
Procedural Generation of Features for
Volumetric Terrains using a Rule-Based

Approach

Rahul Dey

For Ori.

Abstract

Terrain generation is a fundamental requirement of many computer graphics
simulations, including computer games, flight simulators and environments
in feature films. Volumetric representations of 3D terrains can create rich
features that are either impossible or very difficult to construct in other forms
of terrain generation techniques, such as overhangs, arches and caves. While
a considerable amount of literature has focused on procedural generation
of terrains using heightmap-based implementations, there is little research
found on procedural terrains utilising a voxel-based approach.

This thesis contributes two methods to procedurally generate features
for terrains that utilise a volumetric representation. The first method is a
novel grammar-based approach to generate overhangs and caves from a set
of rules. This voxel grammar provides a flexible and intuitive method of
manipulating voxels from a set of symbol/transform pairs that can provide
a variety of different feature shapes and sizes.

The second method implements three parametric functions for overhangs,
caves and arches. This generates a set of voxels procedurally based on the
parameters of a function selected by the user. A small set of parameters for
each generator function yields a widely varied set of features and provides the
user with a high degree of expressivity. In order to analyse the expressivity,
this thesis’ third contribution is an original method of quantitatively valuing
a result of a generator function.

This research is a collaboration with Sony Interactive Entertainment and
their proprietary game engine PhyreEngineTM. The methods presented have
been integrated into the engine’s terrain system. Thus, there is a focus on
real-time performance so as to be feasible for game developers to use while
adhering to strict sub-second frame times of modern computer games.

Acknowledgements

I would like to thank the Centre for Digital Entertainment, EPSRC and
Sony Interactive Entertainment for giving me the opportunity to work on
some challenging problems. Christos Gatzidis provided invaluable guidance,
encouragement and support throughout the entire process. Thanks to Jason
G. Doig for volunteering his time to be my industrial supervisor.

The team at Sony, especially Richard Forster and David Lovegrove, were
incredibly supportive and allowed me to bounce ideas off of them. They
were always happy to help and be my rubber duck whenever I came across
a particularly challenging issue.

The research engineers at the CDE have given me some fantastic memo-
ries and friendships, and the organisation and support from the CDE project
coordinators has been wonderful - special mention to Zoe Leonard and Mike
Board.

I would finally like to thank my family - my parents have made countless
sacrifices and helped me to get to where I am today. My wonderful wife,
Jessica Dey, has shared in all of the ups and downs of the process and has
been a rock to me throughout. This would not have been possible without
them.

1

Publications

Content Generation for Serious Games, Rahul Dey and Johannes
Konert. Book chapter in Entertainment Computing and Serious
Games (pages 174-188), Springer, 2016.
Part of this publication is found in Chapter 2.

Procedural Feature Generation for Volumetric Terrains using Voxel
Grammars, Rahul Dey, Jason G. Doig, Christos Gatzidis. Journal
paper in Entertainment Computing (volume 27, pages 128-136),
Elsevier, 2018.
This paper is presented in Chapter 3.

Procedural Feature Generation for Volumetric Terrains, Rahul
Dey, Jason G. Doig and Christos Gatzidis. Poster in SIGGRAPH,
ACM, 2017.
An extended version of this poster is found in Chapter 4.

2

Contents

1 Introduction 9
1.1 Company Background . 10
1.2 Aims and Objectives . 11
1.3 Contributions . 12
1.4 Thesis Outline . 12

2 Literature Review 14
2.1 Introduction . 14
2.2 Background . 14

2.2.1 Geomorphology . 14
2.2.2 Voxelisation . 15
2.2.3 Volumetric Data Structures 17
2.2.4 Voxel Compression . 21
2.2.5 Volumetric Rendering 21
2.2.6 Surface Extraction . 23
2.2.7 Procedural Content Generation 26
2.2.8 Terrain Generation . 31

2.3 Related Work . 33
2.3.1 Erosion Simulation . 33
2.3.2 Terrain Generation . 35

2.4 Summary . 37

3 Voxel Grammars 39
3.1 Introduction . 39
3.2 Voxel Grammars . 41

3.2.1 Rules . 42
3.2.2 Symbols . 43
3.2.3 Transforms . 45

3

3.2.4 Rule Priority . 45
3.2.5 Grammar Construction 46
3.2.6 Derivation Process . 46

3.3 Method and Implementation 48
3.3.1 Cliffs and Overhangs 48
3.3.2 Caves . 51
3.3.3 Surface Extraction . 51

3.4 Results . 54
3.5 Summary . 57

4 Feature Generation for Volumetric Terrains 59
4.1 Introduction . 59
4.2 Feature Generation . 60

4.2.1 Overhang Generation 60
4.2.2 Arch Generation . 62
4.2.3 Cave Generation . 63
4.2.4 Expressive Range . 65
4.2.5 Parallelisation . 68

4.3 Results . 68
4.3.1 Terrain Feature Examples 69
4.3.2 Expressive Range . 85
4.3.3 Performance . 92
4.3.4 PhyreEngineTM Integration 96

4.4 Summary . 96

5 Conclusion 99
5.1 Contributions and Limitations 99

5.1.1 Contribution 1 - Voxel Grammars 100
5.1.2 Contribution 2 - Feature Generators 100
5.1.3 Contribution 3 - Quantitative Expressive Range 101

5.2 Outputs and PhyreEngineTM Integration 101
5.3 Future Work . 102

5.3.1 Improvements . 102
5.3.2 Extensions . 103

4

List of Figures

2.1 Illustration of volume slicing used in Chen & Fang (1998). . . 16
2.2 Illustration of using XOR to perform solid voxelisation. For

each face of the initial state with two shapes (left), voxels are
counted to the face and a bitwise XOR operation is used to
compute the current bitstream (middle-left, middle, middle-
right), until the final voxelisation is computed (right). 16

2.3 Examples of 2D procedural noise (Left to right: Value, Perlin,
Simplex, Perlin FBM) . 27

2.4 A “Barnsley fern” generated with a 2D L-System 29
2.5 Example of a simple shape grammar manipulating an initial

state. 30
2.6 Example of heightmap (lower left) and its generated terrain

mesh. 31
2.7 Visualisation of the diamond-square algorithm for generating

fractals. Image from: https://en.wikipedia.org/wiki/Diamond-
square algorithm . 33

2.8 Koca & Güdükbay (2014) process of terrain editing, construct-
ing a coarse voxel model (left, middle left) and refining sections
using a heightmap (middle right, right). 36

3.1 Examples of simple two dimensional symbols. Rule symbols
(left), input voxels (centre) and results (right) 43

3.2 Example of a simple two dimensional transformation. Rule
transform (left), input voxels (centre) and output voxels (right) 45

3.3 Simplified voxel grammar derivation process. 47
3.4 Example of impossible floating terrain segment. 48
3.5 Examples of generated overhangs 54
3.6 Examples of generated caves 55

5

4.1 Example of Bézier surface with corresponding control points
(in red). 61

4.2 Diagram of sphere sweeping along Bézier curve 62
4.3 Illustration of arches constructed by a sweeping sphere with

different start and end points. 63
4.4 Diagram of sphere carving into terrain to make a cave. 64
4.5 Pathtraced render of terrain with an embedded arch and over-

hang. 69
4.6 Examples of generated overhangs (left), arches (middle) and

caves (right) at varying resolutions (Top: 323, Center: 643,
Bottom: 1283) . 70

4.7 Examples of generated overhangs with varying base depth pa-
rameters (Left: 0.5, Right: 1.0) 73

4.8 Examples of generated overhangs with varying lip height pa-
rameters (Left: 0.5, Right: 1.0) 73

4.9 Examples of generated overhangs with varying top erosion pa-
rameters (Left: 0.5, Right: 1.0) 74

4.10 Close-up of generated overhangs with varying top erosion pa-
rameters (Left: 0.5, Right: 1.0) 74

4.11 Examples of generated overhangs with varying bottom erosion
parameters (Left: 0.5, Right: 1.0) 75

4.12 Examples of generated overhangs with the parabola offset pa-
rameter set to 0.5 . 75

4.13 Examples of generated overhangs with varying parabola expo-
nent parameters (Left: 2.0, Right: 4.0) 76

4.14 Close-up of generated overhangs with varying parabola expo-
nent parameters (Left: 2.0, Right: 4.0) 76

4.15 Examples of generated arches with varying radius parameters
(Left: 2, Center: 4, Right: 6) 77

4.16 Examples of generated arches with varying peak parameters
(Left: 0, Center: 5, Right: 10) 78

4.17 Examples of generated arches with varying offset parameters
(Left: 0.5, Right: 1.0) . 78

4.18 Examples of generated arches with varying taper interpolant
parameters (Left: 0.0, Center: 0.5, Right: 1.0) 79

4.19 Examples of generated arches with varying taper exponent
parameters (Left: 2.0, Right: 4.0) 79

6

4.20 Examples of generated arches with varying taper radius mul-
tiplier parameters (Left: 0.0, Right: 0.5) 80

4.21 Pathtraced render of terrain with an embedded cave and its
corresponding wireframe. 81

4.22 Examples of generated cave cross-sections with varying mouth
size parameters (Left: 3, Center: 5, Right: 10) 82

4.23 Examples of generated cave cross-sections with varying decay
parameters (Left: 0.5, Right: 1.0) 83

4.24 Examples of generated cave cross-sections with varying curl
scale parameters (Left: 0.2, Center: 0.3, Right: 0.4) 83

4.25 Examples of generated cave cross-sections with varying gravity
parameters (Left: 0.5, Right: 1.0) 84

4.26 Examples of generated cave cross-sections with varying gravity
exponent parameters (Left: 2.0, Right: 4.0) 84

4.27 Example KDE plot of a uniform distribution of similarity values 85
4.28 Expressive ranges of generated overhangs 87
4.29 Expressive ranges of generated arches 89
4.30 Expressive ranges of generated caves 91
4.31 Plot of timings for each feature generator 95
4.32 Screenshots of feature generator tool. 96

7

List of Tables

3.1 List of symbol operators . 44
3.2 List of transform operators . 45
3.3 Ruleset for generating overhangs 49
3.4 Ruleset for generating caves 50
3.5 Times taken to generate voxels from rulesets, extract surfaces

and render the meshes (in ms) 56

4.1 List of parameter ranges for the overhang generator 66
4.2 List of parameter ranges for the arch generator 66
4.3 List of parameter ranges for the cave generator 67
4.4 List of default values of non-varying overhang parameters when

generating results for different variants 70
4.5 List of default values of non-varying arch parameters when

generating results for different variants 71
4.6 List of default values of non-varying cave parameters when

generating results for different variants 71
4.7 Time to generate cliffs for multiple voxel grid resolutions (in

ms) . 92
4.8 Time to generate arches for variable iterations and multiple

voxel grid resolutions (in ms) 93
4.9 Time to generate caves for variable iterations and multiple

voxel grid resolutions (in ms) 94

8

Chapter 1

Introduction

Many forms of virtual media, including video games, movies and simula-
tions, need to model large-scale, outdoor environments. Terrains are heavily
utilised as a fundamental basis for the construction of realistic virtual worlds
for these outdoor environments. Modern GPU pipelines are optimised for
processing triangles and, as such, a terrain mesh with triangular polygons is
used to render the terrain for the majority of applications. Thanks to cur-
rent hardware and its computational power, present-day virtual worlds are
usually vast, open and detailed. This offers a multitude of experiences to the
user as they explore and roam the simulated world.

As virtual worlds get larger, developers utilise a number of designers and
artists to fabricate and populate the environment. Undertaking this task in
an entirely manual manner is a laborious task and algorithmic assistance can
greatly reduce the time taken to construct environments. Procedural content
generation describes various methods to computationally create assets, such
as meshes, textures and sounds, and is a field of study with a vast array of
research. Procedural techniques for terrain generation often consist of gener-
ating 2D textures that represent elevation data, termed heightmaps. These
textures are usually generated using various noise functions depending on the
required aesthetic. The elevation data encoded in the heightmap is then used
to displace vertices on a 3D grid to form a mesh that represents a terrain.
However, as only surface level elevation data is represented, heightmaps are
limited in that they cannot create features that consist of concave or sub-
surface elements found in real world terrains. For a generator to be able to
portray concave features the data must be represented in a different way to
heightmap-based approaches.

9

This thesis uses a volumetric data format to model features that are
found in natural terrains. Volumetric methods model data using volumetric
elements known as voxels, which represent a small and discrete point of ma-
terial in 3D space. This thesis introduces two methods to procedurally act on
volumetric data in order to construct terrain features for virtual simulations.
The first method adopts a grammar-based approach, where an initial terrain
is generated using current techniques and then modified using a set of rules to
perform transformations on subsets of the terrain data. The second method
introduces three procedural generators to specifically create features found
in natural terrains that are difficult to produce using heightmap-based ap-
proaches, such as overhangs, arches and caves. The grammar-based method
is profiled using CPU timers to determine how fast it performs. The gen-
erators are profiled using GPU timers to determine the time taken for their
respective algorithms. Furthermore, the generators are evaluated on their ex-
pressivity, which governs the variety of features that can be generated using
these functions.

Avenues of future work are discussed at the end of the thesis. This in-
cludes the use of a more abstract grammar-based solution, further paralleli-
sation of grammars, and machine learning methods that may improve the
appearance and aesthetics of generated terrains.

1.1 Company Background

Sony Interactive Entertainment (SIE) is responsible for the development of
all PlayStation consoles and technologies. SIE contains a large research and
development branch, SIE R&D, that handles all development and interaction
with game developers for all PlayStation products, including console SDKs,
toolchains, support and training. Furthermore, SIE Euro R&D consists of a
number of teams that are responsible for various aspects of the game devel-
oper experience including, but not limited to, networking, advanced process-
ing (utilising GPGPU technologies), audio, and game engines. A proprietary
game engine used at SIE is PhyreEngineTM. PhyreEngineTM has been used
in a number of games, including Hotline Miami, Journey and OlliOlli, and is
designed as an extensible, cross-platform and highly optimised game engine
primarily for use with the various PlayStation platforms. It has also been
ported to support Android and iOS devices and is distributed with the full
source code to the engine and its associated tools. Game construction can

10

take place either by solely using the underlying engine source code or by
utilising the level editor that covers all aspects of game creation, including
level design, asset importing and scripting.

This thesis is associated with PhyreEngineTM. At time of writing, the
engine was limited in how terrains were created and represented, only being
able to utilise a straightforward, heightmap-based approach with constraints
on how terrain features could be edited in a game world. It was requested that
procedural generation methods be researched and developed to complement
the existing functionality, so as to expand the portfolio of tools for terrain
creation that was available to game developers.

1.2 Aims and Objectives

Based on the limitations of heightmap-based terrains, this thesis aims to gain
insights into the following research questions:

� What procedural generators are appropriate for creating features in
volumetric terrains?

� How can these procedural generators be constructed to provide a high
degree of user direction whilst ensuring enough variation of results?

� How can the expressivity of a procedural generator of a terrain feature
be represented quantitatively?

Our proposed solutions to these questions aim to create practical methods
to generate volumetric features found in real world terrains. The overall
objective of this research is to integrate these methods into PhyreEngineTM

in order to satisfy the research requests from the developers as well as address
the current limitations of the engine. As such, the objectives of this research
included adding the following features to the engine:

� Design and implementation of volumetric terrain representations.

� Procedural generators for terrain features such as overhangs, arches
and caves.

� Tooling for content developers to construct volumetric terrain features.

In turn, the implemented features should exhibit the following desirable
traits:

11

� Performant - The proposed solutions should run at an interactive rate
of performance. Content creation should consist of fast feedback so as
not to hinder the productivity of the environmental designer.

� User guided - While the solutions should provide a good deal of automa-
tion to ease the creation of terrain features, there should be sufficient
capability to generate features tailored to the user’s specific aesthetic.

� Platform agnostic - Given the cross platform nature of PhyreEngineTM

and the flexibility provided by the engine, the presented solutions should
be agnostic enough to integrate into a variety of volumetric rendering
architectures.

1.3 Contributions

Research, development and engine integration of the aforementioned features
corresponds to the contributions of this thesis. These are as follows:

� A platform-agnostic, grammar-based method to generate overhangs
and caves for volumetric terrains, including methods and guidance to
design rulesets for producing user-directed aesthetics.

� Three parametric procedural generation functions to generate over-
hangs, arches and caves, respectively.

� A novel method to quantitatively analyse expressivity of procedural
generators for volumetric terrain features.

1.4 Thesis Outline

This thesis is separated into a number of chapters. Chapter 2 provides an
outline of the current state of the art for voxel terrains, procedural generation
and volumetric rendering. Each of these are relevant subdomains related to
the problem at hand. Firstly, methods of storing and managing voxel ter-
rains using data structures and algorithms are surveyed. Then, different
ways of procedurally generating content are described, and, finally, methods
of rendering volumetric elements effectively for use in virtual simulations are

12

examined. The chapter concludes identifying a niche in the current litera-
ture. Chapter 3 introduces a novel procedural generation method inspired
by grammar-based solutions that we term voxel grammars. This method
allows a user to design a set of shape rules in order to generate terrains
by defining pairs of input voxel grids (predicates) and output voxel grids
(transforms). Chapter 4 introduces three high-level procedural generation
functions to parametrically construct features uniquely found in volumetric
terrains. Functions for cliffs, arches and caves are described and implemented
on the GPU in order to quickly generate the require voxel data. Finally,
Chapter 5 summarises the research, presenting the contributions. It also
discusses potential avenues for future research, including extensions to the
voxel grammar concept by defining a stochastic, parametric grammar that
can be designed to be a higher-level and more intuitive method for designing
grammars.

13

Chapter 2

Literature Review

2.1 Introduction

This chapter describes the current research of procedural generation methods,
volumetric terrain and feature creation for terrains. There are many proce-
dural methods used to create terrains and this chapter focuses on methods
suited for constructing volumetric terrains. The ways that terrain features
are formed geomorphologically is also discussed in order to form a basis for
how these processes can be transferred to virtual simulations.

Part of this chapter was presented in Dey & Konert (2016) as part of a
survey on current methods of procedural content generation for the domain
of serious games.

2.2 Background

This section presents a broad overview of the topics relevant to real world
terrains, procedural content generation and volumetric simulation in order to
provide the reader with context for the rest of the thesis. It briefly describes
the relevant concepts of geomorphology and provides background information
for the generation, processing and rendering of voxels.

2.2.1 Geomorphology

The field of geomorphology studies the formation of various types of land-
forms. This includes the creation of cliffs, natural arches and caves.

14

Cliffs are steep slopes that are formed by weathering and erosion. They
tend to form commonly around coastal regions and further wave erosion can
form notches into the cliff face (Huggett 2016).

The formation of both natural arches and caves generally follows a similar
process. Both tend to occur in karst terrain using erosion. A terrain can be
defined as karst if water dissolves soluble rocks in order to alter the topology
of the terrain above or below the water source (Jennings 1971). Natural
arches can form via limestone dissolution where a river cuts through narrow
bands of limestone. Furthermore, they can also occur when parts of a cave’s
interiors collapses and forming by the remaining cave ceiling.

Caves form via similar limestone erosion in karst terrain. In order to begin
forming, caves require a cavity filled with water that can dissolve rocks so
that the fluid can be channelled. Cave formations can be split into two types:
vadose and phreatic. The primary difference between vadose and phreatic
caves is the location of the water table relative to the cave entrance. Vadose
caves lie above the water table, whereas phreatic caves are below the water
table and are therefore filled with water (Bretz 1942).

2.2.2 Voxelisation

Modeling and editing the internal structure of geometry requires a volumetric
data representation. This can be obtained from polygonal geometry by the
process of voxelisation (sometimes referred to as 3D scan conversion). There
are a variety of methods to perform this conversion. Furthermore, as GPGPU
paradigms have come to the forefront of data processing in recent years,
massively parallel designs have heavily optimised voxelisation algorithms by
orders of magnitudes.

Different algorithms either perform a surface or a solid voxelisation. A
surface voxelisation generates voxels representing the external surface of the
supplied geometry. A solid voxelisation represents the surface as well as all
interior voxels. Solid voxelisations can be very useful for intuitive construc-
tive solid geometry.

Chen & Fang (1998) introduces an algorithm for surface voxelisation by
using the hardware rasterizer to render view restricted slices of fragments,
seen in Figure 2.1. Geometry is rendered multiple times using an orthogonal
projection matrix with increasing clipping planes. Fragments that pass the
depth test are rendered into the framebuffer, which is in turn copied into a
3D texture. After all slices have been rendered, the texture can be sampled

15

Figure 2.1: Illustration of volume slicing used in Chen & Fang (1998).

Figure 2.2: Illustration of using XOR to perform solid voxelisation. For each
face of the initial state with two shapes (left), voxels are counted to the
face and a bitwise XOR operation is used to compute the current bitstream
(middle-left, middle, middle-right), until the final voxelisation is computed
(right).

as a dense grid of voxels. Li et al. (2005) reduced the total number of render
passes of this method by utilising the concept of depth peeling (Everitt 2001).

Parity checks can be used with such slice based methods to determine
the existence of internal voxels and result in a solid voxelisation of an object
(Hales 2007). A voxel can be determined to be internal or external to an
object’s surface by accumulating the number of intersections from a ray cast
at each voxels position. This can be further optimized to apply an XOR
operation instead, such as in Fang & Chen (2000). An illustration of this
XOR method can be seen in Figure 2.2. Liao (2008) also uses a similar
method by utilising the GPU’s stencil buffer in a manner akin to the classic
shadow volume algorithm (Crow 1977). However, parity check methods only
work effectively with completely manifold, watertight meshes. A scene’s
meshes should also not be overly intersecting as this can generate voxels that

16

are false positives.
Karabassi et al. (1999) presented a simple surface voxelisation method

that uses 3 depth buffer pairs (one pair for each dominant axis) and renders
an object into each one. Whilst this method is fast and straightforward, the
main limitation is that it can only effectively voxelise convex meshes.

Eisemann & Décoret (2006) demonstrated a fast binary, surface voxeli-
sation method that can deal with dynamic objects in a scene. Eisemann &
Décoret (2008) later extend on this work to provide a single pass, solid vox-
elisation method. However, their reliance on depth buffers means that the
resulting voxelisation can suffer from false negatives due to depth disconti-
nuities.

Forest et al. (2009) create a hierarchy of mipmaps by calculating world
space positions of primitives, computing their appropriate voxels and stor-
ing the information in a 2D texture. This texture is mipmapped to create
a dense octree-like hierarchical structure, which provides the advantage of
accelerating raycast operations using less detailed mipmaps.

Thiedemann et al. (2011) removes the dependency on depth buffers in
their work and can effectively handle multi-valued voxelisations. This method
is limited by its need to fabricate a texture atlas beforehand, and this can
become a laborious and prohibitive process as models increase in complexity
and polygon count.

Schwarz & Seidel (2010) introduce fast, data-parallel algorithms for both
surface and solid voxelisations. They also apply the concept of conservative
rasterization to voxels in order to remove the limitation of other voxelisation
methods that require watertight meshes. While this is executed in a compute
shader on modern GPUs, the introduction of hardware accelerated conser-
vative rasterization may assist in increasing the efficiency of this technique
(Akenine-Möller & Aila 2005).

2.2.3 Volumetric Data Structures

Voxels can be used to represent a wide variety of attributes within a virtual
scene and have a number of applications in many domains, including medicine
and the film industry. Examples include approximating real-time global illu-
mination (Crassin et al. 2009), construction of deep shadow maps (Wyman
2011) and scattering simulations within participating media (Cerezo et al.
2005). They have also been used to create volumetric terrains due to their
ability to represent features such as overhangs, caves and arches (Peytavie

17

et al. 2009).
The main advantage of using voxels is their inherent ability to store in-

formation about the internal structure of the geometry. This is particularly
useful when the object being modelled consists of non-homogeneous data.
For example, a cloud can be modelled as a voxel grid of density values denot-
ing the number of light-interacting particles at uniform sample points of the
volume as per Tatarchuk (2015). Surface detail in this instance would not
be enough. Similarly, a terrain can consist of many different materials (e.g.
topsoil, sand, rock, etc.), which is pertinent information for this research.

However, voxel buffers do possess some inherent disadvantages. The pri-
mary drawback is that they are bound by memory limitations as their reso-
lution increases and can be infeasible to store in main memory, particularly
as real-time applications require memory for other purposes. Streaming this
data from a hard disk is usually too slow for immediate usage, although
there are some out-of-core algorithms that handle creation and modification
of voxel buffers such as in the work of Baert et al. (2014).

The most näıve form of storing voxel data is to use a dense 3D array of
values. While this provides very fast value lookups (O(1)), 3D arrays begin to
consume prohibitive amounts of memory at larger resolutions. For example,
a reasonably sized 20483 dense voxel grid containing a single floating point
value per voxel (assuming a 32-bit float on most modern compilers) would
consume 32GB of memory. Furthermore, as processing voxel data is a highly
parallelisable task, it is important that entire datasets are either fully resident
in GPU memory or the amount of streaming where sections of the data are
copied from the main memory to the graphics card memory is minimised.
This is a slow operation as it introduces CPU-GPU synchronisation points
that can stall the GPU and slow down processing significantly.

A straightforward improvement to the dense grid is to introduce the idea
of sparseness. A sparse structure only stores values for occupied voxels,
whereas a dense structure (such as a 3D array) stores values for every voxel
even if empty.

A simple sparse data structure for a voxel buffer is found in (Wrenninge
2012), where groups of voxels are separated into blocks. For example, a grid
with resolution 643 can be separated into 4096 blocks with resolution 43. The
process of writing a voxel to this grid works as follows:

1. Compute the block ID for the requested voxel index.

2. Check if the block that will hold the voxel has been allocated memory.

18

3. If it is not allocated, then allocate memory for the entire block.

4. Write the voxel value in the block.

This can save a substantial amount of memory, particularly when there
are large amounts of contiguously empty voxels in the data being voxelised.
However, due to the allocation of the entire block, some tweaking is neces-
sary to maintain a balance between performance and memory consumption.
Furthermore, if voxels of the dataset are sparsely distributed (e.g. only 1
voxel per block is written to) then there is a large amount of wasted memory
allocated to consistently empty voxels.

Recently, there have been advances in data structures used to store vol-
umetric data and these have significantly improved the memory footprint of
high resolution datasets (Crassin et al. 2009) (Museth 2013). For example,
the sparse property has been extended to include hierarchical data structures
such as octrees. Typically, an octree node stores pointers to its child nodes,
however, a common thread in many fast octree implementations is the use
of pointer-less data structures (Lewiner et al. 2010). Instead of pointers,
the children are stored contiguously along with the parent to exploit cache
coherent behaviour when traversing the tree. A further optimisation applied
to octrees is the use of Morton order encoding to provide fast neighbourhood
lookups and traversal (Baert et al. 2014).

Some of the octree implementations have been designed to be highly
parallel and work on GPUs as well. Crassin and Neyret (Crassin et al.
2009) construct a two-part sparse voxel octree (SVO). The first part only
allocates memory for valid leaf nodes (voxels that contain data) and stores
the structure of the tree in contiguous memory for all occupied leaf nodes.
The second part stores a brick pool in an array of 3D textures each containing
a brick (33 blocks of voxels containing the leaf voxel in the centremost texel
and its neighbour voxels in the surrounding texels). Each valid leaf node
contains an index into the brick pool and as the bricks are stored in a GPU
accessible texture, they can exploit hardware accelerated interpolation. This
is particularly useful for their use case of computing indirect diffuse lighting
to approximate global illumination.

Laine and Karras (Laine & Karras 2011) also create an efficient SVO.
Unlike (Crassin et al. 2009), all parts of the voxel data are on this occasion
contained within a single data structure. Laine and Karras use this data
structure to store contour data to better approximate the geometry of the
surface and the final voxel data is inferred from the non-leaf voxels. Instead

19

of empty regions, this SVO stores 64-bit child descriptors where 32 bits are
used for traversal of the tree. This representation resulted in significant
reductions in memory usage as well as fast rendering times assisted by quick
traversal times.

Kämpe et al (Kämpe et al. 2013) observed that at higher resolutions of
voxel grids, the data required to store an SVO was still prohibitive. They
presented a method using directed acyclic graphs (DAGs) that can compress
SVOs and significantly reduce memory usage. By utilising a bottom-up ap-
proach when processing the SVO, they created a DAG by linking identical
subtrees of the octree to the same interior node and thereby reducing the
number of links within the original data structure. However, this method was
only tested with voxels containing binary data and therefore may not create
such savings for multi-valued voxel datasets. A different sparse data struc-
ture that can be used to store volumetric data is the brickmap. Brickmaps
have been used for raytracing, in both offline renderers (Christensen & Batali
2004) and, more recently, real-time rendering (Swoboda 2013). Brickmaps
contain a sparse list of bricks where each brick contains volumetric informa-
tion for a small set of voxels. The key difference between an SVO and a
brickmap structure used for real-time raytracing is that there are only two
discrete levels used in a brickmap, a sparse map for looking up bricks and
a finer resolution voxel grid, found in each brick’s dataset. It is an efficient
data structure that can be quickly rebuilt and is therefore useful for more
dynamic scenes. This design however does not save as much memory as a
standard SVO.

Recently, Museth (Museth 2013) introduced a new sparse data structure
called VDB (Volumetric, Dynamic B+ trees) that offers a number of key
advantages to volumetric representations. It is cache coherent and demon-
strates fast rates of insertion, traversal and deletion operations. Unlike the
SVO which is primarily suited for static volumetric elements, VDB’s advan-
tages make it ideal for use with dynamic datasets and animations. The data
structure has been open-sourced as part of the OpenVDB library (Museth
et al. 2013). The VDB data structure has since been expanded upon to work
on GPUs by using memory pools and a hierarchical traversal method in the
work of Hoetzlein (2016).

20

2.2.4 Voxel Compression

One of the primary limitations with volumetric data representation is the
memory constraint. Large volumetric datasets can consume a prohibitive
amount of memory which can create a storage problem. The likelihood of
the dataset residing in main memory is also unlikely when the dataset is
sufficiently large, and thus can introduce a detrimental effect on performance
due to read-write latency between the main memory and the disk storage
medium. In order to mitigate the effects of this, there are a number of ways
to compress volumetric data to ensure that it is more manageable to use.

Run-length encoding (RLE) is one simple method of compression that can
work well with voxel terrains (Golomb 1966). As many procedural terrains
are initially constructed using gradient noise functions, they lend themselves
well to this compression scheme. Large numbers of adjacent, occupied voxels
can be encoded as a run-length and therefore have the overall size of the
voxel dataset reduced.

In large scale voxel worlds, many voxel engines dynamically stream in
and out chunks of voxels as the player traverses the terrain. As these chunks
will be loaded into main memory, it is prudent to ensure that they have a
minimal memory footprint. The LZ4 algorithm (Collet 2013) can be used to
dynamically compress and decompress data at a very high speed.

Lossless compression algorithms are important when it comes to medi-
cal data, such as MRI and CT scans. Lossy compression on such data is
unacceptable as accuracy is highly important. Compression schemes that
are lossless and specifically designed for volumetric data can be found in the
survey by Komma et al. (2007).

2.2.5 Volumetric Rendering

Volume rendering has a number of applications, especially in the medical
field. However, for this research the focus will be on the uses of PCG methods
to generate volumetric data and render it in real-time. Investigating methods
of art directed creation of volumetric data can be especially useful for content
creators in order to achieve a desired visual aesthetic.

Wrenninge (2012) details a modern production quality volume render-
ing pipeline and highlights the significance of voxels and their applications
when rendering 3D participating media such as fog, clouds and smoke. While
all important elements of the system are extensively described, the result-

21

ing system is not designed for real time usage, as it focuses on providing
straightforward implementation detail over optimised code.

Jönsson et al. (2012) provide a recent survey of illumination in volumetric
data. They focus on only surveying interactive methods that could be better
suited to real time scenarios depending on their speed. Due to the nature of
volumetric rendering, the authors also observe that the creation of algorithms
that work well with the GPU are necessary to result in methods that are
sufficiently interactive.

Most 3D applications make use of rasterization in order to render polyg-
onal models (Akenine-Moller et al. 2018). To render volumetric objects they
can either be converted to a polygonal mesh and rendered with rasteriza-
tion, or use a number of different volumetric rendering methods. Surface
extraction is the process of converting a volume to a rasterizable mesh and
is discussed further in Section 2.2.6.

An alternative to rasterization for volumetric rendering is known as splat-
ting (Laur & Hanrahan 1991). This technique is particularly well suited to
translucent volumes such as fog or smoke. An alpha-blended screen-aligned
sprite - a splat - is constructed at the position of each occupied voxel. The
splats are sorted by their respective depth values in order to render accu-
rately. However, additive blending can be used in order to prevent the need
for this sorting process.

A further technique of rendering volumes is by using a slice-based ap-
proach, where the volume is separated into layers perpendicular to the view-
ing direction (Milan et al. 2013). This can be well suited for a GPU as each
layer can be represented using a two-dimensional texture and the method
can take advantage of the blending hardware. However, many layers may be
necessary to render a volume with high fidelity; otherwise the final render
can have banding artifacts. Many layers would mean higher fill rate require-
ments and larger consumption of GPU memory, both of which can affect
performance adversely.

Signed distance functions (SDFs) can also be used for volumetric render-
ing by storing functional representations of geometry at points in 3D space
(Frisken et al. 2000). The process of rendering an SDF has been executed
by sampling a scene at points along a ray from the camera and subsequently
testing for intersections with the function. This method is known as ray
marching (Perlin & Hoffert 1989) and has been popularised by Shadertoy
(Quilez & Jeremias 2013).

It has also seen use in production rendering contexts where it can be used

22

for convincing, real-time, volumetric effects for video games (Hillaire 2015).
Utilising points at a fixed distance from each other is the simplest approach,
however this is not efficient when a scene consists of some objects close to the
near plane of the camera, and other objects much further away. The number
of points required to be able to march the entire scene linearly increases de-
pending on the distance of the furthest object from the camera. Furthermore,
when scenes consist of thin geometry, the sampling may miss the surface if
the sampling distance is larger than the thickness of the geometry.

Sphere tracing is a notable optimisation that provides a simple way of
heavily reducing the number of sampling points required for rendering an
SDF-based scene (Hart 1996). This works by the sampling point moving
along the ray as much as possible. This distance is computed by intersecting
a sphere with the SDF and moving the point along the ray by the amount
of the sphere’s radius. Keinert et al. (2014) have accelerated this process
by introducing an over-relaxation method when marching spheres along a
ray. This can offer a wide degree of flexibility and can scale well due to its
resolution independence.

The work of Wang et al. (2011) decomposes volumes into a hierarchical
tree data structure containing partial SDFs at each tree node. Constructing
a suitable SDF for complex volumetric features requires either the use of well-
developed tooling solutions or mathematically proficient users. Furthermore,
constructing robust meshes from SDFs can be a difficult and slow process to
perform on GPUs (Swoboda 2012).

2.2.6 Surface Extraction

Modern GPUs are highly optimised to process polygon-based inputs and do
not handle the rendering of volumetric data well. Therefore, it is necessary
to be able to extract a triangle mesh representation from a voxel dataset used
for a terrain, so that the GPU can rasterize the geometry efficiently.

Many techniques that require surfaces to be constructed from volumetric
data make use of the oft-cited Marching Cubes algorithm (Lorensen & Cline
1987). The Marching Cubes algorithm takes a 3D grid as input, with density
values at each corner of each grid cell and then generates up to 5 triangles
across intersecting edges that exhibit a “sign change”. A sign change occurs
when one corner’s density value is a different sign from its adjacent corner.

However, in terms of generating realistic geometry for terrain, the March-
ing Cubes algorithm has some limitations. The algorithm itself can exhibit

23

some ambiguous edge cases. In these cases, the algorithm does not know
whether the computed isosurfaces of the data fall inside or outside of the
geometry’s surface. This results in visible graphical artifacts in the output
mesh.

Furthermore, it is difficult to recreate sharp edges that can be found in
natural terrains in the form of cliff faces without substantially increasing
the resolution of the uniform grid that the algorithm processes. Resulting
geometry can look too smooth to represent realistic terrain. Additionally,
geometry can exhibit a blocky appearance when rendered. This is due to
the algorithm generating small triangles at points of the input data where
there are large changes in value (e.g. corners and edges of a mesh). The
inability to represent such areas effectively leads to inaccurate meshing and
jagged edges. Mesh smoothing is a method of ameliorating this artifact,
demonstrated by Swoboda (2012), who uses a Laplacian smooth operation
to improve the appearance of real time volumetric fluid simulations.

Raman & Wenger (2008) extend the lookup table for the standard march-
ing cubes algorithm to improve upon these limitations. They introduce an
extra label for classifying a vertex of a cube cell in an effort to reduce the
number of degenerate triangles created by the original algorithm. As a result,
this method creates 38 (6561) entries, instead of 256 entries, in the lookup
table. Otherwise, the algorithm remains the same. The extended table did
result in a substantial reduction of generated triangles, although the surface
extraction did take a significantly longer time. Furthermore, the method can
modify the resulting mesh’s topology and create non-manifold surfaces, with
the authors suggesting a post processing step to repair the mesh in these
cases.

One method of maintaining a good mesh topology was suggested by Ho
et al. (2005). They suggested Cubical Marching Squares. It functions by
unfolding each grid cell into six interconnecting squares and marching each
square individually. This has reduced the amount of geometric error com-
pared to the original Marching Cubes algorithm and eliminated the require-
ment for stitching together cracked meshes. Dual methods of surface extrac-
tion carry this name as they generate a dual of the mesh produced by primal
methods such as Marching Cubes, meaning that topologically each vertex of
the dual mesh corresponds to a face of the primal mesh. As such, they of-
fer the ability to better approximate a surface and reduce the appearance of
jagged artifacts prevalent in primal methods of surface extraction. One of the
earliest dual methods presented was Surface Nets (Gibson 1998). Similarly to

24

Marching Cubes, this algorithm operated on a cubical grid. However, it only
created a single vertex in close proximity to the surface for every grid cell
that intersected the surface and sets of 4 neighbouring vertices were linked
to form quads. The method then relaxes the mesh by iteratively translating
each vertex towards a point equidistant from the vertex and its neighbours, so
long as all vertices remain in their initial grid cell. Gibson suggests that the
method can be modified and extended upon by utilising different relaxation
schemes.

Dual contouring (Ju et al. 2002) has more recently become a popular
choice in generating mesh data for volumetric terrains (Cepero 2010). This
is predominantly due to generating both smooth and sharp edged meshes
effectively. A mesh is initially generated in the same way as the Surface Nets
method. The authors apply their method to a set of Hermite data (consisting
of positions and unit normals of the surface) and each vertex is placed at a
position that minimises a quadratic error function (QEF). As this method
can result in non-manifold meshes, the authors have carried out further work
to try and guarantee the manifold nature of the resulting mesh (Schaefer
et al. 2007).

As surface extraction is a highly parallelisable task, in order for dual con-
touring to be more performant in the context of real time simulations, it is
sensible to transfer its processing to the GPU. Schmitz et al. (2010) observed
that there were two qualities of the original dual contouring algorithm that
made this difficult. Firstly, minimising the quadratic error of the vertices
was not a trivial operation. Secondly, the method requires knowledge of
neighbouring vertices to effectively perform the minimisation process. They
suggested a particle-based approach, where forces at each vertex of the grid
cell were calculated and summed together to move the dual vertex. This
removed the dependency on neighbour information and eliminated the re-
quirement of a QEF and thereby produces a far more parallel approach that
results in a very significant increase in speed.

Adaptive Skeleton Climbing (Poston et al. 1998) has also been presented
as an alternative form of surface extraction. It generates polygons by working
on subsets of voxels in a cubical grid, rather than each individual cell. This
creates a mesh with substantially reduced polygons than Marching Cubes
as the polygons can be much larger in areas of similar values in the grid.
However, the main problem with this approach is that it generates a relatively
low resolution mesh as its output that still requires a post processing step
for artifact-free meshes.

25

2.2.7 Procedural Content Generation

Procedural content generation (PCG) is the process of creating assets for
use in virtual simulations in an automated fashion by way of “limited or
indirect user input” (Shaker et al. 2016). For large-scale games and simula-
tions the process of manual content creation can be an arduous affair. An
artist or designer must work through a content pipeline in order for a final
asset to be created for a virtual simulation. This process includes beginning
from initial concept sketches, modelling low level-of-detail models, adding
further details for higher-polygon models, creating high-fidelity textures (in-
cluding light maps for static, baked lighting as seen in Abrash (1997)) and
sometimes animating the model. Instead, procedural content generation can
be used at several points in the pipeline to reduce the labour cost involved
by computationally generating the outputs. Furthermore, a problem that
is present when creating assets for large-scale virtual worlds is the cost and
effort involved to author enough varied content. Variation is important so as
to prevent uniformity when a user is exploring a virtual world and assist in
player immersion and realism. PCG methods can help solve this by modify-
ing parameters of a base-level asset in order to generate potentially infinite
variations - depending on the range of the parameters and limitations set
by the users. Procedural generation has already demonstrated its viability
as it has been used in a number of mainstream computer games and some
prominent examples include:

� The Binding of Isaac - A “roguelike” game that generates dungeons,
enemy positions and types (McMillen & Himsl 2011).

� Borderlands - An FPS that generates weapons, their associated stats
and their abilities (Gearbox Software 2009).

� No Man’s Sky - A space exploration game that generates the majority
of the game universe, including entire planets, vegetation and creatures
(Hello Games 2016).

In this section, various PCG methods are reviewed and have been cat-
egorised into Noise-based and Rule-based methods, as well as a sub-section
detailing how semi-automated procedural generation can offer assistance to
a user.

26

Figure 2.3: Examples of 2D procedural noise (Left to right: Value, Perlin,
Simplex, Perlin FBM)

Noise-based

One of the fundamental features of PCG is the use of randomness to introduce
variance between generated content. This is primarily achieved by the use of
different noise algorithms. Some examples of procedural, 2D noise can be seen
in Figure 2.3. The cornerstone of noise that has seen use in many different
domains is Perlin noise (Perlin 1985). Perlin noise falls into a class of noise
known as gradient noise, where the resulting noise value is an interpolation
of other noise values based on pseudo-randomly generated gradient vectors.
This results in a smooth-looking noise and prevents sudden changes in noise
values when values are expected to be close together.

However, Perlin noise is slow to compute for higher dimensions and ex-
hibits recognisable artifacts in its output in the form of isotropic patterns.
Simplex noise (Perlin 2002) was created by Perlin to combat this. Gustavson
(2005) explains the implementation of simplex noise further in his work. It
works by interpolating gradients on a grid of “simplices”, where a simplex is
the simplest primitive found in a dimension e.g. a triangle in 2D and a tetra-
hedron in 3D. It has no obvious isotropic artifacts, offers a continuous and
cheap to compute gradient, and has faster performance at higher dimensions
(O(n2), compared to O(2n) for Perlin).

Other classes of noise include value noise and cellular noise (Ebert et al.
2002). Value noise assigns a random value to each point in a lattice and
then performs a linear interpolation between them. Cellular noise randomly
distributes a set of feature points and the noise value is computed by cal-
culating the distance from a point to the nearest feature point. Different
noise types can be generated in cellular noise by using a range of distance

27

heuristics (e.g. Manhattan, Chebyshev, Euclidean), as well as selecting the
nth closest feature point (Worley 1996).

Noise can also be generated from within the frequency domain. By editing
the spectral information of the noise function, the look of the resulting noise
texture can be modified to create values with the appearance of different
materials (Lagae et al. 2009). However, adjusting the power spectrum of
a noise image can be unintuitive. Galerne et al. (2012) realised this and
offered a detailed set of examples of different materials produced by specific
frequencies. Noise types are particularly useful for the generation of textures.
By applying mathematical operators and combining different noise textures,
many different material types can be created, including wood, marble and
brick. Procedurally generated textures have been used in relevant middleware
such as Terragen 3 (Planetside Software n.d.) and, more recently, Substance
Designer 5 (Allegorithmic n.d.).

Other types of noise can be used to create the illusion of moving fluids.
Perlin & Neyret (2001) introduced one such example as flow noise. In gradi-
ent noise a time parameter can be used to rotate the pseudorandom gradients
to simulate fluid flow. However, this is not particularly applicable to particle
systems or geometry as it is a texture-based approach.

In an effort to combat the limitations of flow noise, Bridson et al. (2007)
introduced curl noise. This is a very simple extension to add to any noise
function, where fluid dynamics are simulated by calculating the curl of a
generated vector field. The results of curl noise can be a convincing approx-
imation of real fluid dynamics, which is of particular interest in real-time
games and simulations (Swoboda 2012).

Rule-based

However, PCG is not only limited to the creation and utility of different noise
types. PCG can also use sets of rules and models. For example, Angelidis
et al. (2006) introduce a model for smoke simulation that can be controlled
by manipulating currents, adding swirling effects and applying some noise,
whilst maintaining the realistic appearance of smoke.

A formal grammar consists of a set of axioms (or rules) that recursively
expands an initial state for a number of iterations. This results in a structured
and repeatable result, so long as the same initial state and rules are used,
and variations can be created by simply altering the initial input state.

Lindenmayer systems, or L-systems, and their extensions have been fre-

28

Figure 2.4: A “Barnsley fern” generated with a 2D L-System

quently used in order to create smaller objects such as trees and foliage
(Prusinkiewicz & Lindenmayer 2012), an example of which can be seen in
Figure 2.4. They have since been used to generate road networks for ur-
ban environments as well as entire cities (Parish & Müller 2001). Lipp et al.
(2009) introduced a multi-threaded version of L-systems that performs faster
than the single threaded counterpart as it avoids inter-thread communication
and is completely lock free. As such, it can be easily deployed to massively
parallel architectures such as GPUs. The advantage of this is that very com-
plex L-systems with many rules can be used to generate results quickly and
efficiently.

Another form of grammar being adopted for procedural generation is the
shape grammar (Stiny 1980). Shape grammars function much like L-systems
and other grammars, where an initial shape is recursively applying rules that
govern the shape’s transformation, as shown in Figure 2.5. Selection of a rule
is dependent on the content of the intermediary steps of the transformation.
Wonka et al (Wonka et al. 2003) introduced the concept of a split grammar,
an extension to a shape grammar where rules are composed of basic shapes
and more detailed decompositions of the basic shapes. They used the gram-
mar to quickly create procedural architecture and the work has since been
expanded by Muller et al (Müller et al. 2006a). A visual editor to author
grammars for procedural architecture was developed by Lipp et al. (2008)
that offers content creators the ability to develop their own grammars with
minimal effort.

29

Figure 2.5: Example of a simple shape grammar manipulating an initial
state.

Procedural Assistance

Rule-based systems discussed in the previous section can also contribute to
methods that combine user direction with variation offered from procedural
generation. This is a particularly useful feature of any content creation tool
as it provides controls to otherwise arduous tasks. Nowrouzezahrai et al.
(2011) developed a tool to allow artists control over volumetric light trails.
By controlling the directions of the trails, the light transport and scattering
equations are dynamically calculated to provide the required design. These
kinds of controls are examples of procedural algorithms being able to assist
with manually designed content.

Procedural architecture is also an area where procedural generation is
used to assist in creating buildings, instead of completely automating the
process. Kelly & Wonka (2011) create a set of procedural tools to enable
the modelling of complex features of buildings. Dang et al. (2014) focus on
the manipulation of building facades. They do so by manually marking re-
gions of an input facade and, using the data, procedurally create resolution-
independent textures whilst maintaining awareness of the structural rela-
tionships within the input. Beneš et al. (2011) use the idea of procedural
assistance for procedural modelling of tree structures. By allowing a user
to manipulate initial guide diagrams, their system uses L-Systems to proce-
durally generate trees for virtual simulations by using the guides as a basis.
This is a further form of art-directable content being given a procedural sheen
in order to generate interesting, yet controlled, variants of geometry.

Specifically regarding terrains, Tasse et al. (2014) introduce a tool that

30

Figure 2.6: Example of heightmap (lower left) and its generated terrain mesh.

allows a user to sketch a terrain from a first-person camera. The sketched
lines are then processed and the terrain is procedurally created using the
sketched marks as guides.

2.2.8 Terrain Generation

There has been a significant amount of research in terrain generation, par-
ticularly when it comes to generating polygonal meshes, as modern GPUs
are optimised for rendering polygons. Terrain data can be represented as a
polygonal mesh or as a volumetric data set. It should be noted that volumet-
ric terrain is still commonly rendered as a set of polygonal meshes generated
by applying various surface extraction methods on the voxel representation
of the terrain. This is necessary as volumetric data can become inordinately
large at higher grid resolutions. A polygonal mesh that provides an accurate
representation of the surface of the data and falls within the constraints of a
GPU is important, especially for real-time rendering.

The most common ways of generating terrains use heightmap-based meth-
ods (Miller 1986). Heightmaps, in their most basic form, are single channel
(greyscale) textures where each texel represents a height of the corresponding
point on the terrain surface, as shown in Figure 2.6. Heightmap textures can

31

be user generated however, as this is an arduous and manual process, proce-
dural methods are utilised to automate the creation of terrains. Heightmaps
can be generated by using octaves of noise functions or more complex meth-
ods, such as applying filters to a noise texture in order to simulate erosion.
A survey of heightmap based methods can be found in (Smelik et al. 2009).
Since heightmaps consist of elevation data, their primary limitation is the
ability to represent concave features such as overhangs, natural arches and
caves.

Heightmaps can either be manually created or automatically generated.
Current popular game engines, such as Unity (Unity n.d.), Unreal Engine
(Epic Games n.d.) and CryEngine (Crytek n.d.), have sets of brushes used
to modify a heightmap manually. Brushes include the ability to raise, lower
and level out the terrain to various heights.

Automatic generation of heightmaps can be achieved procedurally using
noise as described in Section 2.2.7. Fractal noise created from multiple oc-
taves of Perlin or Simplex noise can achieve satisfactory results. However, as
noise creates heightmaps that are pseudorandom in nature, the terrain out-
puts are too random to be reflective of natural environments without further
artistic input.

Recently, Parberry (2015) analysed a large area of real world terrain and
observed that the gradient distribution was exponentially distributed. By
making a modification to the Perlin noise algorithm, the author found that
more realistic terrains could be created. Landscapes modelled purely on
Perlin noise distributed large gradients everywhere and therefore lacked in
areas that could be identified as landmarks. An exponential distribution of
gradients created smoother terrains, whilst adorning the landscape with cliffs
and mountainous regions.

Fractal terrains can also be created with other means. For example,
Fournier et al. (1982) introduced a method that modifies the grid mesh di-
rectly. Fractal midpoint displacement (or commonly known as the diamond-
square algorithm) processes a grid of vertices. It then alternates between a
“diamond step” and a “square step”, where vertices at midpoints of these
shapes are displaced by a random value, as shown in Figure 2.7. This algo-
rithm can automatically produce a random looking terrain with little initial
effort and while this is satisfactory for many applications, the generated
terrains do not vary in terms of features, i.e. the entire terrain seems moun-
tainous with no areas of flat plains. This is not the case for real world
terrains, where features such as craggy mountain ranges, hilly plains and

32

Figure 2.7: Visualisation of the diamond-square algorithm for gen-
erating fractals. Image from: https://en.wikipedia.org/wiki/Diamond-
square algorithm

smooth shorelines exist together. Furthermore, as this algorithm runs com-
pletely automatically, it does not offer the user any control over how the
resulting terrain will appear. Any custom modifications to the terrain have
to be done by editing the mesh directly. It is important to be aware of such
algorithms and the benefits that they can offer, but as this research focuses
on user driven procedural generation, similar fully automatic algorithms are
not considered to be part of the final system.

2.3 Related Work

This section contains existing work that relates to the domain of terrain
generation. Critical assessments of the relevant literature are provided and
their solutions to related terrain generation problems are reviewed.

2.3.1 Erosion Simulation

Procedural models that are particularly suitable to terrain generation are
various erosion models. In the field of geomorphology there are a number
of factors that can affect how a terrain is formed and manipulated over the
course of time. Factors include the surrounding climate (e.g. temperature
levels, and frequency and intensity of precipitation), the composition of the
soil, vegetative cover and topography. As there are a number of factors
to consider when creating a computational model of erosion, many existing
models tend to select only one or two to simulate.

Some erosion models are directly applied to heightmaps. Anh et al. (2007)
use the GPU to model terrain erosion due to water sources depositing sedi-

33

ments. This is done via a pixel shader that takes two textures that contain
relevant erosion parameters. However, the presented approach does seem to
be rather slow when simulating the erosion. The shader provided is a reverse
version of their model as they observe that pixel shaders cannot randomly ac-
cess values in the heightmap. With the advent of DirectX 11, this is no longer
the case as pixel shaders (like compute shaders) have the ability to randomly
access textures. Thus, a modern implementation that better reflects their
model and makes appropriate GPU optimisations could be implemented and
may be faster on current GPUs.

Beneš & Arriaga (2005) present a method to create mesas (or table moun-
tains) by utilising two separate heightmaps that represent different materials.
The first heightmap represents hard material that cannot be eroded, whereas
the second represents erodible soft material. During the simulation the softer
material is reduced and distributed to neighbouring cells of the heightmap
via gravity driven diffusion. This continues until either all of the material
has been distributed or equilibrium has been reached with a neighbouring
cell. Benchmarks were not provided for the speed of this method. However,
the results produced seem realistic for this particular terrain feature and
demonstrate the capability of erosion methods on simple heightmap based
methods.

Beneš (2006) presents a volumetric method that models hydraulic erosion
for terrain. He combines fluid dynamics with sediment transportation. By
utilising voxel data both fluid and sediment information can be stored in a
single voxel. This can then use the canonical fluid dynamics equations to
model the movement of the fluid resulting in sediments being transported
around the terrain and eroding certain parts of the terrain over time. It is
proposed that only small scale erosion can happen as the amount of data
required for storing large volumetric terrains is excessively large, although
this may no longer be the case with the use of newer data structures as
described in Section 2.2.3, such as sparse voxel octrees.

Another volumetric approach is described by Hudák & Durikovic (2011)
where they also take the fluid dynamics route. Instead of creating a voxel
grid, they generate a large number of particles with an associated material.
The movement of these particles is then simulated using smoothed particle
hydrodynamics, which results in realistic, volumetric mass movement of ter-
rain segments. However, this method is far from a real time solution and
does require that a surface be extracted from it afterwards.

34

2.3.2 Terrain Generation

While heightmaps are relatively straightforward and intuitive to create ter-
rains, some features of real world landscapes can be more complicated to
generate using heightmaps alone. Features such as caves and overhanging
cliffs cannot be represented by single height values and thus call for a dif-
ferent method of creation. One workaround was presented by Gamito &
Musgrave (2001), where an existing heightmap was warped using a flow field
(a vector field representing velocities at points in a specified space). This
resulted in overhanging terrain being generated in a simple manner. How-
ever, the main limitation of this method is that a specific flow field needs
to be defined before the deformation takes place and this can be a complex
process.

Volumetric terrains can effectively and intuitively represent the structures
that are not feasible in heightmap based methods, as the data is stored per
relevant point in space. This is a substantial advantage as it allows the
formation of realistic terrain features necessary to enhance visual fidelity for
modern games.

Minecraft (Mojang 2011) is an example of a well-known contemporary
game that demonstrates the use of volumetric terrain. Worlds are made of
cubes and stored within “chunks” of voxels. A chunk consists of a subset of
the entire voxel data and in Minecraft, a chunk’s dimensions are 16x16x256
voxels resulting in a total count of 216 voxels per chunk. While Minecraft
is not representative of terrain in the real world, other works use similar
concepts to produce voxel-based terrains.

Santamaŕıa-Ibirika et al. (2013) demonstrate one such example as they
utilise a chunk-based approach to procedurally generate small voxel based
terrains. Multiple materials can be added to the terrain as this process is
simplified by separating the voxels into chunks. This method is highly user
driven as materials are provided by the user at design time and the generator
creates the terrain based on a set of input textures that contain the required
material data. However, for generating a considerably small volume with
a resolution of 503 voxels, generation takes over 300ms with their online
algorithm. This time is prohibitively slow for real time usage.

Peytavie et al (Peytavie et al. 2009) use a hybrid of a stack-based ap-
proach to store different materials and a signed distance field to assist in
sculpting the terrain. A benefit of this description is that an erosion approx-
imation can be trivially and efficiently implemented to model more realistic

35

Figure 2.8: Koca & Güdükbay (2014) process of terrain editing, construct-
ing a coarse voxel model (left, middle left) and refining sections using a
heightmap (middle right, right).

terrain. Furthermore, the signed distance field representation allows for a
number of Boolean operations to be applied to the landscape, which results
in intuitive controls for the designer. This means that sculpting and approx-
imating erosion can be trivially and efficiently implemented to model more
realistic terrains. The terrain is rendered in real time by the work of Löffler
et al. (2011). They generate a level-of-detail hierarchy to ensure that distant
parts of the terrain are drawn with less detail and also perform a surface
extraction of the terrain data entirely on the GPU. However, this process
does require that portions of the resulting mesh be stitched together with
neighbour mesh segments which can adversely affect performance. Scholz
et al. (2013) improve upon this by developing a hexahedral based method of
rendering volumetric terrain that requires no stitching and produces a mesh
consisting of triangles with levels of detail.

Another hybrid approach is presented in Koca & Güdükbay (2014), which
combines voxels and heightmaps. This approach creates a coarse voxel grid
that can represent caves and overhangs and splits the entire voxel grid into
patches, as seen in Figure 2.8. The authors then extract the surface to form
the polygonal geometry required for rendering. The resulting geometry is
subsequently displaced by heightmaps assigned to each patch. The process
allows them to represent terrains with volumetric features, whilst maintaining
a low voxel grid resolution.

Becher et al. (2017) demonstrated a user-directed method of generating
terrain features. User-generated curve-based primitives are superimposed
onto existing terrain geometry. These curves are then voxelised in order to
produce a signed distance field representation of the terrain which is then
rendered. This method requires a separate voxelisation step for the feature

36

curves. Furthermore, the diffusion based terrain generation is slow for real-
time rates.

2.4 Summary

While there is a significant amount of literature surrounding procedurally cre-
ated terrains, this primarily pertains to heightmap-based terrain generation.
There is comparatively little surrounding the generation of terrain features
that cannot be modelled with heightmap-based approaches. Whilst there are
methods to workaround these limitations to produce specific features such as
overhangs (Gamito & Musgrave 2001), a volumetric terrain representation is
the ideal method of creating these missing components.

Current procedurally generated volumetric terrains are predominantly re-
liant on noise-based generation with a modicum of user-directed control. Fur-
thermore, most work focuses on the generation of complete terrains, rather
than individual features. There is also sparse work on the use of rule-based
procedural generation for terrains, and no research to our knowledge on the
generation of volumetric terrain features, such as overhangs, caves and arches,
using sets of rules.

Based on this literature review, gaps that can be identified in the current
body of terrain generation literature are:

� Rule-based and other procedural methods of generating overhangs,
arches and caves for terrains.

� User-directed techniques to parametrically control procedurally gener-
ated volumetric terrain features.

The most relevant literature that will inform the remainder of this thesis,
along with their respective conclusions and comments, has been highlighted
as follows:

Citation: Gamito & Musgrave (2001)
Conclusions: Overhangs can be constructed with by warping the highest
elevation datapoints of a heightmap using a preconstructed flow field.
Comments: Creation of a flow field is an arduous process. Warping the
terrain to create overhangs that fit a specific aesthetic desired by the user is
difficult.

37

Citation: Peytavie et al. (2009)
Conclusions: The combination of material stacking and signed distance
field rendering allow for intuitive creation of volumetric terrain features.
Comments: Surface extraction of the terrain data requires that meshes be
stitched together which can negatively affect performance. Signed distance
field rendering may be less performant on less capable GPUs and may be too
expensive to fit into a modern real-time simulation graphics pipeline.

Citation: Santamaŕıa-Ibirika et al. (2013)
Conclusions: Creation of volumetric terrains with multiple materials, driven
by user-defined texture data representing material information for the ter-
rain.
Comments: Prohibitively slow at low-resolution voxel grids means that is
not suitable for real-time usage.

Citation: Koca & Güdükbay (2014)
Conclusions: Hybrid method using low-resolution voxel grids to represent
areas of caves and overhangs. The extracted surface mesh from this repre-
sentation is then displaced with local heightmaps to generate detail.
Comments: Laborious process of defining heightmaps for specific terrain
feature areas means that it is difficult to achieve a user’s specific art direc-
tion.

Citation: Becher et al. (2017)
Conclusions: Intuitive, user-directed method using hand drawn curve-based
primitives, which then has diffusion-based methods applied to the resulting
mesh to generate topologically realistic terrain.
Comments: Requires the use of a separate voxelisation step. Diffusion
based method is slow for low resolution voxel grids, so this is not a particu-
larly interactive method.

38

Chapter 3

Voxel Grammars

3.1 Introduction

Generation of terrains can be a particularly important process when creating
realistic representations of virtual worlds, as found in computer graphics
simulations, feature films and computer games with outdoor environments.
So far, there has been a considerable amount of research in this domain,
which ranges between fully automated and semi-automated methods.

While it is now feasible to create massive virtual worlds, the tasks of
designing the terrain, populating the world with content, and, finally, ensur-
ing it does not feel empty or barren, continue to be very time consuming
processes. Procedural content generation (PCG) has many applications and
has proven valuable to designers due to its ability to algorithmically produce
content such as the generation of textures, geometry and animations (Ebert
et al. 2002) so it can greatly improve the cost efficiency of populating a vir-
tual environment. PCG will be used in this research to assist designers and
shorten the length of time to create large scale landscapes.

Traditionally, terrains are defined by their surface details using a texture-
based approach representing a top-down, two-dimensional view, called a
heightmap. However, the details beneath the terrain surface have a sig-
nificant impact on how the terrain is formed and its eventual appearance.
This research uses volumetric data to represent terrain. This is important as
it provides meaning to the details that are not visible to the user. Various
factors, such as soil type and material density, govern how terrains are cre-
ated in the real world. This can be modelled accurately when a voxel-based

39

approach is utilised. A further advantage of this approach is that both con-
structive and destructive methods to terrain creation can be adopted without
being concerned about real-time polygon mesh editing, i.e. a surface can be
extracted from the voxel data after the data has been constructed to the
designer’s liking.

This chapter proposes a procedural, voxel-based approach to assist users
in the generation of key terrain features, such as overhangs and caves. The
presented method expands the concept of shape grammars to a volumet-
ric space and explains the process employed to create terrain features. We
develop specific rulesets that are applied over a voxel dataset in order to
create such features on the CPU. We also describe some good practices to
be utilised when developing these rulesets. The final terrain mesh is gener-
ated at real-time frame rates by using our GPU-based surface nets algorithm.
Furthermore, we present timings and memory usage from our results for the
generation of the voxel data using different rulesets plus the performance
statistics of our GPU surface extraction algorithm.

This chapter was published in the Entertainment Computing journal (Dey
et al. 2018).

The proposed method involves aspects of multiple domains, including
terrain creation, data structures to manage voxel datasets and rule-based
procedural generation methods.

Volumetric representations of terrains enable the creation of features such
as overhangs and caves. Peytavie et al. (2009) combines a voxel-based terrain
with signed distance fields that allows for a highly user-directed process.
However, SDF rendering can be slower on less capable GPUs and may be
too expensive to slot into a real-time workflow.

To our knowledge, there is no available literature for a rule-based ap-
proach to procedural generation of terrains. However, rule-based procedural
generation is prevalent in automatic guided creation of cities (Parish & Müller
2001) and buildings (Müller et al. 2006b), utilising concepts of L-systems
(Prusinkiewicz & Lindenmayer 2012) and shape grammars (Stiny 1980), re-
spectively. We borrow the concepts of shape grammars in our method to
construct rules that can be used to create volumetric terrain features.

40

3.2 Voxel Grammars

This section describes how the concept of voxel grammars was formulated in
this thesis. The individual components that comprise a grammar are detailed,
as well as the process of how they are used during the generation phase. Voxel
grammars have been inspired from voxel space automata (Greene 1989),
where voxels are generated via a set of predefined rules. Greene primar-
ily uses this method to simulate plant growth. However, adding detail to
existing geometry is a further application of this approach.

Our method extends the concept of recursively manipulating volumetric
data governed by a set of rules to the formation of specific features found in
real world terrains. The method operates on a voxel grid that defines the
terrain boundary. Each voxel is represented by a density value of the terrain
material contained within it. Voxels are generated within the grid to create
an initial state. The initial state in this work was constructed by voxelising a
heightfield generated with 3 octaves of 2D Perlin noise, as it is a common way
of generating plausible procedural heightmap-based terrain. We use multiple
octaves at differing frequency values to ensure the initial terrain contains a
sufficient balance between low-frequency and high-frequency details, so that
it is not too smooth or too noisy, respectively. The populated voxel grid is
then derived using a sliding window approach, checking whether the subset
of voxels within the window satisfies any rule criteria. If a matching rule is
found, then its respective transformation is performed on the voxels. The
window is subsequently repeatedly offset by a user-defined stride parameter.
The derivation process is then repeated for a number of iterations (exposed
as a parameter to the user). Furthermore, the user can define a start and
end position within the voxel grid to determine which section of the grid
the grammar is applied to. The combination of bounding values, the sliding
window stride and symbol grid sizes can reduce the state space for a large
voxel dataset.

The voxel grammar presented in this chapter can be represented formally
as:

41

G = f(V,R)

R = 〈s ∈ S, t ∈ T 〉
v ⊆ V

V ′ = ∀v ∈ V

{
t(v) if s(v) = True

v otherwise

(3.1)

Where the voxel grammar G is a function acting on the set of voxels V
with a predetermined ruleset R. The ruleset consists of a collection of tuples
containing a symbol function s from the set of all available symbols S, and a
transform function t from the set of all available transforms T . v is a subset
of the voxels determined by the stride and the bounds of the aforementioned
sliding window. For all of the selected subsets of voxels, t is applied to v if
s successfully matches the subset of voxels, otherwise v remains unchanged.
V ′ is the resulting set of voxels after valid transformations have taken place.

3.2.1 Rules

The rules within the class of grammars that we have developed consist of
three components - symbols, transformations and priority values. Symbols
consist of a list of predicates to satisfy and transformations contain a list
of mutations to apply to a subset of voxels. This can be seen as akin to
a rudimentary programming language to a certain extent, as symbols and
transforms are, respectively, analogous to conditional statements and intrin-
sic functions. Rules also possess a priority value that governs the probability
that the rule will be selected for execution in the rule matching stage of the
algorithm.

The voxel grammar G can be further formalised using L-system notation.

G = 〈V, ω, P 〉 (3.2)

Where ω is the initial state of the voxel grid and P is a set of rules that
transform subsets of voxels in the form (s, t). s ∈ V is the list of predicates,
which we refer to as a symbol and t is the transform to apply to the subset
of voxels. V is the set of all tensors of size I × J × K of predicates. The
predicates operate over the domain of real values and thus effectively enable
the use of a theoretically infinite alphabet. As the values in a voxel grid in our

42

implementation are stored as a single 32-bit floating point value, realistically
the expressive range of the grammar is subject to the size and precision of
the voxel values stored by the underlying voxel engine.

3.2.2 Symbols

Figure 3.1: Examples of simple two dimensional symbols. Rule symbols
(left), input voxels (centre) and results (right)

A rule’s symbol is a list of conditions in the form of an I×J×K array that
determines whether the rule’s transformation will be executed. Each symbol
entry in the array consists of an operator and a data value. The operator
refers to the type of condition being checked and uses the data value as a
comparator to the input voxel value. In order to ensure flexibility, there are
a number of operators that have been implemented and their descriptions
can be found in Table 3.1. Illustrations of two-dimensional symbols can be
found in Figure 3.1.

43

Symbol Operator Description
IGN Ignore - Always returns true.
PRES Present - Passes if voxel density value is greater than 0.
ABS Absent - Passes if voxel density value is 0.
EQ Equals - Passes if voxel density value is equal to the symbol value.
NEQ Not Equals - Passes if voxel density value is not equal to the symbol

value.
LT Less Than - Passes if voxel density value is less than the symbol value.
LEQ Less Than or Equal - Passes if voxel density value is less than or equal

to the symbol value.
GT Greater Than - Passes if voxel density value is greater than the symbol

value.
GEQ Greater Than or Equal - Passes if voxel density value is greater than

or equal to the symbol value.

Table 3.1: List of symbol operators

44

3.2.3 Transforms

Figure 3.2: Example of a simple two dimensional transformation. Rule trans-
form (left), input voxels (centre) and output voxels (right)

A transformation consists of a list of manipulations in an array with
the same dimensions as the rule’s symbol and is only applied to the voxel
grid when the symbol’s criteria have been fulfilled. Similarly to symbols,
transformations also consist of an operator and a data value. The selected
voxel’s density is manipulated in a way determined by the type of operator
being used plus the data value. Descriptions of the operator types can be
found in Table 3.2 whilst Figure 3.2 demonstrates a simple example of a
transformation.

Transform Opera-
tor

Description

NOP Does nothing to the value of the selected voxel.
SET Sets the selected voxel value to the transform value.
ADD Adds the transform value to the selected voxel value.

Table 3.2: List of transform operators

3.2.4 Rule Priority

As grammars become larger and more complex, there can be times where
a set of input voxels can satisfy the conditions for multiple rules. In our
implementation, each rule contains a priority value as part of its parameters.
When there are multiple matching rules, the priorities are sorted and the
rule with the highest priority value is selected. If the priorities match, the
selected rule is chosen stochastically from the matches. The greatest priority

45

is used in order to simplify the creation of grammars, as this allows designers
to create rules using a more intuitive approach by introducing more control
in the variations, instead of relying on a probabilistic method.

3.2.5 Grammar Construction

During the course of constructing grammars, some observations were made
about the effects that certain components of rules had on the resulting vox-
els. When some rules were matched with the voxel grid, an issue that arose
was the repeating, uniform patterns. For natural looking terrains, this symp-
tom is usually undesirable. One method of alleviating this is to introduce
some variance to the rules. This can be achieved by creating a rule with
the same symbol values and the same rule priority value, but with a trans-
formation consisting entirely of NOP operators. This method exploits the
mechanisms of our rule-matching system: as the priority value remains the
same, when the appropriate symbol is matched, the rule selector will either
apply a transformation or do nothing based on a random probability.

When developing grammars, it is also prudent to be wary of overuse of
the IGN symbol operator. A symbol consisting entirely of these operators
should almost always be avoided, as it matches with the entire voxel grid.
This can result in severe consequences, where transformations are applied
globally to the entire voxel grid which is typically not what the designer
intended.

3.2.6 Derivation Process

The final grammar processing method occurs in two stages: rule match-
ing and replacement. The rule matching stage iterates through the ruleset
and checks whether the rule’s symbol matches the group of currently selected
voxels. Firstly, the rule with the largest dimension symbol is found and a
sliding window of this size is passed along each axis. The voxels contained
within this window are the currently selected voxels. These are used to com-
pare against the symbol of all rules that have the same symbol dimensions. If
there are matches, then the replacement stage occurs. This process continues
until all rules have been queried. Pseudocode for this process can be found
in Algorithm 3.1. Replacement is simply the process of transforming the set
of matching voxels with the selected rule’s transformation.

46

Algorithm 3.1 Pseudocode for deriving the voxel data.

Require: Rules sorted in descending order of symbol dimensions
for all iterations do

for all rule in rules do
voxelSubset ⇐ Select voxels of size rule.symbol.dimensions
while voxelSubset position 6= voxel grid bounds do

if voxelSubset satisfies rule.symbol then
Add rule to matchArray

end if
Move voxelSubset along axis

end while
end for
if matchArray 6= empty then
rule ⇐ select from matchArray
Execute rule.transform

end if
end for

Figure 3.3: Simplified voxel grammar derivation process.

47

A simplified illustration of a voxel grammar in two dimensions is shown
in Figure 3.3, where two rules are matched on a set of input voxels and their
respective transforms are used to output a changed set of voxels.

3.3 Method and Implementation

This section discusses how grammars were designed for use with the proposed
method. Explanations are provided as to why each rule was constructed. The
topologies resulting from cave and overhang formation tend to be very dif-
ferent and, as a result of this, two grammars were constructed with different
rulesets to enable the creation of these terrain features. Each rule in both
rulesets is given the same priority value as all of their respective symbols are
different. Thus, there are no other rules to choose between when the rule
selection portion of the derivation process takes place.

Grammars for each feature were constructed by first breaking down the
formation of a feature into steps and then generating rules that corresponded
to those steps by trial and error. After numerous iterations, resulting rulesets
for overhangs and caves can be found in Tables 3.3 and 3.4.

3.3.1 Cliffs and Overhangs

Figure 3.4: Example of impossible floating terrain segment.

A feature found in rich terrains is the formation of naturally occurring

48

Rule 1
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 LT 0.5 IGN NOP NOP NOP
GEQ 0.5 LT 0.5 IGN NOP NOP NOP
GEQ 0.5 LT 0.5 IGN ADD -0.5 NOP NOP

Rule 2
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 GEQ 0.5 IGN NOP NOP NOP
GEQ 0.5 LT 0.5 IGN ADD -0.5 NOP NOP
GEQ 0.5 GEQ 0.5 IGN NOP NOP NOP

Rule 3
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 GEQ 0.5 GEQ 0.5 NOP NOP NOP
GEQ 0.5 LT 0.5 IGN NOP ADD 0.5 NOP

IGN LT 0.5 IGN ADD -0.5 NOP NOP

Rule 4
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 GEQ 0.5 IGN NOP NOP ADD 0.5
GEQ 0.5 GEQ 0.5 IGN NOP NOP ADD 0.5
GEQ 0.5 LT 0.5 IGN NOP NOP NOP

Table 3.3: Ruleset for generating overhangs

49

Rule 1
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 GEQ 0.5 LT 0.5 NOP NOP NOP
GEQ 0.5 GEQ 0.5 LT 0.5 NOP ADD -0.5 NOP
GEQ 0.5 GEQ 0.5 LT 0.5 NOP NOP NOP

Rule 2
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
GEQ 0.5 GEQ 0.5 GEQ 0.5 NOP ADD -0.5 ADD -0.5
GEQ 0.5 GEQ 0.5 LT 0.5 NOP ADD -0.5 ADD -0.5
GEQ 0.5 GEQ 0.5 GEQ 0.5 ADD -0.5 ADD -0.5 NOP

Rule 3
Size: [3, 3, 1], Weight: 1.0

Symbol Transform
LT 0.5 LT 0.5 GEQ 0.5 NOP NOP ADD -0.5

GEQ 0.5 GEQ 0.5 GEQ 0.5 ADD -0.5 ADD -0.5 ADD -0.5
LT 0.5 GEQ 0.5 GEQ 0.5 NOP ADD -0.5 NOP

Rule 4
Size: [4, 4, 1], Weight: 1.0

Symbol Transform
LT 0.5 LT 0.5 GEQ 0.5 IGN NOP NOP ADD -0.5 NOP
LT 0.5 GEQ 0.5 GEQ 0.5 IGN ADD -0.5 ADD -0.5 ADD -0.5 NOP

GEQ 0.5 GEQ 0.5 GEQ 0.5 IGN NOP ADD -0.5 ADD -0.5 NOP
IGN IGN IGN IGN ADD 0.5 NOP NOP NOP

Table 3.4: Ruleset for generating caves

50

cliffs and overhangs. Similar to caves, they are formed due to erosion from
water and weathering effects. Assuming an input of a solid, vertical wall of
voxels, the ruleset contains one rule to remove voxels towards the base of the
wall and another to add some detail. On their own, these rules produce some
unnatural looking features (regularly spaced voxels) and some impossible
features (floating segments of terrain) as seen in Figure 3.4. In order to
mitigate this, another rule was added that acted as a “clean up” action.

3.3.2 Caves

The formation of caves is governed by the erosion of the different types of
rock. Existing fractures already within the terrain structure are eroded by
groundwater. In speleological literature, cave topology can be defined as
vadose or phreatic and is determined by the proximity to the groundwater
source (Bretz 1942). This research emulates the formation of such types
of cave by finding a suitable approximation that can be decomposed into a
grammar.

The first rule is designed to create an initial starting point for the cave
to be generated, which emulates the initial entry point for groundwater to
begin creating caves within a section of the terrain. Gravitational forces and
further groundwater erosion are emulated using the second and third rules,
which lower the density of the lowest vertical point within a cavity in the
terrain. The fourth rule is designed to widen existing cavities in the terrain
in order to provide the resulting cave with more internal space, as well as
offer some variation to the cavern’s internal structure.

3.3.3 Surface Extraction

The polygonal mesh is extracted from the voxel data using the surface nets
method (Gibson 1998), where the global energy minimisation strategy used
for creating the surface is defined by the centre of mass of each voxel’s edge
intersections. This is more commonly referred to as the naive surface nets
variant (Lysenko 2012).

This article utilises a version of the naive surface nets algorithm that ex-
ecutes entirely on the GPU. The algorithm is capable of high parallelism,
therefore executing compute shaders on the voxel data can be greatly benefi-
cial in terms of performance, as a large number of threads can be launched to
work on individual segments of the data concurrently. The method we have

51

developed executes several compute shaders and pseudocode of each shader
is shown in Algorithms 3.2-3.5.

The ComputeCOM shader writes to a linear array of 3D position vectors.
This array represents the dual mesh of the input voxel grid. Each thread
in the shader reads a section of voxel data in 23 groups. It then sets the
initial position to be the centre of this group and interpolates the position
using the direction and densities for each voxel, which is written to the final
centre-of-mass buffer.

Construction of the vertex and index buffers is relatively straightforward.
Each vertex in the vertex buffer corresponds to each individual element in
the centre-of-mass buffer. When an element is added to the vertex buffer,
its array index is written to a 3D array of integers that is used as a lookup
table. After this process has completed, the construction of the index buffer
takes place. The index of the thread in the ConstructIndexBuffer shader is
used as an index into the lookup table. The thread subsequently queries the
neighbours of this index to see if values exist in the table to create a triplet
of indices. The triplet is then added to the index buffer.

The vertex normals of the mesh are computed as a separate shader after
the GPU buffers have been constructed successfully. The ComputeNormals
shader uses the index buffer and a cross product operation to calculate the
normals for each vertex in the vertex buffer.

Algorithm 3.2 Pseudocode for computing the centres of mass of each voxel

function ComputeCOM(voxels):
mass⇐ 0
massCentre⇐ 0
massCentres⇐ {}
for all v in voxels do

for all n in v.neighbours do
mass = mass+ n.value
massCentre = massCentre+ (mass× n.position)

end for
massCentre = massCentre÷mass
Append massCentre to massCentres

end for

52

Algorithm 3.3 Pseudocode for computing the vertex buffer of the extracted
surface.

function ConstructVBuffer(massCentres):
vbuf ⇐ {}
vertexLUT ⇐ {}
for all m in massCentres do

Append m to vbuffer
Add index of last element in vbuf to vertexLUT

end for

Algorithm 3.4 Pseudocode for computing the index buffer of the extracted
surface.

function ConstructIBuffer(vertexLUT):
ibuf ⇐ {}
for all index in vertexLUT do

if index is valid and neighbours of index are valid then
Append index to ibuf
Append valid neighbours to ibuf

end if
end for

Algorithm 3.5 Pseudocode for extracting the surface of the voxel data.

function SurfaceExtract(voxels):
massCentres⇐ ComputeCOM(voxels)
vbuf, vertexLUT ⇐ ConstructVBuffer(massCentres)
ibuf ⇐ ConstructIBuffer(vertexLUT)

53

Figure 3.5: Examples of generated overhangs

3.4 Results

This section discusses the results obtained using the proposed method. Its
effectiveness is demonstrated by the examples of caves and overhangs gener-
ated by the process. The results have been obtained by deriving voxel grids
of several resolutions (323, 643, 963 and 1283). The final surface meshes are
rendered using a deferred renderer in DirectX 11 (Microsoft n.d.) on a PC
equipped with a 3.20 GHz quad-core Intel® CPU, 16 GB of RAM and an
NVIDIA® Titan X GPU.

When rendering the mesh, triplanar texturing is used to effectively blend
multiple textures (Geiss 2007). The weighting of each texture used at a point
on the surface is determined by the dominant axis of the surface normal and
the texture coordinate is calculated by the fractional part of the point’s world
space coordinate.

Examples of overhangs generated with the voxel grammar can be seen in
Figure 3.5. The first example demonstrates an overhanging ledge protruding
from the terrain with a plateau which appears naturally embedded within
the terrain. In a heightmap-based approach a ledge such as this would either
have to be stitched to the mesh to make a single mesh, or be rendered as a

54

Figure 3.6: Examples of generated caves

separate object. As our method integrates the features directly into the mesh
it avoids both of these options, so that the terrain can be treated as a unified
entity. The second example shows multiple overhangs being created within
a region of space in the terrain by increasing the range of the generation
bounding box and offers a flexible option of being able to generate repeating
volumetric features within a space. The third example presents another single
overhang, this time without a plateau.

Caves generated with our method can be found in Figure 3.6. The first
example shows a wide-mouthed cave constructed with our grammar, further
demonstrating the benefits of editing volumetric data directly. Achieving
this effect in a heightmap-based terrain would be a difficult task, as many
surfaces would have to be edited to recreate the concavity presented in this
image. The second example shows the grammar being applied to a smaller
region of the terrain, where the surface on the side has been eroded to present
a small network of caverns. The third image shows two medium-sized caves
that have formed next to each other. This has been achieved by modifying
the stride of the sliding window in the grammar generation parameters.

Table 3.5 shows the timings to generate cave and overhang examples in
different voxel grid resolutions. When timing the data, the voxel grammar

55

Grid Resolution
Generation Surface Extraction Rendering

Overhang Cave Overhang Cave Overhang Cave
323 3.477 9.204 0.125 0.117 0.778 0.777
643 32.008 89.059 0.271 0.281 0.915 0.919
963 111.331 314.384 0.578 0.604 1.126 1.129
1283 269.121 770.208 1.072 1.130 1.434 1.441

Table 3.5: Times taken to generate voxels from rulesets, extract surfaces and
render the meshes (in ms)

was set to derive the entirety of the voxel grid and the stride of the sliding
window was set to 1x1x1 to ensure that the worst-case performance statistics
were recorded.

The generation of voxels is the most expensive operation in the process
and this is to be expected as it currently does not utilise the GPU. Instead,
the voxel grid is derived on a single thread by the CPU and passed to the
surface extraction functions. However, even at the largest resolution the grid
was derived and voxels were generated in under a second. Generating voxels
for overhangs was consistently faster than for caves (between 2.6 and 2.9
times faster). The cave grammar’s last rule derives groups of 16 voxels at a
time and this would account for the increase in processing time.

Our compute shader variant of the surface nets algorithm has been able to
extract the surface of the volumetric data at satisfactorily fast rates. Meshes
were created within 1ms and this makes it particularly suitable for dynamic
editing of the voxel data, as the meshes can be regenerated at real-time
rates. Mesh construction for overhangs and caves both perform at similar
speeds as the algorithm is primarily bound by the voxel grid resolution and
is independent of the type of features being created in the terrain.

There is little difference between the time taken to render the meshes of
overhangs or caves and, as is expected, render times increase as the resolu-
tion of the grid becomes larger. This is due to the dual mesh grid required
for the surface extraction increasing in resolution and, therefore, increasing
the vertex count of the final mesh. However, this could be reduced by util-
ising various mesh simplification methods since the size of the polygons all
over the mesh is uniform. By simplifying the mesh, the triangle count of the
final mesh would be reduced and the GPU would have less work to execute.
Furthermore, level-of-detail methods can be applied to the mesh that would

56

make polygons distant from the camera larger, so that the GPU does not
spend time on rasterizing many small polygons far away from it that would
produce no discernible visual difference. It should also be noted that the sur-
face extraction creates the polygons in the index buffer in a non-deterministic
manner. While the resulting mesh is correctly produced, it may benefit from
some form of vertex cache optimisation, such as in Forsyth (2006), in order
to try and ensure that the data is in a more GPU-friendly format.

3.5 Summary

This chapter of the thesis presented a method for generating complex terrain
features using voxel grammars. Furthermore, it presented approaches on how
such grammars can be created and what considerations should be taken into
account when developing them.

The described methodology is effective in manipulating groups of voxels to
create topologies of interesting terrain features using a rule-based approach.
Comparing it to other forms of voxel terrain generation, this method provides
a semi-automated way of constructing plausible terrain features.

Utilising 3D gradient noise (Perlin 2002) is a simple and fast method of
generating volumetric terrains, however it is difficult to achieve a particular
aesthetic. If using the fractional brownian motion variant of gradient noise,
the controllable parameters are generally limited to the number of octaves,
lacunarity, gain and input seeds. This offers the environment designer no
further input on how the generated features will look. Furthermore, it is
possible to generate floating islands of voxels that are not connected to the
remainder of the terrain, which requires a further postprocessing step to fix.
Our method offers a designer control over the resulting aesthetic of a terrain
feature depending on the created input rules. Fixing floating voxels is also
catered for by introducing further rules in the grammar, without the need
for a separate postprocessing step.

An alternative method of constructing overhangs for terrains is presented
by Gamito & Musgrave (2001) and warps an existing heightmap with a pre-
constructed vector field. Creation of the vector field is a complex operation
and multiple vector fields must be constructed to enable different types of
overhangs. Our method is not hindered by the same issues and can use the
same ruleset on different input terrain sections to generate overhang varia-
tions.

57

However, the main limitation of this method is the substantially manual
nature of designing new grammars. While there are several aforementioned
factors that can be taken into account when creating rulesets, the approach
requires some considerable effort and experimentation. Symbols and trans-
forms in rules are concretely defined as a set of operators, but it would be
beneficial to create rules in more abstract terms to be more intuitive to
use. For example, this could be achieved by defining a symbol in terms of
the slopes and material types found in a region of voxels, instead of being
composed of a specific permutation of voxel densities. Similarly, defining
transforms to create a cliff or a cave at a location, instead of operating on
individual voxels, would be more useful for generating desired features more
quickly. As such, we have reserved future research to create more abstract
methods of defining rules in a grammar.

Furthermore, many terrain features such as caves can be formed in a re-
cursive manner, by modifying transform operator values at each recursion.
Currently, it is difficult to design grammars that perform such operations
effectively. In order to enable this functionality to the voxel grammar ap-
proach, rules that execute other rules with parameter deltas would need to
be added.

As this approach works on singular density values found within the ter-
rain, this implies the terrain is composed of a single material. However, real
terrains consist of multiple materials at multiple densities and ideally these
varying densities should be taken into account by adding a check for the
material type as a symbol operator.

The presented method is a single-threaded CPU implementation. As
the voxel grids the grammar is applied to increase in resolution, this will
detrimentally impact on performance. Therefore, it would be prudent to
design a GPU-based method of executing the grammar on the voxel grid to
maintain high performance in terms of time.

58

Chapter 4

Feature Generation for
Volumetric Terrains

4.1 Introduction

Heightmap-based terrains do not allow for specific features of terrains such
as cliffs, naturally-formed arches and caves. Volumetric representations of
terrains are not limited in any such way and are gaining traction in practical
applications such as procedurally generated computer games. This chap-
ter presents procedural methods for generating features that are found in
real world terrains and can be complex to represent using heightmap-based
methods.

This work has been produced for integration into PhyreEngineTM and
proposes a procedural method for each of the three main features found in
terrains by directly acting on the underlying volume representation.

This chapter is an extended version of a publication that was presented
as a poster at SIGGRAPH 2017 (Dey et al. 2017) and extends prior work
with voxel grammars where terrains are generated using a set of transforms
(Dey et al. 2018). These transforms are a set of voxel replacements and the
features described in this work here have been developed as more intuitive
extensions.

Existing methods for creating overhangs have applied vector displacement
to output vertices of heightmap-based terrains (Gamito & Musgrave 2001),
though this work relies on unintuitive manipulation of the vector field data
to achieve desired results. A hybrid approach introduced by Peytavie et al.

59

(2009) uses a signed-distance field to construct the terrain mesh. While
implicit surfaces allow for many operations to be performed on the mesh,
generating implicit functions can be computationally expensive. Recently,
(Becher et al. 2017) presented the concept of voxelising input feature curves
to form the terrain mesh, allowing for the formation of features such as
overhangs and arches. However, our method generates a set of local delta
values that can be applied directly to the volumetric data, which eliminates
the need for a separate voxelisation step.

4.2 Feature Generation

Features such as overhangs, arches and caves are commonly found in natu-
rally formed terrains. The ability to generate them easily for virtual terrains
allows for greater fidelity terrains to be used for games and simulations. This
section describes the method that we have used to generate overhangs, arches
and caves, respectively. Overhangs and arches are functions that generate a
set of local voxels that can be additively blended with the existing data to
create the desired topologies. The cave generation method is a subtractive
function utilising a particle-based approach that produces a set of negative
density values removing voxels in the terrain (when blended).

The user begins with either an empty or initialised voxel dataset. They
can then add either overhangs, arches or caves which are layered on top of the
existing data to ensure the editing is non-destructive. The parameters for the
features are set, an optional transformation matrix (translation and rotation)
is applied to the feature and the resulting voxel values are submitted to the
GPU for surface extraction and rendering. Each feature has user-defined
dimensions in voxels (Fdim) and the index of each voxel (I) being processed
is calculated as the unit cube coordinates of the current voxel (Vindex) within

the feature’s bounding box (I =
Vindex
Fdim

).

4.2.1 Overhang Generation

Cliffs and overhangs are formed primarily by erosion around coastal areas.
In order to approximate their natural appearance, overhangs in our system
are constructed by approximating their topology as a bicubic Bézier surface.
A Bézier surface (S(u, v)) uses a 4x4 geometry matrix (G) of vectors con-
taining the control points of the surface, and an example surface can be seen

60

Figure 4.1: Example of Bézier surface with corresponding control points (in
red).

in Figure 4.1. The second and third rows of control points act as erosion
parameters to the resulting overhang. The final surface function is combined
with a parabolic function (P (u)) using a user-defined exponent (k) to emulate
realistic plateaus and is shown in Equation 4.1, where u = Iz and v = 1− Iy.

U =
[
1 u u2 u3

]
V =

[
1 v v2 v3

]
B =

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

S(u, v) = U ·B ·G ·BT · V T

P (u) = (4u · (1− u))k

DCliff (u, v) =

{
1, if Ix < min(S(u, v), P (u))

0, otherwise

(4.1)

61

Figure 4.2: Diagram of sphere sweeping along Bézier curve

Along with parameters for the central control points on the surface, which
we refer to as the top and bottom erosion parameters, as well as the parabolic
parameters, the overhang generator also has a lip height and base depth
parameter. The lip height refers to amount of the overhang at the lip that is
not eroded. The base depth refers to where the bottom of the Bézier surface
is positioned and results in dictating the overall slope of the overhang.

4.2.2 Arch Generation

Natural arches can be formed in two primary ways. Firstly, in karst terrain,
dissolution between narrow bands of limestone can create breaks underneath
top-level rock material. Secondly, arches can be formed by sections of cave
ceilings collapsing. After these macroscopic changes have occurred to a ter-
rain, wind and water erosion can introduce additional detail on the arch.
Furthermore, the central section tends to be the weakest and thinnest part
of the arch, whereas the two ends have thicker deposits of rock.

In order to approximate this in a virtual environment, arches are cre-
ated by sweeping a sphere along a cubic Bézier spline, as shown in Figure
4.2, where the start point S, the end point E, and the two control points
P0 and P1 govern the resultant shape. Each end of the arch has optional
tapering parameters (radius multipliers (Mi) and exponents (Ei)), as well as
interpolants (Ii) to define where the tapering occurs. This results in feasible
natural arches simulating greater erosion towards the middle of the arch. At
each step of the sweep (t), the radius (r) is updated using the tapering pa-
rameters (Ti). This uses the function in Equation 4.2, where V is the voxel

62

Figure 4.3: Illustration of arches constructed by a sweeping sphere with
different start and end points.

being processed and P is the position of a voxel after the radius has been
applied at the current step.

Ti = r ·Mi · (1− IEi
i)

radius = r + T0 + T1

DArch(V, P) =

{
1, if ‖P − V ‖ < radius

0, otherwise

(4.2)

From this, the final arch generator has a number of parameters that can
be separated into two types: global parameters and control parameters.

Global parameters consist of both the start and end positions of the arch
in the world coordinate space of the virtual environment. They also consist
of the number of iterations to sweep along the spline as well as a radius to
govern how thick the arch will be. An illustration of the global parameters
with different start and end points can be seen in Figure 4.3. The control
parameters consist of the interpolants of the control points and the tapering
parameters.

4.2.3 Cave Generation

Similarly to arches, the natural formation of caves generally occurs in karst
terrain where there is soluble rock to dissolve using a water source (Huggett
2016). The water sources associated with cave formation are usually large and
continuous and cut through dense parts of soluble rock. This behaviour can

63

Figure 4.4: Diagram of sphere carving into terrain to make a cave.

be approximated for simulation purposes constructing a subtractive method
of manipulating voxels. In order to generate cave-like structures, we adopt
a particle-based approach where a sphere is traced in a user-specified direc-
tion for a set number of iterations, as shown in Figure 4.4. The particle
emulates the behaviour of hydraulic erosion on rock surfaces to produce cave
structures. In order to speed up the process, the particle starts at a user-
defined value to determine the size of the cave’s mouth. A decay parameter
(λ) reduces the radius of the sphere for each iteration, thus representing a
natural reduction in the amount of erosion occurring. Hydraulic erosion is
also affected by gravitational forces and, therefore, a negative vector in the
vertical axis is added to the direction (D) at each step (t). As we are mod-
elling an approximation of hydraulic erosion to construct the cave topology,
it is necessary for caves with a natural appearance to be affected by fluidic
motion. An efficient method of simulating such movement is by generating a
velocity vector (U) using curl noise (Bridson et al. 2007), which can then be
added to the particle position for each iteration. Curl noise provides a sat-
isfactory approximation of fluid movement and a scalar is used to determine

64

the amount of curl applied to the resulting cave structure. The combination
of these methods efficiently computes a viable estimation of speleological ero-
sion, reducing the need for a complex fluid dynamics system sculpting the
internal structure of the cave. The position (P) and radius (r) of the particle
are used in a sphere-box intersection test (Ericson 2004) to check whether a
voxel is within the sphere and therefore subject to removal, using Equation
4.3.

P (t) = P + t · (D +G+ U)

r(t) = r − tλ

DCave(V, P, r) =

{
0, if ‖P − V ‖ < r

1, otherwise

(4.3)

4.2.4 Expressive Range

An important aspect of procedurally generated content is to enumerate the
number of assets that can be generated with the variety of parameters of a
generator function. On a system that can generate very large numbers of
assets, this can be achieved by evaluating the expressivity of each method
parameter, called the expressive range (Togelius et al. 2016). As each gener-
ator function has a number of real-valued parameters, representation of this
multi-dimensional data has been reduced into a single scalar value. This value
has been retrieved by using a rotation invariant volumetric shape similarity
heuristic, as described in Snape et al. (2016). The dimensionality reduction
offered by this method enables us to effectively visualise the variations of the
voxel grids used to represent terrain features.

g(i) = gradient at voxel i

φ(i) = arccos(
ĝy(i)

ĝx(i)
)

θ(i) = arctan(gz(i))

s =
∑
i

cos(φ(i)) +
∑
i

cos(θ(i))

(4.4)

For each continuous parameter x ∈ R in each feature’s generation algo-

65

rithm, we discretise the input value by sampling it at sensible intervals to
generate a suitable set of results to demonstrate the expressive range of each
algorithm. The range of each parameter for each generator, as well as their
sampling intervals, can be seen in Table 4.1, 4.2 and 4.3.

Parameter Type Range Interval
Lip Height Real (0, 1) 0.01
Base Depth Real (0, 1) 0.01
Top Erosion Real (0, 1) 0.01
Bottom Erosion Real (0, 1) 0.01
Parabola Offset Real (0, 1) 0.01
Parabola Exponent Real (1, 4) 0.02

Table 4.1: List of parameter ranges for the overhang generator

Parameter Type Range Interval
Start Vector [16, 16, 16] -
End Vector [48, 48, 16] -
Iterations Integer {10, 20, 30, 40, 50} -
Radius Integer (1, 10) 1
Start Offset Real 1.0 -
Start Peak Real (0, 10) 5
Start Taper Interpolant Real 1.0 -
Start Taper Radius Multiplier Real (0, 1) 0.01
Start Taper Exponent Real (1, 4) 0.02
End Offset Real 1.0 -
End Peak Real (0, 10) 5
End Taper Interpolant Real 1.0 -
End Taper Radius Multiplier Real (0, 1) 0.01
End Taper Exponent Real (1, 4) 0.02

Table 4.2: List of parameter ranges for the arch generator

66

Parameter Type Range Interval
Start Vector [16, 16, 4] -
Direction Vector [0, 0, 1] -
Iterations Integer {10, 20, 30, 40, 50} -
Mouth Size Real (1, 10) 0.2
Curl Scale Real (0, 1) 0.01
Decay Real (0, 1) 0.01
Gravity Real (0, 1) 0.01
Gravity Exponent Real (1, 4) 0.02

Table 4.3: List of parameter ranges for the cave generator

67

4.2.5 Parallelisation

In order to generate results for large features, a high number of voxel posi-
tions need to be evaluated by the various generator functions. Performing
this on the CPU can take an inordinate amount of time. Since each voxel
position is evaluated independently of other voxel positions, this becomes a
highly parallelisable task. Thus, the generator functions have been written
to use NVIDIA’s CUDA platform (Kirk et al. 2007) in order to utilise the
GPU’s parallel capabilities. A CUDA kernel submits work to the GPU via
threadgroups in blocks of 32 threads for each dispatch (known as a warp).
A warp executes in lockstep, so minimising branching is necessary to ensure
that each warp dispatch operates efficiently, as any thread in a warp that
diverges to a branch forces the other threads to wait until the branch has
completed executing (Pranckevičius 2018).

Generation of cliffs occurs on a voxel grid where each voxel is individually
checked against the parametric Bézier surface and whether it lies within the
interior or the cliff or not. A single CUDA kernel with a three dimensional
block size is used to quickly iterate through all of the individual voxels.

However, generation of caves and arches differ in their CUDA implemen-
tation. These generators utilise the sweeping of a sphere to populate the
feature’s voxels, resulting in a voxel grid size that is difficult to determine.
As such, the CUDA kernels for these generators take a multiple pass ap-
proach, meaning that the kernels are dispatched for a number of user-defined
iterations. As the sphere is swept along the path of the arch or cave, the
voxels that intersect the sphere are sent to the kernel to be filled.

4.3 Results

The results obtained from the different procedural generation algorithms are
detailed in this section. Firstly, examples of features are shown with differing
parameter sets. Then, the expressive ranges of the generator functions are
evaluated in order to show that they can create a diverse set of features from
just a few parameters. Finally, the performance is evaluated by comparing
the time taken for the CPU and GPU versions of each generator.

68

Figure 4.5: Pathtraced render of terrain with an embedded arch and over-
hang.

4.3.1 Terrain Feature Examples

The examples of terrain features created by the three generator functions
visually demonstrate the wide variety of structures that can be constructed,
as shown in Figure 4.5. The following sections describe in more detail the
effects of modifying the most significant parameters associated with each
generator. Furthermore, the use cases that each setting could be utilised for
in virtual simulations are explained.

Figure 4.6 shows examples of overhangs, arches and caves at differing
voxel grid resolutions. As expected with lower voxel grid resolutions, the
fidelity of the resulting mesh is lower than higher voxel grid counterparts,
due to the lower number of polygons. However, this could be smoothed
using subdivision algorithms that are applied as a postprocessing step on the
resulting polygon mesh.

For each result, parameters that were not modified remained at the de-
fault value that can be found in Tables 4.4, 4.5 and 4.6 for overhangs, arches
and caves, respectively.

69

Figure 4.6: Examples of generated overhangs (left), arches (middle) and caves
(right) at varying resolutions (Top: 323, Center: 643, Bottom: 1283)

Parameter Value
Lip Height 0.0
Base Depth 0.0
Top Erosion 0.0

Bottom Erosion 0.0
Parabola Offset 0.0

Parabola Exponent 1.0

Table 4.4: List of default values of non-varying overhang parameters when
generating results for different variants

70

Parameter Value
Iterations 50

Radius 5.0
Start Offset 0.5
Start Peak 10.0

Start Taper Interpolant 0.0
Start Taper Radius Multiplier 1.0

Start Taper Exponent 1.0
End Offset 0.5
End Peak 10.0

End Taper Interpolant 0.0
End Taper Radius Multiplier 1.0

End Taper Exponent 1.0

Table 4.5: List of default values of non-varying arch parameters when gen-
erating results for different variants

Parameter Value
Iterations 20

Mouth Size 5.0
Curl Scale 0.0

Decay 0.0
Gravity 1.0

Gravity Exponent 1.0

Table 4.6: List of default values of non-varying cave parameters when gen-
erating results for different variants

71

Overhang Examples

The lip height and the base depth parameters (with examples demonstrated
in Figure 4.7 and Figure 4.8) for the overhang generator are both bounded
values in the interval [0, 1] that represent a proportional value for the size
of the lip and the concavity of the base in the resulting overhang model,
respectively. This makes it relatively straightforward for users to create var-
ied overhang types without having to rely on prior knowledge regarding the
voxel grid dimensions of the feature.

Examples of the two erosion parameters corresponding to the inner con-
trol points on the Bézier surface of the overhang generator can be seen in
Figures 4.9 and 4.11. A closer view of the effect of the top erosion param-
eter can be seen in 4.10. Both parameters are bounded within the interval
[0, 1] and are used to approximate eroding behaviours present in real world
overhang formation.

The parabola components help represent the overall shape of the overhang
surface. The exponent determines how sharp the surface of the overhang is,
as seen in examples in Figure 4.13 and a closer top-down view provided in
Figure 4.14, whereas the offset provides a way to adjust the parabolic curve
for a further aesthetic change (Figure 4.12). The combination of the two can
be used to generate overhangs that have top surfaces ranging from a small,
rounded shape to a continuous surface that can be used to stitch a group of
overhangs together at a similar height.

72

Figure 4.7: Examples of generated overhangs with varying base depth pa-
rameters (Left: 0.5, Right: 1.0)

Figure 4.8: Examples of generated overhangs with varying lip height param-
eters (Left: 0.5, Right: 1.0)

73

Figure 4.9: Examples of generated overhangs with varying top erosion pa-
rameters (Left: 0.5, Right: 1.0)

Figure 4.10: Close-up of generated overhangs with varying top erosion pa-
rameters (Left: 0.5, Right: 1.0)

74

Figure 4.11: Examples of generated overhangs with varying bottom erosion
parameters (Left: 0.5, Right: 1.0)

Figure 4.12: Examples of generated overhangs with the parabola offset pa-
rameter set to 0.5

75

Figure 4.13: Examples of generated overhangs with varying parabola expo-
nent parameters (Left: 2.0, Right: 4.0)

Figure 4.14: Close-up of generated overhangs with varying parabola exponent
parameters (Left: 2.0, Right: 4.0)

76

Arch Examples

The start peak and end peak parameters in an arch generator determine
the height levels at two points along the Bézier curve (Figure 4.16). These
values can be unbound as long as they are greater than or equal to 0. For our
results, we have bound the values between 0 and 10, dictating the maximum
height that each peak can be at.

Tapering allows the arch to be presented with a natural falloff of mate-
rial that simulates the appearance of hydraulic and wind-based erosion, as
shown in Figures 4.18, 4.20 and 4.19. Modification of the radius multiplier
parameters, bound within the interval [0, 1], enables the designer to vary
the resulting aesthetic from a subtly weathered look with a high value, to
a stronger eroded look using a value closer to 0, as shown in Figure 4.20.
Furthermore, the taper exponent parameters offer further control on the
resulting radii along the curve of the arch by increasing or decreasing the
strength of the erosion effect, as seen in Figure 4.19.

Figure 4.15: Examples of generated arches with varying radius parameters
(Left: 2, Center: 4, Right: 6)

77

Figure 4.16: Examples of generated arches with varying peak parameters
(Left: 0, Center: 5, Right: 10)

Figure 4.17: Examples of generated arches with varying offset parameters
(Left: 0.5, Right: 1.0)

78

Figure 4.18: Examples of generated arches with varying taper interpolant
parameters (Left: 0.0, Center: 0.5, Right: 1.0)

Figure 4.19: Examples of generated arches with varying taper exponent pa-
rameters (Left: 2.0, Right: 4.0)

79

Figure 4.20: Examples of generated arches with varying taper radius multi-
plier parameters (Left: 0.0, Right: 0.5)

80

Figure 4.21: Pathtraced render of terrain with an embedded cave and its
corresponding wireframe.

Cave Examples

Cave parameters determine the size and path of the sweeping sphere used
to carve out the feature from a set of solid voxels, an example of which
can be seen in Figure 4.21. The mouth size determines the initial radius
of the sphere and varying sizes can be seen in Figure 4.22. Furthermore,
the rate at which the sphere’s radius decreases is determined by the decay
parameter (Figure 4.23). This partly simulates fluidic erosion as the fluid is
eventually absorbed by the cave’s material. In order to further simulate fluid
flow motion when generating the cave, the generator utilises curl noise. The
curl scale parameter governs how much effect it has on the resulting path
of the sphere. As shown in Figure 4.24, a higher curl scale value results in
a more winding path that the sphere sweeps across, whereas a smaller curl
scale value results in more subtle movement.

The motion of the sphere can also be affected by a gravitational force (a
predetermined vector in the global y-direction). The strength of the gravita-
tional force can be manipulated via the gravity parameter (Figure 4.25) and
the rate at which the gravity is applied to each position of the sphere can be
controlled by the gravity exponent parameter (Figure 4.26).

These few parameters offer a great deal of control for the designer and
can be used to construct many variations of the cave structure in a speedy
manner.

81

Figure 4.22: Examples of generated cave cross-sections with varying mouth
size parameters (Left: 3, Center: 5, Right: 10)

82

Figure 4.23: Examples of generated cave cross-sections with varying decay
parameters (Left: 0.5, Right: 1.0)

Figure 4.24: Examples of generated cave cross-sections with varying curl
scale parameters (Left: 0.2, Center: 0.3, Right: 0.4)

83

Figure 4.25: Examples of generated cave cross-sections with varying gravity
parameters (Left: 0.5, Right: 1.0)

Figure 4.26: Examples of generated cave cross-sections with varying gravity
exponent parameters (Left: 2.0, Right: 4.0)

84

4.3.2 Expressive Range

Figure 4.27: Example KDE plot of a uniform distribution of similarity values

In order to quantify the variety of structures that can be generated with
our methods, the expressive range of each generator function is analysed
in this section. The similarity metric provided by Snape et al. (2016) was
used to reduce the dimensionality of each voxel dataset into a single value.
For each parameter experiment, the similarity value was normalised and its
frequency plotted in a two-dimensional kernel density estimation (KDE) plot.
The first axis represents the changing value of the generator parameter being
inspected and the second axis shows the similarity value computed for the
generated feature. This provided a good insight into the overall effect of
changing a parameter to create a resulting structure. An example of a good
KDE plot is shown in Figure 4.27, which had a set of 1000 data points
randomly generated with a uniform distribution. This example shows that
as the parameter value changes on the first axis, the range of values on the
second axis maintain an even distribution. The closer the parameter plots
look to this example plot, the more expressive the parameter is in generating
large variations of features. For each parameter, 100 features were generated
at each progressive parameter value at voxel grid resolutions of 323, 643 and
1283 voxels.

85

Overhang Parameter Expressivity

The KDE plots for overhang parameters can be seen in 4.28. The base depth
parameter of a generated overhang feature dictates how large the base of
the overhang will be. As the parameter value approaches 1, the range of
values becomes wider. This indicates that there are more feature variations
as the parameter increases in value, which can be justified by the introduction
of further voxels as the base depth increases. More voxels being generated
implies that more voxels can be modified as part of the generation process.

The lip height parameter determines how large the upper lip of a cliff will
be and presents a similar plot to the base depth parameter. This parameter
also generates a number of voxels increasing the number of varied ways that
the voxels can be modelled when a new feature is created.

The two erosion parameters, top and bottom, control the inner control
points on the abstract Bézier surface. Both parameters show an evenly wide
distribution of similarity scores for the generated overhangs, demonstrating
that both of these parameters are the most expressive and create the most
frequent number of varied overhangs.

Parameters for manipulating the parabolic nature of the top of the over-
hang are governed by the offset and exponent. The parabola offset demon-
strates a smaller range of values as the parameter increases. Since the offset
only applies to the shape of the surface and not the underlying overhang
topology, the parameter affects a smaller number of voxels than other pa-
rameters, thus justifying the narrower range of similarity values. Conversely,
the exponent parameter has more impact on the shape of the generated over-
hang and edits a larger number of voxels. Therefore, the exponent parameter
has more expressivity due to the number of variations of the overhang that
can be produced.

86

Figure 4.28: Expressive ranges of generated overhangs

87

Arch Parameter Expressivity

The KDE plots for the arch generator parameters can be seen in Figure 4.29.
The radius parameter for the generator function dictates the size of the

sweeping sphere across the Bézier spline used to construct the arch. As the
parameter plot shows, the range of similarity values becomes more varied as
the value of the parameter becomes greater. This is reasonable behaviour
since the number of voxels being manipulated increases as the size of the
radius gets larger, and therefore more varied features can be generated.

The peak parameter exhibits a very expressive trend. The range of simi-
larity values across the minimum and maximum parameter values stays rel-
atively uniform throughout the plot, and indicates a high degree of expres-
sivity. Similarly, the taper exponent parameter shows the same trend with
a uniformly distributed range of similarity values as the parameter increases
and is therefore also highly expressive.

The taper radius multiplier shows an interesting trend, where the range
of similarity values increases as the parameter increases in value. This can
be explained by the increase in the number of voxels being manipulated as
the radius multiplier gets larger.

88

Figure 4.29: Expressive ranges of generated arches

89

Cave Parameter Expressivity

The KDE plots for the arch generator parameters can be seen in Figure 4.30.
The mouth size parameter for the cave generator determines the size of

the sweeping subtractive sphere used to interact with a group of filled voxels.
As this behaviour is similar to the radius parameter of the arch generator,
a similar distribution plot can be expected. The plot shows that as the
parameter value increases, the range of similarity values becomes larger, as
hypothesised. This is consistent with the radius parameter for arches since
more voxels are manipulated as the radius of the sphere increases.

Conversely, when generating features for the decay parameter, as the
value of the parameter increases, the range of similarities decreases. This is
due to the parameter’s behaviour of reducing the number of voxels that are
changed by the generator as the subtractive sphere decays in radius.

Finally, the gravity, gravity exponent and curl scale parameters exhibit
very similar distributions. The values stay within the same range as all of the
parameter values increase. Given that this range maintains its width, it is
implied that these parameters are highly expressive in being able to generate
varied caves.

90

Figure 4.30: Expressive ranges of generated caves

91

4.3.3 Performance

The times taken for each generator are shown in Tables 4.7, 4.8 and 4.9.
Their respective plots are found in Figure 4.31. Timing values across all
generators are significantly below 1 second and overhang generation can occur
at multiple resolutions under 1.5ms. The rise in timing is expected due to
the voxel grid dimensionality being increased exponentially.

Similarly, arch and cave generation times increase exponentially as the
dimension of the voxel grid being used increases. At each dimension value,
the generators are used with multiple iterations. This governs the number
of passes being used to determine the amount of kernel dispatches. Arch
and cave generation times increase as the number of iterations along the
curve are increased primarily due to the multi-pass approach where multiple
kernels are dispatched, instead of a single kernel being executed like the cliff
generator.

Overall, the subsecond nature of all of the generator functions allow for
fast computation of volumetric features. Overhangs in particular are fast
enough for real-time generation at lower dimensions. This is highly useful
for fast design iteration and environmental artists can utilise the highly-
expressive nature of the generators with fast feedback so that any aesthetic
changes that are required can be made very quickly.

Resolution Minimum Maximum Mean Std. Dev.
323 0.00832 0.01341 0.00876 0.00037
643 0.02624 0.03555 0.02691 0.00101
1283 0.13872 0.38179 0.14438 0.01295
2563 1.06794 1.09104 1.07060 0.00441

Table 4.7: Time to generate cliffs for multiple voxel grid resolutions (in ms)

92

Resolution Iterations Minimum Maximum Mean Std. Dev.

323

10 0.98282 3.25808 1.16302 0.20633
20 1.91162 5.40877 2.36224 0.38349
30 2.84506 5.92038 3.46095 0.45627
40 3.79216 5.99610 4.59596 0.50146
50 4.76378 8.31517 5.66575 0.61607

643

10 1.02560 2.44397 1.38609 0.19776
20 2.05821 5.81616 2.71649 0.44613
30 2.97837 5.38928 3.85756 0.40980
40 4.01024 6.48112 5.18394 0.49977
50 5.13562 8.39584 6.46433 0.63109

1283

10 1.68934 2.92934 1.92245 0.20689
20 3.28195 5.04755 3.75437 0.33924
30 4.87210 7.28326 5.53656 0.46252
40 6.46694 9.74243 7.32021 0.59390
50 8.08477 11.00374 9.05837 0.63000

2563

10 7.07082 8.28365 7.40785 0.17533
20 13.69488 16.61802 14.34275 0.27386
30 20.29037 22.51341 21.13733 0.38274
40 26.94301 29.91786 28.00817 0.39368
50 33.65401 36.48944 34.88928 0.41374

Table 4.8: Time to generate arches for variable iterations and multiple voxel
grid resolutions (in ms)

93

Resolution Iterations Minimum Maximum Mean Std. Dev.

323

10 1.00189 1.91501 1.20805 0.19901
20 1.96326 5.94874 2.45119 0.43211
30 2.90954 5.42022 3.53451 0.45819
40 3.85078 6.29328 4.64443 0.53051
50 4.82592 7.54518 5.60993 0.60207

643

10 1.06198 3.31190 1.38802 0.24004
20 2.06691 5.77680 2.67187 0.43783
30 3.05738 5.41814 3.90914 0.43086
40 4.05187 7.46701 5.17292 0.53594
50 5.21155 8.27187 6.53216 0.62907

1283

10 1.68278 2.96560 1.92321 0.19268
20 3.30982 6.49773 3.74602 0.37661
30 4.91859 7.83203 5.53841 0.44678
40 6.55389 10.47510 7.31657 0.61292
50 8.16886 11.21990 9.08094 0.64087

2563

10 7.11037 8.17370 7.44690 0.16610
20 13.84954 15.32355 14.41379 0.23596
30 20.35264 22.51507 21.16449 0.34989
40 26.97635 29.82602 28.02465 0.43893
50 33.69434 36.37331 34.99312 0.53714

Table 4.9: Time to generate caves for variable iterations and multiple voxel
grid resolutions (in ms)

94

Figure 4.31: Plot of timings for each feature generator

95

4.3.4 PhyreEngineTM Integration

Figure 4.32: Screenshots of feature generator tool.

PhyreEngineTM makes use of a number of abstraction libraries written in
C++, including a deferred renderer that is used to draw objects in a game
world (Deering et al. 1988). In order to integrate this method into the game
engine, classes were created to manage voxel data. A custom render pass
was also designed that contained compute shaders that were responsible for
populating the voxel buffers, extract the surface and pixel shaders that could
render the data as voxels or polygons.

Parameters for each generator were exposed to the user via the use of an
immediate mode GUI in a C++ application. As parameters were changed,
the voxel buffer and surface was extracted in real-time so that a user has
immediate feedback when modifying the terrain feature. Generators’ param-
eters exposed in an immediate GUI interface in C++ which updated the
voxel buffer, and then rendered the extracted surface. Example images of
the tool can be found in 4.32.

4.4 Summary

This chapter presented three parametric generator functions that can be
used to intuitively construct features found in terrains that are difficult to
create using traditional heightmap-based approaches. These functions have
been shown to generate plausible results by approximating physical erosion
processes as computationally simpler mathematical constructs. Furthermore,
while realism is desired in most virtual simulations, the functions presented
are flexible enough to allow designers to apply their own artistic license if

96

natural terrains are not required. For example, this can apply to computer
games where a particular aesthetic is desired. A wide variety of features can
be generated, as has been demonstrably shown in our results.

Previous results for feature generation in Chapter 3 demonstrated con-
struction of overhangs and caves using a grammar-based approach. The
feature generators presented in this chapter show an alternative means of
creating such features. Whilst voxel grammars provide a higher level ab-
straction to make features, the feature generators provide a further degree
of control for individual features. This permits designers a more direct ap-
proach to creating features with a specific aesthetic in mind. One terrain
feature that can be represented volumetrically that is not available in the
voxel grammar approach is the naturally formed arch. The arch generator
fulfils this niche and thus all three major features that cannot be represented
with heightmaps can be created.

Compared to similar work for the creation of volumetric terrain features,
our method provides performant, art-directable and highly expressive proce-
dural generators.

Warping of heightmaps with a vector field (Gamito & Musgrave 2001)
requires a complex pipeline to construct the field in order to achieve a par-
ticular aesthetic for overhangs. Furthermore, different vector fields have to be
constructed when different overhangs are constructed adding to the complex-
ity of the method. Our method allows for direct and powerful control over
the shape, size and parameters associated with natural overhangs. Immedi-
ate feedback from our generator function, as well as a limited yet powerful
set of parameters, means that many overhang variations that align with an
artist’s vision can be created in a short amount of time.

Similarly, fast feedback is an advantage of our method as well. The
maximum times for a 2563 resolution cliff, arch and cave using the presented
generator functions are 1.09ms, 36.49ms and 36.37ms, respectively. Methods
that simulate or approximate erosion to generate features are much slower
than the functions we have presented in this chapter, such as Beneš (2006)
which takes several hours, Anh et al. (2007) which executes in 11.2 seconds,
and Becher et al. (2017) that computes its pipeline in 5.82 seconds.

Furthermore, while the current implementation of the system uses a sim-
ple linear buffer for voxel storage, the generators are framework agnostic.
This means that they can be implemented into any existing framework that
utilises volumetric data, assuming that there is direct access to the under-
lying voxels. Such generality is a highly useful property to ensure that the

97

method can work with many different platforms, engines and frameworks.
This differs from other methods such as Peytavie et al. (2009) and Santa-
maŕıa-Ibirika et al. (2013) that rely on specific volumetric data formats that
is required as part of their respective methods.

The generators that have been defined have all been implemented using
CUDA and demonstrate the high level of parallelism that is highly beneficial
for the speed of feature generation. This has been demonstrated by the
profiling carried out for a number of generations.

98

Chapter 5

Conclusion

Terrains are an essential ingredient to any game or 3D simulation that re-
quires an outdoor environment. Environment designers are given tools to
generate terrains and require the capability to populate these terrains with
features of varying degrees of fidelity and realism, depending on the desired
aesthetics. The amount of effort to construct these features must also be
considered when developing methods of terrain generation, and as such pro-
cedural methods are frequently utilised to assist designers.

Prevailing terrain methods generally rely on a heightmap-based approach,
and there has been a vast array of research into the generation of heightmap-
based terrains (Smelik et al. 2009). However, these cannot represent over-
hangs, naturally-formed arches and caves. Some research has attempted to
do so, but has resulted in complex, unintuitive and difficult to control meth-
ods (Gamito & Musgrave 2001).

In order to do so effectively, volumetric terrain representations are pre-
ferred as they provide the ability to construct features with concave topo-
logical structures. However, the literature associated with procedurally gen-
erating volumetric terrain features is sparse. This thesis presents two novel
methods for volumetric terrain feature generation to contribute to this re-
search gap.

5.1 Contributions and Limitations

The main contributions of this thesis are two novel methods for designing
and generating features for volumetric terrains. It also contributes an original

99

method to quantitatively measure the expressivity of procedural generators
for terrain features.

5.1.1 Contribution 1 - Voxel Grammars

The first contribution is a novel grammar-based approach to generate over-
hangs and caves that has been inspired by shape grammars Stiny (1980)
found in Chapter 3. A symbol consisting of predicates that acts on a subgrid
of voxels is used to determine whether a subsequent matrix of transformation
operators is executed. This has resulted in varied features without having to
manually edit existing voxels and can be generated via the creation of a set
of rules by the environmental designer.

However, designing rulesets requires sufficient experimentation before the
artistic direction of the user can be realised. While the presented method is
capable of procedurally generating overhangs and caves from a simple ruleset,
the expended effort to initially write a grammar can be a delicate process.
Depending on the desired aesthetic, it is important for the grammar to be
robust against potential edge cases that can occur. For this reason, it is
important to recall the design advice presented in Section 3.2.5.

While each rule could operate on an unlimited number of voxels, pred-
icates and transformations only operated on a single voxel at a time. It
became clear that the granularity at which voxel grammars executed was too
low a level to be able to create rulesets in a timely manner.

5.1.2 Contribution 2 - Feature Generators

The theorised solution to the granularity issue of voxel grammars was to for-
mulate a method that consisted of parametric functions that could operate on
a number of voxels at the same time. This notion resulted in the conception
of the feature generators found in Chapter 4, which are the second contri-
bution of this thesis. In order to mitigate the granularity issue highlighted
by the voxel grammar approach, a higher-level approach to generating vol-
umetric terrain features was explored, defined and created. This resulted in
three procedural generators to construct overhangs, arches and caves. Each
generator consisted of a number of parameters that could be defined by the
user to generate a particular terrain feature.

A limitation of the generators is that there is no method to effectively
combine them currently. This is due to the additive nature of the overhang

100

and arch generators, as well as the subtractive nature of the cave generator.
If these methods are applied to same space of voxels, then whichever func-
tion occurred last would have preferential treatment, potentially overriding
desirable qualities that were created by the previous functions.

5.1.3 Contribution 3 - Quantitative Expressive Range

The third contribution of our thesis arose from a need to be able to quantita-
tively define the expressive range of the feature generator functions. This was
achieved by applying the heuristic from Snape et al. (2016) to the generated
voxels from each generator for each of their parameters. This reduced the
dimensionality of a grid of voxels to a single real value, which in turn could be
plotted as kernel density estimation plots using combinations of two param-
eters as axes. The parameter combinations could then be determined to be
expressive or not by checking how uniformly distributed the plot points were.
To our knowledge, this method of measuring expressive range of generated
voxels is original.

5.2 Outputs and PhyreEngineTM Integration

Beyond the research contributions of this thesis, the collaboration with Sony
Interactive Entertinment and PhyreEngineTM meant that outputs of this
research included the integration of these methods into the game engine.
The state of the engine beforehand utilised heightmap-based terrains only
and had limited tooling for terrain editing. Prior to any of the methods
being integrated into the engine, voxel management and volumetric terrain
support had to be added. This was done in the form of a sparse, linear, block-
allocated voxel buffer. The interface to this buffer enabled modification of
voxels, constructing a GPU-friendly format of the voxel data (i.e. compact,
thread-safe and contiguous).

PhyreEngineTM already had support for compute shaders which informed
the design decision to pass the voxel data to the GPU. This enabled the
surface extraction algorithm and the feature generators to be designed for
massive parallelism. This ensured that the generators could be fast enough
for real-time interaction by environment designers.

Tooling was designed and constructed to provide designers the ability
to interact with the developed methods. For the voxel grammars, a ruleset

101

uses a textual representation in a JSON file that is loaded by the engine.
The boundaries of the voxel grid and the number of iterations the grammar
processes for is defined by the user in the tool. The feature generators user
interface consisted of sliders to change each parameter of a particular feature,
and rendering could be switched between drawing voxels or the extracted sur-
face mesh. These tool decisions allowed for interactive editing and iteration
for environment designers.

5.3 Future Work

This research has made substantial progress into offering methods for vol-
umetric terrain feature generation. However, there are still areasof it that
could be improved and extended. The realism offered by features constructed
from volumetric data is dependent on the resolution of the data itself. Higher
resolution voxel grids directly affect time complexity (there are more voxels to
generate and/or manipulate) and memory complexity (there are more voxels
stored). Therefore, the improvements to the methods focus on ameliorating
performance in both of these areas, by utilising parallelisation and compres-
sion. Extensions to the work are considered that focus on providing a more
intuitive experience for users and further automate the generation of voxels.

5.3.1 Improvements

Parallelisation

In order to maximise performance of the grammar derivation process, it is
prudent to consider parallelisation as a potential method of optimisation.
Lipp et al. (2009) introduce a method to perform L-system derivations in
highly parallel architectures. They do so by first creating an efficient encod-
ing of each production rule in order to maximise throughput on GPUs and
then execute multiple passes over the encodings to perform the derivation
step. Branching is handled by utilising dynamic dispatch, a modern GPU
feature that dynamically generates workloads equal to the number of poten-
tial branches. Parallelisation of our grammar can take inspiration from this
work by creating encodings for each of the rules and performing multiple
passes on the various steps of the derivation process. First, all predicates
can be evaluated in parallel using a kernel that determines the predicate’s
type and applies the condition. Then, each block of voxels that passes the

102

predicate check can be manipulated using the appropriate transform. This
multipass approach could optimise the derivation process of the grammar to
work more effectively on large voxel spaces.

Compression and Scalability

The size of the voxel data also needs to be monitored so that it does not
grow to too large a magnitude. This would have the ability to optimise the
grammars Sparse Voxel Octrees (SVOs) (Crassin et al. 2009) and brickmaps
(Christensen & Batali 2004) are two methods optimised for GPU usage that
are appropriate for this task. Furthermore, support for terrains consisting of
several materials would require multiple density values denoting the amount
of each material. Extending this level of detail to a singular voxel increases
its size and the work of Dado et al. (2016) could be utilised to compress the
data.

The platform-agnostic nature of the methods in this thesis offer the ad-
vantage of being able to use any sparse data structure to make this im-
provement. Larger quantities of voxels are required for higher fidelity of
resulting features. Therefore, robust and production-ready technology such
as OpenVDB (Museth et al. 2013) could be used to achieve increased levels
of scalability.

5.3.2 Extensions

Abstract Voxel Grammars

The presented voxel grammar work highlighted complexity issues due to the
granularity of its operations. As feature generators were constructed as a
higher-level of abstraction to create volumetric terrain features, an intuitive
extension to the voxel grammar is further abstraction.

The symbols and transforms of the voxel grammar can be replaced by
higher-level predicates and transforms. For example, instead of a symbol
that tests every voxel in a subgrid, a symbol that calculates the mean den-
sity of the subgrid and evaluate a condition based on this value can replace
it. Similarly, transforms that manipulate single voxels at a time can be
substituted for generators such as local heightmaps, noise functions (either
additively or subtractively) or the feature generators defined in Chapter 4.

103

This design could be a more intuitive and less error-prone of defining rules
to generate features for volumetric terrains.

Machine Learning

A further direction that can be explored is a method to create a more au-
tomated process for generating the grammars themselves. Machine learning
technologies, such as deep convolutional neural networks (Goodfellow et al.
2016), may suit the underlying training requirements of generating a gram-
mar.

Specifically, generative rules could be deduced by training on existing
terrain data found in nature and creating rules that can form features in
terrains closer to their natural counterparts. However, given that feature
generation takes a number of parameters, this can form a high-dimensional
problem which could be resolved using methods from the field of approximate
dynamic programming (Powell 2007) and reinforcement learning (Sutton &
Barto 1998).

104

Bibliography

Abrash, M. (1997), Michael Abrash’s Graphics Programming Black Book,
with CD: The Complete Works of Graphics Master, Michael Abrash, Cori-
olis group books.

Akenine-Möller, T. & Aila, T. (2005), ‘Conservative and Tiled Rasterization
Using a Modified Triangle Set-Up’, Journal of Graphics, GPU, and Game
Tools 10(3), 1–8.

Akenine-Moller, T., Haines, E. & Hoffman, N. (2018), Real-time rendering,
AK Peters/CRC Press.

Allegorithmic (n.d.), ‘Substance Designer 5’.
URL: https://www.allegorithmic.com/products/substance-designer

Angelidis, A., Neyret, F., Singh, K. & Nowrouzezahrai, D. (2006), ‘A control-
lable, fast and stable basis for vortex based smoke simulation’, Proceedings
of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation 27(3), 25–32.
URL: http://portal.acm.org/citation.cfm?id=1218068

Anh, N. H., Sourin, A. & Aswani, P. (2007), ‘Physically based hydraulic
erosion simulation on graphics processing unit’, Proceedings of the 5th in-
ternational conference on Computer graphics and interactive techniques in
Australia and Southeast Asia - GRAPHITE ’07 1(212), 257.
URL: http://dl.acm.org/citation.cfm?id=1321261.1321308

Baert, J., Lagae, A. & Dutré, P. (2014), ‘Out-of-core construction of sparse
voxel octrees’, Computer Graphics Forum 33(6), 220–227.

105

Becher, M., Krone, M., Reina, G. & Ertl, T. (2017), Feature-based volu-
metric terrain generation, in ‘Proceedings of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games’, ACM, p. 10.

Beneš, B. (2006), ‘Physically-based hydraulic erosion’, Proceedings of the
22nd Spring Conference on Computer Graphics - SCCG ’06 1(212), 17–22
PAGE@5.
URL: http://dl.acm.org/citation.cfm?id=2602161.2602163

Beneš, B. & Arriaga, X. (2005), ‘Table mountains by virtual erosion’, Natural
Phenomena xx, 33–39.

Beneš, B., Št’Ava, O., Měch, R. & Miller, G. (2011), ‘Guided Procedural
Modeling’, Computer Graphics Forum 30(2), 325–334.
URL: http://doi.wiley.com/10.1111/j.1467-8659.2011.01886.x

Bretz, J. H. (1942), ‘Vadose and phreatic features of limestone caverns’, The
Journal of Geology 50(6), 675–811.
URL: http://www.jstor.org/stable/30060299

Bridson, R., Houriham, J. & Nordenstam, M. (2007), Curl-noise for procedu-
ral fluid flow, in ‘ACM Transactions on Graphics (TOG)’, Vol. 26, ACM,
p. 46.

Cepero, M. (2010), ‘From Voxels To Polygons’.
URL: http://procworld.blogspot.co.uk/2010/11/from-voxels-to-
polygons.html

Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J. & Sillion, F. X. (2005), ‘A
survey on participating media rendering techniques’, Visual Computer
21(5), 303–328.

Chen, H. & Fang, S. (1998), ‘Fast Voxelization of Three-Dimensional Syn-
thetic Objects’, Journal of Graphics Tools 3(4), 33–45.

Christensen, P. H. & Batali, D. (2004), An irradiance atlas for global illu-
mination in complex production scenes, in ‘Proceedings of the Fifteenth
Eurographics Conference on Rendering Techniques’, EGSR’04, Eurograph-
ics Association, Aire-la-Ville, Switzerland, Switzerland, pp. 133–141.

Collet, Y. (2013), ‘Lz4-extremely fast compression’.

106

Crassin, C., Neyret, F., Lefebvre, S. & Eisemann, E. (2009), Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering, in ‘Proceedings
of the 2009 symposium on Interactive 3D graphics and games’, ACM,
pp. 15–22.

Crow, F. C. (1977), Shadow algorithms for computer graphics, in ‘ACM
SIGGRAPH Computer Graphics’, Vol. 11, ACM, pp. 242–248.
URL: http://portal.acm.org/citation.cfm?doid=965141.563901

Crytek (n.d.), ‘CryEngine 3’.
URL: http://cryengine.com/

Dado, B., Kol, T. R., Bauszat, P., Thiery, J. M. & Eisemann, E. (2016),
‘Geometry and attribute compression for voxel scenes’, Computer Graphics
Forum 35(2), 397–407.

Dang, M., Ceylan, D., Neubert, B. & Pauly, M. (2014), ‘SAFE: Structure-
aware facade editing’, Computer Graphics Forum 33(2), 83–93.
URL: http://doi.wiley.com/10.1111/cgf.12313

Deering, M., Winner, S., Schediwy, B., Duffy, C. & Hunt, N. (1988), ‘The
triangle processor and normal vector shader: a vlsi system for high perfor-
mance graphics’, ACM SIGGRAPH Computer Graphics 22(4), 21–30.

Dey, R., Doig, J. G. & Gatzidis, C. (2017), Procedural feature generation for
volumetric terrains, in ‘ACM SIGGRAPH 2017 Posters’, ACM, p. 64.

Dey, R., Doig, J. G. & Gatzidis, C. (2018), ‘Procedural feature generation
for volumetric terrains using voxel grammars’, Entertainment Computing
27, 128–136.

Dey, R. & Konert, J. (2016), Content Generation for Serious Games,
Springer International Publishing, Cham, pp. 174–188.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K. & Worley, S. (2002),
Texturing and Modeling: A Procedural Approach (The Morgan Kaufmann
Series in Computer Graphics), Morgan Kaufmann.

Eisemann, E. & Décoret, X. (2006), ‘Fast scene voxelization and applica-
tions’, Proceedings of the 2006 symposium on Interactive 3D graphics and
games - SI3D ’06 (May), 71.
URL: http://portal.acm.org/citation.cfm?doid=1111411.1111424

107

Eisemann, E. & Décoret, X. (2008), ‘Single-pass GPU Solid Voxelization for
Real-time Applications’, Proceedings of Graphics Interface 2008 pp. 73–80.
URL: http://dl.acm.org/citation.cfm?id=1375714.1375728

Epic Games (n.d.), ‘Unreal Engine 4’.
URL: www.unrealengine.com

Ericson, C. (2004), Real-time collision detection, CRC Press.

Everitt, C. (2001), ‘Interactive order-independent transparency’, White pa-
per, nVIDIA 2(6), 7.

Fang, S. & Chen, H. (2000), ‘Hardware Accelerated Voxelization’, Computers
& Graphics .

Forest, V., Barthe, L. & Paulin, M. (2009), ‘Real-time hierarchical binary-
scene voxelization’, Journal of Graphics, GPU, and Game Tools 14(3), 21–
34.

Forsyth, T. (2006), ‘Linear-speed vertex cache optimisation’.

Fournier, A., Fussell, D. & Carpenter, L. (1982), ‘Computer rendering of
stochastic models’, Communications of the ACM 25(6), 371–384.

Frisken, S. F., Perry, R. N., Rockwood, A. P. & Jones, T. R. (2000), Adap-
tively sampled distance fields: A general representation of shape for com-
puter graphics, in ‘Proceedings of the 27th annual conference on Computer
graphics and interactive techniques’, ACM Press/Addison-Wesley Publish-
ing Co., pp. 249–254.

Galerne, B., Lagae, A., Lefebvre, S. & Drettakis, G. (2012), ‘Gabor noise by
example’, ACM Transactions on Graphics 31(4), 1–9.

Gamito, M. N. & Musgrave, F. K. (2001), Procedural landscapes with over-
hangs, in ‘10th Portuguese Computer Graphics Meeting’, Vol. 2, p. 3.

Gearbox Software (2009), ‘Borderlands’, http://www.borderlands.com/.
[Online; accessed 03-January-2019].

Geiss, R. (2007), ‘Generating complex procedural terrains using the gpu’,
GPU gems 3, 7–37.

108

Gibson, S. F. (1998), Constrained elastic surface nets: Generating smooth
surfaces from binary segmented data, in ‘International Conference on
Medical Image Computing and Computer-Assisted Intervention’, Springer,
pp. 888–898.

Golomb, S. (1966), ‘Run-length encodings (corresp.)’, IEEE transactions on
information theory 12(3), 399–401.

Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. (2016), Deep learning,
Vol. 1, MIT press Cambridge.

Greene, N. (1989), ‘Voxel space automata: Modeling with stochastic growth
processes in voxel space’, Siggraph 23(3), 175–184.

Gustavson, S. (2005), ‘Simplex noise demystified’, Linköping University,
Linköping, Sweden, Research Report .

Hales, T. C. (2007), ‘The Jordan curve theorem, formally and informally’,
American Mathematical Monthly 114(10), 882–894.
URL: http://www.jstor.org/stable/27642361

Hart, J. C. (1996), ‘Sphere tracing: A geometric method for the antialiased
ray tracing of implicit surfaces’, The Visual Computer 12(10), 527–545.

Hello Games (2016), ‘No man’s sky’, http://www.nomanssky.com/. [Online;
accessed 03-January-2019].

Hillaire, S. (2015), ‘Physically based and unified volumetric rendering in
frostbite’, SIGGRAPH Advances in Real-Time Rendering course pp. 570–
610.

Ho, C. C., Wu, F. C., Chen, B. Y., Chuang, Y. Y. & Ouhyoung, M. (2005),
‘Cubical marching squares: Adaptive feature preserving surface extraction
from volume data’, Computer Graphics Forum 24(3), 537–545.

Hoetzlein, R. K. (2016), Gvdb: raytracing sparse voxel database structures
on the gpu, in ‘Proceedings of High Performance Graphics’, Eurographics
Association, pp. 109–117.

Hudák, M. & Durikovic, R. (2011), ‘Terrain Models for Mass Movement
Erosion’, EG UK Theory and Practice of Computer Graphics pp. 1–8.

109

Huggett, R. (2016), Fundamentals of geomorphology, Routledge.

Jennings, J. (1971), ‘An introduction to systematic geomorphology. volume
7, karst’.

Jönsson, D., Sundén, E., Ynnerman, A. & Ropinski, T. (2012), State of The
Art Report on Interactive Volume Rendering with Volumetric Illumination,
in ‘EG 2012 - State of the Art Reports’, Vol. 1, pp. 53–74.

Ju, T., Losasso, F., Schaefer, S. & Warren, J. (2002), ‘Dual contouring of
hermite data’, ACM Transactions on Graphics 21(3).
URL: http://portal.acm.org/citation.cfm?doid=566654.566586

Kämpe, V., Sintorn, E. & Assarsson, U. (2013), ‘High resolution sparse voxel
DAGs’, ACM Transactions on Graphics 32(4), 1.

Karabassi, E.-A., Papaioannou, G. & Theoharis, T. (1999), ‘A Fast Depth-
Buffer-Based Voxelization Algorithm’, Journal of Graphics Tools 4(4), 5–
10.

Keinert, B., Schäfer, H., Korndörfer, J., Ganse, U. & Stamminger, M. (2014),
Enhanced Sphere Tracing, in A. Giachetti, ed., ‘Smart Tools and Apps for
Graphics - Eurographics Italian Chapter Conference’, The Eurographics
Association.

Kelly, T. & Wonka, P. (2011), ‘Interactive architectural modeling with pro-
cedural extrusions’, ACM Transactions on Graphics 30(2), 1–15.
URL: http://portal.acm.org/citation.cfm?doid=1944846.1944854

Kirk, D. et al. (2007), Nvidia cuda software and gpu parallel computing
architecture, in ‘ISMM’, Vol. 7, pp. 103–104.

Koca, Ç. & Güdükbay, U. (2014), ‘A hybrid representation for modeling,
interactive editing, and real-time visualization of terrains with volumet-
ric features’, International Journal of Geographical Information Science
28(9), 1821–1847.

Komma, P., Fischer, J., Duffner, F. & Bartz, D. (2007), Lossless volume data
compression schemes., in ‘SimVis’, pp. 169–182.

110

Lagae, A., Lefebvre, S., Drettakis, G. & Dutré, P. (2009), Procedural
noise using sparse gabor convolution, in ‘ACM Transactions on Graph-
ics (TOG)’, Vol. 28, ACM, p. 54.

Laine, S. & Karras, T. (2011), ‘Efficient sparse voxel octrees’, IEEE Trans-
actions on Visualization and Computer Graphics 17(8), 1048–1059.

Laur, D. & Hanrahan, P. (1991), Hierarchical splatting: A progressive re-
finement algorithm for volume rendering, in ‘ACM SIGGRAPH Computer
Graphics’, Vol. 25, ACM, pp. 285–288.

Lewiner, T., Mello, V., Peixoto, A., Pesco, S. & Lopes, H. (2010), ‘Fast gen-
eration of pointerless octree duals’, Eurographics Symposium on Geometry
Processing 29(5), 1661–1669.

Li, W., Fan, Z., Wei, X. & Kaufman, A. (2005), Flow Simulation with Com-
plex Boundaries, in ‘GPU Gems 2’, Vol. 2, Addison-Wesley Professional,
pp. 747–764.

Liao, D. (2008), ‘GPU-accelerated multi-valued solid voxelization by slice
functions in real time’, Proceedings of The 7th ACM SIGGRAPH Inter-
national Conference on Virtual-Reality Continuum and Its Applications in
Industry - VRCAI ’08 1(212), 1.
URL: http://portal.acm.org/citation.cfm?doid=1477862.1477886

Lipp, M., Wonka, P. & Wimmer, M. (2008), Interactive visual editing of
grammars for procedural architecture, in ‘ACM SIGGRAPH 2008 papers
on - SIGGRAPH ’08’, Vol. 27, p. 1.
URL: http://portal.acm.org/citation.cfm?doid=1399504.1360701

Lipp, M., Wonka, P. & Wimmer, M. (2009), Parallel generation of l-systems.,
in ‘VMV’, pp. 205–214.

Löffler, F., Müller, A. & Schumann, H. (2011), ‘Real-time Rendering of
Stack-based Terrains’, Vision, Modeling, and Visualization .
URL: http://www.informatik.uni-rostock.de/ schumann/pa-
pers/2010+/VMV2011.pdf

Lorensen, W. E. & Cline, H. E. (1987), Marching cubes: A high resolution 3D
surface construction algorithm, in ‘ACM SIGGRAPH Computer Graph-
ics’, Vol. 21, ACM, pp. 163–169.
URL: http://portal.acm.org/citation.cfm?doid=37402.37422

111

Lysenko, M. (2012), ‘Smooth Voxel Terrain (Part 2)’,
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/. [Online;
accessed 30-August-2016].

McMillen, E. & Himsl, F. (2011), ‘The binding of isaac’,
http://www.bindingofisaac.com/. [Online; accessed 03-January-2019].

Microsoft (n.d.), ‘DirectX 11’.
URL: https://www.microsoft.com/en-gb/download/details.aspx?id=6812

Milan, I., Joe, K., Aaron, L. & Charles, H. (2013), ‘Volume rendering tech-
niques’, Book Randima Fernando, GPU Gems NVIDIA. http://http. devel-
oper. nvidia. com/GPUGems/gpugems- ch39. html. Last accessed pp. 667–
672.

Miller, G. S. (1986), The definition and rendering of terrain maps, in ‘ACM
SIGGRAPH Computer Graphics’, Vol. 20, ACM, pp. 39–48.

Mojang (2011), ‘Minecraft’.
URL: https://minecraft.net/

Müller, P., Wonka, P., Haegler, S., Ulmer, A. & Van Gool, L. (2006a), ‘Pro-
cedural modeling of buildings’, ACM Transactions on Graphics 25(3), 614.

Müller, P., Wonka, P., Haegler, S., Ulmer, A. & Van Gool, L. (2006b), ‘Pro-
cedural modeling of buildings’, ACM Transactions on Graphics 25(3), 614.

Museth, K. (2013), ‘Vdb: High-resolution sparse volumes with dynamic
topology’, ACM Trans. Graph. 32(3), 27:1–27:22.

Museth, K., Lait, J., Johanson, J., Budsberg, J., Henderson, R., Alden, M.,
Cucka, P., Hill, D. & Pearce, A. (2013), Openvdb: an open-source data
structure and toolkit for high-resolution volumes, in ‘Acm siggraph 2013
courses’, ACM, p. 19.

Nowrouzezahrai, D., Johnson, J., Selle, A., Lacewell, D., Kaschalk, M. &
Jarosz, W. (2011), ‘A programmable system for artistic volumetric light-
ing’, ACM Transactions on Graphics 30(4), 1.
URL: http://portal.acm.org/citation.cfm?doid=2010324.1964924

Parberry, I. (2015), ‘Modeling Real-World Terrain with Exponentially Dis-
tributed Noise’, Journal of Computer Graphics Techniques 4(2), 1–9.

112

Parish, Y. I. & Müller, P. (2001), Procedural modeling of cities, in ‘Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques’, ACM, pp. 301–308.

Perlin, K. (1985), An image synthesizer, in ‘Proceedings of the 12th An-
nual Conference on Computer Graphics and Interactive Techniques’, SIG-
GRAPH ’85, Association for Computing Machinery, New York, NY, USA,
p. 287–296.
URL: https://doi.org/10.1145/325334.325247

Perlin, K. (2002), Improving noise, in ‘ACM Transactions on Graphics
(TOG)’, Vol. 21, ACM, pp. 681–682.

Perlin, K. & Hoffert, E. M. (1989), Hypertexture, in ‘ACM Siggraph Com-
puter Graphics’, Vol. 23, ACM, pp. 253–262.

Perlin, K. & Neyret, F. (2001), Flow noise, in ‘28th International Conference
on Computer Graphics and Interactive Techniques (Technical Sketches and
Applications)’, SIGGRAPH, p. 187.

Peytavie, A., Galin, E., Grosjean, J. & Merillou, S. (2009), ‘Arches: a
Framework for Modeling Complex Terrains’, Computer Graphics Forum
28(2), 457–467.

Planetside Software (n.d.), ‘Terragen 3’.
URL: http://planetside.co.uk/products/terragen3

Poston, T., Wong, T. T. & Heng, P. a. (1998), ‘Multiresolution Isosurface
Extraction with Adaptive Skeleton Climbing’, Computer Graphics Forum
17(3), 137–148.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1075

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the
curses of dimensionality, John Wiley & Sons.

Pranckevičius, A. (2018), ‘How does a gpu shader core work?’.

Prusinkiewicz, P. & Lindenmayer, A. (2012), The algorithmic beauty of
plants, Springer Science & Business Media.

Quilez, I. & Jeremias, P. (2013), ‘Shadertoy beta’.
URL: https://www.shadertoy.com/

113

Raman, S. & Wenger, R. (2008), ‘Quality isosurface mesh generation us-
ing an extended marching cubes lookup table’, Computer Graphics Forum
27(3), 791–798.

Santamaŕıa-Ibirika, A., Cantero, X., Salazar, M., Devesa, J., Santos, I.,
Huerta, S. & Bringas, P. G. (2013), ‘Procedural approach to volumetric
terrain generation’, The Visual Computer 30(9), 997–1007.

Schaefer, S., Ju, T. & Warren, J. (2007), ‘Manifold dual contouring’, IEEE
Transactions on Visualization and Computer Graphics 13(3), 610–619.

Schmitz, L., Scheidegger, L. F., Osmari, D. K., Dietrich, C. A. & Comba,
J. L. (2010), ‘Efficient and quality contouring algorithms on the GPU’,
Computer Graphics Forum 29(8), 2569–2578.
URL: http://doi.wiley.com/10.1111/j.1467-8659.2010.01825.x

Scholz, M., Bender, J. & Dachsbacher, C. (2013), ‘Level of Detail for Real-
Time Volumetric Terrain Rendering’, VMV 2013: Vision, Modeling &
Visualization 24(17), 211–218.
URL: http://diglib.eg.org/EG/DL/PE/VMV/VMV13/211-218.pdf

Schwarz, M. & Seidel, H.-P. (2010), ‘Fast parallel surface and solid voxeliza-
tion on GPUs’, ACM Transactions on Graphics 29(6), 1.
URL: http://dl.acm.org/citation.cfm?id=1866201
http://portal.acm.org/citation.cfm?doid=1882261.1866201

Shaker, N., Togelius, J. & Nelson, M. J. (2016), Procedural Content Genera-
tion in Games: A Textbook and an Overview of Current Research, Springer.

Smelik, R. M., De Kraker, K. J., Tutenel, T., Bidarra, R. & Groenewegen,
S. A. (2009), A survey of procedural methods for terrain modelling, in
‘Proceedings of the CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS)’, pp. 25–34.

Snape, P., Pszczolkowski, S., Zafeiriou, S., Tzimiropoulos, G., Ledig, C. &
Rueckert, D. (2016), ‘A robust similarity measure for volumetric image
registration with outliers’, Image and Vision Computing 52, 97–113.

Stiny, G. (1980), ‘Introduction to shape and shape grammars’, Environment
and Planning B: Planning and Design 7(November), 343–351.

114

Sutton, R. S. & Barto, A. G. (1998), Reinforcement learning: An introduc-
tion, Vol. 1, MIT press Cambridge.

Swoboda, M. (2012), ‘Advanced Procedural Rendering in DirectX
11’, http://www.gdcvault.com/play/1015455/Advanced-Procedural-
Rendering-with-DirectX. [Online; accessed 05-January-2017].

Swoboda, M. (2013), ‘Real Time Ray Tracing Part 2’,
http://directtovideo.wordpress.com/2013/05/08/real-time-ray-tracing-
part-2/. [Online; accessed 02-April-2016].

Tasse, F., Emilien, A. & Cani, M.-p. (2014), ‘First Person Sketch-based
Terrain Editing’, Graphics Interface . . . 2014, 217–224.
URL: http://hal.inria.fr/hal-00976689/

Tatarchuk, N. (2015), Advances in Real Time Rendering, Part I, in ‘ACM
SIGGRAPH 2015 Courses’, SIGGRAPH ’15, ACM, New York, NY, USA.

Thiedemann, S., Henrich, N., Grosch, T. & Müller, S. (2011), Voxel-
based global illumination, in ‘Symposium on Interactive 3D Graphics and
Games’, ACM, pp. 103–110.

Togelius, J., Shaker, N. & Nelson, M. J. (2016), Evaluating content genera-
tors, in N. Shaker, J. Togelius & M. J. Nelson, eds, ‘Procedural Content
Generation in Games: A Textbook and an Overview of Current Research’,
Springer, pp. 215–224.

Unity (n.d.), ‘Unity Game Engine-Official Site’.

Wang, L., Yu, Y., Zhou, K. & Guo, B. (2011), ‘Multiscale vector volumes’,
ACM Transactions on Graphics 30(6), 1.

Wonka, P., Wimmer, M., Sillion, F. & Ribarsky, W. (2003), ‘Instant archi-
tecture’, ACM Transactions on Graphics 22(3), 669.

Worley, S. (1996), A cellular texture basis function, in ‘Proceedings of the
23rd annual conference on Computer graphics and interactive techniques’,
ACM, pp. 291–294.

Wrenninge, M. (2012), Production Volume Rendering: Design and Imple-
mentation, CRC Press.

115

Wyman, C. (2011), ‘Voxelized shadow volumes’, Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics - HPG ’11 p. 33.
URL: http://dl.acm.org/citation.cfm?doid=2018323.2018329

116

