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Abstract
With the increasing running speed, the aerodynamic issues of high-speed trains are being raised and impact the running
stability and energy efficiency. The optimization design of the head shape is significantly important in improving the
aerodynamic performance of high-speed trains. Existing aerodynamic optimization methods are limited by the parametric
modeling methods of train heads which are unable to accurately and completely parameterize both global shapes and
local details. Due to this reason, they cannot optimize both global and local shapes of train heads. In order to tackle this
problem, we propose a novel multi-objective aerodynamic optimization method of high-speed train heads based on the
partial differential equation (PDE) parametric modeling. With this method, the half of a train head is parameterized with 17
PDE surface patches which describe global shapes and local details and keep the surface smooth. We take the aerodynamic
drag and lift as optimization objectives; divide the optimization design process into two stages: global optimization and
local optimization; and develop global and local optimization methods, respectively. In the first stage, the non-dominated
sorting genetic algorithm (NSGA-II) is adopted to obtain the framework of the train head with an optimized global shape.
In the second stage, Latin hypercube sampling (LHS) is applied in the local shape optimization of the PDE surface patches
determined by the optimized framework to improve local details. The effectiveness of our proposed method is demonstrated
by better aerodynamic performance achieved from the optimization solutions in global and local optimization stages in
comparison with the original high-speed train head.

Keywords High-speed trains · Multi-objective optimization · PDE-based modeling · Aerodynamic performance · Global
and local shapes

1 Introduction

High-speed trains play an irreplaceable role in modern
means of transportation due to their advantages such as
high running speed, ride comfort, large transport capacity
and low energy consumption. With the increasing running
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speed, the aerodynamic performance of high-speed trains has a
significant influence on its running stability and energy
efficiency which is directly dominated by the streamline
head shape of high-speed trains (Raghunathan et al. 2002).
Therefore, the design and optimization of the head shape is
the key to improve the aerodynamic performance of high-
speed trains (Wang et al. 2018). Generally, the optimization
design of high-speed train heads mainly includes parametric
modeling and aerodynamic analysis processes.

1.1 Parametric modeling

Parametric modeling methods of describing the head
shape of high-speed trains can be roughly grouped into
two categories, i.e., the framework modeling and shape
deformation methods. The framework modeling method is
to directly construct the whole framework of high-speed
train heads and obtain the surface model by filling surface
patches into the framework (Suzuki and Nakade 2013; Yao
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et al. 2016). However, this method is not ideal in accurately
describing train heads because the local shape in surface
patches is uncontrollable and has no ability to deform if
the framework remains unchanged. Moreover, the tangential
continuity at the joint of two adjacent surface patches cannot
be guaranteed because the two adjacent patches are only
constrained by the position coordinates of the framework.
In order to optimize local shapes instead of the whole shape
of a train head and deform the surface smoothly, various
shape deformation methods have attracted considerable
attention such as the free-form deformation (Li et al. 2016;
Zhang et al. 2018) and the arbitrary shape deformation
(Sun et al. 2010; Yao et al. 2014). The shape deformation
method can focus on improving specified local shapes,
but its global shape is non-optimized. Besides, the shape
deformation methods usually use one parameter to control
the shape change of a local region which limits the degree
of freedom of the deformation. For example, the free-
form deformation with one design parameter moves control
points simultaneously in the same direction and makes the
shape change have only one degree of freedom, i.e., sticking
out or caving in, as shown in Fig. 1a.

The limitations of above modeling methods are that they
cannot create complicated train head shapes with few design
variables, strictly keep the surface smooth when the design
variables change, and achieve both global and local shape
changes. Normally, more design variables can describe
more complicated train head shapes and provide more
degrees of freedom to control the shapes in the modeling
process, but it will be more difficult to maintain the surface
smoothness and find an optimal solution in the optimization
process. Therefore, a good parametric modeling method
able to define detailed train head models is the key to
success (Wang et al. 2018). The partial differential equation
(PDE)-based modeling method is fully capable in creating a

complex shape with three design variables which provides
an effective solution to these problems.

PDE-based modeling is to create surfaces by the solution
to a PDE with shape control parameters subjected to exact
satisfaction of boundary conditions. It has four advantages
(Castro et al. 2008). (1) Small data: complicated and detai-
led shapes can be described with few PDE surface patches.
For example, the train head model is constructed by only
17 PDE surface patches in this paper. (2) Efficient shape
deformation: applying shape control parameters (3 design
variables) can accurately control surface shapes with more
degrees of freedom compared with the free-form deforma-
tion method, as shown in Fig. 1. (3) Good continuities:
any high-order continuity between two adjacent PDE sur-
face patches is readily achieved and naturally maintained.
(4) Physics nature: the PDE method is physics-based which
has a potential to create a more realistic appearance. Due to
these virtues, PDE-based modeling has the strength in shape
designs of high-speed train heads.

1.2 Aerodynamic analysis

In the aerodynamic analysis process, the numerical sim-
ulation, i.e., the computational fluid dynamics (CFD), is
commonly used to investigate the aerodynamic performance
of high-speed train heads. By comparing the simulation
results with the wind tunnel test of high-speed trains, the
CFD is proved to be accurate and acceptable for aerody-
namic analysis of high-speed train heads (Cheli et al. 2010;
Morden et al. 2015). The approximation method, i.e., the
surrogate model, has been applied simultaneously with the
CFD simulation to reduce the time of the optimization pro-
cess (Li et al. 2016). The frequently used surrogate models
include the response surface (Ku et al. 2010; Kwon et al.
2001), Kriging model (Li et al. 2016; Zhang et al. 2018; Sun

Fig. 1 A comparison between the free-form deformation and PDE-based modeling methods. a The free-form deformation with 9 red control
points which are governed by one design variable. b PDE-based deformation by changing the value of 3 control parameters (3 design variables)
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et al. 2010; Yao et al. 2014), support vector machine (SVM)
model (Yao et al. 2016; Lee and Kim 2008) and radial basis
function network (Muñoz-Paniagua et al. 2014). Although
these surrogate models can quickly obtain the optimiza-
tion results, they all need to be trained by inputting a lot
of training sets such as 168 sets in Lee and Kim (2008)
before applying it into the optimization process. Especially,
when the training sets come from numerical simulations, the
computational accuracy will be decreased further since the
surrogate model and numerical simulations are both approx-
imation solutions. In addition, there are no reliable rules to
estimate the accuracy of a given surrogate model. Depend-
ing on the complexity of a nonlinear problem and the quality
of training sets, the training process of the surrogate model
could easily be non-convergent or locally convergent.

The running environment of a high-speed train is very
complex and affected by many aerodynamic characteristics
such as the aerodynamic drag force, lift force, side force and
micro-pressure wave (Yao et al. 2014). In multi-objective
optimization, researchers usually choose some combina-
tions of these aerodynamic characteristics as optimization
objectives according to different running environments, and
the aerodynamic drag and lift forces are frequently taken
into account. Since the aerodynamic drag force of a high-
speed train accounts for about 75–80% of the total resis-
tance when the train speed reaches 250–300 km/h (Brockie
and Baker 1990; Schetz 2001), a large aerodynamic drag
force will significantly increase the energy consumption of
the train and seriously affect its running speed. For the aero-
dynamic lift force, a large positive lift force will reduce the
adhesion of the wheel-rail system and a negative lift force
will increase the abrasion of the wheel-rail system (Li et al.
2016). Particularly, the unsteady characteristics of the wake
flow have a predominant effect on the train which may cause
a large fluctuation to the aerodynamic lift of the train tail
(Yao et al. 2014). Therefore, the aerodynamic drag of the
whole train and aerodynamic lift of the train tail are closely
related to the safety and reliability of a running high-speed
train.

As discussed above, the aerodynamic drag and lift forces
are very important in influencing the aerodynamic perfor-
mance of high-speed trains. We take them as two opti-
mization objectives in the following aerodynamic analysis
process.

1.3 Our work and contributions

In this paper, we proposed a novel multi-objective optimi-
zation method of high-speed train heads based on the
PDE parametric modeling. We parameterize the half of
a high-speed train head with 17 PDE surface patches by
solving a vector-valued fourth-order PDE and apply the
CFD simulation to analyze the aerodynamic performance,

i.e., the aerodynamic drag and lift forces of the train.
The optimization process of our method consists of two
stages, i.e., the global and local optimizations. In the global
optimization stage, we use ten design parameters as design
variables to control the framework of the train head and
the non-dominated sorting genetic algorithm (NSGA-II) to
obtain the Pareto front of the globally optimized solutions.
In the local optimization stage, we apply the three shape
control parameters in PDE (1) below as design variables
to change the local shapes of all PDE surface patches, and
the Latin hypercube sampling (LHS) method is employed to
generate the sample sets of three shape control parameters
for finding the locally optimized solution. The detailed
optimization process is explained in Section 3. Our main
contributions can be summarized as follows:

– A new multi-objective aerodynamic optimization me-
thod of high-speed train heads based on the PDE para-
metric modeling is proposed to optimize the head shape.

– PDE surface patches are introduced to describe more
detailed surface shapes with fewer design variables and
guarantee the smoothness between two adjacent surface
patches.

– The global and local optimization methods in the
multi-objective aerodynamic optimization process are
developed to optimize both global and local shapes.

The remaining parts of this paper are organized as follows.
The related work on the optimization of high-speed train
heads and the PDE-based modeling method are briefly
reviewed in Section 2. An overview of the proposed multi-
objective aerodynamic optimization process is given in
Section 3. Our method of PDE-based modeling is described
in Section 4. The optimization algorithm and the CFD
simulation method are given in Section 5 and Section 6,
respectively. The optimization results and discussions are
presented in Section 7, and finally, the conclusion is drawn
in Section 8.

2 Related work

Our proposed method is related to the optimization of high-
speed train heads and the PDE-based modeling method. In
this section, we briefly review the most related work in the
two fields.

2.1 Optimization of high-speed train heads

In early stages, researchers usually focused on studying
the aerodynamic performance of a given high-speed train
using experimental methods such as the wind tunnel test
and the moving model test (Schetz 2001). Maeda et al.
(1989) presented a method to estimate the aerodynamic
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drag of trains and evaluated the accuracy of the results by
measuring the total resistances in the open air and in a
tunnel. De Wolf and Demmenie (1997) developed a train
tunnel test facility which can launch models up to 500
km/h to measure the interacting pressure waves and their
reduction in tunnels for high-speed trains. Cheli et al. (2010)
presented an aerodynamic analysis on two different versions
of the high-speed train EMUV250 to study the cross wind
behavior by a combined use of wind tunnel investigations
and numerical CFD simulations. However, the experiment
method, greatly depending on engineering experience of
researchers to seek the optimal solution, is limited by some
disadvantages such as expensive testbed and high cost of
time.

With the development of computer technology and
increase of the computational power, numerical simulations
have been widely applied in the optimization design of
high-speed train heads and usually combined with surrogate
models to accelerate the optimization process. Kwon et al.
(2001) used the response surface methodology and the
axisymmetric compressible Euler equations to optimize
the nose shape and introduced the Hicks-Henne shape
functions to define the design space. Ku et al. (2010)
employed the vehicle modeling function for multi-objective
optimization of the high-speed train nose and performed a
multi-step design optimization using the BFGS algorithm
with a response surface model. Lee and Kim (2008)
adopted the Hicks-Henne shape functions to parameterize
the high-speed train nose and presented an approximate
optimization method to reduce the micro-pressure wave by
using an SVM-based metamodel and sequential quadratic
programming. Sun et al. (2010) proposed an optimization
approach to improve the aerodynamic drag of a CRH3
high-speed train head by combining CFD analysis with
the genetic algorithm and introduced an arbitrary shape
deformation technology. These methods, however, focus on
studying single-objective optimization problems which are
inadequate to find optimal solutions.

The multi-objective optimization of high-speed train
heads has been much investigated in the recent decade.
The task of multi-objective optimization is to find a set of
solutions, i.e., Pareto-optimal solutions, which represent a
trade-off among objective functions (Deb 1999). Suzuki and
Nakade (2013) developed a multi-objective optimization
method of high-speed train heads using an evolutionary
algorithm to estimate the aerodynamic drag and pressure
variation, and parameterized the train head shape by B-
spline curves and Coons patches. Li et al. (2016) optimized
the aerodynamic drag and lift forces of a CRH2 high-speed
train head using NSGA-II based on a Kriging model and
applied five design variables to control the local shapes
of the train head with a free-form deformation method.
By using the similar modeling and analysis methods in Li

et al. (2016), Zhang et al. (2018) studied the aerodynamic
drag, lift and side forces of a high-speed train running on
an embankment under crosswinds. Muñoz-Paniagua et al.
(2014) defined the geometrical parameterization of the nose
shape of a high-speed train by three design variables, and
adopted the genetic algorithm with a radial basis function
network to minimize the maximum pressure gradient and
aerodynamic drag of the high-speed train entering a tunnel.
Yao et al. (2014) constructed a multi-objective optimization
process of a high-speed train head using the modeling
method of arbitrary shape deformation and the optimization
method of NSGA-II based on a Kriging model. They also
studied a multi-objective particle swarm algorithm with a
SVM regression model for the aerodynamic optimization of
high-speed train heads (Yao et al. 2016).

2.2 PDE-basedmodeling

PDE-based geometric modeling was pioneered by Bloor
and Wilson (1990) where they used a vector-valued fourth-
order PDE with one shape control parameter to generate
free-form surfaces and create different shapes like propeller
blades and phone handsets. Subsequently, the PDE-based
modeling technology has been widely used in industrial
geometric designs such as the submarine (Bloor and Wil-
son 1994) and aircraft design (Athanasopoulos et al. 2009).
In order to interactively create surfaces in real time, Ugail
et al. (1999) developed an interactive design tool based
on PDE-based modeling. Since one shape control param-
eter in a PDE was not enough to diversify the PDE sur-
face shapes, a fourth-order PDE with three shape control
parameters was proposed by Zhang and You (2002) to gen-
erate various shapes of 3D vase models. They also deve-
loped a sixth-order PDE with four shape control param-
eters which provides enough degrees of freedom to sat-
isfy C2 continuous boundary conditions and offers more
shape control parameters to control surface shapes (Zhang
and You 2004). Since PDE surfaces have not become an
industrial standard in computer-aided design and manufac-
turing systems, Wang et al. (2019) developed a method of
achieving optimal conversion of PDE surfaces into NURBS
surfaces for the shape design of high-speed train heads.

PDE-based modeling methods include analytical and
numerical ones. Since accurate analytical methods are very
difficult to obtain and can only deal with simple modeling
problems like blending between two primary surfaces
(Bloor and Wilson 1989), various approximate analytical
methods have been developed such as the Fourier series
method (Bloor and Wilson 1990; Athanasopoulos et al.
2009; Ugail et al. 1999) and weighted residual method
(Zhang and You 2004; You et al. 2004). However, these
methods are applicable to specific boundary conditions
only and cannot describe complicated surface shapes. In

1288



Multi-objective aerodynamic optimization of high-speed train heads...

contrast, numerical methods are most effective in solving
PDEs subjected to arbitrary boundary conditions. Although
numerical methods require heavy computations, they are
more powerful than accurate and approximate analytical
methods in shape description of complicated 3D models.
The popular numerical methods are the finite difference
method (Wang et al. 2019; Du and Qin 2005) and finite
element method (Brown et al. 1998).

In summary, the existing optimization methods of high-
speed train heads perform unsatisfactorily in optimizing
both global and local shapes. Especially, the parametric
modeling algorithms used in the existing optimization
methods cannot accurately and completely describe global
shape and local details of high-speed train heads. In order
to address this problem, we will develop a multi-objective
aerodynamic optimization design method of high-speed
train heads by taking full advantage of the PDE-based
modeling technology.

3 Overview of the design flow

As shown in Fig. 2, the design flow of our method
can be basically divided into three parts: (1) PDE-based
parametric modeling, (2) global optimization, and (3) local
optimization.

In the first part, i.e., PDE-based parametric modeling, the
half of a high-speed train head is first decomposed into 17
simple parts and the boundaries of each part are represented
by 10 contour lines. After initializing the design variables
which control the shape of contour lines, the framework
of the train head is obtained as shown in Fig. 4a. Then,
each part is described by a PDE surface patch generated

from the finite difference solution of a vector-valued
fourth-order PDE given in (1). Since any two adjacent PDE
surface patches share the same boundary conditions, all
the PDE surface patches are automatically and smoothly
stitched together to represent the PDE surface model of the
high-speed train head.

The second part is the global optimization process which
contains the first part. By inputting the PDE surface model
of the train head into the CFD simulation, we can obtain
the aerodynamic drag coefficient of the whole train (Cd )
and lift coefficient of the train tail (Cl) which are two
optimization objectives in NSGA-II. The objective function
of NSGA-II is to minimize the Cd and |Cl |. There are 10
design variables which control the shapes of contour lines
of the train head. The criterion of the global optimization
convergence is that the mean error of the non-dominated
front F1 between two successive generations is less than
or equal to a threshold value ε. If the global optimization
does not converge, the values of the design variables will
be updated and inputted into the first part to create a new
framework of the train head. Otherwise, we will obtain the
globally optimized solution, i.e., the optimized framework
of the train head.

Based on the optimized framework of the train head
from the second part, the third part is to optimize local
shapes of all PDE surface patches in the CFD simulation.
In the local optimization process, only one PDE surface
patch is selected and optimized each time. Therefore, only
three shape control parameters of the PDE surface patch
are taken to be the design variables and set to some initial
values. By using the LHS method, 125 sample sets are
created to generate various shapes of the PDE surface patch.
Then, the corresponding train heads with these shapes of the

Fig. 2 Overall design flow
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PDE surface patch are inputted into the CFD simulation. If
the aerodynamic performance of Cd and Cl are improved,
the PDE surface patch will be replaced by the new shape.
Otherwise, the original shape of the PDE surface patch will
be kept.

Since there are 17 PDE surface patches of the train head,
the above calculations are repeated 17 times until all the
PDE surface patches have been optimized, and then we ob-
tain the locally optimized solution, i.e., the final optimized
shape of the train head.

The global and local optimizations can be conducted
simultaneously. However, the design variables of the
simultaneous optimization will include 10 parameters of the
contour lines and 3 control parameters of 17 PDE surface
patches. The total number of design variables is 61, which
cannot be simultaneously computed due to our limited
computational resources, and it is also more difficult to find
optimal results. Due to this reason, we conduct global and
local optimizations respectively in this paper.

4 PDE-based parametric modelingmethod

The PDE-based parametric modeling method provides
an efficient solution for the optimization of complicated
geometry. Since the high-speed train head is a symmetrical
structure, there is no need to represent the whole shape
of the train head with PDE surface patches. Thus, we
can represent the half of the train head with PDE surface
patches, and then obtain the whole shape of the PDE
surface-represented train head by reflecting the half of the
train head through its symmetry plane.

4.1 The fourth-order PDE and the finite difference
method

The mathematical model of PDE-based parametric model-
ing can take several forms due to different orders, i.e., the
second, fourth and sixth orders (Castro et al. 2008). Since a
second-order PDE cannot guarantee the tangent continuity
between two adjacent PDE surface patches, and a sixth-
order PDE is difficult to be solved and has low calculation
efficiency, we select a fourth-order PDE as the mathematical
model of surface patches of the train head which well bal-
ances performance and efficiency (Wang et al. 2019). The
vector-valued fourth-order PDE is defined as:(

a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4

)
f(u, v) = 0 (1)

where f(u, v) = [x(u, v), y(u, v), z(u, v)]T is a vector-
valued position function which represents the generated
parametric surface, a1, a2 and a3 are three shape control
parameters, and u and v are the parametric variables of

describing the parametric location of a point (x, y, z) on
a PDE surface patch which are defined by u ∈ [0, 1] and
v ∈ [0, 1].

The methods of solving a PDE can be analytical or nume-
rical. Analytical methods represent a PDE surface patch by
a vector-valued continuous function which can be calcu-
lated rapidly and precisely. However, analytical methods are
usually applicable to a low-order or simple PDE and dif-
ficult to solve the PDE for the surface patches defined by
four boundaries. Compared with analytical methods, nume-
rical methods are more powerful in solving a high-order
PDE and can deal with various complicated surface model-
ing problems although numerical methods are computation-
ally more complicated and expensive. Therefore, numeri-
cal methods are more suitable in solving the PDE shown
in (1). One popular numerical method is the finite difference
method due to its simplicity, intuitiveness, and high effi-
ciency in solving a vector-valued fourth-order PDE to create
surface patches with four boundaries (Wang et al. 2019).

The finite difference method is to discretize the para-
metric region of a surface into I ×J regularly and uniformly
distributed nodes as shown in Fig. 3. The small dots, squares
and triangles represent the unknown inner nodes, the known
boundary nodes and the virtual nodes beyond the boundaries
of a PDE surface patch, respectively. The virtual nodes will
be involved in the finite difference equations of the first
partial derivatives on the boundaries and used to guarantee
the boundary tangent continuity.

In Fig. 3, fi,j = f(uj , vi) (i = 2, 3, . . . , I − 1,
j = 2, 3, . . . , J − 1) represents an arbitrary inner node
(i, j ) on the finite difference grid. Based on the Taylor
series expansion of function f(u, v), the central difference

approximation of
∂fi,j
∂u

and
∂fi,j
∂v

can be derived as follows:

∂fi,j
∂u

= 1

2h
(fi,j+1 − fi,j−1) (2)

∂fi,j
∂v

= 1

2h
(fi+1,j − fi−1,j ) (3)

where h denotes the grid interval.
The central difference approximations of the fourth

partial derivatives derived from (2) and (3) can be expressed
as:

∂4fi,j
∂u4

= 1

h4
[6fi,j −4(fi,j−1+fi,j+1)+(fi,j−2+fi,j+2)] (4)

∂4fi,j
∂v4

= 1

h4
[6fi,j −4(fi−1,j +fi+1,j )+(fi−2,j +fi+2,j )] (5)

∂4fi,j
∂u2∂v2

= 1

h4
[4fi,j − 2(fi−1,j + fi+1,j + fi,j−1 + fi,j+1)

+ (fi−1,j+1 + fi−1,j−1 + fi+1,j+1 + fi+1,j−1)]
(6)
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Fig. 3 The I × J finite
difference grid

After substituting (4), (5) and (6) into (1), we obtain the
following linear algebra equation at the inner node (i, j ):

(6a1 + 4a2 + 6a3)fi,j − (4a1 + 2a2)fi,j+1 − (2a2 + 4a3)fi+1,j

−(4a1 + 2a2)fi,j−1 − (2a2 + 4a3)fi−1,j + a2fi−1,j+1 + a2fi+1,j+1

+a2fi+1,j−1 + a2fi−1,j−1 + a1fi,j+2 + a3fi+2,j + a1fi,j−2

+a3fi−2,j = 0 (7)

According to the central difference approximations
defined by (4), (5) and (6), the finite difference equations
at the inner nodes next to the four boundaries of the grid
involve the boundary nodes and the virtual nodes. All
the boundary nodes are known. The virtual nodes can be
determined from the known boundary tangents, i.e., first
partial derivatives of the function f(u, v) with respect to the
parametric variable u or v on the four boundaries of the PDE
surface patch. After merging these boundary conditions into
the finite difference equations, Equation (7) can be written
in the following matrix form:

[A] {Q} = {E} (8)

where [A] is an I × J by I × J square and nonsingular
coefficient matrix. {Q} is a column vector of the discrete
points of the PDE surface patch. {E} is a known column

vector involving boundary nodes and boundary tangents.
The PDE surface patch can be obtained directly from {Q} =
[A]−1 {E}.

By using the PDE-based parametric modeling method,
we build an original simplified high-speed train head
model according to some practical constraints, such as the
appropriate slenderness ratio, the appropriate space in the
driving cab, and the good driver’s perspective. According
to the shape changes, we divide half of the high-speed
train head into 17 parts as shown in Fig. 4a. Each part is
represented by one PDE surface patch as shown in Fig. 4b.
All PDE surface patches are generated by (8) and controlled
by boundary curves, boundary tangents and three shape
control parameters while the numerical solution (8) of (1)
gives the approximated values of the grid nodes for every
PDE surface patch.

4.2 Global deformation controlled by ten design
parameters

We first optimize the whole shape of the high-speed train
head by proposing a global deformation method. In order to
achieve high efficiency of shape optimization of the high-
speed train head, we choose ten contour lines, i.e., ˜A1A6,
˜B1B6, ˜C1C6, ˜D1D6, ˜A2D2, ˜A3D3, ˜A4D4, ˜A5D5, ˜C1D1

and ˜A1E1C1 to define half of the high-speed train head
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Fig. 4 The half of the
high-speed train head model.
a Contour lines. b PDE surface
patches

as shown in Fig. 4a and reduce the design variables. Each
of the contour lines consists of some line segments and
each line segment is between two adjacent joint vertices.

For example, the contour line ˜A4D4 consists of three line

segments ˜A4B4, ˜B4C4 and ˜C4D4. Since the two contour

lines ˜A1C1 and ˜A6D6 decide the key position information
of the train nose cone and coach, respectively, we fix their
shapes to ensure the smooth transition between different
train parts.

In order to further reduce the number of the total design
variables in the optimization process, we use one design
parameter to describe the shape of one contour line through
the following equation:

Lin = L̄in

[
1 + δi (n − 1)(Ni − n)

(n − 1)2 + (Ni − n)2

]
(n = 1, 2, ..., Ni , i = 1, 2, ..., 10)

(9)

where the subscript i indicates the ith contour line, Ni

indicates the number of the total points on the ith contour
line, L̄in and Lin are the vector-valued position of the
nth point on the ith contour line before and after the
deformation, and δi is the design parameter which control
the shape of the ith contour line.

By applying (9) to deform a contour line, the deformation
becomes bigger and bigger when moving from two end
vertices to the center of the contour line, such as the red
contour line ˜A1A6 shown in Fig. 5a. Since each of the con-
tour lines of the train head model is connected to some other
line segments, the deformation of each of the contour lines
will impact the shapes of these line segments. For example,
when ˜A1A6 in Fig. 5a is deformed, the line segments
˜A2B2, ˜A3B3, ˜A4B4 and ˜A5B5 which are connected to
˜A1A6 are deformed accordingly. We employ the following
deformation algorithm to describe the deformation of each
connected line segment:

Lcjm = L̄cjm+ΔLj cos

(
π(m − 1)

2(Mj − 1)

)
(m = 1, 2, ..., Mj )

(10)

where the subscript j indicates any one line segment
connected a deformed contour line, m and Mj represent
the mth point and the number of the total points on the
j th line segment, respectively, m = 1 is the joint vertex
where the j th line segment is connected to a deformed
contour line, m = Mj is another joint vertex on the j th line
segment, L̄cjm and Lcjm are the vector-valued positions of
the mth point on the j th line segment before and after the
deformation, and ΔLj = Lin − L̄in is the vector-valued
deformation at the joint vertex between the deformed ith
contour line and the connected j th line segment.

We take the contour lines ˜A1A6 and ˜A1E1C1 as an
example to show the effect of the contour line deformation
on the shape of the high-speed train head in Fig. 5. In
Fig. 5a, the contour lines in black and red present the
original and deformed shapes, respectively. In Fig. 5b, the
blue meshes represent the PDE surface model of the original
half train head and the transparent surface represents the

deformed shape after adjusting ˜A1A6 and ˜A1E1C1 by
using (9) and (10).

Table 1 shows ten design parameters, the corresponding
contour lines and deformation directions. By adjusting the
values of ten design parameters, the purpose of controlling
the global deformation of the whole high-speed train head
model with fewer design parameters is achieved.

The process of the global deformation consists of five
steps. First, ten design parameters δ1, δ2, . . . , δ10 are
generated randomly within their design spaces. Second,
one contour line is randomly selected and its deformation
is determined by introducing the design parameter of the
selected contour line into (9). Third, the deformations of all
the line segments connected to the deformed contour line are
determined by (10). Fourth, the shapes of all contour lines
are updated with the deformations obtained in the second
and third steps. Fifth, another contour line is selected and
the second, third and fifth steps are repeated until all the ten
contour lines are deformed.

Using the ten design parameters to control the global
deformation of the high-speed train head greatly improves
the efficiency in the first stage of the multi-objective

1292



Multi-objective aerodynamic optimization of high-speed train heads...

Fig. 5 The effect of the contour
line deformation on the shape of
the half train head. a The
deformation of the contour lines
˜A1A6 and ˜A1E1C1 and their
connected contour lines. b The
PDE surface model before and
after adjusting the two contour
lines

optimization process of the high-speed train head. After
optimizing the two optimization objectives, i.e., aerody-
namic drag and aerodynamic lift, the optimized values of the
ten design parameters are found and the globally optimized
framework of the high-speed train head is obtained.

4.3 Local deformation controlled by three shape
control parameters

After obtaining the optimized framework of the high-speed
train head, its surface model can be generated using (8)
by filling 17 PDE surface patches into the framework as
shown in Fig. 4b. For acquiring a better hydro-mechanical
property, we will further adjust the shape of the high-speed
train head by deforming the local shapes of PDE surface
patches in the second stage. As explained previously, the
shape of each PDE surface patch is controlled by the three
shape control parameters in PDE (1), i.e., a1, a2 and a3.
With different values of the three shape control parameters,
we obtain different surface shapes. For example, we set the
three shape control parameters a1, a2 and a3 for the PDE
surface patch A3A4B4B3 to two groups of different values:

Table 1 The design parameters and deformation directions of ten
contour lines

Design parameter Contour line Deformation direction

δ1 ˜A1A6 Y axis

δ2 ˜B1B6 Y axis

δ3 ˜C1C6 Z axis

δ4 ˜D1D6 Z axis

δ5 ˜A2D2 Y axis

δ6 ˜A3D3 Y axis

δ7 ˜A4D4 Y axis

δ8 ˜A5D5 Y axis

δ9 ˜A1E1C1 X axis

δ10 ˜C1D1 Y axis

a1 = −2.49, a2 = −2.49, a3 = −1.68 and a1 = −0.13,
a2 = −0.13, a3 = −1.68, and we obtain different surface
shapes shown in Fig. 6.

Using the three shape control parameters in PDE (1) to
control the deformation of all PDE surface patches, we can
further adjust the local shape of the high-speed train head
which improves the surface quality and optimization results
in the second stage. After the local shape optimization, the
ultimate optimized shape of the high-speed train head is
obtained.

5 Optimization algorithm

5.1 NSGA-II

In the first stage of the multi-objective optimization design
process, NSGA-II is applied to obtain the optimized
framework of the high-speed train head. NSGA-II is an
evolutionary multi-objective optimization algorithm and it
is proposed by Deb et al. (2002). This algorithm is suitable
for solving complex multi-objective optimization problems
and has fast and accurate search performance. Fast non-
dominated sorting approach with elite strategy is used
in NSGA-II, which greatly improves the sorting speed.
Moreover, the use of the elite strategy ensures that the good
solution will not be discarded. The implementation process
of NSGA-II is shown in Fig. 7.

The NSGA-II algorithm includes five steps. First, the
initial population Pt with a size N is randomly generated
and non-dominated sorting is performed. Second, the
selection, crossover, and mutation operations are applied on
population Pt to generate an offspring population Qt with
the same size N . Third, the two populations Pt and Qt are
combined to form the new population Rt with a size 2N .
Then, the combined population Rt is sorted based on the
non-dominated sorting approach to get non-dominated front
Fi (i = 1, 2, 3, . . .). Meanwhile, the crowding distance of
each individual in Fi is calculated. Fourth, according to the
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Fig. 6 The influence of the three shape control parameters on the
shape deformation of the PDE surface patch A3A4B4B3. a The PDE
surface patch obtained from a1 = −2.49, a2 = −2.49, a3 = −1.68;

b The PDE surface patch obtained from a1 = −0.13, a2 = −0.13,
a3 = −1.68; c The shape comparison between (a) and (b)

order of i from small to large, Fi is added into the next
generation population P̄t . When the addition of a certain
Fi causes the size of P̄t to exceed the population size N ,
individuals in the Fi will be added into P̄t according to the
crowding distance in descending order instead of adding the
whole Fi into P̄t . Fifth, if the termination condition, i.e, the
number of iterations, reaches its maximum, the procedure
ends. Otherwise, the P̄t is set as the initial population and
restart the first step.

5.2 Latin hypercube sampling

In the second stage of the multi-objective aerodynamic
optimization process, we look for the local optimization

Fig. 7 The implementation process of NSGA-II

by adjusting the three shape control parameters in PDE
(1) to improve the local shapes of PDE surface patches of
the high-speed train head. In order to obtain the applicable
values of the three shape control parameters, LHS method
is applied to initialize them in the defined design space.
LHS is a stratified sampling technology to approximate
the random sampling from multiple parameter distributions
(McKay et al. 2000), and it is the generalization of Latin
square to multi-dimensions and each axis-aligned hyper-
plane contains only one sample which ensures all portions
of the sample space are sampled and improves the sampling
accuracy.

The three shape control parameters in PDE (1) are taken
as three different input variables in the LHS process. In
order to avoid an overlarge deformation of the PDE surface
patch, we define the design space of each variable as
[−3, 0.1] after a dozen experiments. The range of each
variable is divided into 5 intervals with equal marginal
probability, and a sample is randomly selected from each
interval. Since each variable generates 5 samples, we can
obtain totally 125 combinations of the three variables.
Each combination including a sample set of a1, a2 and
a3 can construct a different shape of the PDE surface
patch which results in a different high-speed train head.
Therefore, 125 high-speed train models are automatically
generated and applied to the CFD simulation in the local
optimization process. The LHS result of the three shape
control parameters is shown in Fig. 8.

6 CFD simulationmethod

In this paper, we conduct the CFD simulation by using
two software products: ICEM and FLUENT. ICEM is
used to divide the whole high-speed train and the com-
putational domain into aerodynamic meshes as shown in
Fig. 10, and FLUENT is applied to carry out the sub-
sequent fluid dynamics analysis for the high-speed train.
To achieve automation of the optimization design, the
process of the mesh generation and the aerodynamic cal-
culation of the high-speed train are executed automati-
cally by invoking the script files of ICEM and FLUENT
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Fig. 8 LHS for three shape control parameters a1, a2 and a3

respectively. These script files can be performed by batch
commands.

6.1 Themodel and the computational domain

In order to evaluate the practical aerodynamic performance
of the high-speed train head, we construct a whole train
model by adding a middle coach and a tail (the same as
the head) to the train head. Since the real high-speed train
has a complex shape which may greatly increase the time
consumption of the parametric modeling, mesh generation
and CFD simulation in the optimization process, and we
mainly study the relationship between the shape of the
train head and the aerodynamic drag and lift forces, the
constructed high-speed train model is simplified by ignoring
bogies and other auxiliary structures, as shown in Fig. 9a.
In this paper, the generated high-speed train model is on the
same scale of a real high-speed train which runs at the speed
of 300km/h in the open air without a crosswind.

We first construct a computational domain to simulate
the flow field around the high-speed train. We indicate the
train length with the symbol L (L = 78 m) and take
it as a characteristic length. The height and width of the
train is 0.04435L and 0.04470L, respectively. Then, we
determine the size of the computational domain according
to the characteristic length L. As shown in Fig. 9b, the
distance between the entrance of the computational domain
and the nose cone of the train head is 1L, and the distance
between the nose cone of the train tail and the exit of
the computational domain is 1.5L. The distance from the
ground to the top boundary of the computational domain
is 0.5L, and the distance from the train center to the
boundary on both sides of the computational domain is
0.5L. The distance between the train wheel and the ground
is 0.00235L which represents the height of rail tracks.

6.2 CFD simulation

The software FLUENT is adopted to carry out the CFD
simulation after obtaining the mesh file generated from the
ICEM, and calculate the coefficients of aerodynamic drag
and lift of the high-speed train model. Note that we have not
yet conducted the wind tunnel or real vehicle experiments
and have no available experimental data. In order to ensure
that our simulation results are reliable, our strategy of the
simulation setup makes reference to previous similar work
(Li et al. 2016; Zhang et al. 2018; Morden et al. 2015; Yao
et al. 2014; Cheli et al. 2010), which has indicated that the
CFD computation is able to predict the flow correctly.

Governing equations of fluid flows The Navier-Stokes (N-
S) equations are the governing equations of fluid flows and
have different forms for incompressible and compressible
flows (Cebeci et al. 2005). In this paper, the flow around
the high-speed train is considered to be an incompressible
flow in the CFD simulation based on the following reasons.
(1) The speed of the high-speed train is 300 km/h and
the resultant Mach number is 0.245. (2) When the high-
speed train is in the open air without passing other trains
or going through a tunnel, the impact of the air density on
the flow can be ignored. (3) The numerical simulation using
an incompressible flow solver is accurate compared with
experimental data (Cheli et al. 2010; Morden et al. 2015).
(4) The incompressible flow solver is commonly used in the
studies of the aerodynamic optimization of high-speed train
heads (Sun et al. 2010; Li et al. 2016; Zhang et al. 2018).
The incompressible N-S equations take the following tensor
forms:

∂ui

∂xi

= 0 (11)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ∂

∂xj

(
v

∂ui

∂xj

)
(12)

where ui is the velocity components in the i direction, ρ is
the density, p is the pressure, and v is the fluid kinematic
viscosity.

Approximate approaches for N-S equations The high-speed
train has a large Reynolds number so that the flow of
the high-speed train is highly turbulent (Wang et al.
2017). Since the high turbulent flow has fluctuations of
pressure, temperature and velocity over a wide range
of frequencies, solving the incompressible N-S equations
is a formidable challenge (Cebeci et al. 2005). The
commonly used approximate computational approaches
include direct numerical simulation (DNS), large eddy
simulation (LES) and Reynolds-averaged Navier-Stokes
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Fig. 9 The simplified model and the computational domain of the high-speed train. a The simplified model of the whole train. b The computational
domain

(RANS) equations. Compared with DNS and LES, RANS
has lower computational cost. Besides, RANS is also good
at accurately predicting the pressure distribution and the
frictional resistance (Bensow et al. 2006). Therefore, since
we focus on studying the drag and lift of the high-speed
train and have less interest in the flow details, we apply
the RANS approach in this paper. The RANS equations
apply the Reynolds decomposition on the instantaneous
incompressible N-S equations (11) and (12), which splits
the flow into its mean and fluctuating components (Morden
et al. 2015). The incompressible RANS equations are
defined as:

∂ūi

∂xi

= 0 (13)

∂ūi

∂t
+ ūj

∂ūi

∂xj

= − 1

ρ

∂p̄

∂xi

+ ∂

∂xj

(
v

∂ūi

∂xj

)
+ 1

ρ

∂τij

∂xi

(14)

where τij = uiuj is the Reynolds stress tensor which cannot
be formally expressed in terms of mean flow variables and
thus a turbulent model is used to close the equations.

Turbulent model The frequently used turbulent models
include k − ε, k − ω, and shear stress transport (SST)
k − ω models. We select the SST k − ω model in this paper
due to the following reasons. (1) The SST k − ω model
blends the advantages of classical k − ω and k − ε models,
and can better model flows on the smooth surfaces of a
high-speed train (Wang et al. 2017). (2) The SST k − ω

model is recommended as the optimal RANS model based
on experimental verifications (Morden et al. 2015). (3) The
SST k − ω model is commonly selected as the turbulence
model in the studies of aerodynamic optimization of high-
speed train heads (Yao et al. 2014; Yao et al. 2016; Zhang
et al. 2018)

Wall function Since the gradients of velocity near the
wall is steep, we need to use a large number of thin
meshes to accurately capture the gradients. However, these
thin meshes will result in poor mesh quality and high
computational cost. In order to solve this problem, we can

use a single large mesh instead of many thin meshes plus a
nonlinear function called the wall function to simulate the
gradient variation. In this paper, we adopt the standard wall
function because it works reasonably well for a broad range
of wall-bounded flows (ANSYS I 2009) and has been most
widely used in the CFD simulation of high-speed train heads
(Yao et al. 2014; Muñoz-Paniagua et al. 2014; Yao et al.
2015; Li et al. 2016; Zhang et al. 2018). The standard wall
function is defined as (ANSYS I 2009):

U∗ =
{

y∗, y∗ < 11.225
1
κ

ln(Ey∗), y∗ > 11.225
(15)

where U∗ is the dimensionless velocity, y∗ is the
dimensionless wall distance, κ = 0.4187 is the von Kármán
constant, and E = 9.793 is the empirical constant.

Other CFD setup strategies We use the pressure-based
segregated solver, and the SIMPLE scheme is used to
couple the pressure and velocity. In the spatial discretization
scheme, we apply the least squares cell based gradient
with the second-order interpolation such as the second-
order pressure and the second-order upwind momentum. As
shown in Fig. 9b, the left and right of the computational
domain are set as the velocity inlet and pressure outlet
boundaries, respectively, and the two sides and the top
are set as the symmetric boundary. The high-speed train
surface is set as the non-slip wall boundary conditions, and
the ground is set as the slip wall boundary conditions to
simulate the ground effect and the slip velocity is equal to
the speed of the train. In addition, we define that the far-
field pressure is 1 atm, the temperature is 288 K, and the
reference area is the maximum cross-sectional area of the
train which is 12.0638 m2.

In previous aerodynamic research work of high-speed
trains, Cheli et al. (2010) and Morden et al. (2015) have
conducted wind tunnel tests to verify their CFD simulation
results. For example, Cheli et al. (2010) studied the
static aerodynamic coefficients of a high-speed train with
different wind angles, and showed the lateral and vertical
force coefficients from the simulation and experiment are
very close when the wind angle is below 20◦. In the work of
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Table 2 Comparison of CFD setup strategies of verified simulation models

Cheli et al. (2010) Morden et al. (2015) Our method

Computational approach Incompressible RANS equations Incompressible RANS equations Incompressible RANS equations

Turbulence model k − ε SST k − ω SST k − ω

Pressure–velocity coupling algorithm SIMPLE SIMPLE SIMPLE

Discretization scheme Second-order upwind Second-order upwind Second-order upwind

Solver Segregated solver Potential flow solver Segregated solver

Morden et al. (2015), the Cd and Cl from simulation and
experiment results are 0.14 against 0.13 and 0.17 against
0.23, respectively, which show a good agreement. The CFD
setup strategies of their verified simulation models give
us a solid reference. Therefore, our CFD setup strategy is
similar to their work as shown in Table 2, and it ensures that
our results are as reliable as possible, though we have no
experiment data support.

6.3 Mesh generation

When conducting a specific division of spatial meshes in
ICEM, the quality and quantity of meshes have a significant
influence on the computational efficiency, astringency and
precision of the CFD simulation results.

We apply Hexahedral meshes to divide the whole
computational domain and distribute prism meshes in the
area around the body of the high-speed train. Since the
train head bears most of the aerodynamic drag in simulation
process, the mesh division around the train head is refined
for improving the computational accuracy. In addition, in
order to reduce computational cost, the mesh size of the
middle coach is slightly larger than that of the train head
and tail. The area around the body of the whole train utilizes

five layers of fine prism meshes to accurately simulate the
flow field around the train body. The y+ is non-dimensional
wall distance of the first cell from the wall based on the fluid
local velocity. The range of the y+ values obtained around
the train body is from 5.99 to 77.91. Since it is difficult
to get all surfaces of the train model to have the desired
y+ value exactly, we have made the majority of y+ within
the recommended ranges. Note that the y∗ in (15) plays the
same role as y+ in measuring the dimensionless distance.
The difference is that the velocity scale of y∗ is based on
the turbulent kinetic energy and the velocity scale of y+ is
based on the wall shear stress (ANSYS I 2009). The number
of cell volumes within the boundary layer region around the
train body is about 2.1 million. The mesh details are shown
in Fig. 10.

Since too many meshes will increase the simulation time
and too few meshes will reduce the computational accuracy
in CFD simulation process, it is important to generate a
proper number of meshes (Yao et al. 2016). We build
four sets of meshes with different mesh quantities, i.e.,
7.2 million, 9.8 million, 14.3 million, and 22.2 million,
to evaluate the influence of different meshes on the
aerodynamic drag and lift. Table 3 shows the results of Cd

and |Cl | of the four sets of meshes. The values of Cd and

Fig. 10 The meshes for CFD
simulation. a The surface
meshes of the train head. b The
longitudinal section of the train
head in the computational
domain. c The longitudinal
section of the whole train in the
computational domain. d The
closer view of the nose cone and
front spoiler of the train head

1297



S. Wang et al.

Table 3 Computational results of the four sets of meshes

Sets of meshes 1 2 3 4

Mesh quantity (million) 7.2 9.8 14.3 22.2

Cd 0.1688 0.1557 0.1415 0.1422

|Cl | 0.0052 0.0157 0.0167 0.0173

|Cl | obtained from the second set of meshes are 10.04%,
9.49% larger and 5.99%, 9.25% smaller than those obtained
from the third and fourth sets of meshes, respectively. Due
to the high number of simulations needed to be carried out
for the optimization algorithm, which require a large amount
of computational cost, we make a compromise between
the accuracy and the computational cost, and accept a
discrepancy of approximated 10%. Therefore, the second set
of meshes with 9.8 million meshes is adopted for all flow
field calculations in this paper.

We also carry out a small scale computation for 22.2
million meshes following the same optimization flow of 9.8
million meshes. The optimized train head with 22.2 million
meshes has a smaller drag and a larger lift compared with
9.8 million meshes, which is in accordance with Table 3,
and the error of optimized Cd between 9.8 and 22.2 million
meshes is within 10%, which indicate that the acceptable
error of 10% covers the error caused by 9.8 million meshes.

7 Results and discussion

The multi-objective optimization process of the high-
speed train head includes the global optimization and
local optimization stages. We first get the optimized
framework of the train head in the global optimization
stage (Section 7.1), then optimize the local shape of PDE
surface patches on the train head with the framework and
finally obtain the optimized shape of the train head in the
local optimization stage (Section 7.2). The aerodynamic
performance of the train head in different stages will be
compared and analyzed in Section 7.3.

7.1 Global optimization

In NSGA-II, Cd and Cl are set as the two optimization
objectives. The population size is set to be 40 (N = 40)
and the number of generations is set to be 10. Moreover,
the crossover and mutation probability are set as 0.9 and
0.1, respectively. The threshold value of the convergence
criterion is set as ε = 0.01. The ranges of the ten design
variables controlling the deformation of the train head
framework are shown in Table 4. In order to avoid the
distortion of the train head shape, the suitable lower and

Table 4 The ranges of the ten design variables

Design variable Lower bound Upper bound

δ1 −0.15 0.20

δ2 −0.10 0.15

δ3 −0.20 0.10

δ4 −0.15 0.15

δ5 −0.15 0.15

δ6 −0.10 0.10

δ7 −0.10 0.10

δ8 −0.10 0.10

δ9 −0.05 0.10

δ10 −0.30 0.25

upper bounds of each design variable are found after a dozen
experiments.

By using NSGA-II, we obtain 400 solutions in which
there are 13 Pareto-optimal solutions constructing a Pareto-
optimal front as shown in Fig. 11. In order to find the most
satisfactory solution among Pareto-optimal solutions and
inspired by the minimum distance algorithm discussed in
Li et al. (2016), we develop a cost function which assigns
a proper weight to each objective and aggregates all of the
objectives together, defined by:

D = min {D1, D2, ..., DS}

Di =
√

(1 − ωc)

(
fCd

(i)

min fCd

− 1

)2

+ ωc

( |fCl
(i)|

min |fCl
| − 1

)2

(i = 1, 2, ..., S)

(16)

where i represents the ith Pareto-optimal solution, S is
the total number of Pareto-optimal solutions, fCd

(i) and
fCl

(i) are the ith Pareto-optimal solutions of Cd and Cl ,
respectively, min fCd

= min
{
fCd

(1), fCd
(2), ..., fCd

(S)
}
,

min |fCl
| = min

{|fCl
(1)|, |fCl

(2)|, ..., |fCl
(S)|}, and ωc is

the user-defined weight.

Fig. 11 The Pareto-optimal front in the global optimization stage
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Fig. 12 The optimization results in the local optimization stage

By applying different value of ωc, we can obtain different
global optimized results from the 13 Pareto-optimal solu-
tions. Since Cd plays a more important role in reducing the
air resistance to the forward motion of a train compared with
Cl , we set ωc = 0.001 so that Cd is the main contributor
based on previous work (Brockie and Baker 1990; Schetz
2001). The final solution corresponding to the minimum D

is selected as the global optimization result which is shown
as the red star marker in Fig. 11. The ten design parameters
of the global solution construct the optimized framework of
the high-speed train head which will be used in the next
local optimization stage.

7.2 Local optimization

In order to demonstrate the process of the local optimiza-
tion, we take the patch A3A4B4B3 as an example. The
design variables are the three shape control parameters of
the patch A3A4B4B3. Like the global optimization, the opti-
mization objectives for the local optimization are Cd and
Cl . We apply LHS to sample the design variables into 125
sample sets and use a dominated sorting to select the accept-
able solutions whose Cd and Cl are not both dominated by
the results of the optimized framework of the high-speed
train head. In addition, (16) is employed to determine the
final solution from the sample sets. Since Cd is the main
contributor in the global optimization stage, we enhance the
influence of Cl in the local optimization stage by setting
ωc = 0.5. The final solution is shown as the red star marker
in Fig. 12.

7.3 Discussion

Since our proposed multi-objective optimization method
based on the PDE parametric modeling includes global and
local optimization stages, we compare the results from the
two stages to discuss the advantages of our method.

Figure 13 shows the original (a), the globally optimized
(b) and the locally optimized (c) high-speed train head
models. After the global optimization, there are distinct
deformations on the train head compared (b) with (a). For
example, the height of the cab decreases and the nose cone
and the front spoiler move forward, as shown in (d). The

Fig. 13 Comparison of the high-speed train head models. a The original model. b The globally optimized model. c The locally optimized
model. d The cross-section of the three models (the blue, grey and red lines represent original, globally optimized and locally optimized models,
respectively)
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Table 5 Aerodynamic drag and lift coefficients of the original,
globally optimized and locally optimized trains

Original Globally Reduction Locally Reduction

optimized optimized

Cd 0.1557 0.1439 7.58% 0.1434 7.90%

|Cl | 0.0157 0.0131 16.56% 0.0096 38.85%

local optimization further optimizes PDE surface patches
and the locally optimized train head is shown in (c). It can
be seen clearly from (d) that the locally optimized shape of
the patch A3A4B4B3 representing the cab window on the
train head becomes concave.

The results of the optimization objectives Cd and Cl

of the original, the globally optimized and the locally
optimized high-speed trains are shown in Table 5.
Compared with the original train, the Cd and |Cl | of the

global optimized train is reduced by 7.58% and 16.56%,
respectively. After the local optimization of the globally
optimized train head, the two optimization objectives are
further reduced. Compared with the original train, the Cd

and |Cl | of the locally optimized train is reduced by 7.90%
and 38.85%, respectively.

Aerodynamic drag and lift forces are mainly caused by
the pressure force which mainly exists on the surface of the
train head and tail. The shape deformation of the train head
has a direct impact on the pressure distributions (Li et al.
2016). In order to discuss the aerodynamic performance of
the train before and after the multi-objective optimization,
the pressure distributions of the train head and tail are
presented in Fig. 14. Since the scales of the pressure
distribution of the train head and tail are different, we use
two color bars in different scales for the train head and
tail to clearly indicate the changes before and after the
optimization.

Fig. 14 Comparison of the pressure distributions of the original (a), globally optimized (b) and locally optimized (c) high-speed train heads (the
left column) and tails (the right column)
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The left column in Fig. 14 shows the pressure distribu-
tions of the original, globally optimized and locally optimi-
zed train heads. There are mainly three high-pressure zones
near the nose cone, cab window and roof, respectively,
which are indicated by the circle of red dashed lines. After
the global optimization, the pressure near the cab window
significantly decreases and the pressure variation near the
roof, i.e., a negative pressure followed by a positive pres-
sure, almost disappears, but the pressure near the nose cone
is a little larger than that of the original train head. After
the local optimization, the pressure near the nose cone is
reduced in addition to further decrease of the pressure near
the cab window. Similarly, the right column in Fig. 14 shows
the pressure distributions of train tails. After the global
optimization, the high-pressure zone in front of the nose
cone is larger than that of the original train, which gives the
train tail a forward and an upward push. Moreover, the pres-
sure near the cab window is decreased in both global
and local optimizations, and the region with negative pres-
sure near the roof is significantly reduced after the global
optimization and slight improved after the local optimi-
zation. Through the multi-objective optimization process
with the global and local optimization stages, the final
optimized shape of the high-speed train head is obtained
which has an improved pressure distribution and small
aerodynamic drag and lift forces.

Figure 15 shows the streamlines around the high-speed
train before and after the multi-objective optimization. From

the overall views and the closer views of the train heads and
tails, the streamlines are smooth near the train heads, and a
flow separation occurs near the front spoiler of the train tail,
which produce a trailing wake vortex as shown in (a). After
global and local optimizations, the wake vortex is reduced
and the streamlines around the train tail become smoother,
which enlarge the high-pressure zone in front of the nose
cone and give a forward push to reduce the drag, as shown
in Fig. 14. The shape of the high-speed train head has a
significant effect on the drag. By optimizing the shape, the
air flow around the train can be smoother and the drag can
be reduced.

In order to demonstrate the advantage of our method,
we compare our method with current shape optimization
methods of high-speed train heads in terms of optimizing
objectives Cd and Cl , as shown in Table 6. Note that
our results in Table 6 base on the choice of ωc in (16),
i.e., ωc = 0.001 in the global optimization and ωc = 0.5
in the local optimization, and different choice of ωc will
produce different values of Cd and Cl as well as their
reduction ratios. The high-speed trains in different studies
are under the same running conditions, i.e., the high-speed
train is in the open air without passing each other or
going through a tunnel and the running speed is 300 km/h.
The data in Table 6 indicate that although our original
model already has good aerodynamic performance, i.e.,
the smallest values of Cd and |Cl | in comparison with
existing optimization studies, our method can still achieve

Fig. 15 Comparison of the streamlines around the original (a), globally optimized (b) and locally optimized (c) train heads (the left column),
whole trains (the middle column) and train tails (the right column)
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the maximum reduction rates 7.9% and 38.85% of Cd and
|Cl |, respectively, among all the optimization methods and
improve the drag and lift further. Therefore, our method is
more effective in improving the aerodynamic performance
of high-speed train heads.

8 Conclusion

In this paper, a novel multi-objective aerodynamic optimiza-
tion design process of a high-speed train head is proposed.
The PDE-based parametric modeling method is applied
to construct the parametric model of the high-speed train
head, which can describe the complicated shape in detail
with few design variables and keep the surface smooth.
NSGA-II is adopted to obtain Pareto-optimal solutions in
the global optimization stage of the high-speed train head
and take the aerodynamic drag of the whole train and the
aerodynamic lift of the train tail as the optimization objec-
tives. Then, an optimized framework of the high-speed train
head is selected from the Pareto-optimal solutions using
an improved minimum distance algorithm. Based on the
obtained optimized framework, LHS is introduced into the
local optimization stage to obtain the final optimized shape
of the train head by generating various sample sets of the
three shape control parameters of PDE surface patches and
optimizing the shape of each patch.

We have demonstrated our method by analyzing the
aerodynamic characteristics, pressure distributions and
streamlines of the optimization solutions in both global
and local optimization stages compared with the original
high-speed train head, and evaluating the drag and lift
coefficients compared with other optimization methods. The
analysis results indicate that our method is able to optimize
both global and local shapes and significantly improve the
aerodynamic performance of the high-speed train head.

In the future, we wish to research multi-objective
aerodynamic optimization of high-speed train heads under
more complicated running environments such as crosswinds
and tunnels. We also plan to develop an analytical PDE-
based modeling method which can create more accurate and
complex shape deformations of train heads more efficiently.
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