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Abstract 

The recovery of three-dimensional footwear impressions at crime scenes can be a challenge 

but can also yield important investigative data. Traditional methods involve casting 3D 

impressions but these methods have limitations: the trace is usually destroyed during capture; 

the process can be time consuming, with a risk of failure; and the resultant cast is bulky and 

therefore difficult to share and store. The use of Structure from Motion (SfM) photogrammetry 

has been used widely to capture fossil footprints in the geological record and while there is a 

small body of work advocating its use in forensic practice the full potential of this technique 

has yet to be realised in an operational context. The availability of affordable software is one 

limiting factor and here we report the availability of a bespoke freeware for SfM recovery and 

subsequent analysis of for footwear evidence (DigTrace). Our aim here is not to provide a 

rigorous comparison of SfM methods to other recovery methods, but more to illustrate the 

potential while also documenting the typical workflows and potential errors associated with an 

SfM based approach. By doing so we hope to encourage further research, experimentation 

and ultimately adoption by practitioners. 
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1 Introduction 

The UK National Policing Improvement Agency (NPIA) [1] reported footwear as the second 

most common type of evidence found at crime scenes. Despite the frequency with which such 

evidence is found technical innovation around the capture and analysis of footwear has fallen 

behind other types of evidence as a quick survey of three forensic journals illustrates, namely: 

Journal of Forensic Identification, Journal of Forensic Science and Forensic Science 

International. Between 2018 and 2019 only 1.3% of published papers had a footwear focus 



compared to 22.4% dealing with for example fingerprints, yet footwear traces are perhaps 

more common [2] and less easily mitigated against by the criminal. 

Footwear evidence fall into either 2D traces or 3D impressions which are sometimes referred 

to as plastic impressions [2]. Traditional method of collecting 3D footwear evidence involve 

casting, or alternatively a high quality orthogonal 2D photograph is taken. Casting is an 

invasive and labour-intensive method which relies on an experience-based protocol 

developed by individual practitioners [2]. The limits of precision and accuracy are not well 

researched, or established, compared to the errors associated with other types of trace 

evidence recovery.  

Alternative methods of 3D capture now exist such as structured light, optical laser scans and 

photogrammetry [3,4], and an argument can now be made that the collection of footwear 

evidence should embrace this technical innovation with due benefit. This is particularly true in 

light of recent use of footwear evidence as part of intelligence-led policing initiatives [4]. In the 

UK, a number of police forces have either introduced, or are actively exploring, digital custody 

footwear capture linked to rapid pattern-matching algorithms that provide potential 

investigative leads for timely decision-making and/or suspect interrogation. At present 3D 

traces are not easily compatible with such systems, which are based on black and white 

impressions, but adoption of digital capture could change this. There has been previous 

discussion of using 3D scanners for footwear evidence [e.g., 5,6] and for broader forensic 

uses [4] such as external injuries on a body. Buck et al [4] provides a comprehensive validation 

of 3D acquisition techniques including multiple types of scanning equipment for the recovery 

of forensic materials. The capital cost of scanning equipment is falling rapidly and scanners 

are now available at many price points.  Scanners do still require investment in equipment, 

software, and training but plug and play scanners are now offering examiners the benefit of 

seeing direct results, aiding in lessening training requirements. An alternative to scanning 

methods is 3D capture using Structure from Motion (SfM) photogrammetry [4,8,9,10,11,12] 

which requires nothing more than a standard digital single lens reflex camera such as that 

used already by Crime Scene Investigators (CSI), appropriate software and IT infrastructure 

to run it on. A series of oblique photographs from different angles are taken of a target trace 

and returned to the laboratory where a 3D model is then computed. The crime scene camera 

is already a standard component of a forensic practitioner’s kit, little training is required for 

image capture, and free software solutions are now available to build and analyse such 

models. Admittedly investment in IT infrastructure and training is required to build the 3D 

model from the photographs, but this can be limited to specialist officers. In addition, not 

seeing direct results at the scene may not suit every examiner and potentially extend training 

requirements.  

The potential of Structure from Motion photogrammetry was recognised in 2000 by Pollefeys 

et al. [13] and has been illustrated since in a number of papers [14,15] but momentum has 

only just begun to build around this potential within forensic science. Villa and Jacobsen [16] 



discussed the contribution that photogrammetry could make across a range of forensic 

evidence types (see also: [3,17]). Clearly, the accuracy, precision and operational reliability of 

any new technique needs to be full explored and documented to ensure that evidence 

collected is both robust and able to withstand legal scrutiny. Larsen and Bennett [18] have 

previously addressed this, and while more research is needed our aim here is to illustrate the 

required workflow, potential pitfalls and to provide practical guidance for those practitioners 

wishing to experiment with his technology. More than anything else we wish to illustrate the 

capability of SfM to capture footwear evidence from a range of environments. In light of this, 

the current paper is structured around three themes: a review of SfM workflow, a review of 

potential errors and a series of case studies. 

 

2 SfM Methodology 

There are several commercial and non-commercial options for SfM capture. They all work on 

the same basic principle, that a series of oblique digital photographs are taken of a target trace 

and that an algorithm then matches either single, or groups of pixels, to compute the camera 

location before placing those pixel groupings in 3D space. This network of located pixels is 

then used to create a denser point cloud with each point on the surface of the trace having an 

x, y, and z coordinate. In addition, colour information is usually stored as RGB values for each 

of these points or vertices. 

The SfM solution used in this paper is DigTrace (www.digtrace.co.uk) which is a freeware 

option created at Bournemouth University with support from the Natural Environment 

Research Council and project partners at the UK Home Office and UK National Crime Agency. 

It uses openMVG [19] (Open Multiple View Geometry) as the SfM engine and has a range of 

additional tools specifically for the analysis of 3D footwear impressions. To be clear however, 

there are other freeware and commercial SfM software solutions and the industry standard is 

currently provided by Agisoft Metashape (https://www.agisoft.com/). These also provide 

good model building capacity, but the tools available are generic to the 3D industry as a whole 

rather than specific to the analysis of forensic footwear. There are also a wide range of 

commercial and freeware packages for viewing 3D models once they have been created 

(Table 1). The typical workflow using the DigTrace SfM approach is illustrated in Figure 1 but 

is similar in broad terms to any SfM software. 

https://www.agisoft.com/


 

Figure 1: Typical workflow for SfM photogrammetry with particular reference to DigTrace. The 

steps are: (1) to identify the trace to be recovered; (2), take the necessary photographs; (3) 

upload those photographs into appropriate SfM software and build a 3D point cloud of the 

surface of the trace; (4) correct the plane of the model so that is orthogonal when viewed from 

above; (5) scale the point cloud; (6) surface the point cloud; and (7) perform whatever analysis 

is required. 

 

 

 



Software Name Description Specific tools Key Benefits or 
Limitations 

Model Building    

DigTrace Freeware - Designed for 

use with footwear traces 
in a forensic context 

Model Building, 

visualising, analysis tools, 
model comparison 

Tools specific to footwear 

analysis 

Agisoft Metashape Commercial software – 

generic use, high quality 
options 

Model building, 

visualising, analysis tools 

Extensive options and 

editing tools  

Photomodeler Commercial software – 

generic use, high quality 
options 

Model building, 

visualising, analysis tools 

Affordable commercial 

option 

Reality Capture Commercial software – 

generic use, high quality 
options 

Model Building, 

visualising, analysis tools 

Simple and intuitive user 

interface 

3DR Zephyr Commercial software – 

generic use 

Model Building, 

visualising, analysis tools 

Built for user-friendliness 

VisualSFM Freeware – generic use Model Building, 
visualising, analysis tools 

Simple to use  

Regard3D Freeware – generic use Model Building, 
visualising, analysis tools 

Comprehensive editing 
tools 

MicMac Freeware – generic use Model Building, 

visualising, analysis tools, 
surface reconstruction 

Most suitable for 

professional or academic 
users 

Multi View Environment Freeware – generic use Model Building, 

visualising, analysis tools, 

Complicated User 

Interface 
Meshroom Freeware – generic use Model Building, 

visualising, analysis tools 
Easy to use workflow 

COLMAP Freeware – generic use Model Building, 

visualising,  

High Quality options 

reduce ease of use 

Model Visualising    

Meshlab Freeware - Processing 
and Editing 3D triangular 
meshes (ref) 

Used by authors for 
surfacing models built 
using DigTrace 

 

CloudCompare Freeware - Processing 
and Editing 3D triangular 
meshes  

Used by authors for Cloud 
to cloud comparisons for 
models built using 

DigTrace, contour-lines 
and depth maps 
generation 

 

Paraview Freeware - Processing 
and Editing 3D triangular 
mesh 

Used by authors for 
contour-lines and depth 
maps generation 

 

Table 1: Summary of software options for creating and viewing SfM 3D models, current in the 

autumn of 2020 [20,21] There has been a proliferation of photogrammetry software for drone 

mapping which in some instances can be used for close range, these have, however, not been 

included here. 

  



The first step involves identifying the target(s) trace(s). The second step involves taking 20 to 

30 oblique photographs of the target with a digital camera from Smartphone to dSLR quality 

(Fig. 1). Whilst a dSLR would be recommended, with advances in technology a smartphone 

camera would suffice. This is particularly pertinent due to material availability at a crime scene. 

For example, if a crime scene footprint has been found in snow which is melting and a dSLR 

camera is located in the police station 10 miles away, then the quality of photographs captured 

from a smartphone is perfectly adequate to avoid loss of evidence. This is a quick process 

and takes on average 69 ± 0.7 seconds per target (based on: 50 models, 30 photographs per 

models). In terms of camera the only essential requirement is that the sensor size (width in 

mm) is known, and this can usually be obtained from the camera specifications or the internet. 

In general, the better quality the camera in terms of sensor size and pixel density the better 

the 3D model will be. However, as the individual image file sizes increase, so does the 

computational power required to build the 3D model and subsequently work with it. A standard 

CSI quality dSLR gives accurate and precise results without undue computational load, as 

does a high-quality smart phone camera.  

The precise orientation of the photographs does not need to be constrained, although we 

recommend when using DigTrace that the protocol shown in Figure 2A is used to ensure a 

good quality model is attained. If a trace/track is deep and has undercut sides they may go 

unrecorded unless the face is shown in at least two pictures and this may require some low 

angled pictures to be taken. The photo procedure involves taking sharp, well-lit, overlapping 

photos (at least 30% overlap) from around and above the impression with care to take photos 

extending well beyond the impression itself. A scale bar should be included in the photographs 

but does not need to be in the same plane as the impression but should not be moved during 

the procedure. Some commercial software options (e.g., Agisoft Metashape) use scales with 

machine readable targets on them that help with scaling. 



 

Figure 2: Creating 3D models using SfM. A. Generic illustration of how 24 photographs from 

different angles and positions can create a 3D point cloud. B. Illustration of the differences 

between point cloud and two commonly used surfacing algorithms. The upper models are 

made in loose sandy soil and the lower models in melting snow. Note that the two algorithms 

give similar results.  

 

On return to the laboratory the photographs pertaining to a given trace(s) are sorted into a 

single folder and that folder is named appropriately. In DigTrace the folder name is the 

subsequent model name. This folder is then uploaded into DigTrace, or the commercial 

alternatives, and a model is made. The time it takes to create a 3D model varies with the 

number of photographs, their size and the computational power of the computer used and can 

vary accordingly from as little as a few minutes to over 20 minutes. Most software solutions 

allow for batch processing, such that all the models from a scene for example can be run over 



night [3; Fig. 2A]. The next step (Step-Four) is one of the most important and that is to correct 

the plane of the 3D model such that it is orthogonal to the viewer (Fig. 1). It is equivalent to 

ensuring that a forensic photograph is taken perpendicular to the subject. Tools to do this 

simply and accurately in commercial software such as Agisoft Metashape are limited, in 

DigTrace however the principal plane through the point cloud is calculated automatically and 

the transformation needed to move this into the orthogonal plane is then applied to all the 

points in the cloud (i.e., auto-rectified). If this is not done, then subsequent colour renders by 

depth will not bring out the track detail. There may be cases where the original slope is 

important to understand a sequence of tracks, this is not the same as the 3D model orientation 

and to create an accurate slope one must have x, y and z locational data for reference points 

within the model to calibrate the slope correctly. Crucially this needs to be anticipated at the 

scene when the photographs are first taken. 

The cloud of points produced in this way is unscaled, and the scale bar included in the 

images must now be used to create a real-world distance-spacing for the cloud. This should 

only be done once the plane of the model has been correct to ensure that true distance is 

being measured. A known distance on the scale bar is measured on the 3D model and a 

scaling factor calculated and applied to all the points. The point cloud is the raw data, and 

any measurements or analysis will only be as good as the coverage of points over the 

original target. Each point in the cloud has an RGB-value assigned to it. When the observer 

zooms into a point cloud by increasing the magnification the points become more widely 

spaced and the detail is lost. As a consequence, most clouds are interpolated or surfaced 

via a mesh for visualisation purposes. There are surfacing or triangulating algorithms that 

can be applied, common ones widely implemented in the software listed in Table 1 are 

Poisson Surface Reconstruction [22] and 2.5D Delaunay Triangulation [23,24; Fig. 2B]. 

There is an extensive literature around the relative merits of different surface meshing 

technique. As it has been extensively done in the past no further details are discussed here, 

but two visual examples have been provided [25; Fig 2B]. 

 

2.1 Accuracy and Reliability 

Ideally any measure of quality assurance for a 3D model of a trace, commonly referred to as 

a 2.5D surface [3], should be based on departure of the model surfaced in three dimensions 

(x, y and z) from the original surface. We can break-down this into four elements or potential 

sources of error:  

(1) Spatial placement accuracy and precision errors (Error-1). These errors measure both 

the accurate and consistent placement of a component point on an SfM model. Does a 

point plot with the same Euclidean coordinates every time and do these match the 

coordinates on the original point? Or put another way does an object of known 



dimensions on the original surface have the same dimensions on the SfM model? This 

is a function of such things as: the SfM algorithm used; the quality of the individual 

images; the coverage and overlap of images; the number of images; and the variation 

in pixel diversity across the target. Software and equipment come into play here, but 

also the operator.  

(2) Scaling accuracy/precision errors (Error-2). All models made via photogrammetry must 

be scaled using a scale-bar (or via machine-readable targets a known distance apart) 

and this can be a source of error. In theory we can test a model’s comparative accuracy 

by comparing linear measurements between points in the SfM cloud with those distance 

on the original surface. Additionally, to be precise a SfM model built repeatedly from 

different sets of photographs should give a consistent set of values for point to point 

distances. It is unusual for models of the same subject to be made more than once so 

this often goes unrecorded. 

(3) Point-cloud coverage (Error-3). Clearly, a model full of holes or blank areas (zero points) 

has no 3D data to provide in those areas. Small holes are not uncommon in 3D models. 

If a surface is to uniform, with little textural variety, matching pixel clusters between 

images will fail, leading to a hole. Reflections from damp or shiny surfaces can also 

cause a problem, as can variable-shadows or flat light. If a model is surfaced or 

interpolated as part of the basic process these problems may go unnoticed and often 

only become clear if the point cloud is examined. 

(4) Surfacing (Error-4). As discussed in the previous section surface meshes can be 

applied to a point cloud to improve its visualisation. The mathematics of different 

surfacing algorithms varies and therefore their ability to preserve 3D features could in 

theory vary.  

If a model is scaled accurately then in theory a linear dimension between two points on the 

original surface should be identical in value to the dimension between the same two points on 

the 3D model. Equally take a network of points and the distances between should be the same 

if the points are placed correctly in 3D space when comparing the original to model. Both 

Error-1 and -2 are in play. A pragmatic solution to check for scaling accuracy is to put an object 

with known 3D dimensions onto a surface prior to model building, or alternatively use that 

object to create an impression on the surface slightly away from the evidential marks. Lego 

bricks have universal dimensions, do not expand or contract, and are ideal for this purpose. 

In particular Lego DuploTM Blocks have the added advantage of being larger (Fig. 3).  



 

Figure 3: Standard dimensions of Lego blocks which due to their abundance and modular 

nature are ideal for checking model accuracy. 

 

A simple and quick calibration test for the photogrammetry process in conjunction with 

DigTrace can be undertaken using a Lego or Duplo brick. If a brick is pressed into a medium 

such as mud, or wet sand, then it will create a perfectly square outline. The authors would 

recommend doing this regularly not necessarily at a scene but in similar environments to those 

commonly faced to establish the accuracy for their individual setup. Variation in accuracy is 

likely to be small as shown by a simple experiment. Lego blocks were pressed into a sheet of 

BubberTM, a non-drying modelling compound similar to playdough previously identified for its 

potential for taking test impressions [26]. Models were made of these impressions using six 

different cameras using the standard DigTrace protocol [3]. Digital measurements were taken 

from the 3D point cloud for each scenario and compared with the physical measurements of 

the Duplo brick (Table 2). Maximum errors range from 0.16 to 1.245 mm, with a mean 

maximum error of 0.496 ± 0.073 mm across all the cameras. Given that the size between shoe 

sizes is 8.46 mm (one barleycorn) this equates to a potential worse case error of ±14.7%. This 

errors is not just that associated with different cameras, although it does indicate that the 

method is not particularly sensitive to the camera used, but also includes the algorithm (Open 

MVG in this case) and errors associated with the operator at all stages. The point here is that 

every individual practitioner, and equipment setup, should calculate these errors for their 

particular operational practice.  

 



Camera Sensor Width 

(mm) 

Measurement-1 (31.8 

mm) 

Measurement-2 (44 

mm) 

Measurement-3 (25 

mm) 

iPhone XS Max 5.8 31.1 [± 0.1] 43.91 [± 0.07] 25.2 [± 0.12] 

Sony A7 23.5 30.89 [± 0.02] 43.6 [± 0.06] 24.43 [± 0.1] 

Sony A6000 35.7 31.02 [± 0.15] 44.08 [± 0.16] 25.67 [± 0.12] 

Cannon EOS 5D 35.8 31.64 [± 0.19] 43.34 [± 0.59] 25.26 [± 0.09] 

Cannon EOS 1200D 22.3 31.4 [± 0.14] 44.5 [± 0.086] 25.2 [± 0.07] 

Nikon D200 23.6 31.7 [± 0.18] 44.12 [± 0.058] 25.14 [± 0.068] 

Table 2: Average measurements from multiple cameras of a Duplo block impression made in 

the modelling compound Bubber (N = 5). Each 3D model was composed of 25 photographs, 

scaled and autorotated so it was perpendicular to the orthogonal plane. Mesurement-1 

corresponds to the length of a four-stud block; Measurement-2 to the diagonal of a four-stud 

block; and Measurement-3 corresponds to the inside dimension between two re-entrants on 

the underside of a four-stud block. 

Absolute accuracy is important but so is the reproducibility of results. The statistics of sampling 

suggests that error rates should fall and precision increase as the sample size increases to 

the limits of any given operator, equipment, or measurement protocol (Fig. 4). A user would 

rarely have the time to make multiple 3D models of the same target and as a consequence 

these errors are not easily measured. However, this approach can be used to calculate a 

measure of precision for a given protocol and footwear evidence type which would be 

applicable to all similar circumstances. A precision rate of this type should in theory only vary 

with preservation environment assuming that camera, software, protocol, and operator remain 

unchanged.  

 

Figure 4: Estimating precision for one-time recovery using SfM. A. Conceptual model showing 

how error rates should decrease as sample size increases. B. Application to a shod concrete 

track, illustrated, for SfM models made via photogrammetry and DigTrace 

(www.digtrace.co.uk). 

http://www.digtrace.co.uk/


A precision value can be calculated by replicating the complete photogrammetry process: 

capture, 3D model building, scaling and measurement between known points at least 20 times 

or more (Fig. 4). This should be done for each environment in which models are typically 

captured by the practitioner in question. To measure precision networks of landmarks are pre-

placed on the tracks before recovery. The target is then photographed to create the first 3D 

model according the protocol being used. The operator then stands up, walks away and 

resets, before coming back to the target and repeating the recovery steps. This is repeated at 

least 20 (N) times, preferably 50, to build up the data needed to generate an error model. Each 

set of photographs is used in isolation to generate a 3D model, which is scaled, and digital 

linear measurements taken between the known points on the 3D model. You end up with N 

models and N measurements. Using these measurements, you can calculate the errors using 

the following analytical procedure. https://github.com/bosmart/sfm-paper 

(1) Generate N = 100 bootstrap samples (with replacement) for each value of k in the range 

between 2 and 50. 

(2) Calculate the Standard Error (SE) for each bootstrap sample and each value of k 

(scatter plot in Fig. 4B). 

(3) Derive the mean and standard deviation from SE values for each value of k. 

(4) Fit polynomial curves to the means and 95% confidence interval (CI) boundaries of the 

normal distributions calculated in Step 3 above (the CI values were clipped at 0 prior to 

curve fitting, see the solid and dashed lines in Fig. 4B). 

(5) Estimate the SE and its CI’s for K=1 by extrapolating the curves obtained in step 4 

above (see the blue vertical line in Fig. 4B). 

Table 3 compares a range of precision estimates for length and width measurements taken 

from footwear impression made in different environments with 3D models generated in 

DigTrace. A singular use of an optical laser scanner (Next Engine) has been included 

alongside the values produced via SfM photogrammetry to illustrate comparative values. 

These errors include all aspects in the recovery from operator, equipment, and protocol. The 

mean error across all environments for length is 1.615 ±0.729 mm with a maximum error of 

6.445 mm and a minimum of 0.322 mm. Width gives better results (0.681 ±0.284 mm) as does 

the distance between key point inside the footwear impression (0.358 ±0.048 mm; Table 3). 

A single model with all other recovery variables held constant will give precision on most 

measurements of the order of 0.35 ±0.048 mm. The reason for the higher values in terms of 

length largely comes from the nature of the tracks used. Modern sports shoes tend to curve 

front and back which can make defining the start and end of a track difficult. If there are 

undercut edges, there may also be missing points in the SfM model in these areas. 

Measurements on the point cloud are always between individual points (i.e. not interpolated 

between points). The width values show less variation since these are typically easier to define 

and less disturbed. There is also variability between environments, note the low precision 

values for the gypsum sand, and for Mud-1 (Table 3). The gypsum sand is extremely white 



and highly reflective as such the pixel uniformity in the images is challenging for the pixel 

matching algorithms OpenMVG used here. Equally Mud-1 was an extremely damp print with 

a complex toe area overhung by vegetation. Reflection from damp surface causes placement 

errors during the SfM computation and the complex overhung toe area is imaged slightly 

differently each time depending on the specific orientation of the photographs taken. If a 

photograph is taken slightly lower or with better line of sight into an overhung area in one set 

of model-building images compared to the next, then subtle differences in the model build will 

result. The lower levels of precision for the snow models reflects the challenge that this 

environment can pose for SfM due to the uniformity of image pixels and the potential for 

reflection/refraction. The more texture the snow has, coupled with consistent low-elevation 

illumination the better the results will normally be. In general, these precision measurements 

compare favourable to those obtained by the used optical laser scanner (Table 3). As with 

absolute accuracy precision estimates can easily be made using the above process by a 

practitioner and established for their particular equipment, protocol, and the typical 

environments from which they recover 3D footwear impressions.  

  
 
Surface 
Environme
nt 

Averag
e 
Length 
Error 
(mm) 

95% 
Maximu
m Length 
Error 
(mm) 

Averag
e Width 
Error 
(mm) 

95% 
Maximu
m Width 
Error 
(mm) 

Averag
e KP 
Error 
(mm) 

95% 
Maximu
m KP 
Error 
(mm) 

Next 
Engine 
3D scan 

Modelling 
clay 

0.78 2.13 0.42 1.16 0.35 0.89 

DigTrac
e 

Builder 
sand 

0.46 1.20 0.26 0.68 0.35 0.93 

 Gypsum 
sand 

2.28 6.01 2.60 6.65 0.58 1.70 

 Mud 1 6.44 17.92 0.40 1.10 0.29 0.75 
 Mud 2 0.50 1.31 0.23 0.63   
 Mud 3 0.40 1.05 0.32 0.82 0.24 0.64 
 Snow 1 1.38 3.69 0.79 3.20 0.37 0.95 
 Snow 2 1.14 2.91 0.67 1.77   
 Concrete  0.32 0.82 0.17 0.45 0.32 0.82 

Table 3: Error rates for length, width, and distance between known points for a single operator 
across a range of surface environments. Note the results of a next Engine are provided for 
comparison. 

The third type of error recognised above (Error-3) is the absence of points in the cloud. These 

are only visible in the cloud itself and are often obscured by surfacing/meshing algorithms 

which can fill small holes or gaps (Fig. 2B). Such meshes are basically a mathematical 

representation of the surface of the cloud of points. If there is no data, then there is a potential 

for error in the model. We have already discussed above the potential causes of holes such 

as surface uniformity and reflectivity. Figure 5 shows the results of two 3D models made of 

the same clay footwear impression. In one case the photographs were taken in poor light 

conditions and in the second the model was taken in better light. By counting the number of 

pixels in a unit area of the cloud (0.5 mm grid) we can identify those areas with redundancy in 

terms of points and those where there are few points. This type of Quality Assurance check is 



not routine within SfM software but can computed using python code written by one of the 

authors available at https://github.com/bosmart/sfm-paper. A ‘.csv’ file is used as input with 

three data columns corresponding to the x, y and z coordinates of the points, most 3D software 

will export the point cloud in this way. The model created in the better light conditions (Fig.5B) 

has a better coverage of points and the histogram of points per unit area is positively skewed. 

We can also see that the variation in z-values (elevation) is slightly less in the better lite model. 

If the area of maximum interest in a model has a consistent and high point density, then it is 

likely to follow the surface with a high degree of fidelity. If, however it does not then inference 

about track topology in blank areas may be more suspect. Ideally one wants a count per unit 

area that shows a positive or peaked kurtosis (leptokurtic) and with a negative skew; that is a 

histogram that has a high number of cells with a maximum point count and few with a low 

point count (Fig. 5B). It is possible to compare different models in this way using the 

histograms as a first order guide provided the count is normalised by model area. It is 

important to note however that simply having a large point count is not necessarily always a 

good thing. An undercut surface displayed in this way would give a high point count because 

you would count both the upper surface and the points in the undercut below. Equally a noisy 

model with lots of spurious surface points would give a high point cloud density but could give 

a poor model when surfaced. We can check for this by looking at the variance in z-values by 

unit area (Fig. 5). High variance should occur in those areas with maximum roughness and 

ideally one is looking for both a leptokurtic distribution and a positive skew or tail when looking 

at the histogram. 

 

Figure 5: Comparison of the same subject via two different models of varying quality (captured 

under different light conditions). A. Outputs from model captured in low light. B. Outputs from 



model captured in brighter even light.  The first two columns show the point cloud distribution, 

the middle column shows the point count per 0.5mm2 while the right two columns refer to the 

Z values and show the distribution followed by the variation in z values within 0.5mm2. 

 

The final type of potential error identified above is associated with the mathematical surfacing 

algorithm used (Error-4). To explore the significance of this potential error a comparison of 

two common surfacing techniques (2.5D Delaunay Triangulation and Poisson Surface 

Reconstruction) was undertaken (Fig. 2). A mesh to mesh comparison undertaken in Cloud 

Compare gives a mean difference between two point on the mesh of only ± 0.007 mm and a 

standard deviation of 0.097 mm. So, while this error is included for completeness its 

contribution is small. 

3 Application 

The aim here is to simply demonstrate what can be achieved for a range of depositional 

environments and simple scenarios. In built-up areas 3D footwear impressions are commonly 

found in sand or mud along roadside verges, gutters, access paths/tracks, or in flower beds. 

These types of trace, if identified for recovery, are usually captured via 2D vertical 

photography, and rarely cast due to the time and effort, and therefore expense involved, at 

least in the UK. The advantage of using SfM as a complimentary recovery technique is that it 

takes literally just over a minute to collect the additional photographs at a scene and in contrast 

to scanning no specialist equipment is needed. Even if the model subsequently fails to build, 

which is rare, or has several data-poor patches, you have lost nothing except a small amount 

of time, but you have potentially gained a significant additional data source. Perhaps most 

importantly the trace can be revisited effectively in situ multiple times as an investigation 

develops. You can view this trace from different angles and also use different depth-colour 

renders to pick out detail and unlike a 2D photograph you can also measure depth directly 

(Fig. 6).  



 

Figure 6: A selection of footwear impressions left in natural settings. The 3D SfM models are 

depth-colour rendered and viewed vertically from above. Three footwear impression were 

made in sand (A, Size 6 Vans Female. B, Size 6 Adidas Female. C, Size 6 Nike Female) and 

three in natural soil (D, unknown. E, unknown. F, Generic wellington boot, size unknown). The 

models were created in DigTrace, scaled, cropped and auto-rotated such that the surface is 

orthogonal to the viewing plane. The depth colour render used here is ‘terrain’. G, example of 

a sand impression. Size 6 Nike Air, using a one colour render in CloudCompare. H, example 

of a sand impression, size 6 Adidas, using a one colour render in CloudCompare. 

 

Models such as those in Figure 6 can be used to take digital measurements as illustrated by 

the following example. Simple impressions in a flower bed where made with two identical 

shoes except for their size, Shoe A (Female, UK Size 6), and Shoe B (Male UK Size 11). 

Photographs were collected for an SfM model using an iPhone XS Max and a Sony A7 

mirrorless camera. The models created were scaled and auto-rotated within DigTrace and 

then measured using a digital measuring tool (Table 4). The shoes, impression and 

consequent three-dimensional models were all measured for comparison. The results indicate 

a high level of accuracy when using different cameras and highlight that models can be 

differentiated from one another based on measurements if multiple impressions are found that 

appear to be the same pattern but are in fact different size shoes and therefore the 

impressions made from different sources. The disparity between models A and B shows a 

difference of 41 mm (length) correlating with the 45 mm disparity between the physical shoe 

size lengths. 



 Model 

photographed 

by Sony A7 - 

Length 

Model 

photographed 

by Sony A7 - 

Width 

Model 

photographed 

by Iphone XS 

Max - Length 

Model 

photographed 

by Iphone XS 

Max - Width 

Physical 

Impression 

Length 

Physical 

Impression 

Width 

Shoe A 

impression 286.99mm 78.14mm 286.13mm 78.21mm 290mm 75mm 

Shoe B 

impression 326.42mm 81.39mm 329.26mm 83.45mm 330mm 80mm 

Table 4: Comparison of two shoe impressions using digital measurements taken from different 

SfM models of these impressions. 

Traces can also be compared to other traces left at a crime scene and compared directly to a 

SfM model of a test impression made with a suspect’s shoe in a modelling medium such a 

BubberTM [26], or directly to an SfM model of the outsole of a suspect’s shoe. Within DigTrace 

this is achieved using a comparison function which allows the user to match pairs of points 

between two models [3]. Typically, these points are the outer-dimensions of an impression. 

The software then computes a transformation of one track to the other by minimising the mean 

squared deviation between the landmark coordinates in the x-y plane [3,27]. Transformation 

can either be rigid or affine, the former preserving aspects of size and is therefore most 

appropriate in forensic work, while the latter focuses on shape alone. Once two or more traces 

are co-registered the software then samples the stack of superimposed tracks to compute a 

frequency distribution of values for each point over the surface. These values be used to 

calculate a mean 3D track for a group of similar tracks on trackway or used to compare the 

statistical difference between two tracks [3]. Take the tracks in Figure 7 made in sand by 

identical boots with different levels of wear. By superimposing the tracks, we can focus 

attention not just on areas of difference but also on the degree of statistical difference. Figure 

7C is the standard deviation of points when the two tracks are compared, we can set a 

threshold across this to pick out those which are statistically significant at 95%. In this case 

the wear differences around the heel are statistically different. 

 

 

 



 

Figure 7: Statistical comparison of two shoes with different levels of wear. A. Shoe prints made 

in sand, captured in 3D and depth-colour rendered. B. Contour lines (1 mm) showing the 

difference between the two tracks when co-registered. C. The standard deviation between the 

two co-registered shoe prints and a version with a 2 standard deviation threshold applied 

showing areas (blue) that show a statistical variance greater at 95% [3]. 

 

An SfM approach works across a range of substrates from traditional sand, mud, and soil, 

while also having potential for substrates that are often regarded as difficult to cast such as 

loose sand or snow [28,29,30,31,32]. Figure 8 illustrates this in the context of loose, sandy 

gravel found on a path on a local nature reserve. The vertical photograph while picking up 

some of the class characteristics of the impression does not give as much detail as the depth-

colour rendered or surfaced versions and both give superior results to a dental stone cast. 

SfM also offers a solution for 3D recovery of traces in snow, although due to surface reflection 

and potential pixel uniformity in snow there is a risk of models not building. Figure 8 shows 

SfM models of sufficient quality to capture class characteristics and in some cases randomly 

acquired characteristics (RAC; Fig. 9). The key is to avoid sparkling reflections, while keeping 

some textural variation in the form of shadows within the track. As the snow ages, especially 

in a country such as the UK, the textural diversity increases and so does the quality of the 3D 

models. Flat uniform light is often a problem. 

 



 

Figure 8: A footwear impression made in a loose, sandy gravel substrate. A. Original 

impression viewed from above. B. Dental stone cast of the impression. C. Depth-colour 

rendered SfM model of the impression. D. Surfaced SfM model of the impression that can be 

rotated and viewed from different angles or positions. 

 

 

 

 

 

 



 

Figure 9: SfM models of footwear impression in snow. A. Series of impressions with different 

shoes taken in snow. In the depth colour render warm colours correspond to high areas and 

cool colours to low areas. B. Shoe with RAC circled in red, alongside a photograph of the 

snow track and then two SfM colour-rendered models. The first model has a depth scale of 

green/brown colours corresponding to high areas and grey colours corresponding to low 

areas. The final model is orientated at an oblique angle to highlight the subtle feature of 

interest, depth scale as in 9A. 

 

4 Discussion: the way forward 

In the previous section we have illustrated how an SfM approach can be used to recover a 

range of 3D footwear traces across different track preserving environments. These techniques 

are routinely used in the analysis and preservation of fossilised vertebrate traces (ichnology), 

including human tracks, and digital methods are now considered to be the scientific standard 

for recovery and preservation of such evidence [e.g., 33,34]. The vertebrate ichnological 



community has become to agree basic standards of data reporting, presentation, and 

archiving [35]. This, coupled with increased awareness, has led to a rapid growth in the 

number of footprint discoveries around the world in last five years. The same methodological 

revolution could follow in forensic practice given more widespread experimentation and 

adoption of SfM as a complimentary method to those already used in forensic practice for the 

recovery of footwear evidence. 

To aid this we have reviewed the workflows and discussed potential sources of error. In 

particular we have drawn attention to how CSI practitioner can determine both the accuracy 

and precision of a SfM solution using their own combination of equipment, software, and 

collection protocol. There is a risk that models, built once the scene is left, do not build correctly 

due to problems of surface textural uniformity or reflection from wet surfaces. This is no 

different however than the risk that cast either damages or fails to preserve the available detail 

since the process of casting is usually a one-time destructive process. In both cases, SfM and 

casting recovery, experiential learning is important and ultimately the key to success. A 

successful SfM model has significant advantages over more traditional casts, since casts are 

bulky making them difficult to store, analyse digitally, and share quickly. Perhaps the key 

advantage, however, of SfM models is the ability to colour-render with depth to bring out 

different features and to provide a means of statistical testing the differences between two 

traces. SfM based recovery also works in environments that are traditionally difficult to cast 

such as in snow, and loose, dry sandy substrates [36]. 

A high quality forensic-grade 2D photograph will often be sufficient for most investigative 

needs and give as much detail as a SfM model in the x-y plane. While photographs can give 

accurate measurements in the x-y plane depth comparisons and measurements are much 

harder. Moreover the CSI practitioner determines the angles and viewpoints at the point of 

capture in the case of a 2D photograph, but a 3D SfM model can be revisited many times and 

viewed from different angles with different depth-colour renders and with different illumination 

angles and brightness. The key is not to consider SfM as an alternative but as an additional 

and complimentary recovery method which at least at the scene involves little additional effort. 

Table 5 summaries the relative merits of existing recovery techniques for 3D footwear 

impressions and compares them to those of an SfM based approach.  

Tuttle [37,38] made a number of clear and valid recommendations with respect to the 

introduction of new forensic methods with specific reference to the interpretation of barefoot 

prints at crime scenes, namely: (1) that any data and methods by self-proclaimed footprint 

experts need to be rigorously peer reviewed outside the court room before they enter it; (2) 

that the credentials of foot experts need to be certified and verified in some way as well as 

being limited to their area of expertise; and (3) all new forensic tools need to be subject to 

rigorous scientific testing before they are applied in criminal cases. These principles are not 

that different from the guidelines issued by the US Supreme Court in light of the Daubert v. 

Merrill Dow Pharmaceuticals, Inc. (1993) that new techniques and expert opinions need to: 



(1) have established methods; (2) have a known or potential error rate; (3) have widespread 

acceptance by the relevant scientific community; (4) have been subject to peer review; and 

(5) be testable and have been tested through scientific method. We can apply these tests to 

the use of SfM photogrammetry in the recovery of footwear evidence. This paper sets out the 

basic workflows associated with the use of SfM photogrammetry in forensic practice building 

on the work of others [e.g., 3,39,40,41]. The method has levels of accuracy and precision that 

can be determined for a specific camera, collection protocol, camera, practitioner, substrate, 

and software as set out in this paper. The use of objects of known size, coupled with estimating 

the maximum and minimum error rates as set out in Figure 4 and reported for the author’s 

setup in Table 3, shows the way. Larsen and Bennett [18] also reviewed the errors associated 

with SfM recovery of footwear impressions.  

In terms of widespread acceptance within the forensic community this is currently lacking. 

However in the study of vertebrate ichnology, including human tracks, SfM recovery is now 

considered to be standard and is routinely used by almost all practitioners [e.g., 33,42-49]. In 

fact, a paper on a set of fossilised tracks would not be accepted for publication without some 

form of 3D analysis whether by optical laser scanning or SfM photogrammetry, it is the 

accepted norm [35]. Practitioners have already come together to define best practice in terms 

of the collection and presentation of 3D data [35]. The forensic community is behind the curve 

on this. SfM methods and associated analytical/statistical techniques using digital tracks 

created in this way have been subject to extensive peer review as the sheer number of 

publications testifies, six fossilised human track papers in the first nine months of 2020 alone. 

Cross-disciplinary transference of methodological practice is slow in all fields, but it is perhaps 

timely for the forensic footwear community to acquaint themselves with this work and learn 

from it [3].  

It is the final Daubert test that we would argue needs significant further work, that the methods 

should be tested through application of the scientific method. This is certainly true in the 

context of fossil traces but is perhaps lacking in forensic practice. This may reflect a 

decreasing emphasis placed on footwear evidence by some forensic organisations and police 

forces, something which is true in the UK at least, despite the ubiquity of such evidence, but 

is also a function of the inherent inertia of changing established methods and approaches. We 

would suggest that there is a need for operational-based comparative testing of SfM based 

recovery so that it can be compared to other methods so that the advantages, pitfalls and 

comparative errors can be established leading to an operational analysis of the cost benefit of 

embracing an SfM based approach can be established. Papers like this one play a role in 

illustrating the potential of new techniques, but true operational trials require the practice-

based community to participate. We call upon the forensic footwear community to embrace 

this need.  

 



 

Method Cost Training Speed Output x, y 
data 

x, y, 
z 

data 

Invasive? Risk? Storage/Sharing 

SfM Scene: low, 

existing CSI 
cameras used. 

Scene: medium 

training for CSI, 
mainly awareness 

Scene: fast, circa. 70 seconds per target. Digital 3D 

model, can 
be 3D printed 
if needed. 

Yes 

(D) 

Yes 

(D) 

Non-

invasive 

Medium Digital models easily 

stored and shared by 
file transfer systems. 

 Lab: medium, 
investment in IT 
and software. 

Lab: high, training of 
specialist officers to 
gain full analytical 

potential.  

Lab: slow, circa. an hour to build and analyse 
a model. 

      

Casting Scene: low, 
consumables 

only.  

Scene: low, mainly 
experiential. 

Scene: slow, up to 45 minutes per target 
depending on prevailing conditions 

Artefact Yes 
(A) 

Yes 
(A) 

Invasive Medium Storage of bulky 
artefact, difficult to 

share quickly. 
 Lab: low 

consumables 

only. 

Lab: medium, 
mainly experiential. 

Lab: slow, adhering trace evidence needs to 
be considered first, cast then needs to be 

dried and cleaned.  

      

Photography Scene: low, 
existing CSI 

cameras used. 

Scene: medium, 
good quality 

photographs require 
training. 

Scene: medium, depends on the target and 
conditions. 

Digital image Yes 
(D) 

No Non-
invasive 

Low Digital images are 
easily stored and 

shared by file transfer 
systems. 

 Lab: medium, 

investment in IT 
and software. 

Lab: medium, training 

of specialist officers 
to gain full analytical 
potential. 

Lab: medium, time to scale, prepare and 

analyse individual photographs 

      

Laser 
Scanning 

Scene: High, 
specialist 
equipment. 

Scene: high, training 
needed for SCI. 

Scene: Impressions can be captured in under 
a minute with some scanners, with preparation 
taking more time. Not typically totalling more 

than five minutes. Timings vary with 
type/make/model of scanner used.  

Digital 3D 
model, can 
be 3D printed 

if needed. 

Yes 
(D) 

Yes 
(D) 

Non-
invasive 

Low Digital models easily 
stored and shared by file 
transfer systems. 

 Lab: medium, 

investment in IT 
and software. 

Lab: high, training of 

specialist officers to 
gain full analytical 
potential.  

Lab: Dependant on scanner, a 3D mesh can be 

directly available for use in analysis 

      

Table 5: Summary of the relative merits to different 3D recovery techniques. Note that risk is this context is the risk on non-recovery of evidence, (D) is 

digital measurements and (A) is analogue measurement



5 Conclusion 

We suggest that the use of SfM Photogrammetry for forensic practice in the recovery of 3D footwear 

traces forms a useful and complimentary method to existing methods especially to 2D photographic 

capture. What is now needed is community based operational trials and tests to build confidence in the 

approach and we call upon the forensic footwear community to embrace this idea. 

Automated pattern matching to supplement, or even replace the footwear expert, has been a goal for 

some years with varying degrees of success [3]. Developments in machine learning make these goal 

more achievable, and rapid matching algorithms are already available. For example, Henderson et al. 

[5] have shown how digital custody capture linked to rapid searches of recently recovered traces has 

significant potential for intelligence led policing. In particular it allows a suspect’s footwear to be rapidly 

linked, at least by their class characteristics, to local traces in a timely fashion allowing officers to 

broaden the scope of an investigation while interviewing that suspect. The input is currently limited to 

black and white 2D traces, but 3D models colour rendered appropriately can be integrated quickly into 

these systems, perhaps more quickly than 2D photographs with their complex tonal variability. In 

summary we would argue, especially in light of the transformation which has occurred in the study of 

fossilised traces using SfM, that the future promise of footwear recovery via SfM is bright. 
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