cohen’s Kappa of 0.83 (95% CI= 0.829–
0.831). Furthermore, when we trained the classifier on data
from all but the best performing sites, the classification
performance did not drop below the overall accuracy in the
LOSO analyses. Thus, individual sites did not markedly
influence the overall findings. Taken together, these results
suggest that the classification was based on a biologically
plausible and generalizable neurostructural signature, which
is shared among subjects in a large, multi-site sample. This
is highly interesting, as existence of a generalizable bio-
marker is one of the key defining features of a diagnostic
category [72].

We also investigated the effects of clinical/demographic
variables on classification accuracy. Older age and antic-
onvulsant treatment were associated with greater odds of
correct classification. The effect of age may be related to the
fact that illness-related alterations may get worse with age/
duration of illness [73]. Interestingly, similar association
was noted in a meta-analysis of brain-imaging ML studies
in schizophrenia [74]. These findings also broadly agree
with another study, in which late-stage BD was easier to
classify than early stage illness [36]. However, we did not
find an association between accuracy of classification and
duration of illness or age of onset.

The association with anticonvulsant treatment may
reflect effects of illness or medications. Treatment with
anticonvulsants was not associated with severity of illness,
diagnostic category, mood state, age of onset or personal
history of psychotic symptoms and thus did not appear to
index a specific subgroup within BD. Interestingly, parti-
cipants who were treated with anticonvulsants were less
likely to also receive Li treatment. Perhaps, the neuropro-
tective effects of Li, which may normalize brain alterations
in BD [10, 75] could presumably make the classification
based on brain structure more difficult. However, Li treat-
ment itself was not associated with classification accuracy.
Previous studies have suggested that valproate, may nega-
tively affect brain structure [76], which could contribute to

correct differentiation of anticonvulsant treated from control
participants. This was, however, not documented for
lamotrigine, which is also frequently used in treatment of
BD. Overall, the reasons why treatment with antic-
onvulsants and age were associated with easier classifica-
tion are unclear and will be subject to future analyses.

A related question is whether the clinical/demographic
heterogeneity confounded our findings and whether the age
and/or treatment with anticonvulsants contributed more to
the classification than the presence or absence of BD. Due
to selection bias, heterogeneity is more likely to affect
results in smaller studies [25]. The strength of a large, multi-
center analysis is that it will primarily target the common
alterations, which are generalizable to most participants and
not individual sources of heterogeneity, which are present
only in some [25]. In addition, both age and status were
independently and additively associated with being classi-
fied as a BD participant in the whole sample. Also, within
the site with the highest classification performance, BD
participants and controls were balanced by age. In addition,
43.1% of patients in the whole sample were treated with
anticonvulsants and yet, we reached a 66.02% sensitivity
for correctly identifying BD participants. Last but not least,
the sites with the highest proportion of anticonvulsant-
treated participants (61.4%) and the highest discrepancy in
age showed relatively low sensitivities of 49% and 29%,
respectively. Thus, although certain clinical and demo-
graphic variables were associated with correct classification,
it is unlikely that overall we were classifying participants
based on the presence or absence of specific clinical/
demographic variables, rather than the presence or absence
of BD.

Our study has the following limitations. Due to differ-
ences in availability, we did not include other brain-imaging
modalities or other types of data, that is, genetic, neuro-
cognitive or biochemical. Access to raw data would allow
us to use deep learning methods [68] or create a meta-model
by combining classifiers trained on the local datasets [77].
However, currently there are significant practical and legal
limitations to raw data sharing. The clinical heterogeneity
and multi-site nature, which complicate traditional between-
group comparisons, allowed us to test the ML algorithms
on a wide range of participants in a fair setting that better
resembles a clinical situation. To achieve a clearer exposi-
tion and reduce methodological heterogeneity, we decided
to use SVM. Previous studies have generally found minimal
differences between “shallow” ML method [37]. As we
worked with regional brain measures, not voxelwise data,
we would not be able to fully exploit the power of deeper
methods [78]. The depth and breadth of phenotyping are
general issues in retrospective, multi-site data sharing col-
laborations. Specific sources of heterogeneity, that is, neu-
roprogression and comorbid conditions, may be particularly
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difficult to quantify. Addressing them would require a dif-
ferent research design. However, the large, multi-site sam-
ple, together with the exploratory analyses and examination
of individual site results made it less likely that individual
clinical characteristics systematically confounded the find-
ings. Finally, attempting to differentiate BD from control
participants is the first step before moving to more clinically
relevant problems, such as differential diagnosis.

The key advantages of this study include the large,
generalizable sample, access to individual subject data from
13 sites and the conservative and scalable nature of the
analyses. This is currently the largest application of ML to
brain-imaging data in BD, with up to two orders of mag-
nitude, greater sample size than in previous studies. The
unique nature of the dataset provides qualitative, not only
quantitative advantages. Previous studies showed low sta-
bility of ML results with fewer than 130 participants [70], a
threshold we exceeded 7–16 times. The multi-site dataset
maximized the training set size, provided ecologically valid
representation of the illness, allowed us to focus on com-
mon, BD-related alterations and for the first time apply the
LOSO cross-validation in BD brain imaging. We com-
pletely separated the testing and training sets at each level of
analysis, thus minimizing the risk of information leak, and
specifically focused on maximizing generalizability/redu-
cing the risk of overfitting. The study is an example of close
international collaboration, which is one of the best ways,
how to create optimal datasets for ML analyses.

Conclusions

This study provides a realistic and fair estimate of classifi-
cation performance, which can be achieved in a large,
ecologically valid, multi-site sample of BD participants
based on regional neurostructural measures. Although short
of the 80% clinically relevant threshold the 65.23% accu-
racy, 71.49% ROC-AUC are promising, as we used an
engineered feature set in a difficult to diagnose condition,
which shows a marked clinical and neurobiological het-
erogeneity. In addition, similar, biologically plausible fea-
tures contributed to classification in different analyses.
Together these findings provide a proof of concept for a
generalizable brain-imaging signature of BD, which can be
detected on individual subject level, even in a large, multi-
site sample. Although specific clinical/demographic char-
acteristics, such age and anticonvulsant treatment, may
affect classification, the clinical heterogeneity was not in the
way of differentiating BD from control participants. Finally,
we demonstrated that meta-analyses of individual site/study
ML performances provide a poor proxy for results, which
could be obtained by pooling of individual subject data.
These findings are an important step towards translating

brain imaging from bench to the bedside. They suggest that
a multi-site ML classifier may correctly identify previously
unseen data and aid in diagnosing individual BD partici-
pants. Application of deep learning to raw data might
considerably increase the accuracy of classification.
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