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Regime switching effect of COVID-19 pandemic on renewable electricity 1 

generation in Denmark 2 

 3 

Abstract 4 

Denmark has achieved remarkable success in renewable energy generation over the last several 5 

decades. However, the country's goals of meeting its 50% energy demand from renewable by 2030 6 

and becoming independent of fossil fuel by 2050 are currently in jeopardy due to the COVID-19 7 

pandemic, which emerged at the end of December 2019 in the Chinese city of Wuhan. This study, 8 

therefore, tries to see how COVID-19 affects renewable electricity generation in Denmark using 9 

the econometric framework. Several nonlinear estimation techniques such as Fourier ADL 10 

cointegration analysis and Markov Switching regression are used to estimate the relationship 11 

between the three channels of COVID-19 and renewable electricity generation. The result from 12 

the Markov Switching regression reveals that renewable electricity production in Denmark is 13 

adversely affected by the enforced lockdown as captured via the stringency index, economic 14 

support provided to tackle the pandemic, and daily confirmed deaths of COVID-19. Moreover, the 15 

causality test shows that the stringency index and daily confirmed deaths of COVID-19 are 16 

important predictors of renewable electricity, but the economic support index has weak causality 17 

with renewable electricity. The study finally presents some crucial policy suggestions for Denmark 18 

which can help the country achieve its renewable production goals.   19 

Keywords: Denmark; Renewable electricity; COVID; lockdown; economic support; Nonlinearity 20 
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 26 

1.0 Introduction 27 

With over 87 million confirmed cases of infection and almost 2 million deaths in about 222 28 

countries across the globe, as of January 9th, 2021 [1], the COVID-19 pandemic has secured 29 

significant attention globally. It has affected almost every section of life. It has also prompted 30 

varieties of actions and reactions from governments across levels and their citizens. Policies, rules, 31 

and regulations are being administered to curb its spread and withdrawn or softened times to permit 32 

the execution of human and economic activities. With all these measures in place, the Organization 33 

for Economic Co-operation and Development (OECD) predicts that global Gross Domestic 34 

Product (GDP) is going to be reduced by 7.6 per cent in 2020 if there is a second wave of the 35 

pandemic, but 6 per cent drop if the second wave is avoided. They further mentioned that this drop 36 

might extend beyond the year 2020 if there is another outbreak towards the end of the year. And, 37 

if this happens, the growth accrued over the last five years could be lost by the end of the year 38 

2021 [2].  39 

           Although the pandemic is undoubtedly a threat to the economy, the same cannot be said for 40 

the renewable sector.  On the one hand, this pandemic can act as a catalyst to reduce emissions, 41 

increase employment and economic growth and, therefore, can be creative destruction by replacing 42 

the old fossil fuel [3, 4]. But on the other hand, renewable energy development has encountered a 43 

challenge because of the pandemic, as COVID-19 has affected the supply chain as well as the 44 

manufacturing process of renewables. This disruption in the supply chain is again causing trouble 45 

in manufacturing, leading to a contraction in the renewable energy sector [5]. Also, the import and 46 

export of solar panel shipment experienced turbulence all around the world because of the global 47 

shutdown [6]. Specifically, wind energy stands to encounter significant risk due to the pandemic. 48 

Hence, Denmark, a country that experiences strong winds from the North Sea and the Baltic Sea 49 

and currently the global leader in wind energy development, also faces uncertainty in its renewable 50 

industry [7]. The country's over-reliance on wind energy makes it vulnerable to crisis events like 51 

COVID-19.  52 

 53 

According to the Environmental performance index of 2020, Denmark is the greenest 54 

country in the world, excelling in air quality, sanitation, safe drinking water, waste management, 55 
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and leading the world in tackling climate change with a target to cut GHG emissions by 70% by 56 

2030 [8].  Over the last several decades, this country has achieved remarkable success in renewable 57 

energy development. The policies introduced in developing renewable energy to stabilize the 58 

climate are lessons for other countries. This proves that with appropriate policies, the government 59 

can mitigate the gap between the primary cost of investment payment and getting the benefits out 60 

of the renewable industry [9].   61 

The electricity generation in Denmark mostly depends on wind energy, as has been 62 

indicated in Figure 1. Before the 1970s, this country depended primarily on imported oil. But the 63 

country's quest for energy independence began after the oil crisis of 1973-74. Since then, Denmark 64 

has chosen and invested a huge amount in renewables, especially in wind energy generation. As a 65 

result, renewable production amounted to 47% of its total energy generation in 2019 [10]. While 66 

the global target is set at making renewables generate 50% of the global energy supply by 2050, 67 

'Denmark's targets are to make renewables supply more than half of her energy demands by 2030 68 

and to have done away with fossil fuels for energy generation by 2050 [11, 12].  69 

Figure 1: Gross electricity production from renewable (TJ) in Denmark 70 

 71 

Source: Danish Energy Agency (2020) 72 

            Denmark is a leading player in Variable Renewable Energy (VRE) system integration and 73 

energy-saving technologies that maximize energy and minimizes heat, such as the combined heat 74 

and power (CHP) [13]. The country is therefore rightfully nick-named the laboratory of green 75 
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solutions. The Energy Trilemma Index of the World Energy Council [14] ranks Denmark as one 76 

of the top three countries with a score of 84 out of 100. However, the country ranks poorly in terms 77 

of energy security and energy equity compared to other neighbouring economies. The countries 78 

with a diversified energy system and a higher level of hydrocarbon power sources are ranked 79 

highly in terms of energy security. Nevertheless Denmark's energy production from hydro is 80 

almost zero, and the country relies heavily on wind power. The countries ranked highly in this 81 

category can also counteract and properly respond to any system shocks with minimal disturbance 82 

like COVID-19. Therefore, Denmark seems to be suffering from a lack of system resilience. In 83 

terms of energy equity, Denmark is not even in the top ten countries. Energy equity refers to 84 

countries with low energy costs, but consumers in Denmark have to pay high rates for electricity 85 

compared to other European countries, and taxes of energy are three times greater than that of the 86 

average in Europe [15, 16]. Therefore, Denmark has to take account of these issues while making 87 

its transition towards clean energy.  88 

            The COVID-19 pandemic has hit the entire supply chain of Denmark's energy sector, 89 

starting from commodities to components. This is evident from figure 2 where the gross electricity 90 

generation in Denmark declined substantially for the first time since 2000. Furthermore, figure 3 91 

shows that the decline in gross electricity generation can be attributed to the decline in net 92 

electricity production from wind turbines. This again is the reflection of the argument made by 93 

Bloomberg New Energy Finance which said that over-reliance on one particular source of 94 

renewable energy can be a damaging factor during crisis events [7] 95 

Figure 2: Gross electricity production (GWh.) in Denmark 96 
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 97 

Source: Danish Energy Agency 98 

 99 

Figure 3: Net Electricity Production (GWh.) from wind turbines in Denmark 100 

 101 

Source: Danish Energy Agency 102 

 103 

             Owing to the above discussion, our study contributes to the empirical literature in several 104 

ways. First, the effects of the COVID-19 pandemic may not be uniform globally, because of the 105 

differences in containment measures and levels of their deployment across regions, countries, and 106 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

0

500

1000

1500

2000

2500

Ja
n

-1
9

Fe
b

-1
9

M
ar

-1
9

A
pr

-1
9

M
ay

-1
9

Ju
n

-1
9

Ju
l-

1
9

A
ug

-1
9

Se
p

-1
9

O
ct

-1
9

N
o

v-
19

D
ec

-1
9

Ja
n

-2
0

Fe
b

-2
0

M
ar

-2
0

A
pr

-2
0

M
ay

-2
0

Ju
n

-2
0

Ju
l-

2
0

A
ug

-2
0

Se
p

-2
0

O
ct

-2
0

N
o

v-
20



12 
 

geographies. Therefore, economic, geographical, political, and other peculiarities, including 107 

strictness of containment measures, relief, or palliative support measures, will provide quality 108 

information on the effect of the pandemic [17]. Denmark was recorded to have relatively fewer 109 

infections when compared to other European countries during the early period of the pandemic, 110 

due to prompt government interventions such as the introduction of strict lockdown, social 111 

distancing, and government support [18]. These measures, without a doubt, will have their short- 112 

and long-term implications on the state of the country. 113 

We are specifically interested in the renewable generation of Denmark because its 114 

doggedness on sustainable energy development, triggered by the 1970s oil crisis, has placed them 115 

on a high pedestal in renewable energy solutions. This journey is in line with the global goal to 116 

generate all her energy independent of the environmental-damaging, carbon dioxide-emitting 117 

fossil fuels. The electricity generation trend of renewable over the last several decades as shown 118 

in figure 4, indicates a very rapid increase and a high potential. Furthermore, since renewable 119 

energy sources have notable effects on economic growth, understanding its generation may 120 

indicate a path toward economic recovery during and after the pandemic.  121 

Figure 4: Gross Electricity production by fuels (TJ) in Denmark 122 

 123 

Source: Danish Energy Agency 124 
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Second, our study highlights three channels by which this pandemic can exert its influence 126 

on renewable electricity generation in Denmark. First Channel is the stringency of the restriction 127 

and lockdown policies which make investments in the renewable industry uncertain. These 128 

lockdown policies also put construction as well as the operation of renewable plants in jeopardy.  129 

The second channel is via the economic stimulus that the government has implemented. The 130 

Danish government will have to sacrifice a significant amount of its GDP to attain the objective 131 

of being carbon neutral within 2050. But the government has already spent approximately 26% of 132 

its GDP to tackle the COVID-19 pandemic within its boundary [19]. Therefore as more and more 133 

money is needed to tackle the virus, more financial resources will be diverted away from meeting 134 

the goals of climate mitigation. The third channel is via the COVID-19 pandemic itself. We 135 

hypothesize that the COVID-19 pandemic will have a multiplier effect on renewable energy 136 

generation because it captures lockdown policies, health containment policies, economic stimulus 137 

as well as the dread of the pandemic itself.   138 

 139 

           Third, only a few studies have empirically examined the effect of COVID-19 on the 140 

electricity sector using the econometric framework.  For example, Carvalho et al. [20] used 141 

Joinpoint regression and showed that COVID-19 affected electricity consumption significantly, 142 

although the reductions were different across geographic regions. Norouzi et al. [21] on the other 143 

hand, explored the impact of COVID-19 on Spain's electricity market and they found that 144 

observations of deaths and cases due to COVID-19 were negatively associated with energy prices. 145 

In other studies, Alkhraijah et al.[22], Geraldi et al. [23], Bielecki et al. [24], Iqbal et al. [25], and 146 

Aruga et al. [26] also examined the association between energy consumption and COVID but only 147 

some of these studies utilized the econometric methods.  This study is more similar to that of 148 

Alhajeri et al. [27] who provided evidence of COVID-19 preventing actions leading to a reduction 149 

in power generation. But our study differs from Alhajeri et al.[27]   since we focus on the empirical 150 

aspect of the COVID-19 pandemic and renewable industry using a nonlinear framework, whereas 151 

the study of Alhajeri et al.[27] was more concerned with the qualitative aspect of this relationship. 152 

The nature of the COVID-19 pandemic and the induced restrictions is characterized by sudden and 153 

irregular jumps and linear dynamic is not suitable for capturing those jumps. Linear frameworks 154 

also cannot capture the asymmetric and complex dynamics between the variables [28].  Hence, not 155 

capturing the nonlinearity among the variables can lead to inconsistent outcomes with poorly 156 
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behaved estimates and therefore, can easily undermine the objectives of this study [29]. Therefore, 157 

our study contributes to the empirical literature by employing several nonlinear estimation 158 

techniques such as Fourier ADL cointegration analysis by Banerjee et al. [30] and Markov 159 

Switching regression model of Hamilton [31] to capture the relationship among the variables.  160 

          The next section presents the data and methodology used to achieve the aims of the study. 161 

The empirical results are presented and discussed in section three while section four concludes the 162 

study with vital policy implications and suggestions. 163 

2.0 Methodology and data description 164 

2.1 Data description 165 

The objective of this study is to analyze how the COVID-19 pandemic has affected 166 

renewable electricity generation in Denmark. In particular, we analyze how the overall electricity 167 

generation for the renewable sector (sum of biomass, hydropower, solar power, offshore wind, 168 

onshore wind, and other renewables electricity generation) has been affected due to the stringency 169 

index, economic support index, and COVID-19 daily confirmed deaths. The empirical model of 170 

the study is specified as follows:  171 

 𝑅𝐸𝑁𝑡 = 𝛽0 +  𝛽1𝑆𝐼𝑡 + 𝛽2𝐸𝑆𝐼𝑡 +  𝛽3𝐶𝑂𝑉𝐼𝐷𝑡 +  𝜀𝑡                                                                      (1) 172 

Where RENt denotes the overall renewable electricity production of Denmark, COVIDt indicates 173 

the daily confirmed deaths due to COVID-19, SI is the stringency index, ESI is the economic 174 

support index and εt is the error term at time t. 175 

  We only transform the renewable electricity generation and COVID variables into natural 176 

logarithm and other variables remain in the level form since the other two variables are indices. 177 

These variables have been collected from different sources. For example, we use the daily death 178 

data for COVID-19 from the John Hopkins University database [32]. The stringency index and 179 

economic support index data come from the Oxford government response tracker database 180 

developed by Hale et al. [33]. The data for renewable electricity generation is sourced from the 181 

Energi data service developed by Energinet [34] of Denmark. This site provides the hourly data of 182 

renewable generation in Denmark. Since we do not have hourly data for any of our independent 183 
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variables, we have taken the average of 24-hour electricity generation. The data period ranges from 184 

January to November 2020.  185 

              Stringency index implies the strictness of lockdown measures which mainly restrict 186 

human behaviour.  This index incorporates closure of the school, public places and workplace 187 

closure, cancellation of public events, restrictions on gatherings, international travel and internal 188 

movement, and stay-at-home requirements. It ranges from 0 to 100, 100 being the harsh restrictions 189 

and lockdown policies implemented and 0 being no restrictions or lockdown. Denmark 190 

implemented one of the harsh lockdowns in Europe ever since the COVID-19 hit the country. Our 191 

initial hypothesis is that these policies have negatively affected the renewable sector. Thus the 192 

following hypothesis can be formulated:  193 

Hypothesis 1: SI has a negative and significant impact on REN 194 

The economic support index, on the other hand, also ranges from 0 to 100, where 100 means the 195 

country is fully supporting the people through income support or debt relief. COVID-19 has 196 

induced many countries to support the economy through measures such as fiscal stimulus and other 197 

monetary measures. So far, Denmark has announced a total stimulus package of $89,106 Million 198 

to tackle the pandemic, according to the Asian Development Bank [19], which is approximately 199 

26% of its GDP. This package is composed of liquidity support, credit creation, direct long-term 200 

lending, equity support, and health and income support. This bulk amount of economic support to 201 

tackle the pandemic demonstrates that many of the climate 'projects' financing will get delayed, 202 

and support will be diverted away from clean energy projects to support the economy. Therefore, 203 

our second hypothesis argues that some of the funds (including those of renewable energy projects) 204 

that were aimed at tackling the climate crisis are diverted away from supporting the clean energy 205 

sector to prevent the immediate threat of COVID-19 [35]. Thus, the second hypothesis can be 206 

written as follows:  207 

Hypothesis 2: ESI has a negative and significant impact on REN 208 

              The restrictions and lockdown implemented by the Danish government forced people to 209 

stay in their homes. As a result, the renewable sector suffered from proper maintenance and 210 

operation. Besides, the COVID variable (captured through the daily confirmed death of COVID-211 

19) variable also incorporates the other two variables, such as SI and ESI. Therefore, it is expected 212 
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that COVID will have a greater effect on the renewable sector than SI and ESI. Hence, our third 213 

and final hypothesis can be specified as follows:  214 

Hypothesis 3: COVID has a negative and multiplier impact on REN 215 

  Descriptive statistics for the variables are presented in Table 1. As we have already mentioned, 216 

table 1 lists COVID and REN variables in logarithmic form and the other two variables in level 217 

form. 218 

Table 1. Descriptive Statistics 

 COVID ESI REN SI 

 Mean  0.551603  80.48664  3.248134  55.73370 

 Median  0.173000  87.50000  3.249994  54.63000 

 Maximum  3.798000  100.0000  3.316353  72.22000 

 Minimum -1.036000  37.50000  3.146791  37.04000 

 Std. Dev.  0.755999  17.92189  0.035525  9.679303 

 Skewness  1.773064 -1.776110 -0.391970  0.184602 

 Kurtosis  5.948644  4.597531  2.642874  2.219191 

 Jarque-Bera  232.1923  165.6099  8.101258  8.143553 

 Probability  0.000000  0.000000  0.017411  0.017047 

 Sum  144.5200  21087.50  851.0111  14602.23 

 Sum Sq. Dev.  149.1704  83831.70  0.329384  24452.80 

 Observations  262  262  262  262 

 219 

2.2 Methodology 220 

2.2.1 Nonlinear dependence test 221 

To examine the nonlinear dependence in the series of our model, we first employ the Brock-222 

Dechert-Scheibkman (BDS) test provided by Brock et al. [36]. This test is used for model 223 

misspecification since it provides a high statistical power to determine the linearity or correct 224 

specification structure of the proposed model [37].  It is considered an important advancement in 225 

examining nonlinearity dependence when applied to pre-whitened data. It is based on correlation 226 

integral, an idea developed by Grassberger and Procaccia [38] to estimate the dimension of 227 

correlation. The performance of this test depends on the two parameters, one is ε (distance), and 228 

another one is d (value of the embedding dimension). It is expected that the distance between any 229 

pair of points can be equal to or less than ε under the assumption of independence [39].  230 

 231 
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2.2.2 Unit root test 232 

To check the stationary of our variables, we have employed an Augmented Dicky Fuller 233 

test (ADF) and Fourier ADF unit root test. The general specification for the ADF test is as follows: 234 

∆𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑥𝑡ϒ +  𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 … . + 𝛽𝑝∆𝑦𝑡−𝑝 +   𝜈𝑡                                               (2) 235 

 236 

Where Δ is difference and α = ρ-1 and ρ is the coefficient of the AR (ρ) process. yt is the 237 

variable under consideration and vt is white noise. The lagged term has been added to tackle the 238 

autocorrelation problem. 239 

However, the traditional unit root tests such as ADF cannot capture the structural breaks. 240 

Our variables might have undergone some structural shifts, which further result in different forms 241 

of nonlinearity.   Hence ADF test was again augmented for a nonlinear framework by Enders and 242 

Lee [40] where they used the Fourier function consisting of different frequencies. The following 243 

equation specifies a Fourier function:  244 

𝑌(𝑡) = 𝛼0 + 𝛼1𝑡 + ∑ 𝜏𝑗
𝑚
𝑗=1 sin (

2𝜋𝑗𝑡

𝑁
) +  ∑ 𝜌𝑗

𝑚
𝑗=1 cos (

2𝜋𝑗𝑡

𝑁
) ; 𝑚 ≤

𝑁

2
; 𝑡 = 1,2                            (3) 245 

 246 

Here, α0  and  α1 are the intercept and trend coefficients. The amplitude and displacement dynamics 247 

of the Fourier function are indicated by τj and ρj. Also, we have N number of observations and m-248 

optimal number of frequencies which will be determined by the information criteria, here j is 249 

Fourier frequency (values of j range from 1,2… to m). τj and ρj are two nonlinear parameters in the 250 

above equation and if one of them is at least significant, this means that there is nonlinearity. 251 

However, the process will become linear if these parameters are zero. 2.2.3. Cointegration test 252 

The essence of cointegration is to confirm whether the variables move together or not in 253 

the long run. Cointegration requires all the variables to be integrated in the same order. In this 254 

paper, we apply the Fourier ADL cointegration analysis suggested by Banerjee et al. [30] rather 255 

than Engle-Granger's [41] methodology or Johansen and Joselius [42] cointegration tests since 256 

they cannot capture the nonlinearity. This test does not require specifying the duration of the breaks 257 
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as well as prevents power loss when too many dummies are used. The formula for this test is 258 

specified as follows: 259 

∆𝑦1𝑡 = 𝑑(𝑡) + 𝛳1𝑦1,𝑡−1 +  𝜋𝑦2,𝑡−1 +  𝜏∆𝑦2,𝑡 +  𝜀𝑡                                                                      (4) 260 

Here, d(t) is the deterministic term and y, τ, and y2t is n*1 parameter vectors and explanatory 261 

variables.  262 

The null hypothesis of this test is that of no cointegration. However, if the critical values 263 

developed by Banerjee et al. [30] are under the test statistic that is estimated, the null hypothesis 264 

will be rejected and cointegration will be confirmed. 265 

 266 

2.2.4. Markov Switching Regression 267 

Considering the possibility of nonlinearity and sudden change in the variability of a given 268 

indicator, here we employ a superior technique compared to other econometric models, which is 269 

the Markov Switching Regression model advocated by Hamilton [31].  This model provides a 270 

nonlinear alternative to linear models of Box Jenkins ARIMA or unobserved components models 271 

of Watson [43], Harvey and Todd [44], and Clark [45]. In this technique, the models are very 272 

flexible and can change against regime shifts. This test can be applied to non-stationary, dynamic, 273 

and linear cointegrated models. Hamilton [31] used the process provided by Goldfeld and Quandt 274 

[46] to determine the changes in the autoregressive 'process's parameters. According to Hamilton 275 

[31], the nonlinearities arise when the process experiences discrete shifts in regimes, this implies 276 

the episodes where the given series's dynamic behaviour is different.  277 

The two regime Markov Switching regression can be written as follows: 278 

𝑋𝑡 = 𝛼1 +  ∑ 𝛶1,𝑖
𝜌
𝑖=1 𝑋𝑡−𝑖 + 𝛼1,𝑡 if   st = 1          279 

𝑋𝑡 = 𝛼2 +  ∑ 𝛶2,𝑖
𝜌
𝑖=1 𝑋𝑡−𝑖 + 𝛼2,𝑡 if   st = 2              280 

Here, αi,t is independently and identically distributed with mean 0 and variance σ2 
i. The state 281 

variable is donated by st, and it is governed by a first-order Markov chain. The transition 282 

probabilities of this state variable can be presented in the following matrix format:  283 
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            P = 
𝜌11 𝜌12

𝜌21 𝜌22
 284 

Here, if the value of ρij is small, the model will stay longer in state i. The duration of this state is 285 

expected to be 1/ρij. The regime numbers can be 𝑟 ≥ 2 [23].  286 

 287 

2.2.5. Causality test 288 

The cointegration test confirms whether there is any long-run relationship or not between 289 

two variables, but it does not say anything about the direction of causality. Granger causality is 290 

used to identify the direction of causality among the variables. Here, we employ Breitung and 291 

Candelon [47] frequency domain Granger causality test to examine the causal inference among the 292 

variables studied. Breitung and Candelon proposed a test which is based on sets of linear 293 

hypothesis on the autoregressive framework using a bivariate vector autoregressive (VAR) model.  294 

The framework developed by them can be used to disentangle long-run and short-run 295 

predictability. The superiority of this causality test over other traditional causality tests is that it 296 

permits the forecasting of variables examined at specific time frequencies. This will allow us to 297 

examine the changes where policy interventions can be provided, that is, whether in the short term, 298 

medium-term or long term [48].   299 

 300 

3.0 Results and Discussions 301 

          As outlined in the methodology, as an initial technique, the BDS test of Brock et al. [36] is 302 

applied to capture nonlinearity in the time series variables. The outcomes of the BDS test for the 303 

variables of SI, ESI, REN and COVID in Denmark are reported in Table 2. The results provide 304 

empirical evidence that there is nonlinear behaviour in the time series variables.  305 

 306 

Table 2.  BDS dependency test 

 Dimension BDS Statistic z-Statistic Prob. 

S
I 

 2  0.182878  39.15713  0.0000 

 3  0.319833  43.47282  0.0000 
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 4  0.412207  47.47358  0.0000 

 5  0.473506  52.79388  0.0000 

 6  0.516991  60.31391  0.0000 

E
S

I 
 2  0.203520  22.27613  0.0000 

 3  0.343580  23.64981  0.0000 

 4  0.438894  25.32817  0.0000 

 5  0.502749  27.77520  0.0000 

 6  0.544551  31.11504  0.0000 

R
E

N
 

 2  0.166786  46.90841  0.0000 

 3  0.276761  48.96380  0.0000 

 4  0.344884  51.24503  0.0000 

 5  0.384711  54.86046  0.0000 

 6  0.404865  59.89285  0.0000 

C
O

V
ID

 

 2  0.119421  15.77295  0.0000 

 3  0.218391  18.03169  0.0000 

 4  0.285335  19.64285  0.0000 

 5  0.338107  22.16545  0.0000 

 6  0.368046  24.82805  0.0000 

Note: *, **, and *** denote statistically significant at the 10%, 5% 

and 1%significance level.  

 307 

         We now proceed to estimate a linear unit root test, namely Augmented Dickey-Fuller (ADF), 308 

to examine whether the time series variables in the estimated models have a unit root. Moreover, 309 

we also employ the nonlinear unit root test, namely the Fourier-ADF (F-ADF) unit root test, which 310 

depends on the frequency and the lag length. F-ADF captures unknown structural breaks with 311 

frequencies to select the minimum sum of the squared residuals. The outcomes from these tests 312 

are reported in Table 3. As reported, at the 5% level, the time series variables have a unit root at 313 

the level. However, at the first difference, the variables are stationary. In other words, the variables 314 

are integrated into the same order or I(1).  315 
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 316 

Table 3. ADF and Fourier ADF Unit Root Tests 

ADF Unit Root Test 

Variables  T-Statistic Probability  

COVID -2.4191 0.3688 

ΔCOVID -20.1264*** 0.0000 

ESI -2.4735  0.3411 

ΔESI -16.1206*** 0.0000 

LREN 3.3915*  0.0547 

ΔLREN -14.3076*** 0.0000 

SI -3.1852* 0.0897 

ΔSI -16.0783*** 0.0000 

Fourier ADF Unit Root Test 

Variables Frequency F-Statistic Fourier ADF Test Statistic 

COVID  1  8.010 -4.257* 

ΔCOVID  1  1.091 -5.606*** 

ESI  1  3.478 -3.414 

ΔESI  4  0.926 -16.172*** 

LREN  5  2.321 -3.421 

ΔLREN  5  2.185 -9.590*** 

SI 2 2.368 -3.565 

ΔSI  2  0.258 -8.005*** 

Critical values of Fourier ADF Test 

Frequency 1% 5% 10% 

1 −4.87 −4.31 −4.02 

2 −5.58 −5.02 −4.73 

3 −6.19 −5.63 −5.34 
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4 −6.73 −6.18 −5.89 

5 -7.24 −6.68 −6.39 

Critical values of F 

 10.35 7.58 6.35 

Note: Δ symbol indicates the first difference of the variables. *, **, and *** denote 

statistically significant at the 10%, 5%, and 1% significance level, respectively. The 

decisions are taken based on the 5% significance level. 

           317 

              As a next step, the present study applies the ADL cointegration test, which takes both 318 

nonlinearity and unknown structural breaks into account. The outcome from the ADL 319 

cointegration test is reported in Table 4. The null hypothesis of the ADL cointegration test is that 320 

there is no cointegration equation among the time series variables.  The findings reveal that the 321 

null hypothesis can be rejected, imping that there is a long-run relationship between renewable 322 

electricity generation and stringent index, economic support index, and COVID-19 deaths in 323 

Denmark.  324 

 325 

Table 4. Fourier ADL Cointegration Test  

Model Test Statistics Frequency Min AIC 

REN=f (SI, ESI, COVID) 5.142*** 5 -6.725 

 Critical Value 

 1% 5% 10% 

 −5.08 −4.38 −4.01 

Note: *, **, and *** denote statistically significant at the 10%, 5%, and 1% significance 

level, respectively. 

 326 

              Since the present study captures the long-run linkage among the time series variables, we 327 

next explore the possible effect of the stringency index, economic support index, and COVID on 328 

renewable electricity generation employing Markov switching regression. The outcomes of the 329 

Markov switching regression are reported in Table 5. This test is a linear regression model with 330 

nonlinearities arising from discrete changes in regime. The present study undertakes two different 331 



12 
 

regimes in the renewable electricity sector in Denmark, a high volatility regime (Regime 1) and 332 

low volatility regime (Regime 2). 333 

Table 5.  Markov Switching Regression 

Variable Coefficient Std. 

Error 

z-

Statistic 

Probability 

Regime 1 

SI -0.0018** 0.0009 -2.0245 0.0429 

ESI -0.0005* 0.0003 -1.7758 0.0758 

COVID -0.0375** 0.0095 -3.9254 0.0001 

C 3.4270*** 0.0617 55.45868 0 

Regime 2 

SI -0.0017*** 0.0002 -6.9143 0 

ESI -0.0004*** 0.0001 -3.2837 0.001 

COVID -0.0175*** 0.0031 -5.549 0 

C 3.2862*** 0.0195 167.7567 0 

Note: *, **, and *** denote statistically significant at the 10%, 5%, and 1% significance level, 

respectively. 

 334 

 335 

             The outcomes in Table 5 show that the stringency index has a negative and significant 336 

effect on renewable electricity generation in Denmark in both regimes. The coefficients of the 337 

stringency index under both regimes are similar, indicating a similar effect of the lockdown on 338 

renewable electricity in high and low volatility periods. The negative effect of the stringency 339 

measures on renewable energy can be supported by the fact that the construction of renewable 340 

energy installations was delayed due to these measures implemented in the countries. These 341 

measures also disrupted the supply chain and directly impacted the commissioning of renewable 342 

electricity projects [49].  Also, many clean energy workers got unemployed due to the financial 343 

pressure of their respective companies [14]. For example, in Denmark, the Vestas which is the 344 
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'world's largest wind turbine manufacturer, cut jobs due to financial uncertainty associated with 345 

COVID-19. The company decided to shut down its projects of MHI Vestas and those in Lem Blade 346 

and Aarhus located in Denmark [50].  The IEA [51] reports that biofuel projects and utility-scale 347 

electricity may encounter delays in commissioning. The crisis severely hit the biofuel sector as the 348 

biofuel used drops due to restrictions of transport activity all around the country. The decrease in 349 

biofuel production will be 11.5%.  Considering that Denmark's widely used energy source is 350 

bioenergy and COVID-19 has halted the production of many transport biofuel, our result is 351 

therefore not surprising. 352 

           In July 2020, European Union (EU) leaders, including that of Denmark, agreed about the 353 

recovery fund for coronavirus amounting to approximately 750 Billion Euro. This meant that a 354 

compromise had to be met regarding the climate budget. For example, cuts had to be made from 355 

the Just transition fund, a flagship of the European Commission aiming to assist carbon-intensive 356 

economics get rid of fossil fuels. Besides, funds were also cut from InvestEU (which helps meet 357 

the green goals of the member countries) and scientific research regarding the climate crisis [35, 358 

52]. The aforementioned argument is reflected in our finding that the economic support index has 359 

significant negative impacts on renewable electricity. This segment of the finding falls in similar 360 

line with the findings from [39], who noted that financial or economic crisis could set back the 361 

target for reducing emissions as well as affect the deployment of renewable energies. These crises 362 

also happen to coincide with the commission of wind power projects. Since Denmark's electricity 363 

sources come mostly from the wind sector, our result that renewable energy was negatively 364 

affected by the pandemic is very reasonable. 365 

 366 

Furthermore, we find that COVID significantly and negatively affects renewable electricity 367 

generation under both regimes. However, the high volatility regime's coefficient is greater than the 368 

coefficient under the low volatility regime, indicating that COVID has greater negative effects in 369 

the high volatility regime. The effects of COVID are also greater than that of stringency and 370 

economic support indices under both regimes. This segment of the result demonstrates the 371 

multiplier effect of the COVID pandemic, as proxied by the daily confirmed deaths, on renewable 372 

electricity. The increasing rate of COVID-19 death rate makes people afraid to go outside home 373 

and makes the government impose further strict regulations and lockdown. As a result, the COVID 374 



12 
 

variable incorporates the impacts of the stringency index as well as that of fear of the employees 375 

and employers working in the renewable industry. The result can also be explained by the fact that 376 

many countries have experienced a total slowdown in the installation of distributed solar PV where 377 

the installation requires access to commercial buildings and houses. This segment of the result is 378 

consistent with Eroğlu [53], who noted that the renewable energy sector is getting affected severely 379 

because of lack of government support, issues related to the tax stock market, and supply chain 380 

delays that are caused by the pandemic.  381 

 382 

            To catch the causal impact of the stringent index, economic support index, and COVID-19 383 

deaths on renewable electricity generation in Denmark at different frequencies, the present study 384 

implemented the BC causality test, which allows us to separate long-term causality from short-385 

term causality. The BC causality test distinguishes nonlinearity and causal stages, whereas the test 386 

also encourages the identification of causality between parameters at various frequencies. The 387 

outcomes of the BC causality test are depicted in Table 6. We find that there is evidence of 388 

causality from SI to REN in the medium and short term, imping that the stringency index is an 389 

important predictor for renewable electricity generation in Denmark for the medium and short 390 

term.  Moreover, COVID-19 deaths can also predict significant variation in renewable electricity 391 

generation in Denmark at different frequencies, specifically during the long and short term. 392 

However, we fail to capture any significant causality from the economic support index to 393 

renewable electricity generation in the long and short-terms.  394 

 395 

Table 6. BC Causality Test 

 Long-term Medium-term Short-term 

Direction of 

causality 

wi=0.01 wi=0.05 wi=1.00 wi=1.50 wi=2.00 wi=2.50 

 

SI →REN 

 

2.754 

(0.252) 

 

2.645 

(0.266) 

 

6.651** 

(0.035) 

 

16.806** 

(0.000) 

 

23.919** 

(0.000) 

 

33.760** 

(0.000) 

 

ESI →REN 

 

1.211 

(0.545) 

 

1.126 

(0.569) 

 

4.751* 

(0.092) 

 

3.177  

(0.204) 

 

0.208 

(0.901) 

 

0.630 

(0.729) 
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COVID →REN 

 

5.471* 

(0.064) 

 

5.511* 

(0.063) 

 

2.217 

(0.330) 

 

2.383 

(0.303) 

 

5.982** 

(0.050) 

 

5.310* 

(0.070) 

Note: <> and () stands for Wald test statistic and p-value, respectively. The path of 

causality is represented by→. 10%, %5, and 1% levels of significance are illustrated by 

*,** &***, correspondingly. SIC is used to verify the VAR model's lag lengths. 

 396 

 397 

4.0 Conclusion and Policy Suggestions 398 

4.1 Summary of Findings 399 

             The need to assess the impact of the COVID-19 outbreak on several parts of the economy 400 

cannot be overemphasized, with a special interest in the energy sector, which is one of those largely 401 

affected by the pandemic. As demonstrated by Eroğlu [53], renewable energy generation has been 402 

adversely affected due to uncertainty in the supply of materials, amongst others. Given the 403 

foregoing, this study presents a case for Denmark by investigating the impact of the COVID-19 404 

pandemic on renewable electricity generation. To achieve this aim, data on renewable electricity 405 

alongside stringency index, economic support index, and COVID-19 daily confirmed deaths were 406 

collected and analyzed via a Markov Switching Regression and other pre-and post-estimation tests.  407 

             The result from the cointegration test first reveals that the variables are cointegrated, 408 

indicating that they have a long-run relationship with each other. To account for the high and low 409 

periods of uncertainty, we analyzed the relationship between COVID-19 and renewable electricity 410 

via a Markov switching regression model. Findings from this study reveal that both the stringency 411 

index and economic support index adversely influenced renewable energy generation in Denmark 412 

and the effect of these two measures was also similar in magnitude. However, the impact of the 413 

COVID-19 pandemic, proxied by the daily confirmed death,   varied across two regimes, with 414 

having a higher effect in the high volatility period.  415 

4.2 Policy Suggestions 416 

 Our findings are informative for energy policy during crisis events such as the COVID-19 417 

pandemic and also during the post-crisis period. Regulations of economic activities amidst a 418 

disruption such as a pandemic require some flexibility. For example, issuing palliatives or forming 419 
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a support bubble by the central government may improve the performance of vital supply chain 420 

initiatives needed for generating renewable energy. Also, there is no limit to the disturbances that 421 

creating economic support initiatives and workable models of compensation will cause to the 422 

energy sector in Denmark. Given that the energy sector is affected by the number of deaths and 423 

uncertainty during the pandemic, there is a need to move power guidelines towards a model that 424 

will advance productivity, decarbonization, as well as investment platforms that assume flexible 425 

returns.  426 

Denmark's goal is to meet its 50% energy demand from renewable by 2030 and to become 427 

independent of fossil fuel by 2050. But as our analysis has shown, renewable energy is severely 428 

affected by the shocks arising from the pandemic. Therefore, while designing the policy 429 

frameworks for the post-COVID-19 period, several different measures need to be implemented by 430 

the government as delays and supply chain disruption in the renewable sector has occurred. 431 

Renewable technology adoption can resolve the post-COVID dilemma moments for Denmark. 432 

This requires strategic actions as the country continues to transition itself to the sources of clean 433 

energy in the post-COVID world. Investors are currently acting unstable due to the uncertainty 434 

associated with the renewable industry. The world’s largest turbine manufacturer, Vestas, has 435 

already cut jobs owing to the financial pressure in Denmark. Therefore, the financial risks 436 

associated with renewables must be reduced so that investors do not shift away from renewable 437 

[54]. More support in the form of production and investment tax credit must be provided for clean 438 

energy investors.  439 

 440 

           The electricity sector of Denmark is highly reliant on wind farms, making it vulnerable to 441 

extreme events such as the pandemic. The country has to rely on its neighbouring countries to 442 

balance its renewable. For example, it has to import hydropower as the country is flat and has little 443 

opportunity of generating hydroelectricity itself.  Furthermore, global accidents revolving around 444 

nuclear power plants have given rise to some prejudices regarding the development of nuclear 445 

energy in people's subconscious, including Denmark, where nuclear is banned since 1985. Yet, in 446 

terms of ensuring the environmental balance, nuclear power plants are considered to be one of the 447 

most reliable power source [55,56]  Therefore, the incentives to boost the nuclear production in 448 

Denmark must come from the government as it will require changes in the perception of Danish 449 

people regarding nuclear power. . Also, instead of relying on neighbouring countries, the country 450 
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can also target demand response, which decreases consumption to balance as has been noted by 451 

Martinot [57].  452 

            Compared to other countries, 'Denmark's transition to wind power from oil imported nation 453 

was done in a short period. Although this is laudable, there are concerns about whether generating 454 

electricity from new technology is higher than that of the old one. For Denmark, this seems to be 455 

very true. Different measures such as alignment of transmission, distribution, and competitive 456 

auctions should be implemented to reduce the cost of electricity, especially that of wind and solar. 457 

The high rates of energy taxation have also encouraged Danish consumers to switch towards their 458 

electricity generation, and this is a blow to the government as it is not cost-saving socio-459 

economically. In this regard, a further decrease in heating taxation can be recommended. The 460 

country should also evaluate the solar heating policies with regards to a further extension of 461 

seasonal thermal storage. Furthermore, a more flexible district heating system should be 462 

encouraged, and tax levels should be adjusted to efficiently align the electricity and heating system. 463 

 464 

 4.3 Study Limitations and Future research scopes 465 

           Our study investigates how renewable generation can be affected by the COVID-19 466 

pandemic. As such, we used three measures of the pandemic to assess their effects on the 467 

renewable sector. However, renewable electricity generation in Denmark is extremely affected by 468 

policy changes. Apart from the policy changes in terms of lockdown and economic support, our 469 

study could not incorporate any other benchmark policy variables. This is mainly because daily 470 

data for such policy variables are not yet available.  It is possible to incorporate them in future 471 

studies when they become available for the COVID period of 2020. Also, Denmark has two price 472 

areas and the effect of the pandemic can vary across these two areas. Future studies may also 473 

explore impacts on these two price areas depending on the data availability.  474 
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