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A B S T R A C T

Lung cancer is the deadliest type of cancer worldwide and late detection is the major
factor for the low survival rate of patients. Low dose computed tomography has been
suggested as a potential screening tool but manual screening is costly, time-consuming
and prone to variability. This has fuelled the development of automatic methods for the
detection, segmentation and characterisation of pulmonary nodules. In spite of promis-
ing results, the application of automatic methods to clinical routine is not straightfor-
ward and only a limited number of studies have addressed the problem in a holistic
way, using automatic methods to obtain patient follow-up recommendations from the
computed tomography image. With the goal of advancing the state of the art in lung
cancer medical image analysis, the Lung Nodule Database (LNDb) Challenge on auto-
matic lung cancer patient management was organized. The LNDb Challenge addressed
lung nodule detection, segmentation and characterization as well as prediction of patient
follow-up according to the 2017 Fleischner society pulmonary nodule guidelines. 294
CT scans were thus collected retrospectively at the Centro Hospitalar e Universitário de
São João in Porto, Portugal and each CT was annotated by at least one radiologist. An-
notations comprised nodule centroids, segmentations and subjective characterization.
A total of 947 participants registered for the challenge and 11 successful submissions
for at least one of the sub-challenges were received. All submitted methods relied, at
least partly, in deep learning methodologies. A maximum nodule detection sensitivity
below 0.4 (and 0.7) for nodules indentified by at least one (and two) radiologist(s) at 1
false positive per scan was obtained, remaining the most challenging task in lung can-
cer image analysis. For nodule segmentation, a maximum Jaccard score of 0.567 was
obtained, surpassing the interobserver variability. In terms of nodule texture charac-
terization, a maximum Fleiss-Cohen weighted Cohen’s kappa of 0.733 was obtained,
with part solid nodules being particularly challenging to classify correctly. For pa-
tient follow-up prediction, a maximum Fleiss-Cohen weighted Cohen’s kappa of 0.580
was obtained. Detailed analysis of the proposed methods and the differences in per-
formance allow to identify the major challenges remaining and future directions. The
LNDb Challenge and associated dataset remain publicly available so that future meth-
ods can be tested and benchmarked, promoting the development of new algorithms in
lung cancer medical image analysis and patient follow-up recommendation.

c© 2020 Elsevier B. V. All rights reserved.
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1. Introduction

Lung cancer is the deadliest type of cancer worldwide for

both men and women (Siegel et al., 2019). Though changes

in the smoking patterns in the general population have been

largely responsible for decreasing trends in incidence and mor-

tality rates in recent decades, lung cancer is still responsible for

over double the cancer deaths of colorectal cancer, the second

deadliest cancer type, and is projected to remain the deadliest

type of cancer in the near future. Progress in increasing lung

cancer survival rate has also been notoriously slow in contrast

to other cancer types, mainly due to late diagnosis of the dis-

ease. Low-dose computed tomography (CT) has long been sug-

gested as a potential early screening tool and a 20% reduction

in lung cancer mortality has been demonstrated for lung cancer

risk groups (The National Lung Screening Trial Research Team,

2011). Nevertheless, translation of these screening programs to

the general population has been challenging due to equipment

and personnel costs and the complexity of the task. Namely,

lung nodules present a large range of shapes and characteristics

and thus the identification and characterization of these abnor-

malities is not trivial and prone to high interobserver variabil-

ity. Computer-aided diagnosis (CAD) systems can thus facili-

tate the adoption and generalization of screening programs by

reducing the burden on the clinicians and providing a second-

opinion.

Extensive research has been conducted on the development

of CAD systems for lung cancer screening, typically divided in

three main tasks: pulmonary nodule detection, nodule segmen-

tation and nodule characterization and/or classification.

The task of nodule detection aims to automatically find all

nodules present in a CT scan and is likely the most active

field of research in lung cancer screening/management. Early

studies typically followed a pipeline consisting of preprocess-

ing through lung and airways/vessel segmentation, followed by

nodule candidate detection through gray-level thresholding and

spatial/geometric features and a final false positive reduction

∗Corresponding author: Email: joao.m.pedrosa@inesctec.pt

step based on feature extraction from each nodule candidate and

the use of fixed rules or supervised learning such as support vec-

tor machines (SVM) or neural networks (NN) for the classifi-

cation of each nodule candidate (Reeves and Kostis, 2000; Han

et al., 2014; Messay et al., 2010; Murphy et al., 2009). Recently,

deep learning based methods have shown especially promising

results. One of the first works showing the advantages of deep

learning for nodule detection was by Golan et al. (2016), where

the authors proposed a patch-based convolutional neural net-

work (CNN), achieving a sensitivity of 0.712 at 10 false posi-

tives (FP) per scan, and outperforming previous methods. The

LUNA16 nodule detection challenge has highlighted the advan-

tages of these methodologies, as most of the best performing

methods relied on deep learning (Setio et al., 2017). Ding et al.

(2017) used a region-based CNN for candidate detection which

received as input three adjacent axial slices, followed by a false

positive reduction step using a 3D CNN, obtaining a sensitiv-

ity above 0.90 at 1 FP per scan, one of the highest scores on

LUNA16. In Aresta et al. (2018), the YOLOv2 architecture

was used to perform lung nodule detection on CT axial slices

achieving a sensitivity of 0.926 at 0.25 FPs per scan for nodules

with diameter >4mm.

Nodule segmentation aims to automatically segment the nod-

ule borders so that nodule volume can be obtained, an important

factor in patient management and follow-up. As in nodule de-

tection, most recent literature uses deep learning architectures

for segmentation, extracting a 2D or 3D region around the nod-

ule centroid and performing segmentation in that region of in-

terest. A modified 3D U-Net for joint segmentation and malig-

nancy prediction was proposed by Wu et al. (2018), obtaining

a Dice of 0.7405. Given the difficulty of training 3D CNNs,

Wang et al. (2017) proposed a central-focused CNN combin-

ing 2D and 2.5D features and obtaining a Dice of 0.8215. The

differences in nodule appearance is one of the main challenges

for robust nodule segmentation as sub-solid and ground-glass

opacities (GGO) present lower constrast in relation to lung

parenchyma, which leads to decreased performance (Aresta

et al., 2019).
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Nodule characterization or classification aims to predict fur-

ther clinically relevant information regarding the nodule. Most

studies focus on the classification of nodules regarding their

malignancy. Earlier studies were based on feature extraction

followed by classification, such as in Gonçalves et al. (2018),

where 297 features (shape-, intensity- and texture-based) are

computed and an SVM classifier is used, obtaining an area un-

der the curve (AUC) of 0.962. The use of deep learning ar-

chitectures has allowed for even higher performance, with re-

ported AUC of 0.993 by Causey et al. (2018) using a 3D CNN

to extract features, followed by a random forest classifier. The

characterization of the nodule according to features related to

malignancy has also received some attention, the most studied

of which is texture which is often divided in three classes: solid,

sub-solid and GGO. Ferreira et al. (2018) proposed a 2.5D CNN

for nodule texture classification obtaining an accuracy of 0.833.

The prediction of nodule features such as texture as an inter-

mediate step to increase robustness and interpretability of ma-

lignancy classification has recently received attention. In Shen

et al. (2019), a 3D CNN with two outputs is proposed: the first

corresponds to low-level nodule features (texture, calcification,

margin, sphericity and subtlety), whereas the second output cor-

responds to malignancy and is dependent on the features used

for the prediction of the low-level nodule features.

Given the dependence of deep learning methods on large

datasets with robust ground truth, the publication of annotated

datasets has been a hugely important contribution for the com-

munity. The most widely used public database for lung can-

cer medical image analysis research is the LIDC-IDRI (Armato

et al., 2011), which contains 1018 CT scans, each annotated

by four radiologists. Annotations comprise nodule segmenta-

tion and subjective characterization (McNitt-Gray et al., 2007),

making this an extremely useful database for the development

of CAD approaches in lung cancer. The NLST database is

also widely recognised and contains CTs from 26.722 patients,

though nodule segmentation and characterization are not avail-

able and nodule position is limited to the slice where a nodule

was found (The National Lung Screening Trial Research Team,

2011).

Nevertheless, adoption of CAD systems in clinical practice

is not straightforward. In spite of the promising results in lit-

erature in the independent tasks of nodule detection, segmen-

tation and classification, the final goal of patient management

and follow-up, which is dependent on the above tasks, has re-

ceived little attention. The most widely used guidelines for

patient management in the case of incidental nodule findings

are the 2017 Fleischner society pulmonary nodule guidelines

(MacMahon et al., 2017), which give a recommendation on pa-

tient follow-up depending on the number of nodules found, their

sizes and texture and patient risk. Following such recommen-

dations allow radiologists to make knowledge-based decisions

regarding nodule findings for better patient management while

reducing the number of unnecessary follow-up examinations.

As such, the design of an impactful CAD system should take

these guidelines into account in order to be fully integrated into

clinical practice.

The goal of the Lung Nodule Database (LNDb) Challenge on

automatic lung cancer patient management was thus to estab-

lish a common online and public database and benchmarking

framework for this task. More precisely, the LNDb challenge

aimed to evaluate and compare the performance of several ap-

proaches in the automatic classification of CT scans according

to the 2017 Fleischner society pulmonary nodule guidelines.

The performance of different methods for the intermediate tasks

required for patient classification according to the Fleischner

guidelines - nodule detection, segmentation and texture charac-

terization - was also evaluated.

2. Challenge Description

2.1. Overview

The LNDb challenge was made up of a main challenge and

three sub-challenges related to the automatic classification of

CT scans according to the 2017 Fleischner society pulmonary

nodule guidelines for patient follow-up recommendation:

• Main Challenge - Fleischner Classification;

• Challenge A - Nodule Detection;

• Challenge B - Nodule Segmentation;
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• Challenge C - Nodule Texture Characterization.

Participants could choose whether to participante only in the

main challenge, in a single or multiple challenges or in all chal-

lenges.

The LNDb Challenge was hosted on Grand Challenge1, a

well-known challenge platform, which allows for an easy setup

of the platform and online evaluation of results. To further

promote the challenge, LNDb was organized in conjunction

with the 17th International Conference on Image Analysis and

Recognition (ICIAR 2020) and monetary prizes were awarded

to the top scorers in each of the challenge tasks upon submis-

sion and acceptance to ICIAR 2020.

The challenge was held between the 20th November 2019

and the 20th February 2020 and was composed of two evalu-

ation stages: train/validation and test. On the train/validation,

participants were given access to the training data and anno-

tations, allowing for the training and refinement of their algo-

rithms. Participants were also encouraged to submit their re-

sults for online evaluation using a cross-validation scheme (cf.

Section 2.2.3) in order to verify the performance of their al-

gorithms. The train/validation stage lasted approximately 80

days, after which submissions for the train/validation data were

no longer accepted. The test stage could then begin with the

release of the test data and participants were given 10 days to

submit test data results. On both the training/validation and test

stages participants were limited to one submission per 24-hour

period to prevent overfitting to the test set.

Given the existence of other public datasets relevant for the

tasks of the LNDb Challenge, the use of external data was al-

lowed at both stages of the challenge, with the condition that

the use of external data be reported upon publication.

2.2. Dataset Description

2.2.1. Data Acquisition

The LNDb Challenge was based in the homonymous LNDb

dataset, publicly released specifically for this challenge. The

LNDb dataset contains 294 CT scans collected retrospectively

1https://lndb.grand-challenge.org/

at the Centro Hospitalar e Universitário de São João (CHUSJ)

in Porto, Portugal between 2016 and 2018. All data was ac-

quired under approval from the CHUSJ Ethical Commitee and

was anonymised prior to any analysis to remove personal infor-

mation except for patient birth year and gender. Further details

on patient selection and data acquisition can be consulted on the

database description paper (Pedrosa et al., 2019).

2.2.2. Data Annotation

Each CT scan was read by between one and three radiologists

at CHUSJ to identify pulmonary nodules and other suspicious

lesions. A total of 5 radiologists with at least 4 years of expe-

rience participated in the annotation process. Annotations were

performed in single blinded fashion, i.e. a radiologist would

read the scan once and no consensus or review between the ra-

diologists was performed. The instructions for manual anno-

tation were adapted from LIDC-IDRI so that each radiologist

identified the following findings:

• nodule ≥3mm: any lesion considered to be a nodule by

the radiologist with greatest in-plane dimension larger or

equal to 3mm;

• nodule <3mm: any lesion considered to be a nodule by the

radiologist with greatest in-plane dimension smaller than

3mm;

• non-nodule: any pulmonary lesion considered not to be a

nodule by the radiologist, but that contains features which

could make it identifiable as a nodule.

The annotation process varied for the different categories.

Nodules ≥3mm were segmented and subjectively characterized

according to LIDC-IDRI (ratings on subtlety, internal structure,

calcification, sphericity, margin, lobulation, spiculation, texture

and likelihood of malignancy). For a complete description of

these characteristics the reader is referred to McNitt-Gray et al.

(2007). For nodules <3mm the nodule centroid was marked and

subjective assessment of the nodule’s characteristics was per-

formed. For non-nodules, only the lesion centroid was marked.

Given that different radiologists may have read the same CT

and no consensus review was performed, variability in radiolo-

gist annotations is expected.
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2.2.3. Data Curation

CT scans were made available on MetaImage (.mhd/.raw)

format. Nodule and non-nodule annotations were made avail-

able in two different .csv files. The first file listed all findings

as annotated by all radiologists. For each finding the following

information was provided: the ID of the finding, the xyz coordi-

nates of the finding in world coordinates, whether it is a nodule

or a non-nodule, its volume according to the segmentation and

the nodule texture rating (1-5). For non-nodules, the texture

given was 0. The second file listed all unique findings after

merging findings annotated by different radiologists. Findings

annotated by different radiologists in the same CT scan were

considered to be a unique finding if the Euclidean distance be-

tween their centroids was smaller or equal than the maximum

equivalent diameter (the diameter of a sphere with a volume

equal to the nodule volume) of the two findings. For findings of

equivalent diameter smaller than 3mm, an equivalent diameter

of 3mm was considered. Findings marked as a nodule by a sin-

gle radiologist were considered to be a nodule independent of

other radiologist annotations. For each unique finding the same

information as on the first .csv file was given, except that the

volume and texture were the average of the volume and texture

among the radiolists that annotated each finding. Additionally,

the number of radiologists that annotated each finding was also

given.

Nodule segmentation masks were also given on MetaImage

(.mhd/.raw) as a 3D array of the CT’s size where each finding

was identified by the ID given in the .csv file with all annota-

tions. For each CT, a separate segmentation mask per radiolo-

gist was given so that each mask contained the segmentations

for all nodules on that CT scan according to that radiologist.

Finally, ground truth Fleischner classification was computed

for each CT scan and made available on a third .csv file. The

original Fleischner classification was recast into the following

four classes:
0. No routine follow-up required or optional CT at 12 months

according to patient risk;

1. CT at 6-12 months required;

2. CT at 3-6 months required;

Table 1: Fleischner classification rules used.

Single Nodule Volume
<100mm3 100−250mm3 ≥250mm3

GGO 0 1 1
Part-solid 0 2 2
Solid 0 1 3

Multiple Nodules Volume
<100mm3 100−250mm3 ≥250mm3

GGO/Part-solid 2 2 2
Solid 0 2 2

Mixed
Classify for GGO/part-solid and solid
nodules independently and attribute

highest class

3. CT, PET/CT or tissue sampling at 3 months required.

The Fleischner score was computed directly from the radiol-

ogist nodule annotations according to a set of rules (MacMahon

et al., 2017) taking into account the number of nodules (sin-

gle or multiple), their volume (< 100mm3, 100−250mm3 and

≥250mm3) and texture (solid, part solid and GGO) as shown

in Table 1. Note that while the Fleischner guidelines also take

into account patient risk factors (such as age, sec, race, family

history, smoking history and others), this information was not

available and was thus not taken into account. Before comput-

ing the Fleischner score for each CT, the annotations of each ra-

diologist were merged into a list of unique findings as described

above. For each unique finding, nodule volume was considered

to be the average volume of the segmentation of each radiolo-

gist for a given nodule and nodule texture was recast from the

five classes in the LNDb annotation (1-GGO, 2-intermediate, 3-

part solid, 4-intermediate, 5-solid) into the three classes of the

Fleischner guidelines by considering GGO as 1-2, part solid as

3 and solid as 4-5. If multiple radiologists identified the nodule,

the average texture was computed and the three classes of the

Fleischner guidelines were computed by considering GGO as

< 7/3, part solid as 7/3 − 11/3 and solid as > 11/3.

Finally, the full LNDb dataset was divided into five folds.

The first four were used for train/validation and the fifth was re-

served for testing. A balanced distribution of Fleischner classes

and of the number of radiologists that annotated each CT scan

were maintained across all folds, except for the test subset for
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which only CTs annotated by at least two radiologists were se-

lected. A list of the CTs belonging to each fold was provided

to the participants, allowing participants to perform four-fold

cross-validation during the train/validation stage for a robust

assessment of performance. The data and annotations of the

four train/validation folds were released at the beginning of the

train/validation stage, whereas only the data (and not the anno-

tations) of the test fold was released at the beginning of the test

stage.

2.3. Challenge Tasks

2.3.1. Main Challenge - Fleischner Classification

The main challenge was the automatic classification of CT

scans according to the 2017 Fleischner society pulmonary nod-

ule guidelines for patient follow-up recommendation. For a

given CT scan, participants should predict the final Fleischner

classification. Only the predicted Fleischner class was taken

into account for evaluation and the detection of nodules, their

segmentation and texture characterization was not taken into

account, allowing for the use of end-to-end solutions.

Participants were asked to submit, for each CT scan, a prob-

ability value (0-1) for each Fleischner class. For evaluation,

the class with maximum probability was treated as the pre-

dicted Fleischner class and if two classes had equal and maxi-

mum probability, the class with higher index was treated as the

predicted Fleischner class. The submitted Fleischner predic-

tions were compared to the ground truth and the agreement was

computed according to Fleiss-Cohen weighted Cohen’s kappa

Spitzer et al. (1967)

κw =

∑k
i
∑k

j wi j pi j −
∑k

i
∑k

j wi j pi∗p∗ j

1 −
∑k

i
∑k

j wi j pi∗p∗ j
(1)

where pi j is the proportion of cases with ground truth class i

and rated by the participant as class j. ∗ is a wildcard so that

p∗ j is the proportion of cases rated by the participant as class j.

wi j is the weight for class combination i j according to

wi j =
(Ci −C j)2

(C1 −Ck)2 (2)

for a rating with k classes (C1,C2,...,Ck).

2.3.2. Challenge A - Nodule Detection

Challenge A was the automatic detection of pulmonary nod-

ules in CT scans. All nodules, independent of their size and

characteristics (including nodules <3mm) should be detected.

The merged list of unique nodule findings was used as ground

truth, obtained as described in 2.2.3.

Participants were asked to submit, for each CT scan, a list of

all nodule candidates with the corresponding xyz coordinates

and the predicted probability of the candidate being a nodule (0-

1). For evaluation, the submitted nodule candidates were com-

pared to the ground truth annotations. A candidate was consid-

ered a true positive if the Euclidean distance between the pre-

dicted centroid and a ground truth nodule centroid was smaller

or equal than the maximum equivalent diameter of the ground

truth nodule. For nodules of equivalent diameter smaller than

3mm, an equivalent diameter of 3mm was considered. True

nodules for which no nodule candidate followed the above rule

were considered false negatives. A candidate was considered an

FP if there was no finding following the above rule. A candidate

that matched a non-nodule was also considered an FP.

Similarly to previous challenges on lung nodule detection

(Van Ginneken et al., 2010; Setio et al., 2017), evaluation was

performed on the free receiver operating characteristic (FROC)

curve. The mean sensitivity s̄ was computed at 7 predefined

false positive rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan:

s̄ =
1
7

∑
i∈FP

s(i), FP= {1/8, 1/4, 1/2, 1, 2, 4, 8}, (3)

where s(i) is the sensitivity for FP rate i.

To account for observer variability, average sensitivity was

computed at different agreement levels. Two different FROC

curves are computed considering: 1) all nodules (agreement

level 1); 2) nodules marked by at least two radiologists (agree-

ment level 2). In this way, the more consensual nodules, i.e.

those marked by a higher number of radiologists, have a larger

weight on the final score (as they appear on both agreement

levels). The final ranking of the different methods was obtained

according to score sA computed as the average of the FROC
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average sensitivity at both agreement levels:

sA =
s̄1

2
+

s̄2

2
(4)

where s̄k is the mean sensitivity at the predefined FP rates for

agreement level k.

2.3.3. Challenge B - Nodule Segmentation

Challenge B was the automatic segmentation of pulmonary

nodules ≥3mm in CT scans.

Participants were asked to submit the segmentation of every

unique pulmonary nodule ≥3mm as computed in Section 2.2.3.

However, to prevent participants from using the list of ground

truth nodules for the Main Challenge and Challenge A, which

would invalidate both these challenges, this list was mixed with

a high number of FPs. The FPs were obtained from the au-

tomatic nodule detection framework proposed in Aresta et al.

(2018) and randomly selecting nodule candidates with a low

predicted probability of being a true nodule until a total of 50

centroids per CT were obtained. Nodule segmentations were

submitted as 80× 80× 80 cubes with voxelsize 0.6375mm cen-

tered on the nodule centroid and the biggest connected object

was treated as the predicted nodule segmentation.

For evaluation of the accuracy of the segmentation, three seg-

mentation performance measures were considered:

• Modified Jaccard index (J∗) computed as a measure of

overlap between the predicted segmentation volume (V)

and the reference segmentation volume (Vr):

J∗ = 1 −
V ∩ Vr

V ∪ Vr
; (5)

• Mean Average Distance (MAD) between the predicted sur-

face (S ) and the reference surface (S r):

MAD =
1
2

(dmean(S , S r) + dmean(S r, S )), (6)

where dmean(S 1, S 2) is the mean of distances between ev-

ery surface voxel in S 1 and the closest surface voxel in S 2;

• Hausdorff Distance (HD) between the predicted surface

(S ) and the reference surface (S r):

HD = max(dmax(S , S r) + dmax(S r, S )), (7)

where dmax(S 1, S 2) is the maximum of distances between

every surface voxel in S 1 and the closest surface voxel in

S 2;

Furthermore, to measure the degree of accuracy of the seg-

mentation for extraction of clinical indices, three volume per-

formance measures were computed comparing the predicted

and reference volumes:

• Modified Pearson correlation coefficient r∗ = 1−r where r

is the Pearson correlation coefficient between the predicted

and reference volumes;

• Bias (b) computed as the mean absolute difference of the

predicted and reference volumes;

• Standard deviation (σ) of the difference of the predicted

and reference volumes.

Given that each nodule can be annotated by multiple radiol-

ogists, and thus have multiple segmentation ground truths, J∗,

MAD and HD were computed in reference to the segmentation

of each radiologist and then averaged per nodule. In this way,

a nodule annotated by several radiologists has the same weight

for the final score as a nodule annotated by a single radiologist.

However, r∗, b and σ were computed in comparison to the aver-

age volume obtained from the segmentations of all radiologists.

The final ranking was obtained according to score sB calcu-

lated as the average of all the six measures normalized accord-

ing to the maximum among all participants (indicated by the

symbol ′) so that each individual measure takes a value between

0 (worst case among all participants) and 1 (perfect fit between

the reference and the predicted segmentation):

sB =
J∗′+ MAD′+ HD′+ r∗′+ b′+ σ′

6
. (8)

2.3.4. Challenge C - Nodule Texture Characterization

Challenge C was the automatic characterization of texture of

all pulmonary nodules (both <3mm and ≥3mm). Three tex-

ture classes were considered following the classification in the

Fleischner guidelines : 0) Ground glass opacities (GGO), 1)

Part solid nodules (PSN), 2) Solid nodules (SN). Ground truth

nodule texture was computed as outlined in Section 2.2.3 for

Fleischner classification.
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Table 2: Summary of the participants with successful submissions on the test
stage and corresponding challenges participated.

Participant (alias) Challenges
Main A B C

Atwal and Phoulady (atwalg) 3 3
Chen et al. (LINK) 3
Galdran and Bouchachia (agaldran) 3 3
Kaluva et al. (nightfury) 3 3 3 3
Katz et al. (IRC) 3
Kim (ildoo) 3
Rassadin (alexander.rassadin) 3 3
Sun et al. (Mediclouds) 3 3
??? (eddie)∗ 3
??? (Look)∗∗ 3 3
??? (medi-perk) 3

∗ Did not complete the train/validation stage submission for Challenge B.
∗∗ Did not complete the train/validation stage submission for Challenge C.

Participants were asked to submit, for each nodule, the prob-

ability of belonging to each of the three texture classes. For the

test set, the same methodology as in Challenge B was used in

order not to invalidate the Main Challenge and Challenge A, by

adding to the list of ground truth nodules a high number of FPs.

For evaluation, the class with maximum probability was treated

as the predicted texture class and if two classes had equal and

maximum probability, the class with higher index was treated

as the predicted class. The submitted texture predictions were

compared to the ground truth and agreement was computed ac-

cording to Fleiss-Cohen weighted Cohen’s kappa (Spitzer et al.,

1967) described on equation 1.

3. Challenge Participations

The LNDb Challenge had a total of 847 participations. A

total of 197 individual submissions were made, with 25 partici-

pants making a valid submission on the train/validation stage

and 20 participants making a submission for the test stage.

A total of 11 participants successfully made a submission for

the test stage, 10 of which also made a submission for the

train/validation stage, as shown in Table 2. All 11 participants

were contacted by email for participation in this manuscript, of

which four (eddie, Look and medi-perk) could not be contacted,

which did not allow the authors for a description of those par-

ticipants’ methods.

Tables 3, 4, 5 and 6 summarize the approaches used by each

participant in each of the challenges. A more detailed descrip-

tion of each approach is given below.

3.1. Atwal and Phoulady (atwalg)

Atwal and Phoulady (2020) participated on challenges B and

C. All CT images were resampled such that each voxel had an

isotropic size of 0.6375mm3. The values of each resampled im-

age were clipped to a Hounsfield Units (HU) range of [-1000,

500], zero-centered by subtracting the mean value, and min-

max normalized between 0 and 255. Patches of size 51mm3

centered on the nodule centroids were then extracted and used

as input for two CNNs. The segmentation network followed the

U-net architecture introduced by Ronneberger et al. (2015) but

used 3D layers instead of 2D and used half the number of chan-

nels for each convolutional layer to compensate for the extra

dimension. The network predicted a probability for each value

in the input to produce a mask. The texture characterization

network was based on a VGG architecture (Simonyan and Zis-

serman, 2014) and used four blocks of 3D convolutional layers

followed by two fully-connected layers to predict the probabil-

ity of each texture class.

3.2. Chen et al. (LINK)

Chen et al. participated on challenge C. All CT images were

preprocessed to enlarge the details of nodule texture. In partic-

ular, each 80×80×80 nodule cube was split into a high number

of 30×30×3 slices along the horizontal, coronal and sagittal

plane, and further interpolated into 224×224×3. In order to

enrich the diversity of texture representations and expand the

training dataset, 2.5D representations (through concatenation of

horizontal, coronal and sagittal slices) were used for classifica-

tion. A deep pre-trained 2D network (SE-ResNet101 (He et al.,

2016)) was then applied as the classifier, reducing the complex-

ity of feature parameters compared to a 3D CNN (Dey et al.,

2018), without losing 3D context. Finally, an ensemble of four

models from the cross-validations was used to enhance the ro-

bustness of predictions.
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3.3. Galdran and Bouchachia (agaldran)

Galdran and Bouchachia (2020) participated on challenges B

and C. For texture categorization, nodules were sampled from

CT scans and three orthogonal planes passing through nod-

ule centroids are extracted during training. A ResNet50 (He

et al., 2016) network was trained for texture classification and

Gaussian Label Smoothing (Galdran et al., 2020), a regular-

ization scheme based on a custom manipulation of manual la-

bels that better optimizes κw by penalizing predictions further

away from the correct class, was used during training. For the

nodule segmentation task, three-dimensional nodules are em-

ployed. A modified 3-D U-Net architecture was constructed

by adding residual connections inside each of its blocks, and

also add convolutional operations to skip connections from the

downsampling path to the upsampling path. For texture classifi-

cation, the Cross-Entropy loss applied on smoothed labels was

backpropagated, whereas for nodule segmentation, a 3D dice

loss was employed. In both cases, training was performed for

500 epochs and Test-Time Augmentation (Wang et al., 2019)

was applied to generate predictions.

3.4. Kaluva et al. (nightfury)

Kaluva et al. (2020) participated on all challenges. Kaluva

et al. proposed a 5-stage deep learning approach, including

lung segmentation, nodule detection, nodule texture classifica-

tion, nodule segmentation and follow-up recommendation. A

3D U-net (Ronneberger et al., 2015) was first used to segment

lungs from the CT scan. Within the segmented lung region,

3D cubic patches of size 132 were extracted and passed to a

3D FasterRCNN (Ren et al., 2015) to predict nodule candidates

which were then fed to a 3D WideResNet (Zagoruyko and Ko-

modakis, 2016) to classify them as nodule / non-nodule. 3D

patches around all detected nodules were extracted to (a) clas-

sify texture using a WideResnet and (b) segment the nodule us-

ing a U-net. The predicted segmentation nodule volume and

nodule texture were then used to predict the follow-up in ac-

cordance with the Fleischner guidelines. All the models were

trained using LIDC-IDRI (Armato et al., 2011), NLST (The Na-

tional Lung Screening Trial Research Team, 2011) and LNDb.

3.5. Katz et al. (IRC)

Katz et al. (2020) participated on challenge A. Katz et

al. proposed an ensemble learning pipeline based on 3D SE-

ResNet18 (He et al., 2016) and DPN68 (Chen et al., 2017).

CTs were resampled to isotropic 1mm voxels and clipped to

[−1200,600] HU. Lung segmentation was then performed us-

ing a 3D U-Net (Çiçek et al., 2016) trained on the LOLA11

dataset (Van Rikxoort and Van Ginneken, 2011). The nodule

detection framework is composed of two independent detectors,

a SE-ResNet18 and a DPN68. Candidates from each of the de-

tectors were merged through empirically defined thresholds on

the predicted probability of each nodule and were then passed

to an FP reduction module. The FP reduction module is a cus-

tom built CNN similar to a pyramidal CNN which takes as in-

put 3D volumes of three different sizes (16, 24 and 48mm) and

the final nodule/non-nodule classification is given via majority

vote. Nodule detection and FP reduction were trained on the

LUNA16 and Kaggle Data Science Bowl2 datasets and 3D data

augmentation was performed during training, namely flipping,

scaling, rotation, and random HU perturbation transformations.

3.6. Kim (ildoo)

Kim participated on the main challenge. Kim performed lung

nodule segmentation and texture characterization for each 3D

lung CT scan, using a 3D U-Net variant. Labels from several ra-

diologists were averaged and preprocessed into an agreed label.

Since the intensity of CT images is absolute, z-score normal-

ized input with clipped values out of 99 percentile to zero was

used. The network architecture and training method follows the

method proposed by Isensee et al. (2018). nnU-Net has heuris-

tic logics to determine hyperparameters, such as input shape,

to work well with multiple 3D biomedical image segmentation.

The basic hyperparameters of nnU-Net were tuned and the set-

ting that produced the best performance consistently in 5-fold

cross validation was used on test. The best performance was ob-

tained by applying an ensemble technique on rotation/flip test-

time augmentations and 5-fold models. As a result of predict-

2https://www.kaggle.com/c/data-science-bowl-2017



10 João Pedrosa et al. / Medical Image Analysis (2020)

ing lung nodule segmentation and texture, the follow-up rec-

ommendation was then calculated according to the Fleischner

guidelines.

3.7. Rassadin (alexander.rassadin)

Rassadin (2020) participated on challenges B and C. Ras-

sadin proposed a joint nodule segmentation and texture classifi-

cation neural network, exploiting the idea of so-called multi-

task learning. The network is a deep residual U-Net (Ron-

neberger et al., 2015) with batch normalization (Ioffe and

Szegedy, 2015) replaced by a group normalization (Wu and He,

2018) and rectified linear unit activations (ReLu) (Glorot et al.,

2011) replaced by exponential linear unit activations (ELU)

(Clevert et al., 2015). A fully connected network then receives

the output of the encoder section of the U-Net to predict nodule

texture. Training of the segmentation and texture classification

branch was then performed simultaneously.

3.8. Sun et al. (Mediclouds)

Sun et al. (2020) participated on challenges B and C. First,

Models Genesis (Zhou et al., 2019), a self-supervised learning

method, was applied to obtain a pre-trained model which can

be used for both image classification and segmentation. A 3D

U-net (Çiçek et al., 2016) was adopted as the network archi-

tecture for pre-training, nodule segmentation and classification.

In the pretraining procedure, cubes were extracted at random

positions within the CT scans, to which 3 kinds of noises were

randomly added. The images with added noise and the original

images were used as input and target data respectively. The net-

work was pretrained using mean squared error as loss function.

In the segmentation task, the pretrained 3D U-Net was used for

nodule segmentation training and BCE and Dice as loss func-

tions. In the classification task, there were two path of inputs.

The first was the U-Net encoder, after which global max pooling

was applied to the final feature map. The second was based on

the segmentation result by extracting features from each nod-

ule cube, namely 50 values of the histogram of the segmented

nodule in a [-1350; 150] HU window, gray value variance and

mean and nodule volume. The extracted features were concate-

nated with the output of global max pooling layer, followed by

Table 3: Summary of the approaches submitted for the main challenge. HU:
HU window used; Voxelsize: voxelsize of input data used; Lung segmen-
tation: whether lung segmentation was applied as FP reduction mechanism;
Approach: main methods used; Input size: data input size in voxels used
(axial×coronal×sagittal); Data: datasets used for training/validation.

Participant Kaluva et al. Kim

Data LIDC-IDRI LNDbNLST; private
HU [−1200, 400] [−1200,Inf]
Voxelsize 1×1×1mm 1×1×1mm
Fleischner Classification

Approach Rule based Rule based
Nodule Detection cf. Table 4 nnU-Net
Nodule Segmentation cf. Table 5 nnU-Net
Texture Characterization cf. Table 6 nnU-Net

Table 4: Summary of the approaches submitted for challenge A. Data: datasets
used for training/validation; HU: HU window used; Voxelsize: voxelsize of
input data used (only one dimension is given for isotropic voxels); Lung seg-
mentation: whether lung segmentation was applied as FP reduction mecha-
nism; Approach: main methods used; Input size: data input size in voxels used
(axial×coronal×sagittal).

Participant Kaluva et al. Katz et al.

Data LIDC-IDRI; LIDC-IDRI;
NLST; private Kaggle

HU [−1200, 400] [−1200, 600]
Voxelsize 1mm 1mm
Lung Segmentation 3 3
Nodule Detection

Approach Faster R-CNN DPN68+SE-ResNet18
Input size 128×128×128 Unknown

FP Reduction
Approach 3D WRN Custom CNN
Input size 64×64×64 16×48×48

an fully connected and softmax layer. Categorical cross entropy

was used as loss function during training. In addition, 3D data

augmentation (flipping, rotation shifting and zoom) in all train-

ing stages was used to prevent over fitting. Adam was used as

optimizer in all experiments.

4. Experiments

To complement the performance evaluation performed on

each challenge as described in Section 2.3, interobserver vari-

ability between the five radiologists in all four challenges was

computed. For the main challenge and challenge C, the κw

between each radiologist and the ground truth was computed.

Note that for each radiologist, only scans/nodules annotated by

that radiologist and at least one other radiologist were consid-
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Table 5: Summary of the approaches submitted for challenge B. Data: datasets used for training/validation; HU: HU window used; Voxelsize: voxelsize of input
data used (only one dimension is given for isotropic voxels); Approach: main methods used; Pretraining: whether pretraining or a pretrained network was used and
which; Joint: whether a joint training or multi-task strategy was applied. Input size: data input size in voxels used (axial×coronal×sagittal).

Participant Data HU Voxelsize Approach Pretraining Joint Input size

Atwal and LNDb [−1000, 500] 0.6375mm 3D U-Net 7 7 80×80×80Phoulady
Galdran and LNDb [−1000, 1000] 0.6375mm 3D U-Net 7 7 80×80×80Bouchachia

Kaluva et al. LIDC-IDRI [−1200, 400]; 1mm 3D U-Net 7 7 132×132×132[−125, 225]

Rassadin LNDb [−Inf,+Inf] 0.6375mm 3D U-Net 7 Texture 80×80×80

Sun et al. LIDC-IDRI; [−1150, 350] 0.6375mm 3D U-Net Models Texture 80×80×80TIANCHI; LNDb Genesis

Table 6: Summary of the approaches submitted for challenge C. Data: datasets used for training/validation; HU: HU window used; Voxelsize: voxelsize of input
data used (only one dimension is given for isotropic voxels); Approach: main methods used; Pretraining: whether pretraining or a pretrained network was used and
which; Joint: whether a joint training or multi-task strategy was applied. Input size: data input size in voxels used (axial×coronal×sagittal).

Participant Data HU Voxelsize Approach Pretraining Joint Input size

Atwal and LNDb [−1000, 500] 0.6375mm Custom CNN 7 7 80×80×80Phoulady

Chen et al. LIDC-IDRI; [−1000, 400] 0.6375mm SE-ResNet101 ImageNet 7
3 orthogonal

LNDb 30×30
Galdran and LNDb [−1000, 1000] 0.6375mm ResNet50 7 7

3 orthogonal
Bouchachia 64×64

Kaluva et al. LIDC-IDRI; [−1200, 400] 1mm 3D WRN 7 7 64×64×64NLST; LNDb

Rassadin LNDb [−Inf,+Inf] 0.6375mm 3D U-Net
7 Segmentation 80×80×80encoder+FCN

Sun et al. LIDC-IDRI; [−1150, 350]; 0.6375mm 3D U-Net encoder Models Segmentation 80×80×80TIANCHI; LNDb [−1350, 150] +gray values+FCN Genesis

ered. For challenge A, the sensitivity and FP/scan of each radi-

ologist was computed by considering the other four radiologists

as ground truth and applying the same rules as described in 2.3.

For challenge B, interobserver variability was computed for ev-

ery nodule annotated by more than one radiologist by comput-

ing the average J∗, MAD, HD and absolute volume difference

of all possible combinations of radiologist segmentations of that

nodule. Note that r∗ and σ cannot be computed by averaging

across all radiologists and are thus not reported.

Furthermore, where applicable, the statistical significance of

the difference between the different participants and the interob-

server variability was tested. For the main challenge and chal-

lenge C, an adaptation of McNemar’s test (Edwards, 1948) was

used to assess the difference in classification accuracy accord-

ing to:

χ2 =
(|n01 − n10| − 1)2

n01 + n10
, (9)

where n01 is the number of misclassified samples by method 1

but not by method 0 and n10 viceversa. McNemar tests were

computed for p<0.05 (χ2>3.841) and p<0.01 (χ2>6.635). For

challenge B, paired t-test was performed for J∗, MAD and HD

for p<0.05 and p<0.01.

5. Challenge Results

5.1. Main Challenge - Fleischner Classification

Table 7 shows the ranking of the participants of the main

challenge on the train/validation and the test stages. Kim

obtained the best results on both stages, though the differ-

ence to Kaluva et al. was only statistically significant at the
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Table 7: Fleischner classification results on the train/validation and test stages.
Best results in each stage shown in bold. Interobserver variability reported as
mean ± standard deviation. ∗ and ∗∗ indicate a statistical significant difference
to the best participant within each stage according to McNemar test at p<0.05
and p<0.01 respectively. N indicates a statistical significant difference to N out
of the 5 radiologists according to McNemar test at p<0.05.

Participant Train/Validation Test
κw κw

Kaluva et al. 0.532∗∗,4 0.4641

Kim 0.6033 0.580
Interobserver 0.743±0.152 0.604±0.240

(a) Kaluva et al.

(b) Kim

Fig. 1: Confusion matrix of Fleischner classes on train/validation (left) and test
(right) stages for each participant. Color intensity corresponds to the percentage
of CTs within each class.

train/validation stage. Figure 1 shows the confusion matrix on

train/validation and test stages for the four Fleischner classes.

5.2. Challenge A - Nodule Detection

Table 8 shows the classification of the participants of chal-

lenge A on the train/validation and the test stages. Fig-

ure 2 shows the FROCs obtained at train/validation and test

stages. While Katz et al. obtained a better sensitivity during

train/validation, the performance was somewhat degraded dur-

ing test. The opposite trend was observed for Kaluva et al.,

leading to a better performance on the test set. Figure 3 shows

examples of nodule candidates from the test stage evaluation

Table 8: Nodule detection results on the train/validation and test stages. Best
results in each stage and measure shown in bold.

Participant Train/Validation
sA s̄1 s̄2

Kaluva et al. 0.348 0.268 0.4279
Katz et al. 0.473 0.364 0.582

Participant Test
sA s̄1 s̄2

Kaluva et al. 0.533 0.396 0.671
Katz et al. 0.442 0.356 0.528

extracted at different FP/scan levels for each participant. It can

be seen that vessels and other structures such as atelectasis are

those most confused with true nodules but bone structures can

also be observed at higher FP/scan levels for Katz et al.’s ap-

proach.

5.3. Challenge B - Nodule Segmentation

Table 9 shows the classification of the participants of chal-

lenge B on the train/validation and the test stages. Figure 4

shows the Bland-Altman plots for nodule volume obtained on

the test stage. While Look obtained the best results in terms

of segmentation performance measures on the train/validation

stage, these results were not replicated on the test stage where

a significant overestimation of nodule volume can be observed.

The two best methods on both train/validation and test stages

were those by Rassadin and Sun et al.. In spite of neither of

these methods having the best results in terms of segmentation

performance measures, they have a smaller r∗, bias and standard

deviation to ground truth nodule volumes. Figure 5 shows ex-

amples of nodule segmentations from the test stage evaluation

extracted at different agreement levels for each participant.

5.4. Challenge C - Nodule Texture Characterization

Table 10 shows the evaluation results of challenge C on the

train/validation and the test stages. Figure 6 shows the receiver

operating characteristic curves (ROC) and confusion matrixes

obtained on the test stage for each participant. While Atwal

and Phoulady obtained the best results on the train/validation

stage, performance was significantly degraded on the test stage

as seen on both the ROC and confusion matrix. The best results
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Table 9: Nodule segmentation results on the train/validation and test stages. Best results in each stage and measure shown in bold. Data is mean ± standard deviation
where applicable. ∗ and ∗∗ indicate a statistical significant difference to the best participant within each stage and measure according to paired t-test at p<0.05 and
p<0.01 respectively. † and ‡ indicate a statistical significant difference to the interobserver variability according to paired t-test at p<0.05 and p<0.01 respectively.
Note that interobserver variability and correponding t-test can only be calculated for nodules annotations by at least two radiologists.

Participant Train/Validation
sB J∗ MAD (mm) HD (mm) r∗ b σ

Atwal and Phoulady 0.599 0.601±0.175∗∗,‡ 1.337±3.328∗∗,‡ 4.130±4.990∗∗,‡ 0.125 220.57 682.98
Galdran and Bouchachia 0.714 0.432±0.150∗∗,‡ 0.458±0.573∗∗ 2.236±2.260∗∗ 0.122 125.46 706.67
Kaluva et al. 0.372 0.789±0.243∗∗,‡ 6.045±7.815∗∗,‡ 9.387±9.308∗∗,‡ 0.145 204.95 683.55
Rassadin 0.742 0.489±0.170∗∗ 0.567±0.990∗∗ 2.482±2.246∗∗ 0.078 103.32 486.87
Sun et al. 0.771 0.433±0.126∗∗,‡ 0.389±0.422∗∗,‡ 2.049±1.597∗∗,‡ 0.079 75.54 507.37
eddie — — — — — — —
Look 0.740 0.369±0.117‡ 0.348±0.446‡ 1.899±1.876† 0.112 111.46 719.58
medi-perk 0.191 0.839±0.168∗∗,‡ 4.876±5.613∗∗,‡ 14.461±7.110∗∗,‡ 0.287 426.84 876.66

Interobserver 0.467±0.185 0.447±0.233 2.162±1.181 — 88.29 —

Participant Test
sB J∗ MAD (mm) HD (mm) r∗ b σ

Atwal and Phoulady 0.578 0.766±0.209∗∗,‡ 0.987±0.690∗∗,‡ 3.277±1.586∗∗,‡ 0.118 83.04 119.86
Galdran and Bouchachia 0.725 0.445±0.144‡ 0.412±0.258‡ 2.062±1.502‡ 0.145 41.43 129.47
Kaluva et al. 0.481 0.597±0.236∗∗ 2.322±5.931∗∗ 4.406±6.984∗∗ 0.169 77.37 239.41
Rassadin 0.754 0.478±0.478∗∗,† 0.420±0.215 2.028±1.229‡ 0.055 44.28 86.32
Sun et al. 0.743 0.468±0.136∗∗ 0.469±0.798 2.137±1.514 0.081 40.70 98.74
eddie 0.715 0.433±0.139‡ 0.397±0.279 1.983±1.463 0.175 44.63 141.49
Look 0.044 0.562±0.246∗∗ 3.561±7.087∗∗,† 7.462±10.715∗∗,‡ 0.612 209.13 535.62
medi-perk 0.434 0.614±0.249∗∗ 3.359±8.379∗∗ 5.729±9.318∗∗ 0.175 70.32 140.83

Interobserver 0.494±0.200 0.470±0.239 2.163±1.101 — 53.25 —

Table 10: Nodule texture characterization results on the train/validation and
test stages. Best results in each stage shown in bold. Interobserver variability
reported as mean ± standard deviation. ∗ and ∗∗ indicate a statistical significant
difference to the best participant within each stage according to McNemar test at
p<0.05 and p<0.01 respectively. N indicates a statistical significant difference
to N out of the 5 radiologists according to McNemar test at p<0.05.

Participant Train/Validation Test
κw κw

Atwal and Phoulady 0.9041 -0.008∗∗,5

Chen et al. 0.427∗∗,3 0.733
Galdran and Bouchachia 0.568∗∗,3 0.613
Kaluva et al. 0.369∗∗,3 0.34071

Rassadin 0∗∗,3 0.0279∗∗,5

Sun et al. 0.679∗∗,3 0.6861

Look — 0.6951

Interobserver 0.738±0.135 0.870±0.106

on the test stage were obtained by Chen et al., though similarly

good performance was obtained by Sun et al. and Look. Fig-

ure 7 shows examples of nodule texture characterization from

the test stage evaluation extracted at different predicted ground

truth texture class predicted probability for each participant.

6. Discussion

6.1. Main Challenge - Fleischner Classification

Comparing the results of Kim and Kaluva et al. on the main

challenge, Figure 1 shows that Kaluva et al.’s method has sig-

nificantly more difficulty in identifying class 0 (no follow-up or

optional CT at 12 months), often misclassifiying those cases as

classes 1-3. Since both methods are rule based, i.e. they rely

on nodule detection, segmentation and texture characterization

followed by a direct application of the Fleischner guidelines,

the differences in performance between the two methods are

directly related to the nodule detection, segmentation and/or

texture characterization. However, because Kim did not par-

ticipate in challenges A, B and C, a direct comparison of each

separate challenge cannot be made. Nevertheless, it can be seen

that Kaluva et al. had a good performance in nodule detection

but below average performance in both nodule segmentation

and texture characterization. Nodule segmentation in particu-

lar may have played a significant role given that, as shown in
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Fig. 2: Nodule detection FROCs on train/validation (left) and test (right) stages.
Full and dashed lines correspond to agreement levels 1 and 2 respectively. Inter-
observer bars correspond to mean ± standard deviation sensitivity and FP/scan
for the five radiologists.

Figure 4, Kaluva et al.’s method tended to overestimate nodule

volume in smaller nodules, which hinders the correct classifi-

cation of Fleischner class 0 according to the classification rules

shown in Table 1. Overall, the fact that Kim participated in a

single challenge and used a single algorithm which performed

joint nodule detection, segmentation and texture characteriza-

tion may have also played a role. By having a single algorithm

and objective, it becomes easier to tune parameters and obtain

a final Fleischner probability class, whereas with independent

parts, there are multiple probability outputs (nodule vs. non-

nodule, segmentation, texture) which must be tuned and joined

to obtain a final Fleischner class. In this way, it is possible that

the method proposed by Kim would not have the best perfor-

mance in terms of nodule detection when compared to Kaluva

et al. but would still perform better in terms of Fleischner clas-

sification by consistently finding and performing robust charac-

terization of the most important nodules for Fleischner classifi-

cation.

In comparison to the interobserver variability, both Kaluva

et al. and Kim showed statistically significantly lower perfor-

mance at the train/validation stage (4 and 3 radiologists respec-

tively). On the test stage however, the interobserver κw was

lower, coming closer to the automatic classification, and only

Kaluva et al. had statistically significantly different perfor-

mance, and only to one out of five radiologists. This indicates

that both approaches, and especially that by Kim, can capture

the most important nodules, thus being able to predict patient

follow-up with similar performance as radiologists. However,

the limited data used for the McNemar’s test on the test stage

can have played a role in these results, limiting the applicability

of this test.

6.2. Challenge A - Nodule Detection

Focusing on the test stage results of challenge A, it can be

seen that Kaluva et al.’s approach was more successful at re-

trieving true nodules at FP/scan levels below 1. While it is natu-

rally difficult to say with certainty what factor caused the differ-

ence in performance between the two approaches, the difference

is likely to be related to the detection module itself (rather than

the FP reduction) and hyperparameter choices. While Kaluva

et al. submitted around 19 nodule candidates per scan on both

the train/validation and test stages, Katz et al. submitted be-

low 8 nodule candidates per scan on the test stage compared to

over 25 nodule candidates per scan on the train/validation stage.

Such a low number of candidates per scan on the test stage is

of course highly limiting as true nodules were likely excluded

even before FP reduction. Another important factor to consider

is the data used for training. While Katz et al. trained the detec-

tion module on LIDC-IDRI (LNDb was only used for training

of the FP reduction module), Kaluva et al. used LIDC-IDRI,

NLST and a private dataset as well, totalling over 2000 CTs,

compared to 1018 by Katz et al.. In this way, the method trained

by Kaluva et al. was trained with many more examples, leading
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(a) Kaluva et al.

(b) Katz et al.

Fig. 3: Central axial view (51×51mm) of nodule candidate examples on test stage for both participants. Rows correspond to true positives (TP) and false positives
(FP) and columns to each of the FP/scan levels considered for evaluation.

(a) Atwal and Phoulady (b) Galdran and Bouchachia (c) Kaluva et al. (d) Rassadin

(e) Sun et al. (f) eddie (g) Look (h) medi-perk

Fig. 4: Nodule segmentation Bland-Altman plots obtained on test stage for each participant. Horizontal black line corresponds to mean volume difference and
dashed gray lines to the 95% confidence interval. All volumes shown in mm3. Absolute volume differences greater than 750mm3 not shown.



16 João Pedrosa et al. / Medical Image Analysis (2020)

(a) Atwal and Phoulady (b) Galdran and
Bouchachia

(c) Kaluva et al. (d) Rassadin (e) Sun et al. (f) eddie (g) Look (h) medi-perk

Fig. 5: Central axial view (25×25mm) of nodule segmentation examples on test stage for all participants. Green corresponds to edges of ground truth segmentation
and red to automatic segmentation. Rows correspond to examples at 5, 50 and 95 percentile values of sB for each participant. Note that for Kaluva et al., Look and
medi-perk no automatic segmentation is shown at 95 percentile because the predicted segmentation did not cross the central axial view shown.

(a) Atwal and Phoulady (b) Chen et al. (c) Galdran and Bouchachia (d) Kaluva et al.

(e) Rassadin (f) Sun et al. (g) Look

Fig. 6: Nodule texture characterization results obtained on test stage for each participant expressed through ROCs for each texture class and confusion matrix. ROCs
for each texture class were obtained by considering each class as the positive class and the remaining classes as the negative.
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Fig. 7: Central axial view (51×51mm) of nodule texture characterization examples on test stage. Columns correspond to examples of each of the different nodule
classes (GGO - Ground glass opacities, PSN - part solid nodules, SN - solid nodules) and rows correspond to examples at 5, 50 and 95 percentile values of the
average ground truth class predicted probability averaged across all participants. Bar plots correspond to predicted probabilities for each of the three classes (GGO,
PSN and SN from left to right) for each participant (Top row left to right: Atwal and Phoulady, Chen et al., Galdran and Bouchachia and Kaluva et al.; Bottom row
left to right: Rassadin, Sun et al. and Look).

to a more efficient algorithm.

In terms of overall sensitivity, both approaches are well be-

low previous nodule detection challenges such as LUNA16

where most approaches reach sensitivities above 0.9 at 1

FP/scan (Setio et al., 2017). This is in fact also the case for

the approaches proposed by Kaluva et al. and Katz et al. who

both report sensitivities of approximately 0.93 at 1 FP/scan on

different subsets of the LIDC-IDRI dataset on which LUNA16

is based (Kaluva et al., 2020; Katz et al., 2020). As such, the

lower performances obtained on LNDb are directly related to

the CT data and annotations themselves. Firstly, there are sig-

nificant differences in the CT data inclusion criteria, in specific

on slice thickness. On LNDb, the maximum slice thickness is of

1.0mm, whereas on LIDC-IDRI the maximum slice thickness

is of 5.0mm. Having a smaller slice thickness directly influ-

ences the manual annotation as there are more slices to inspect,

but also allows for a more accurate representation of smaller

nodules, being in this way conducive of a greater proportion

of nodules <5mm being reported as shown in Pedrosa et al.

(2019). Furthermore, these differences can have a detrimental

impact on performance if a network is trained on LIDC-IDRI

and is then deployed to LNDb without finetuning, as the net-

work might not have adequate representations of the smaller

slice thicknesses observed on LNDb. Secondly, the fact that an-

notations on LNDb were made in a single blind fashion without

revision of findings by other radiologists (in contrast to LIDC-

IDRI where revision was performed) has an influence in the

level of agreement among radiologists. Whereas on LIDC-IDRI

the level of agreement can be solely attributed to decision error,

i.e. deciding if each finding is a nodule or not, on LNDb, the

level of agreement compounds the decision and fixation errors,

i.e. the process of actually finding a nodule in the 3D CT im-

age. Furthermore, the higher proportion of nodules <5mm can

increase decision error, as the size of the finding can make de-

cision more difficult (Gierada et al., 2008). The fact that in

LNDb the number of radiologists that annotated each image is

variable also changes the meaning of the agreement level in a

given nodule, as an obvious nodule will have an agreement level

of 1 if the corresponding CT was annotated by a single radiol-

ogist. These inherent differences in annotation and agreement
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mean that the criteria used in LUNA16 for computing perfor-

mance (limiting to nodules with agreement level of 3 or higher)

could not be used, which makes a direct comparison between

LUNA16 and LNDb results not feasible. However, the single

blind annotations performed for LNDb and resulting interob-

server variability are more representative of clinical reality.

As shown in Figure 2, interobserver variability on LNDb

was around 1 FP/scan, with sensitivities close to 0.5 for agree-

ment level 1 and 0.65 and 0.9 for agreement level 2 for the

train/validation and test stages respectively. Both Kaluva et

al. and Katz et al. scored below the interobserver sensitivity

at 1 FP/scan, achieving the same sensitivity on the test stage

at approximately 2 FP/scan for agreement level 1 and above 4

FP/scan for agreement level 2. As such, it can be hypotethized

that further improvements can be possible with further refine-

ment of the detection algorithms. In fact, Kaluva et al. did not

use the LNDb data for training and Katz et al. used it for train-

ing the FP reduction module only. As such, network finetuning

using LNDb data could yield significant improvement bringing

performance closer to interobserver levels.

6.3. Challenge B - Nodule Segmentation

While Sun et al. and Rassadin obtained the best results on the

train/validation and test stages on challenge B, neither of these

participants obtained the best results in terms of segmentation

performance measures, which were obtained by Look and ed-

die on the train/validation and test stages respectively. Look’s

results on the train/validation stage, which were statistically sig-

nificantly different from all other submissions, were however

overfit to the train/validation data, and test stage performance

was poor. eddie’s results on the test stage, which were statis-

tically significantly different from Rassadin and Sun et al. in

terms of MAD, failed to achieve the best sB as they have a

higher r∗ and slightly higher bias and standard deviation. This

is likely a consequence of worst segmentation predictions for

larger nodules as shown in Figure 4, which will significantly de-

grade volume performance measures. While it can seem coun-

terintuitive that the best results in terms of segmentation perfor-

mance measures did not correspond to the winners of challenge

B, the use of volume performance measures can give additional

insight into segmentation performance and is particularly mean-

ingful if, as in this case, nodule volume is the clinical endpoint

in sight and not the actual segmentation of the nodule borders.

In terms of methodology, all reported methods were based

on 3D U-Net architecture though there are significant differ-

ences in terms of the training details. Both Rassadin and Sun et

al. performed joint training of segmentation and texture, hav-

ing achieved the best results in terms of sB. Joint segmentation

and texture classification might thus have been a deciding factor

by avoiding overfitting to the training data and generating more

representative features. In terms of input size and voxelsize, all

participants except Kaluva et al. used the submission input size

and voxelsize of 80×80×80 and 0.6375mm. This submission

input size and voxelsize was chosen as it was large enough for

the representation of the segmentation of all nodules and used a

voxelsize close to the average resolution of the CT axial slices,

thus avoiding downsampling of the nodules’ segmentation. It

can be seen that the choice of Kaluva et al. to increase input

size and voxelsize, which could have been beneficial by giving

more context of the nodule surroundings, led to below average

segmentation performance. However, the fact that a larger vox-

elsize (1mm) was used by Kaluva et al., may have been respon-

sible for these worst results as well and the influence of each

parameter separately would have to be investigated. The most

different parameter among all methods is the HU window used

to truncate the input. Changing the HU window is a tool com-

monly used by radiologists to better visualize nodules and nod-

ule boundaries, which explains the focus of participants on this

factor. However, no particular trend can be observed between

the performance and HU window used, and it is expected that a

3D U-Net will be able to learn the most efficient representation

independently of the input HU window (within reasonable lim-

its) and this is confirmed by the fact that the winning method by

Rassadin did not perform any HU window truncation. Finally,

only two participants, Kaluva et al. and Sun et al., used data ex-

ternal to LNDb for training and only Sun et al. performed pre-

training. However, comparing Rassadin and Sun et al., which
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used similar approaches and obtained similar results, the added

training data and pretraining methodology does not seem to be

particularly impactful to the final performance.

One of the notable aspects of challenge B is the fact that sev-

eral methods outperform the interobserver variability. On the

test stage, Galdran and Bouchachia, Rassadin and eddie have

statistically significantly lower J∗, MAD and/or HD and report

a lower absolute volume bias. This is indicative of the advanced

state of the art in segmentation, in spite of the complexity of the

task. While further advances in overall performance are always

possible, their clinical meaningfulness becomes lower, and a

more critical performance evaluation must be performed in the

future. It has been shown that GGO and PSN are more diffi-

cult to segment (Aresta et al., 2019), both due to their lower

constrast to the lung parenchyma and due to their lower fre-

quency during training, and an ideal segmentation algorithm

must be able to cope with these challenges. Furthermore, the

location of the nodule is also known to be a critical factor for

performance and this is clearly shown in Figure 5 where 5 of

the 95%ile examples are juxta-pleural, in contrast to only 1 of

the 5%ile examples. Greater context of the surrounding image

beyond the nodule boundaries can play a key role in improving

segmentation for these types of nodules.

6.4. Challenge C - Nodule Texture Characterization

On Challenge C, Chen et al. obtained the best test

stage κw, whereas Atwal and Phoulady obtained the best

train/validation stage κw. However, Atwal and Phoulady’s re-

sults on the train/validation stage, which were statistically sig-

nificantly different from all other submissions, were overfit to

the train/validation data, and test stage performance was poor.

On the test stage, the only submissions statistically significantly

different from Chen et al. were, those by Atwal and Phoulady

and Rassadin, though this is likely due to the small amount of

data on which the McNemar’s test relies upon. This is also

the case for the lack of statistically significant differences with

the interobserver variability, and it can be seen that on both

train/validation and test stages, no submission other than that

by Atwal and Phoulady reaches the interobserver variability.

As expected, most methods exhibit high performance in the

classification of solid nodules as shown in Figure 6 which is a

consequence of the overwhelming majority of this class. The

class showing the lowest performance is the part solid nodules,

not only due to the low number of train/test examples but also

likely due to the fact that, because it is the middle class, it ex-

hibits a higher variability of appearances as shown in Figure 7.

The top example of the PSN column illustrates this issue as it

shows a nodule annotated as PSN but that was classified as solid

by six of the participants and which is not significantly differ-

ent in appearance from the top example on the SN column. The

extent of misclassification of the PSN class is clearly shown on

the confusion matrixes of Figure 6, where the participant with

highest accuracy for this class (Atwal and Phoulady) only clas-

sified correctly 5 of the 17 nodules of this class.

Regarding the proposed methods, there is a much higher vari-

ability in comparison to Challenge B in terms of architectures,

though all techniques rely on deep learning. In terms of HU

window and voxelsize, the same trends of Challenge B were ob-

served. Both Rassadin and Sun et al. used similar approaches,

performing joint segmentation and texture classification using

the features extracted by the segmentation encoder, with the

difference that Sun et al. also used the gray value distribution

as features for classification. Nevertheless, the results between

these two participants are radically different and the poor per-

formance obtained by Rassadin on both train/validation and test

suggests that there were issues with model convergence or gen-

erating valid predictions. In terms of input size, Chen et al.

and Galdran and Bouchachia were the only participants using

2D slices rather than a 3D volume and both had good perfor-

mance on the train/validation and test stages. While it might be

tempting to assume that the use of 3D volumes will give greater

information and thus greater performance, two important fac-

tors must be taken into account. Firstly, radiologists typically

use the axial slice for CT visualization, using the sagittal and

coronal slices only in rare occasions and mostly during nod-

ule detection (i.e. to determine whether a certain structure is in

fact a nodule). In that sense, 3D features are not mostly used
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by radiologists for texture characterization. Secondly, using a

2D approach has the additional advantages that 2D networks

have, in general, less features to train and that different slices

of the same nodule can be used for training as an augmentation

strategy. This can be particularly important when dealing with

smaller datasets such as LNDb. The use of additional datasets

can also be important, and this strategy was applied by Chen et

al. but also by Kaluva et al. and Sun et al.. Finally, Chen et al.

started from a pretrained model from ImageNet, while Sun et

al. used Models Genesis as a pretraining strategy.

Comparing the top four participants (Chen et al., Look, Sun

et al. and Galdran and Bouchachia) and corresponding ROCs

on Figure 6, it can be seen that while the final score according

to κw were similar, there are significant differences in perfor-

mance. Sun et al. in particular, has a much higher area under the

curve for part-solid nodules than any other participant. How-

ever, these differences become diluted in the κw measure used,

which only takes into account the highest probability for any

given nodule. The low number of GGOs and PSNs makes it so

that κw is extremely sensitive to misclassifications outside the

neighboring class (solid nodules predicted as GGOs or vicev-

ersa) as highlighted by comparing the confusion matrixes of

Chen et al. and Sun et al.. As such, the use of additional evalua-

tion measures, such as area under the curve for each class, could

be important in the future to more robustly evaluate classifica-

tion performance, especially for problems with little and/or im-

balanced data.

6.5. Limitations

While promising results have been shown in this study, there

are limitations to this study which must be taken into account

for an adequate analysis of the results.

Regarding the LNDb dataset, while 294 CTs is a moderate

quantity which is associated to a significant amount of annota-

tion and curation work, it remains a relatively small dataset, es-

pecially after partitioning into train/validation and test sets, and

taking into account the imbalance of different nodule and Fleis-

chner classes. While most, if not all, participants increased the

training data by adding public datasets, this limitation may have

played a role in the successful training and generalization capa-

bilities of the methods proposed, which mostly rely on deep

learning methodologies. Furthermore, and as seen throughout

this Section, the relative small size of the test set has limited the

interpretation of the results, especially for the Fleischner and

texture classification where class imbalance was a serious con-

cern. As such, further increasing the available data and its di-

versity would enable finer training and methoodologies as well

as more detailed evaluations and conclusion, ultimately leading

to better performing algorithms. Regarding the annotations of

the LNDb dataset, while having access to a single blind reading

of the CTs gives a better understanding of interobserver vari-

ability, it would be extremely useful to have a second reading

where radiologists exchange annotations. In that way, a more

accurate ground truth would be obtained, to which the typical

single blind reading of a radiologist could be compared. How-

ever, running such a reading for even the modest size of 294

CTs and five radiologists was simply not achievable in a rea-

sonable amount of time/effort.

Regarding the challenge itself, the greatest limitation is the

small number of submissions to the main challenge and chal-

lenge A. While the limited submissions on challenge A may

have been influenced by the overlap with previous challenges

on CT nodule detection, such as LUNA16 (Setio et al., 2017)

and ANODE (Van Ginneken et al., 2010), the complexity of

the the main challenge and challenge A may have also played a

role. Challenges B and C were the most straightforward and re-

ceived the highest number of submissions. The main challenge

was particularly complex as it implied solving challenges A, B

and C to successfully apply the Fleischner rules or performing a

direct classification at CT level which presents significant chal-

lenges due to the size of the data. Nevertheless and in spite of

these limitations, the fact that the LNDb challenge will remain

online and available for submissions in the foreseeable future

will ensure that the significance of the LNDb Challenge and

dataset is liable to increase with time.
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7. Conclusion

The LNDb challenge was organized to promote research and

the benchmarking of automatic algorithms on automatic lung

cancer patient management, overcoming previous challenges

which were focused on a specific aspect of lung cancer CT

screening/management. In this way, the LNDb Challenge en-

compassed nodule detection, segmentation and texture char-

acterization with the final goal of automatic patient manage-

ment according to the 2017 Fleischner guidelines. While sig-

nificant research efforts have been developed in this area so

far, most tasks still require improvement in order to achieve

radiologist-level performance as shown in this study. Nodule

detection is particularly challenging due to the size of the data

and the many structures that resemble nodules in CT scans and

the class imbalance and subjective nature of nodule texture are

the main challenges identified for robust nodule characteriza-

tion and Fleischner classification. Nevertheless, the advance of

image analysis methodologies and future submissions to LNDb

will certainly pave the way for more efficient, better performing

methodologies, which will one day be able to become a valu-

able second opinion to radiologists in the screening and man-

agement of lung cancer.
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