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Abstract: The increasing global attention on climate change underscores the importance of alternative
energy technologies with emission reduction effects. However, there are several caveats of economic
productivity and environmental sustainability tradeoffs that require empirical consideration—owing
to long-term effects on climate change. Here, we examine the relationship between emissions, green
energy-based innovations, and energy research and development across energy-intensive OECD
countries while accounting for industrial structure dynamics. We utilize several novel time series and
panel estimation techniques including time-varying causality, defactored instrumental variable-based
homogeneous, and heterogeneous slope dynamics that control for unobserved common factors. Our
empirical assessment emphasizes the significance of energy research and development in expanding
green energy innovations while reducing long-term emissions. Conversely, continual dependence
on obsolete energy research and development may worsen environmental sustainability. However,
the inclusion of green energy technologies offset environmental pollution without compromising
economic productivity. Besides, the mitigation effect of energy research and development is chan-
neled through a decline in energy intensity and technological advancement. We show that green
energy-based innovations and energy research and development play a critical role in achieving
environmental sustainability in OECD countries.

Keywords: time-varying causality; green energy innovations; instrumental variables; xtivdfreg;
research and development; green growth

1. Introduction

Reducing biodiversity, declining global food production, rising sea levels, and higher
morbidity rates are examples of the possible problems associated with global warming [1,2].
In recent years, the transition from carbon-intensive driven economic development to low-
carbon economy has been examined through the lens of clean and renewable energy and
improvement in energy efficiency [1,3,4]. Energy acts as a double-edged sword by serving
as a vital condiment of economic growth and development—whereas driving environmen-
tal degradation [4]. As a result of the triple-headed scourge of climate change, resource
depletion, and environmental degradation, green industries are on the rise [5]. Green
industries are industries that adopt green innovation in production processes. Accord-
ingly, green innovation connotes a series of introduced practices, techniques, technologies,
and systems as well as products resulting from reduced environmental degradation [6].
Green innovation is reported to play a major part in energy development, especially in
the industrial sector. The number of technological innovations is roughly measured using
green patents issued in the region. Patents are momentous gauge of innovations in a
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country, thus, those issued on reducing energy consumption and environmental concerns
are regarded as green patents [3].

However, energy utilization is part of the production process with long-term effects on
environmental quality—if the composition of fossil fuels is dominant in the energy portfolio.
The realization of high carbon is due to limited clean technologies, high consumption of
fossil fuels, and industrial development [7]. This phenomenon is perfectly encapsulated
by China’s primary energy annual growth rate use of about 3.9% in contrast with the
world’s figure of 1.5%, making them the world’s largest energy consumer [7,8]. Hence, the
laws implemented in China to stimulate sustainable development include Environmental
Protection Law (revised in 2014) and Urban Greening Ordinance (revised in 2017) [9].
Therefore, reducing energy consumption and seeking ways to shrink the amount of energy
used per unit of input are vital strategies in reducing carbon emissions [3,9]. It is reported
that energy intensity in heavily industrialized OECD nations has plummeted by four times
between 1970-2005. Energy used per unit of input is classified as high if more energy is
used in the production of one unit of output [7]. Consequently, 1% rise in green patenting
activities leads to 0.03% decline in energy intensity. Against this backdrop, research and
development, technological acquisition, and a rise in technological innovations are reported
to reduce energy intensity [3].

Energy structure and utilization have morphed in recent times, with green energy
coming to the fore globally. Revamping the energy sector across countries is rife, chiefly
due to adverse effects of conventional energy forms. Environmental degradation in the
form of climate change due to global warming has heightened research into green energy.
Energy research development has manifested in green restructuring and environmental
regulation [6,10]. This is explained by the greening of industries and environmental protec-
tion allied with sustainable development. The greening of existing industries refers to the
transformation of existing manufacturing sectors to create products in more environmen-
tally friendly ways [5]. Paradigm shifts in industrial structure hinge on the composition,
production, and consumption of energy. Energy research development and demonstration
have manifested in four major forms namely path creation, path renewal, path diversi-
fication, and path importation. Path creation is the rise of totally new green industries
whereas path renewal connotes the adoption of green innovations in established sectors. In
contrast, path diversification refers to a spillover of knowledge and expertise from existing
green industry to emerging green industry whereas path importation is the settlement of
green industries new to a region as a result of inflows of expertise [5,11]. These techniques
are paramount especially across heavily industrialized countries in Europe. Among these
include the greening of metallurgical and chemical processes in Agder, Norway—where
Eyde Zero-Waste initiative and Eyde Biocarbon program were carried out. The former
focused on the transformation of waste into useful raw material, while the latter dealt
with replacing fossils, viz. coal, used in the smelting industry with biocoal gleaned from
Norwegian forests. Germany is in the process to adopt path diversification to its offshore
wind power industry [5]. These countries are equipped with modern industrial structures
to accommodate the reforms.

Despite these great strides in energy restructuring and development, a burgeoning and
efficient industrial sector can act as a double-edged sword by either fostering or hindering
green paths by resisting change and protecting past investments. Although development
plans in recent years have had more energy-related goals across OECD countries, signifying
the burgeoning appeal of cleaner energy sources. However, technological obsolescence and
other existing factors may hamper the improvements in green energy innovations. Thus,
this study investigates current progress of green energy innovations and effects on historical
emissions while controlling for energy research and development, industrial structure, and
energy intensity. We strategically adopt OECD countries with carbon and energy-intensive
economies and interest in environmental sustainability through the adoption of alternative
energy technologies.
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Given the foregoing, this study contributes to the ongoing debate on green innovation
and climate change by the implementation of novel time-varying Granger causality test
based on recursive evolving algorithm. This test represents a new version of time-varying
causality in existing literature that can detect real-time instability in relationships between
variables, variations in causal direction, and periods of economic turbulence. Besides,
this methodology incorporates consistent econometric techniques for integration and
cointegration of sampled series. Besides, no prior knowledge of unit root properties is
required. Second, we introduce the novel common factor-based defactored instrumental
variable technique useful for both homogeneous and heterogeneous slope dynamics that
control for panel estimation challenges including endogeneity, omitted-variable bias, fixed-
effects, and cross-section dependence.

The subsequent sections outline the extant literature focusing on three interconnected
themes namely research and development and its linkage with green energy innovation,
industrial structure dynamics, and energy intensity vs. green energy innovation. Section
three highlights the empirical methodology, section four reports the empirical results
whereas section five presents the discussion and conclusion of the study.

2. Review of Literature

A summary of existing literature on green energy innovation, research and develop-
ment, and energy intensity is depicted in Chart 1.

2.1. Energy Research & Development vs. Green Energy Innovation

Heightened research and development (R&D) are highly regarded among several
countries, especially the more developed countries (MDCs)—due to the realization that
R&D is the wheel of technological advancement. Energy R&D has received much attention
and adoption, due to the harmful effects of conventional energy sources namely coal, oil,
and gas. Concerns of global warming, climate change, rapid deforestation, and resource
depletion have spurred research into sourcing for clean and sustainable options. The
influence of energy R&D is given much priority in the extant literature. For example, a study
adopted linear regression analysis and dynamic panel threshold model to assess the effects
of technological progress and structural change on energy intensity [7]. Domestic R&D is
found to have the highest effect on energy intensity reduction, along with both internal
and external technological acquisition. The findings showed 1% rise in home-grown R&D
capital stock leads to 0.31% decline in energy intensity. Other studies are not far off with
their submission that technological innovation through research and development is a vital
tool in propagating sustainable energy in industries [12]. However, the high costs of R&D
coupled with low levels of investment are two key factors behind stunted technological
innovation in least developed countries (LDCs). In contrast, rising energy prices have a
knockback effect on R&D investment by reducing profits. However, the rising costs could
spur more firms into energy-saving efforts, which would later increase firm innovation [8].
Despite the considerable efforts made by other countries in research into driving green
innovation, it pales in contrast to OECD countries at the zenith of industrialization—
with implementation of other technical indicators requiring further development and
progress [11]. From another perspective, the influence of government control in addition
to economic interference in making strides to drive research and development include
tax holidays, tax reliefs, incentives, and subsidies. Although, they could have uncertain
effects as the funds allocated or saved could either be used in green R&D or non-green
R&D. For instance, firms with more environmental subsidies were found to engage in more
non-green innovation than green innovation [13].
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Chart 1. Existing Literature on Green Energy Innovation, Research and Development, and Energy Intensity.

2.2. Industrial Structure vs. Green Energy Innovation

The strength, manner, and pattern of industries can either spur or impede green energy
innovation in myriad ways. Both MDCs and LDCs seek to adopt more environmentally-
friendly means of energy in the face of climate change and environmental degradation.
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Nevertheless, the transitional process differs from region to region. Gathering data from 282
respondents in a manufacturing sector in Pakistan, Shahbaz, Raghutla [1] concluded that
industrial growth has improved demand for natural resources, hastening environmental
degradation. In another study on heterogeneous effects of green technology innovations on
carbon productivity across 71 economies with different income levels, empirical evidence
supporting the validity of the environmental Kuznets curve (EKC) was found [14]. Thus,
many large LDCs are at the peak on the EKC, thereby slowing down green energy inno-
vation due to heavy reliance on fossil fuels. Another industrial-based study that explores
how green restructuring unfolds in regions across countries found a structural deficit that
requires attention [5]. The study noted that a binding similarity among LDCs is weak
industrial structure coupled with deficiency in expertise and assets, which are inimical to
green path development. The concept of linkages and supply chains has not been left out
in the literature. The interdependence of industries and smooth supply chain are crucial
for the efficient operation of economies, especially in output creation. A case study of an
automobile firm in China concluded that green innovation is more effective when support
from supply chains is present and more evident in industries with lots of linkages [10].
This resonates with current research that examined the factors behind green innovation
in the Peruvian mining industry [15]. Findings show that suppliers in the mining value
chain have a high level of human capital and significant technology driving innovations.
Green innovation is reported to develop in industries where firms are more embedded and
engaged in more knowledge-sharing activities [16].

2.3. Energy Intensity vs. Green Energy Innovation

The concept of energy intensity has certainly intensified in recent years, with a rising
number of studies on the theme. Reducing the amount of energy consumed in manufac-
turing is a mainstay of developmental plan of governments across the globe—leading to
increased attention on green innovations [6]. The vast majority of literature attempts to
ascertain factors behind the rise and fall, determinants, and relationship with other sources
and dynamics of energy. A common observation exists among countries like the US, China,
and Korea. These countries are among the highest energy consumers and unsurprisingly,
are among the highest global polluter of CO, emissions. The US is second only to China
in terms of carbon emission, and these countries are among the leaders in green innova-
tion, with inventions like artificial photosynthesis, 3D-printed wind-solar energy tubes,
and carbon nanotube electricity [17]. Green technology innovations can enhance energy
efficiency by improving total factor carbon productivity through its mitigation effects [14].
However, a study on the impact of green innovation on energy intensity in OECD na-
tions found that the falling energy intensity across OECD countries was associated with
industrial energy efficiency rather than the utilization of environmentally-friendly energy
sources [3]. A study found a feedback relationship between energy intensity and green
energy innovation, implying a positive monotonic effect of increasing energy intensity
to technological innovations [9]. Conversely, soaring levels of green innovation decrease
energy intensity. In curbing intensity, measures put in place to reduce energy intensity
have both short and long-run effects, thereby breeding uncertainty. The negative short-run
effect refers to the cost increment due to compliance with government regulatory efforts
alongside the disruption of current operational activities. However, the long-run effect,
which is more significant, involves switching to technological innovation—which allows
firms to offset earlier costs incurred [6]. In contrast, trade openness, government environ-
mental spending, and income-induced technique effect are reported to improve energy
efficiency in Korea [18]. Surprisingly, the green growth strategy implemented in 2009 has
had less impact in reducing energy intensity than the aforementioned factors. Beyond
energy intensity, other authors outline the impact of environmental regulation on green
innovation. Though originally implemented to combat climate change and other ill-effects
of carbon emissions, environmental regulation has been discovered to propel green innova-
tion. Environmental regulation is regarded to project a middle course between economic
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progress and environmental pollution whereas technological innovation is regarded to
reduce green total factor efficiency [6,19].

3. Methods

Data utilized in this study are employed from IEA and OECD [20]. The selection of
countries and data period is due to data availability—to prevent estimation challenges
attributed to the unevenly spaced dataset. Our conceptual framework is centered on achiev-
ing sustainable development goals namely reducing production, consumption, emissions,
and improving modern energy technologies.

To examine the nexus between anthropogenic emissions, green energy-based innova-
tions, and energy intensity, we employed novel econometric techniques including Granger
Causality (time series model) and common factor-based defactored instrumental variable
(panel model). Causality relies on economic theory to provide reasons for causal nexus
between economic variables [21]. The Granger Causality is a widely used and popular
econometric tool majorly used to empirically verify causal relationships among sampled
variables. The technique was adopted to ascertain the causal link between money and
income in the US [22]. Hence, the flexibility of Granger Causality springs from its suitability
to stochastic nature of myriad variables and not a structural model [21].

The forward recursive, rolling window and recursive rolling algorithm are three
change point methods that are data-driven. These approaches can be used to establish
causal relationships without initially detrending the data. However, amongst the three
techniques, the rolling window presents reliable results inferred from simulation experi-
ments. The recursive rolling algorithm follows the forward recursive algorithm rounding
off the list. In detecting changes in causality, the rolling window algorithm is preferred [22].
However, all techniques work better when the change of causality occurs early in the
sample. Certain factors affect the effectiveness of detection rates of the algorithms in
opposite ways. Window size has an inverse relationship with accurate detection rates—with
direct relationship existing with the trio of sample size, strength, and duration of the
causal relationship.

The recursive rolling algorithm was modified due to the sensitivity of Granger Causal-
ity to the time period of estimation, and thus, was improved to a recursive evolving
algorithm [21]. Further simulations show the improved algorithm has superior change
detection of socioeconomic, environmental, and energy indicators over the previous three
techniques. The new algorithm involves calculating important statistics using the recursive
techniques and providing an expansion of the sequence of samples—whereby the final
observation for this observation becomes the current observation of interest. Empirically,
this has been adopted in a few studies on the consumption and economic output rela-
tionship. To investigate the time-varying causality between green energy innovation and
energy intensity, we used a novel causality procedure developed by Shi, Phillips [21], Shi,
Hurn [22] based on the recursive-evolving window. To expose this approach, y; is defined
as a k-vector time series generated by the following process:

Yi = g + gt +uy (1)
where u; follow a VAR(p) model
up = Prup_q + -+ Bpup—p + € )
where ¢; is the error term. Substituting u; = y; — (apg + a1t) from Equation (2) into
Equation (1), we obtain
Yt =0 +ayit + By + -+ Bpyr—p + &t 3)

where 7; is a function of a; and B withi=0,1andj=1,...,p.
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Following Toda and Yamamoto [23], Dolado and Liitkepohl [24], the lag augmented
VAR is used to implement Granger causality test for possible integrated variable y; as:

Y =1I" + XO' +Bd +¢ 4)

where ¥ = (yll""yT)lTxn’ = (Tl,...,TT)Isz, T = (1,t>/2><1, X = (xl,...,xT)’Txnp,

T
!/
Xt = (]/;,1/---/:%7;7) C) = (:Bl""’ﬁp)nxnp’ B = (blf"'/bT)/Txnd’
!/
bt: (ygipill.”’y;*pfd)ndxll b = (,Bp+1/~--rﬁp+d> and E = (811--~/€T)/T><n-

xnd
d is the maximum order of integration for y;. !
Based on the null hypothesis Hp : R§ = 0, the Wald test is defined by

4
npx1

!

w = [RE] [R@OQ® (X'0X) ') R'|[RE] 5)

where § = vec(@) represents the row vectorization with 0 = X QX(X' QX)fl,

Q = T-'¢¢ and R(m x n?p) is a matrix with m, the number of restrictions. Under Hy
and the assumption of conditional homoscedasticity, the Wald statistic is asymptotically
X

Following Shi, Phillips [21], the real-time-varying causality test used the supremum
(sup) Wald statistic sequences based on recursive evolving algorithm [25,26]. The Wald
statistic over [f1, f>] with sample size fraction of f,, = fo — f1 > fo is given by W, (f1) and
sup Wald statistic is denoted by:

sup

SW(fo) = (fi.fa) €N, fo=f {Wf2<fl)} ©)

where Ao = {(f1,f2) :0< fo+ f1 < f2 <1, and 0 < f; <1— fp} for some minimal sam-
ple size fy € (0,1) in the regressions.

In the case of the recursive evolving algorithm, the dating rules for a simple switch
case are given by:

fo= f 61'7[1]](;,1] {f : SW(fo) > scv} and ff = f Gir[ljg 1} {f : SWe(fo) < scv} )

where cv and scv represent respectively the critical values of Wy and SW; statistics. fe and

f r denote the estimated first chronological observations when the test statistics exceeds
or falls below the critical values for the origination and termination points in the causal
relationship, respectively. Besides, the origination and termination dates are computed
analogously for multiple switches.

Next, we construct panel-based models to examine the long-term association be-
tween energy research and development, energy intensity, and industrial structure in
both emissions and green energy innovation function. In panel data settings, several
estimation challenges persist, affecting the validity of the parameters. Such challenges
include unobserved heterogeneous effects, cross-section dependence, and omitted-variable
and misspecification bias [27]. Thus, controlling these challenges requires modern and
sophisticated common factor estimation methods. This study adopts the novel common
factor-based defactored instrumental variable technique useful for both homogeneous and
heterogeneous slope dynamics while accounting for endogeneity, omitted-variable bias,
fixed-effects, and cross-section dependence [28]. The flexibility of the proposed model
in terms of computation, technicalities, and parameter specification outweighs existing
traditional panel estimation procedures. For example, existing panel methods require the
extension of parameters with outgrowth in either the data period (T) or cross-sectional
dimension (N)—leading to potential incidental parameter bias [29]. The proposed model
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following the novel common factor-based defactored instrumental variable technique can
be expressed as:

Yit =aYii 1+ B1Air+ BoBiy + B3[Cit — Cip1] + BaDjy + i ;0

8
=Mip+ T+ Yyifyr + € ®)

where Y;; represents the dependent variables namely fossil emissions and green energy
innovations. a|< 1| denotes the autoregressive parameter that inhibits countries from
achieving optimal levels. Y;;_; is the lagged-dependent series; B1, ... , B4 are the estimated
slope coefficients. A, ..., D denote the covariates, however, C;; — C;;_; is the historical
fossil emissions. v; ; represents the idiosyncratic error term, 7;; and 7; capture the country-
specific and time-specific effects, 7/ y,i» fyt, and €;; are the unobserved factors, factor
loadings, and idiosyncratic error, respectively.

4. Results

The time-varying causality procedure does not need prefiltering of the data but
requires the maximum order of integration for the VAR [22]. Based on the Augmented
Dickey-Fuller (ADF) unit root test (Table 1), we find that the maximum order of integration
is one [I(1)] for all countries except for the United States with I(2) characteristic. We
implement the time-varying Granger causality analysis based on a lag augmented VAR
model with d =1 for all countries and d = 2 for the United States.

Table 1. ADF unit root test results.

GEI ENI ERD INS
Country . . ) . 1st Max Or.der of
Level 1st Diff 2nd Diff Level 1st Diff Level 1st Diff Level Diff Integration (d)
Australia 0.5389 0.0001 2 - 0.0205 P - 0.1752  0.0940 ¢ 0.9375  0.00012 1
Austria 0.4168 0.0000 2 - 0.0570 © - 09117  0.0000 2 0.4181 0.00182 1
Belgium 0.2268 0.0000 2 - 0.4808  0.00022 0.8835  0.00092 0.0418"P - 1
Canada 0.5808 0.0000 2 - 0.5482  0.00032  0.0805 ¢ - 0.3881  0.00012 1
Denmark  0.0206° - - 0.2199  0.0000 2 0.1341 0.00112 0.1419 0.0000 1
Finland 0.0005 @ - - 0.0558 2 - 0.44342 0.00002 0.4388  0.00142 1
France 0.8941 0.0000 2 - 0.1336  0.0001 2 0.5734  0.0000 2 0.9660  0.0000 2 1
Germany 0.2848 0.0000 2 - 0.8084  0.00032 0.9937  0.0000 2 0.9909  0.0000 2 1
Greece 0.00322 - - 0.8923  0.00002 0.2407  0.00102 0.6742  0.0002 2 1
Ireland 0.0127b - - 0.1308  0.0000 2 0.7849  0.0001 0.2217  0.00012 1
Italy 0.7240 0.0022 2 - 0.5021  0.00002 0.8593  0.00022 0.9567  0.0000 2 1
Japan 0.5737 0.0001 2 - 0.3695  0.00022 0.2000  0.00212 0.2320  0.0000 2 1
Netherlands 0.6747 0.0001 2 - 0.1782  0.00002  0.0006 2 - 0.6840 0.0000 1
New 0.0495° - - 0.0652 ¢ - 0.5587  0.0206®  0.7244  0.0000° 1
Zealand
Norway 0.0008 2 - - 0.0319b - 0.2930  0.0004 2 0.3717  0.0000 2 1
Portugal 0.6715 0.00002 - 0.9628  0.00002 0.8283  0.0000 2 0.4278  0.0000 2 1
Spain 0.3100 0.0000 2 - 0.9485  0.00002 0.2599  0.0001 2 0.1234  0.0859 ¢ 1
Sweden 0.0169 b - - 0.1529  0.00502 0.8207  0.0000®  0.0978 © - 1
Switzerland  0.6379 0.0001 2 - 0.4429  0.00012 0.00022 - 0.9455  0.0006 @ 1
L.Imted 0.5625 0.0004 2 - 0.2865  0.0000 @ 0.9892  0.0010? 0.8518  0.0003 2 1
Kingdom
United a a a a
States 0.4685 0.3029 0.0000 0.9235  0.0002 0.8873  0.0000 0.9533  0.0002 2

Notes: Figures denote p-values. ab and ¢ indicate the rejection of the null hypothesis at the 1%, 5%, and 10% levels, respectively. GEI: Green
Energy Innovation; ENI: Energy Intensity; ERD: Energy Research and Development; and INS: Industrial Structure.

The results of time-varying causality between green energy innovation, energy in-
tensity, energy research development and demonstration, and industrial structure are
presented in Table 2. A significant causality is detected if the Wald statistic sequence ex-
ceeds its corresponding critical value during a period. We observe a significant bidirectional
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time-varying causality running from green energy innovation to industrial structure for all
countries under investigation—except for Austria with no causal effect detected. Contrary
to Chakraborty and Mazzanti [20], our results suggest the effect of green innovations on
energy intensity is uniform across OCED countries. From a policy perspective, OCED
countries have instituted—important energy strategies, investment in R&D, and promote
green technologies to reduce energy intensity and abate anthropogenic emissions.

Table 2. Time-varying Granger causality results.

Country ENI to GEI GEI to ENI ERD to GEI GEI to ERD INS to GEI GEI to INS
Australia 19932014 1995-2014 1995-2014 1995-2014 1996-2014 1995-2014
1990/1997/

2002-2004 1999 2002-2003
Austria 2009-2014 2006-2008 2002-2005 19962014 2005 -
2011-2012 2010 2007-2014
2013-2014
. 1989 1991 1993 1990
Belgium 1991-2014 1995-2014 1995-2014 1995-2014 1995-2014 1995-2014
2006 2000/2003/ 1996-1998
Canada 20082014 19922014 2005/2010/ 1992-2014 2000 1992-2014
2014 2002-2014
1990-1991 1992 1989
Denmark 19932014 19952014 1995-2014 1995-2014 1994 1995-2014
1996-2014
1995-1996 1988-1995 1990 ggg
Finland 19982014 19972014 0 0109_928014 1988-2014 1998 19882014
2000-2014
1990-1991 1990
France 1993 1994-2014 19952014 1995-2014 1995-2014 1995-2014
1995-2014
Germany 19902014 19902014 19902014 1990-2014 1990-2014 1989-2014
1996 1998
2008-2009 2008 2007 1999-2001 2002
Greece 2011-2014 1997-2014 2010-2012 2013-2014 2003-2014 2009
2014 2014
1991-1992
1997-2001 2006-2007
Ireland 2014 ;g?; 2003-2004 2009-2010 2000-2014 ;8(1)3
2006 2013-2014
2008-2014
1992-1994 1999 1994 1993 1993-1999
Italy 1997-2014 1997
19972014 2001-2014 2000-2014 1996-2014 2001-2014
1993-1994 2010-2011
Japan 2008-2014 19962014 0132014 2014 1996-2014 1994-2014
1992 1991 1990 1992
Netherlands 19942014 1996-2014 1995-2014 19962014 1992-1993 19962014
1996-2014
1990 1987-1988 2004-2006
New Zealand 2008-2014 1987-2014 2009 gggjggé ;ggg 1987-2014
2013-2014

1998-2014 2012-2014
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Table 2. Cont.
Country ENI to GEI GEI to ENI ERD to GEI GEI to ERD INS to GEI GEI to INS
1991
1992-1994 1992 1992
Norway et 1997-1998 19992014 1994 1907 1908 1994
2000-2014 19972014 20002014 2000-2014
2oég¥§%10 2001-2003
Portugal 2013-2014 1992-2014 19922014 2005-2007 19922014
2012 2009-2014
2014
. 1993 1988 1993 1988
Spain 1992-2014 1995-2014 1995-2014 1995-2014 1990-2014 1995-2014
1991-1994 1989 }323 1996-1997
Sweden 1997-2014 19962014 2001-2014 1955?2314 1991 19992014
2000-2014
1990
Switzerland 1995-2014 1999-2014 2000-2014 1999-2014 1993 2001-2014
19992014
‘ 1985
United 1995-1996 19992014 1996 1991 1997 1995-1997
Kingdom 1998-2014 19992014 2000-2014 2001-2014 1999-2014
United States 1999-2014 1990-2014 2005-2014 19902014 1998-2001 19902014
2005-2014

Notes: The periodic statistics (e.g., 1990-2014) denote the period of causalities if time-varying causality exists. GEI: Green Energy Innovation;
ENI: Energy Intensity; ERD: Energy Research and Development; and INS: Industrial Structure.

The estimated heterogeneous properties presented in Figures 1-3 show the mean,
variance, and autocorrelation distributional features within the 95% confidence band. This
outcome underscores potential heterogeneity in green energy innovation, industrial struc-
ture, energy intensity, energy research & development, and fossil emissions across countries.
The distributional heterogeneous mean in Figure 1 reveals a significant degree of long-term
disparities in all sampled indicators across carbonized high-income countries. However,
the distributional heterogeneous variance in Figure 2 between countries is relatively close
in the spread—indicating the potentiality of a common factor. The autocorrelation heteroge-
neous distribution in Figure 3 shows evidence of sample deviations that exhibit a positive
serial correlation. The heterogeneous effects evidenced can be attributed to unobserved
factors and persistent socio-economic, environmental, and energy dynamics.

We developed a baseline dynamic fixed-effects model in both green energy innovation
and fossil emission functions presented in Figures 4 and 5. In both model functions, we
incorporate lagged-dependent variables to account for omitted-variable and misspecifi-
cation bias. Second, we account for inertia effects due to historical tendencies that depict
future occurrences. Importantly, we account for historical fossil emissions by using the
expression: Hist = (Fossil; — Fossil;_1). The estimated parameter in Figure 4A shows
significant positive lagged-dependent green energy innovation (0.52)—validating potential
inertia effects. Likewise, a significant positive coefficient (0.01) is observed in Figure 4D,
implying growth in energy R&D improves green energy innovation. In contrast, insignif-
icant negative coefficient (—0.10) is observed in Figure 4B, showing that historical fossil
emissions are not meaningful in negating growth in green energy innovations. However,
Figure 4C shows a significant negative coefficient (—0.83)—inferring that outgrowth in
energy intensity declines long-term inclusion of green innovation in the energy portfolio.
Besides, a significant negative coefficient (—0.28) is observed in Figure 4E, implying growth
in industry structure worsens the adoption of green energy innovations.
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Figure 5. Baseline fixed-effects model in fossil emissions function: (A) Inertia Effect (B) Green Energy Innovation (C) Energy
Intensity (D) Energy R&D (E) Industrial Structure.

In the fossil emissions function in Figure 5, the estimated coefficient in Figure 5A
reveals significant positive lagged-dependent fossil emissions (0.94)—validating potential
inertia effects of historical fossil emissions. Likewise, the parameter (0.25) on energy
intensity in Figure 5C is significantly positive, revealing that expansion in energy intensity
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escalates fossil emissions. In contrast, a significant negative coefficient (—0.03) is evident
in Figure 5B—deducing that expanding the inclusion of green energy innovation in the
energy portfolio has long-term fossil emission mitigation effects. Likewise, the parameter
on energy R&D depicted in Figure 5D is statistically negative (—0.01), showing that growth
in energy R&D declines fossil emissions. However, the insignificant negative coefficient
(—0.02) observed in Figure 5E shows that growth in industrial structure is not meaningful
in negating growth in fossil emissions.

Next, we developed instrumental variable-based (IV) models that account for un-
observed common factors and heterogeneous slope dynamics—challenges in existing
panel-based estimation techniques (Table 3). The first three instrumental variable-based
models namely single-equation estimated two-stage least squares estimator (IV—2SLS
[column 2]), first-step estimator (IV—1st-step estimator [column 3]), and second-step esti-
mator (IV—2nd-step estimator [column 4]). All the three models are estimated based on
homogeneous slope parameters, however, IV—2SLS model accounts for year and country
fixed-effects with single-equation instrumental variable whereas IV—I1st-step and V—2nd-
step estimators incorporate defactored instrumental variables by absorbing both year and
country fixed-effects. In contrast, model four in fossil emission function accounts for het-
erogeneous slope dynamics with defactored instrumental variables that absorb both year
and country fixed-effects (IV—MG estimator [column 5]). The IV—MG technique employs
instrumental variable-based mean-group estimator useful for producing consistent and
robust dynamic parameters [28]. Model 5 employs dynamic Drisc-Kraay fixed-effects esti-
mator (D/K—FE estimator [column 7]) in green energy innovation function. The D/K—FE
estimator produces robust standard errors by controlling for potential heteroskedastic error
structure and cross-sectional dependence across countries [30]. The resultant estimated
parameters presented in Table 3 (columns 2-5) reveal positive lagged-fossil emissions in
two homogeneous slope models and the IV—MG model, confirming the results of the
baseline model in fossil emission function. However, estimations based on IV—2SLS
and IV—MG are statistically significant at p-value < 0.01. Similar to the baseline model,
a positive green energy innovation coefficient is reported in all models, supporting the
argument that evolution in green energy innovation declines long-term fossil emissions.
The parameter on energy intensity in both homogeneous and heterogeneous models is
significantly positive—corroborating the baseline model. This infers that growth in energy
intensity intensifies fossil emissions. Contrary to the baseline model, the coefficient on
energy R&D is positive and statistically significant at p-value < 0.01 in all models excluding
IV—MBG. The potential difference may be attributed to the inclusion of defactored instru-
mental variables that may perhaps control for potential unobserved common factors. The
heterogeneous slope model shows a significant negative coefficient of industrial structure
compared to the insignificant negative coefficient in the baseline model. This reveals that
controlling heterogeneous effects of industrial structure growth is meaningful in mitigating
fossil emissions. The green energy innovation function in Table 3 column 7 produces similar
but robust and significant parameters compared to the baseline model. The estimated
coefficient (Green Energy;_1) is significantly positive at p-value < 0.01—revealing that
historical green innovations influence future adoption of green energy innovations in the
energy mix. Corroborating the baseline model, 1% growth in energy R&D improves green
energy innovation by 0.01%. In contrast, 1% proliferation of historical fossil emissions
thwarts the development of green energy innovations by 0.1%. Besides, the effect of energy
intensity due to industrial structure expansion declines the continual inclusion of green
innovation in the energy portfolio.
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Table 3. Instrumental Variable-based Panel Emissions and Green Energy Parameter Estimates.

Emission IV—2SLS IV—.lst-Step IV—%nd-Step IV—MG Green Energy D/K—FE
Parameters Estimator Estimator Parameters
Emissions 0.554 *** —0.002 0.015 0.646 *** Green Ener 0.517 ***
t-1 (0.093) (0.129) (0.069) (0.072) 8Yt-1 (0.084)
Green Energy —0.126 7 —0.025 —0.0327 —0.041 Historical Emissions —0.100*
(0.046) (0.051) (0.011) (0.035) (0.055)
Energy Intensity 1.654 *** 2.731 *** 1.897 *** 2.573 *** Energy Intensity —0.834 ***
(0.618) (0.804) (0.602) (0.636) (0.134)
0.024 *** 0.024 ** 0.022 *** 0.008 0.014 **
Energy R&D (0.009) (0.010) (0.005) (0.006) Energy R&D (0.006)
E *3%
Industrial Structure (83;2) (g;g; (8} gg) _%2194%)) Industrial Structure _(?éizi)
Constant . 3.922 *** 4.200 *** 2.519 *** Constant 1.304 **
(1.302) (1.092) (0.676) (0.533)
Observations 798 798 798 798 Observations 819
Wald chi?(62) 688.040 15.5725 13.2672 — Prob > F 0.000 ***
Prob > chi? 0.000 *** 0.0293 0.0659 — within R-squared 0.395
R-squared 0.998 — — — R-squared —
Root MSE 0.056 — — — Root MSE —
Year Fixed-effects Yes Yes Yes Yes Year Fixed-effects No
Country Fixed-effects Yes Yes Yes Yes Country Fixed-effects No
A 37.275 *** 37.275 *** 37.275 *** 37.275 *** A 16.978 ***
Aadj) 40.430 *** 40.430 *** 40.430 *** 40.430 *** A(adj) 18.458 ***

Hansen Test — 15.573 tt 13.267 * — — —

Notes: *** **: * denote statistical significance at p < 0.01, p < 0.05, p < 0.10. IV—2SLS: single-equation instrumental variable (IV) regression,
IV—I1st-step estimator: defactored IV panel regression based on 1st-step estimator, [V—2nd-step estimator: defactored IV panel regression
based on 2nd-step estimator, IV—MG: defactored IV panel regression based on mean group estimator, and D/K—FE: Drisc-Kraay
fixed-effects estimator. ¥/ 1t represent the rejection of the validity of Hansen test for overidentifying restrictions at 5, 10% significance level.

5. Discussion and Conclusions

This study examined the impact of green energy innovation, energy research and
development, energy intensity, and industrial structure on emissions across OECD coun-
tries. We further explored the role of historical emissions, energy intensity, among other
covariates in inducing green energy-based innovations. The growing interest in energy
research and development can be attributed to the harmful effects of climate change and its
impacts due to the overdependence on fossil fuel technologies, rapid deforestation, urban
sprawl, economic productivity, and natural resource depletion [31-33]. Our empirical
assessment highlights the importance of energy research and development in expanding
green energy innovations while reducing emissions. Similarly, investment in green en-
ergy innovation and research and development are reported to decline greenhouse gas
emissions [34]. Green innovations improve energy efficiency by improving total factor
carbon productivity [14]. However, continual reliance on obsolete energy research and
development may worsen environmental sustainability. Reduction in fossil-related emis-
sions by 231-289% in the US is accredited to research and development efficiency and
intensity [35]. While there exists a tradeoff between economic productivity and environ-
mental sustainability, the inclusion of green energy technologies—a magic bullet—appears
a game-changer without compromising both desirables. Technological innovation through
research and development is reported to proliferate the adoption of sustainable energy
technologies in industries [12]. Notwithstanding, several studies raise concerns about
the acquisition and deployment of such useful green energy technologies. Sustaining
green energy technologies depends largely on country-specific policies and instruments,
which in turn affects the availability, accessibility, and affordability (cost) of technological
innovations [4]. This possibly explains the role of historical green energy innovations
in dictating future inclusion of green energy innovations in the energy portfolio across
high-income countries. However, market failure for research and development, and low
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patronage of green energy technologies in developing countries can be attributed to the
environmental and economic cost of modern innovations [4,36]. It is reported that high
costs of energy research and development combined with low levels of private partici-
pation and public-private partnerships in energy investments are key causes of stunted
technological innovation in developing economies [12]. Hence, subsidizing energy research
and development is described to reduce carbon emissions by 8.52% from R&D without
spillover, 5.98% from R&D with spillover from clean and renewable energy industry, and
9.55% from R&D investment [36]. Besides, the emission reduction effect of energy research
and development is channeled through a reduction in energy intensity and technologi-
cal acquisition [7]. However, our assessment shows that outgrowth in energy intensity
escalates fossil emissions while reducing green energy innovations. Increasing demand
for energy to sustain economic productivity is met through the reliance on fossil energy
sources, hence, emphasizes the trend of fossil emissions due to energy intensity [37]. We
find that the expansion of industrial structure declines both fossil emissions and green
energy innovations. The composition of economic-based industries determines emission
trends and share of green energy innovations. However, the pollution effect of industrial
structure is determined by growth effect of energy-to-growth productivity, feedback effect
of energy-to-growth productivity, and conservation effect of energy-to-growth productivity.
Thus, countries that require high energy intensity levels for economic productivity have
carbonized industrial structure whereas countries with low energy requirements to achieve
economic productivity have low-carbon driven industrial structure. We demonstrate that
green energy-based innovations and energy research and development play a critical role
in achieving environmental sustainability—through its emission abatement and energy
intensity reduction effects. Thus, future research should aim at exploring how the market
failure for energy research and development, and cost of modern energy technologies
hamper the adoption of green energy in developing countries. Such a study would be
crucial in assessing clean and modern energy for all—as stipulated in the Sustainable
Development Goal 7.
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