1812.10793v3 [cs.LG] 1 May 2021

arXiv

Noname manuscript No.
(will be inserted by the editor)

Automated Adaptation Strategies for Stream Learning

Rashid Bakirov - Damien Fay -
Bogdan Gabrys

the date of receipt and acceptance should be inserted later

Abstract Automation of machine learning model development is increasingly be-
coming an established research area. While automated model selection and auto-
mated data pre-processing have been studied in depth, there is, however, a gap
concerning automated model adaptation strategies when multiple strategies are
available. Manually developing an adaptation strategy can be time consuming
and costly. In this paper we address this issue by proposing the use of flexible
adaptive mechanism deployment for automated development of adaptation strate-
gies. Experimental results after using the proposed strategies with five adaptive
algorithms on 36 datasets confirm their viability. These strategies achieve better
or comparable performance to the custom adaptation strategies and the repeated
deployment of any single adaptive mechanism.

Keywords Adaptive machine learning - Streaming data - Non-stationary data -
Concept drift - Automated machine learning

1 Introduction

Automated model selection has long been studied (Wasserman)| [2000) and recently,
notable advances in practical automated machine learning (AutoML) approaches
(Hutter et al., [2011} [Lloyd et al| 2014} [Kotthoff et all [2017; Mohr et al., 2018}
[Martin Salvador et al., 2019; |Olson and Moore, [2019; [Kedziora et al. [2020) have
been made. In addition, automated data pre-processing in the context of complex
machine learning pipelines generation and validation has also been a topic of recent
interest (Feurer et al. 2015; Martin Salvador et al. [2019} [Nguyen et al.l [2020]).
There is however a gap concerning automated development of models’ adaptation

R. Bakirov
Department of Computing and Informatics, Bournemouth University, Poole, UK. E-mail:
rbakirov@bournemouth.ac.uk

D. Fay
INFOR/Logicblox, Atlanta, Georgia, US

B. Gabrys
Advanced Analytics Institute, University of Technology Sydney, Australia.

2 Rashid Bakirov et al.

strategy, which is addressed in this paper. Here we define adaptation as changes in
model training set, parameters and structure, all designed to track changes in the
underlying data generating process over time. This contrasts with model selection
which focuses on parameter estimation and the family to sample the model from.

With the current advances in data storage, database and data transmission
technologies, learning on streaming data has become a critical part of many pro-
cesses. Many models which are used to make predictions on streaming data are
static, in the sense that they do not learn on current data and hence remain un-
changed. However, there exists a class of models, stream learning models, which
are capable of adding observations from the data stream to their training sets. In
spite of the fact that these models utilise the data as it arrives, there can still arise
situations where the underlying assumptions of the model no longer hold. We call
such settings dynamic environments, where changes in data distribution (Zliobaite,
2011)), change in features’ relevance (Fern and Givan, 2000, non-symmetrical noise
levels (Schmidt and Lipson) 2007)) are common. These phenomena are sometimes
called concept drift. It has been shown that many changes in the environment
which are no longer being reflected in the model contribute to the deterioration
of model’s accuracy over time (Schlimmer and Granger, |1986; [Street and Kim)|
2001} |[Klinkenberg, 2004} |[Kolter and Maloof, |2007)). This requires constant manual
retraining and readjustment of the models which is often expensive, time consum-
ing and in some cases impossible - for example when the historical data is not
available any more. Various approaches have been proposed to tackle this issue by
making the model adapt itself to the possible changes in environment while avoid-
ing its complete retraining. These approaches however are manually designed and
the application of automated machine learning to streaming data is scarce, which
is the gap we aim to contribute to.

Typically there are several possible ways or adaptive mechanisms (AMs) to
adapt a given model. A single iteration of adaptation is achieved by deploying one
of multiple AMs (including trivial ”doing nothing”), which changes the state of the
existing model. Thus, during the model’s operation, it is adapted by the sequential
deployment of various AMs with the arrival of new data. We call the order of this
deployment an adaptation strategy (AS). While in most of the existing research
these adaptation strategies are custom (i.e. algorithm-specific) and are fixed at
the design stage of the algorithm, a sequential adaptation framework proposed
in our earlier work (Bakirov et al., 2015 enables flexible adaptation strategies
without a prescribed AM deployment order. These flexible adaptation strategies,
automatically developed according to this framework can be applied to any set of
adaptive mechanisms for various machine learning algorithms. This removes the
need to design custom adaptive strategies, resulting in automation of adaptation
process. In this work we empirically show the viability of the automated adaptation
strategies based on cross-validation (Bakirov et al., |2015) with the optional use of
retrospective model correction (Bakirov et al., |2016)).

We focus on the batch prediction scenario, where data arrives in large segments
called batches. This is a common industrial scenario, especially in the chemical, mi-
croelectronics and pharmaceutical areas (Cinar et al., [2003). For the experiments
we use Simple Adaptive Batch Learning Ensemble (SABLE) (Bakirov et al.,|2015)
and batch versions of four popular stream learning algorithms - the Dynamic
Weighted Majority (DWM) (Kolter and Maloof, 2007)), the Paired Learner (PL)
(Bach and Maloof, 2010), the Leveraged Bagging (LB) (Bifet et al., 2010b)) and

Automated Adaptation Strategies for Stream Learning 3

BLAST (van Rijn et al., [2015). The use of these five algorithms allows to explore
different types of online learning methods; local experts ensemble for regression
in SABLE, global experts ensemble for classification in DWM and LB, switching
between the two models in PL and the heterogeneous global ensemble in BLAST.

After a large-scale experimentation with 5 regression and 31 classification
datasets, the main finding of this work is that in our settings, the proposed auto-
mated adaptive strategies show comparable accuracy rates to the custom adaptive
strategies and, in many cases, to the repeated deployment of a single “best” AM.
Thus, they are feasible to use for adaptation purposes, while saving time and effort
spent on designing custom strategies.

The paper follows by presenting the related work on automated machine learn-
ing and adaptive mechanisms in Section[2] Section[3] presents mathematical formu-
lation of the framework of adaptation with multiple adaptive mechanisms in batch
streaming scenario. Section [4] introduces algorithms used for the experimentation,
including their inherent adaptive mechanisms and custom adaptation strategies.
Experimental methodology, the datasets on which experiments were performed
and results are given in Section [f] We give our final remarks in Section [6}

2 Related Work

This section provides a background for our research. We start with a review of
relevant automated machine learning approaches, particularly those which consider
streaming data scenario. We follow up with a broad analysis of ML literature from
the adaptive mechanisms point of view, where we introduce a simple hierarchy
of adaptation. We then discuss how multiple adaptive mechanisms paradigm has
been used for automating the design of predictive algorithms.

2.1 Automated machine learning for streaming data

Automated machine learning is an active research area. So far however, it has been
mostly applied to static datasets, and there are not many works which consider
automation for streaming scenario. Among these, different approaches exist. One
of the works, before the most recent wave of AutoML research, can be found
in (Kadlec and Gabrys, 2009) where a general purpose architecture to develop
robust, adaptive prediction systems for the autonomous operation in changing
environments for streaming data has been proposed. Various instantiations of this
architecture followed focusing on challenging problems from the process industry
when building adaptive, predictive soft sensors (Kadlec and Gabrys, 2010}, 2011}
Bakirov et al., 2017).

Taking advantage of the recent wave of research in AutoML, an alternative
approach to adaptation to changing environments was proposed in (Martin Sal-
vador et al., [2016) where repeated automated deployment of Auto-WEKA for
Multi-Component Predictive Systems (MCPS) to learn from new batches of data
was used for life-long learning and the adaptation of complex MCPS when applied
to changing streaming data from process industries. |Celik and Vanschoren| (2020))
represent a development of this idea with the inclusion of the drift detection and

4 Rashid Bakirov et al.

the experimentation using several open source AutoML frameworks. An interest-
ing approach closely tied with the Auto_Sklearn is described in (Madrid et al.|
2019). Authors propose using the ensemble nature of this framework to deal with
streaming data, by adapting the weights of experts and adding new ones.

Some of the other recently proposed relevant methods are primarily focused
on hyper-parameter optimisation problems. For example, [Veloso et al.|(2018) pro-
pose hyper-parameter optimization for streaming regression problems using the
Nelder-Mead algorithm. In their experiments they optimise the hyper-parameters
of one specific regression method. |Carnein et al.| (2020)) are focusing on the hyper-
parameter selection for clustering of data in a streaming environment. They pro-
pose utilising a dynamic ensemble of different hyper-parameter configurations.

Despite the existing research, as acknowledged and discussed in a recent com-
prehensive and synthesising review of concepts in AutoML research and beyond
(Kedziora et al.;,|2020), the pursuit of autonomy, described as the AutoML system’s
capability to independently adapt the ML solution over a lifetime of operation in
changing environments, remains a lofty goal.

2.2 Adaptive mechanisms

Adapting machine learning models is an essential strategy for automatically deal-
ing with changes in an underlying data distribution to avoid training a new model
manually. Modern machine learning methods typically contain a complex set of
elements allowing many possible AMs. This can increase the flexibility of such
methods and broaden their applicability to various settings. However, the exis-
tence of multiple AMs also increases the decision space with regards to the adap-
tation choices and parameters, ultimately increasing the complexity of adaptation
strategy. A possible hierarchyﬂ of AMs is presented in Figure

In a streaming data setting, to increase the accuracy, it can be beneficial to
include recent data in the training set of the predictive models. On the other hand
however, retraining a model from scratch is often inefficient, particularly dealing
with high throughput scenarios or even impossible when the historical data is no
longer available. For these cases, the solution is updating the model using only the
available recent data. This can be done inherently by some general purpose ML
algorithms, e.g. Naive Bayes or using stream/online algorithms, e.g. online Least
Squares Estimation (Jang et al., [1997)), online boosting and bagging (Oza and
Russell, 2001)) etc. Additionally, for non-stationary data, it becomes important to
not only select a training set of sufficient size but also one which is relevant to the
current data. This is often achieved by a moving window (Widmer and Kubat),
1996; [Klinkenberg, [2004; |Zliobaite and Kuncheva, [2010) or decay approaches(Joe
Qin, [1998; [Klinkenberg and Joachims 2000)).

The structure of a predictive model is a graph with the set of its components
and the connections therein. Some common examples are hierarchical models (e.g.
decision trees) or more complex graphs (e.g. Bayesian or neural networks). Here,
the structure is not necessarily limited to the topological context — number of
rules in rule based systems or number of experts in an ensemble could be consid-
ered part of the model’s structure. Adaptation can be achieved by updating this

1 Here, the hierarchy is meant in a sense that the application of an adaptive mechanism of
the higher level, requires the application of the adaptive mechanism of lower level.

Automated Adaptation Strategies for Stream Learning 5

New data
arrives

Update of

training set

——

Update of
structure

———

Update of
parameters

Updated
model

Fig. 1: General adaptation scheme 1, 2017).

structure, for example in decision and model trees (Domingos and Hulten, [2000;
Hulten et al., 2001} Tkonomovska et al., 2010), neuro-fuzzy approaches (Gabrys and
Bargiela), 1999; |Gabrys, 2004} [Sahel et al., [2007), neural networks
1991; |Vakil-Baghmisheh and Pavesic, 2003; Ba and Freyl, |2013]), Bayesian networks
(Friedman and Goldszmidt,, [1997; |Alcobé, 2004; |Castillo and Gamal, [2006) and en-
semble methods (Stanley} 2002; \Gabrys and Rutal, 2006; Kolter and Maloof, |2007;

Hazan and Seshadhri, |2009; [Lemke et al.| 2009; Ruta et al) |2011; |Gomes Soares|
and Araijo, 2015} [Bakirov et all, [2017).

The final layer of adaptation is changing the models’ parameters, e.g. experts’
combination weights in ensemble methods. These weights are often recalculated or
updated throughout a models’ runtime (Littlestone and Warmuth| {1994} Kolter
and Maloof], 2007} [EIwell and Polikar] [2011} [Kadlec and Gabrys| 2011} Bakirov
et al.l7 . Another group of techniques belonging to this family are methods
using meta-learning for model adaptation (Nguyen et al., 2012; Rossi et al.| 2014;
[van Rijn et al., 2015; Lemke and Gabrys|, 2010). These methods generally include
training a meta-model using meta-features. The meta-model is then used to select
one or more predictors to calculate the final prediction. The change of the meta-
model can then be seen as the change in parameters of the predictive model.

In this work we consider the possibility of using multiple different adaptive
mechanisms, most often at different levels of the hierarchy. Many modern machine
learning algorithms for streaming data explicitly include this possibility. A promi-
nent example are the adaptive ensemble methods (Wang et al., 2003; [Kolter and|
[Maloofl, [2007; [Scholz and Klinkenberg), 2007 [Bifet et al., [2009; [Kadlec and Gabrys),
2010} [Elwell and Polikar], Alippi et all, [2012} [Souza and Aratjo, [2014} [Gomes|
Soares and Araijo, 2015} [Bakirov et al., 2017) which often feature AMs from all
three levels of hierarchy - online update of experts, changing experts’ combination
weights and modification of experts’ set. Machine learning methods with multiple

6 Rashid Bakirov et al.

AMs are not limited to ensembles, but can also include Bayesian networks (Castillo
and Gamal 2006)), decision trees (Hulten et al. |2001)), model trees (Ikonomovska
et al., |2010), champion-challenger schemes (Bach and Maloof, [2010)) etc.

2.3 Automating design of algorithms with multiple AMs

Existence of multiple AMs raises questions w.r.t. how they should be deployed.
This includes defining the order of deployment and adaptation parameters (e.g.
decay factors, expert weight decrease factors, etc.). It should be noted that all
of the aforementioned algorithms use custom adaptive strategies, meaning that
they deploy AMs in a manner specific to each of them. It follows that designing
adaptive machine learning methods is a complex enterprise and is an obstacle to
the automation of machine learning model’s design. |Kadlec and Gabrys| (2009)
present a plug and play architecture for pre-processing, adaptation and prediction
which foresees the possibility of using different adaptation methods in a modular
fashion, but does not address the method of AM selection. Bakirov et al.| (2015]
2016)) have presented several such methods for AM selection for their adaptive al-
gorithm, which are discussed in detail in Section 3.2} These methods can be seen as
automated adaptive strategies, which are applicable to all adaptive machine learn-
ing methods with multiple AMs. This allows simply using the described strategies
for model adaptation, once having defined the available AMs.

3 Formulation

As adaptation mechanisms can affect several elements of a model and can depend
on performance several time steps back, it is necessary to clarify the concepts
via a framework to avoid confusion. We assume that the data is generated by an
unknown time varying data generating process which can be formulated as:

yr = Y(xr,7) + €7, (1)

where 1 is the unknown function, e, a noise term, = € R is an input data
instance, and yr is the observed output at time 7. Then we consider the predictive
method at a time 7 as a function:

ir = fr(2r,0y), (2)

where g- is the prediction, fr is an approximation (i.e. the model) of ¢ (z,7), and
Oy is the associated parameter set. Our estimate, fr, evolves via adaptation as
each batch of data arrives as is now explained.

3.1 Adaptation

In the batch streaming scenario considered in this paper, data arrives in batches
with 7 € {7 - - 741 — 1}, where 75, is the start time of the k-th batch. If nj is the
size of the k-th batch, 7,41 = 7, +ny. It then becomes more convenient to index the
model by the batch number k, denoting the inputs as X, = ®-,,--- ,®r,_,,-1 and

Automated Adaptation Strategies for Stream Learning 7

—
h 4 = X v A fk
X L"Z ti Correction [
- Pr‘ediafk_. redict wnl l
y Yi
X Yie Adaptation
L.k "
> f; X
k p Adaptation f+
& . 3
Y.k e .
Y il

(a) (b)

Fig. 2: (a) Adaptation scheme. (b) Adaptation scheme with retrospective correc-

tion. Here 1 < I < k and f;; represents the result of retrospective correction.
Depending on the algorithm, inputs can be optional.

the outputs as y, = yr,, - , Y, —1. We examine the case where the prediction
function fj is static within a k-th batchE]

We denote the a priori predictive function at batch k as f,~, and the a posteriori
predictive function, i.e. the adapted function given the observed output, as f,j .
An adaptive mechanism, g(-), may thus formally be defined as an operator which
generates an updated prediction function based on the batch Vi = {X,y;} and
other optional inputs. This can be written as:

96X 1, Yr Oy fr U)o — fil - (3)

or alternatively as f,:' = f, o gx for conciseness. Note f,~ and g, are optional
arguments and Oy is the set of parameters of g. The function is propagated into
the next batch as f = f,j and predictions themselves are always made using
the a priori function f, .

We examine a situation when a choice of multiple, different AMs,
{0,91,....,9u} = G, is available. Any AM g, C G can be deployed on each batch,
where hj denotes the AM deployed at batch k. As the history of all adaptations
up to the current batch, k, have in essence created f, , we call that sequence
Ghy» - 9hy, AN adaptation sequence. Note that we also include the option of applying
no adaptation denoted by 0. In this formulation, only one element of G is applied
for each batch of data. Deploying multiple adaptation mechanisms on the same
batch are accounted for with their own symbol in G. Figure illustrates our
initial formulation of adaptation.

3.2 Automated adaptation strategies

In this section we present different generic automated adaptive strategies offering
flexible deployment of AMs, which can be applied to any adaptive algorithm.

2 A batch typically represents a meaningful real-world segmentation of the data, for example
a plant run and so our adaptation attempts to track run to run changes in the process.

8 Rashid Bakirov et al.

+ + fl;

>
fe

(a) Single (b) Multiple

Xie [|V

g-fold cross-validation

1 Xy—a| | Y1 Xpe| 1 Y&
Test €+><
i —P{ 1 fl; Test —
H —

—J = E1 &
—> i i
g-fold cross-validation

+ —
fe fima -
gu Tay B Test f—
>t €ny
Test

uwie

g M

(d) Retrospective correction

(¢) XVSELECT

Fig. 3: Automated adaptation strategies.

At every batch k, an AM g;,, must be chosen to deploy on the current batch of
data. To obtain a benchmark performance, an adaptation strategy which minimizes
the error over the incoming data batch X1, ypy1:

fop1 = fr 09, e = argmin((fy 0 gn,) (Xps1), Ypi1) (4)
hx€l---H
where () denotes the chosen error measure, can be used. Since X 41,ygy; are
not yet obtained, this strategy is not applicable in practice. Also note that this
may not be the overall optimal strategy which minimizes the error over the whole
dataset. We refer to this strategy as ORACLE.

Given the inability to conduct the ORACLE strategy, below we list some alter-
natives. The simplest adaptation strategy is applying the same AM to every batch.
The scheme of this strategy is given in Figure Note that this scheme fits the
“Adaptation” box in Figure A more common practice (see Section [2)) is apply-
ing multiple or all available adaptive mechanisms. The scheme of this strategy is
given in Figure 3b| which again fits the “Adaptation” box in Figure

As introduced in (Bakirov et all 2015), it is also possible to use V}, for the
choice of g, . Given observations, the a posteriori prediction error V is <(fk_ o
9n,,)(X 1), yy) - However, this is effectively an in-sample error as gy, is a function of
{Xk,y k}EI To obtain a generalised estimate of the prediction error we apply q—folcﬁ

3 As a solid example consider the case where f,j is f,, retrained using {Xg,y}. In this
case y;, are part of the training set and so we risk overfitting the model if we also evaluate the
goodness of fit on y;,.

4 In subsequent experiments, ¢ = 10

Automated Adaptation Strategies for Stream Learning 9

cross validation. The cross-validatory adaptation strategy (denoted as XVSELECT)
uses a subset (fold), S, of {Xy,y,} to adapt; i.e. f;f = fi o gn, ({ Xk, yptes) and
the remainder, &, is used to evaluate, i.e. find <ij (Xk)g,g“ Yy). This is repeated

q times resulting in ¢ different error values and the AM, gy, c G, with the lowest
average error measure is chosen. If more than one AM has the same lowest average
error, a selection among them is made randomly or utilising prior knowledge. In
summary:

fra1 =i ©9hes i = argmin ((f o gn,) (Xk), yp) ™ (5)
thI---H

where ()* denotes the cross validated error. The scheme of XVSelect for is given
in Figure

The next strategy can be used in combination with any of the above strategies
as it focuses on the history of the adaptation sequence and retrospectively adapts
two steps back. This is called the retrospective model correction (Bakirov et al.|
2016)). Specifically, we set the current model to the output of the AM at batch
k — 1 which would have produced the best estimate in block k:

Jog1 = o 1°G9h,_1 ©9nys he—1 = argmin ((f_; o gn,) (Xk),yr) (6)
hip—1€1---H

The potential draws can be again resolved randomly or using prior knowledgeﬂ
Using the cross-validated error measure in Equation [f] is not necessary, because
Gh,,_, is independent of y,.. Also note the presence of gy, ; retrospective correction
does not in itself produce a f; 1 and so cannot be used for prediction unless it is
combined with another strategy (gp,). This strategy can be extended to consider
the sequence of r AMs while choosing the optimal state for the current batch,
which we call r-step retrospective correction:

for1 = for©Gh_. © 9 Gh_y © Ghys {Pk—r i1} =

= argmin ((fr_, 90n,_, 0 gn_,)(Xk)yr) (7)
hp—php_1€1--H

The scheme for retrospective correction is given in Figure[3d] Since the retrospec-
tive correction can be deployed alongside any adaptation scheme, we modify the
general adaptation scheme (Figure accordingly, resulting in Figure where
Figure fits in the box “Correction”. Notice that when using this approach, the
prediction function fi(z), which is used to generate predictions, can be different

from the propagation function f,;(x) which is used as input for adaptation.
An important technical detail for both cross-validatory selection and retrospec-
tive correction is the resolution of draws, when two or more AMs show the same
predictive performance. The draws appear frequently for classification scenarios

5 This draw resolution aspect can have a noticeable effect on the results, particularly on
smaller batch sizes, where draws are more likely. For our experiments, we resolve them by
having a fixed preference list of AMs, based on prior knowledge and intuition, a common
situation in algorithm design. This also removes the randomness element and ensures the
reproducibility of the results.

10 Rashid Bakirov et al.

with lower batch sizes. In these cases, a prior knowledge on AMs’ predictive per-
formance can be used to make a selectiorﬁ. If no such knowledge exists, a random
AM, or the AM which minimises the runtime can be chosen.

We next examine the prediction algorithms with respective adaptive mecha-
nisms (the set G) used in this research.

4 Algorithms

For our experiments we have chosen the following algorithms:

Simple Adaptive Batch Local Ensemble (SABLE) (Bakirov et al., 2015]),
— Dynamic Weighted Majority (DWM) (Kolter and Maloof, [2007)),

— Paired Learner (PL) (Bach and Maloof} 2010J),

— Leveraged Bagging (LB) (Bifet et al.l |2010b),

— BLAST (van Rijn et al. 2015)).

SABLE is used to address regression problem while the other algorithms ad-
dress the classification problem. We have developed batch versions of these clas-
sification algorithms, which are used in experiments. Our selection of algorithms
allows to explore different types of online learning methods and different adaptive
mechanisms, and demonstrate that the adaptive strategies described in this paper
are in fact generic and can be applied to various adaptive algorithms with multiple
AMs. Below the details of model adaptation with each algorithm are presented.

4.1 Simple Adaptive Batch Local Ensemble (SABLE) adaptation

SABLE (Bakirov et al.L [2015)) uses an ensemble of experts each implemented using
a linear model formed through Recursive Partial Least Squares (RPLS) (Joe Qin,
1998)). To get the final prediction, the predictions of base learners are combined us-
ing input/output space dependent weights (i.e. local learning), which are reflected
in the descriptor of each expert. SABLE is designed for batch streaming scenario.
It supports the creation and merger of base learners.

The SABLE algorithm allows the use of five different adaptive mechanisms
(including the possibility of no adaptation). AMs are deployed as soon as the
true values for the batch are available and before predicting on the next batch.
The SABLE AMs are described belowm It should be noted, that as SABLE was
conceived as an experimentation vehicle for AM sequences effects exploration, it
does not provide a default custom adaptation strategy.

— SAMO (No adaptation). No changes are applied to the predictive model, cor-
responding to (.

— SAM1 (Batch learning). The simplest AM augments existing data with the
data from the new batch and retrains the model. Given predictions of each
expert f; € F on V, {gy,...,yr} and measurements of the actual values, y, V
is partitioned into subsets in the following fashion:

z= a?"eglmiln<fz‘(wj)»yj> = [zj,y;] €V (8)

This option is used in our experiments.
7 See (Bakirov et al., [2017) for a full description.

Automated Adaptation Strategies for Stream Learning 11

for every instance [x;,y;] € V. This creates subsets V;,i =1...] such that
Ulevi = V. Then each expert is updated using the respective dataset V;.
This process updates experts only with the instances where they achieve the
most accurate predictions, thus encouraging the specialisation of experts and
ensuring that a single data instance is not used in the training data of multiple
experts.

— SAM2 (Batch learning with forgetting). This AM is similar to one above but
uses decay which reduces the weight of the experts historical training data,
making the most recent data more important. It is realised via RPLS update
with forgetting factor A. A is a hyper-parameter of SABLE.

— SAMS3 (Descriptors update / weights change). This AM recalculates the local
descriptors using the new batch. This amounts to the change of weights of the
experts.

— SAM4 (Creation of new experts). New expert snew is created from V. Then it
is checked whether the newly created expert is similar to any existing experts,
in which case the older expert is removed and their descriptors are merged.
Finally the descriptors of all resulting experts are updated.

— SAMS5. SAM2 (Batch learning with forgetting) followed by SAM4 (Creation
of New Experts).

4.2 Batch Dynamic Weighted Majority (bDWM) adaptation

bDWM is an extension of DWM (Kolter and Maloof}, [2007)) designed to operate on
batches of data instead of on single instances as in the original algorithm. bDWM
is a global experts ensemble. Assume a set of I experts S = {s;,...,sy} which
produce predictions § = {91, ..., 57} where g; = s;(x) with input x and a set of all
possible labels C' = {c1,...,cs}. Thenforalli=1.--7T and j =1---J the matrix A
with following elements can be calculated:

aij = { 1 if S; (:c) =Cj (9)

0 otherwise

Assuming weights vector w = {w1,...,ws} for respective predictors in S, the sum
I

of the weights of predictors which voted for label ¢; is z; = 3 w;a; ;. The final
i=1

prediction isEL
§ = argmax(z;). (10)
cj
An adaptive model based on bDWM starts with a single expert and can be
adapted using an arbitrary sequence of 8 possible AMs (including no adaptation)
given below.

— DAMO (No adaptation). No changes are applied to the predictive model, cor-
responding to 0.

— DAM1 (Batch learning). After the arrival of the batch V; at time ¢ each expert
is updated with it.

8 This definition is adapted from (Kuncheval, [2004).

12 Rashid Bakirov et al.

— DAM2 (Weights update and experts pruning). Weights of experts are updated
using following rule:

witt = w} e (11)

where wf is the weight of the i-th expert at time ¢, and uf is its accuracy on the
batch V;. The weights of all experts in ensemble are then normalized and the
experts with a weight less than a defined threshold 7 are removed. It should
be noted that the choice of factor e% is inspired by Herbster and Warmuth
(1998]), although due to different algorithm settings, the theory developed there
is not readily applicable to our scenario. Weights update is different to the
original DWM, which uses an arbitrary factor 8 < 1 to decrease the weights of
misclassifying experts.

— DAMBS3 (Creation of a new expert). New expert is created from the batch V;
and is given a weight of 1.

— DAM4. DAM2 (Weights update and experts pruning) followed by DAM1
(Batch learning).

— DAMS5. DAM1 (Batch learning) followed by DAM3 (Creation of a new expert).

— DAMS6. DAM2 (Weights Update and Experts Pruning) followed by DAMS3
(Creation of a new expert).

— DAMY7. DAM2 (Weights update and experts pruning) followed by DAM1
(Batch learning) followed by DAM3 (Creation of a new expert).

bDWM (custom adaptive strategyﬂ). Having presented the separate adap-
tive mechanisms, we now describe the bDWM, a batch version of the original
DWM. It starts with a single expert with a weight of one. At time ¢, after an
arrival of new batch V¢, experts makes predictions and overall prediction is cal-
culated as shown earlier in this section. After the arrival of true labels all experts
learn on the batch V; (invoking DAM1), update their weights (DAM2) and en-
semble’s accuracy wuy is calculated. If us accuracy is less than the accuracy of the
naive majority classifier (based on all the batches of data seen up to this point) on
the last batch, a new expert is created (DAM3). The schematics of this strategy
is shown in Figure h. This scheme fits in “Adaptation” boxes in Figures 2] and

2l

4.3 Batch Paired Learner (bPL) adaptation

bPL is an extension of PL (Bach and Maloof, |2010)) designed to operate on batches
of data instead of on single instances as in the original algorithm. bPL maintains
two learners - a stable learner which is updated with all of incoming data and
which is used to make predictions, and a reactive learner, which is trained only
on the two most recent batches. For this method, three adaptive mechanisms are
available, which are described below.

— PAMO (No adaptation). No changes are applied to the predictive model, cor-
responding to 0.

9 To reiterate, we refer to the specific way the AMs are used in original algorithms as “custom
adaptive strategy”. As the custom adaptive strategy actually defines the algorithm, we will
use this term with the name of algorithm (i.e. bDWM) interchangeably.

Automated Adaptation Strategies for Stream Learning 13

At time t=1, Initialize the ensemble with an expert
trained from the first batch, give it weight 1.

At time t=1, train stable and reactive learner with
the first batch. Set change counter to 0.

v

Increment t.

v

Receive next batch input data X, at time t and
calculate predictions .

v

v

— Increment t.

v

Receive next batch input data X, at time t and
calculate predictions ¥,.

!

Receive batch correct labels Y;.

v

Update experts” weights according to Eq. 11. Prune
experts with weight less than n. (DAM2)

Update all experts with (X, ¥;). (DAM1)

Accuracy of Y, is greater
or equals to accuracy of
naive majority classifier.

Yes

Create a new expert from (X,, ¥;), add it to the
ensemble with a weight of 1. (DAM3)

| Normalize the weights.

|<_

(a) PbDWM

Receive batch correct labels Y;.

Accuracy of reactive
learner is higher that
the accuracy of stable
learner.

Increment change counter.

Change counter is
greater than threshold
6.

Replace stable learner with reactive learner.
(PAM?2). Set change counter to 0.

Update stable learner with (X, ¥;). (PAM1) le—

v

Train a new reactive learner from
(X1 VX, Y UT)

(b) bPL

Fig. 4: bDWM and bPL custom adaptation strategies.

— PAM1 (Updating stable learner). After the arrival of the batch V; at time ¢,
stable learner is updated with it.
— PAM?2 (Switching to reactive learner). Current stable learner is discarded and

replaced by reactive learner.

bPL (custom adaptive strategy). Having presented the separate adaptive
mechanisms, we now describe the bPL, a batch version of the original PL. Its
adaptive strategy revolves around comparing the accuracy values of stable (ug)
and reactive (ufn) learners on each batch of data. Every time when u! < u! a
change counter is incremented. If the counter is higher than a defined threshold 6,
an existing stable learner is discarded and replaced by the reactive learner, while
the counter is set to 0. As before, a new reactive learner is trained from each
subsequent batch. The schematics of this strategy are shown in Figure dp. This
scheme fits in “Adaptation” boxes in Figures [2a] and

14 Rashid Bakirov et al.

4.4 Batch Leveraged Bagging (bLB) adaptation

bLB is an extension of LB (Bifet et al., [2010b) designed to operate on batches of
data instead of on single instances as in the original algorithm. Leveraged Bag-
ging is based on Online Bagging (Oza and Russell, [2001]) algorithm, but includes
the improvements such as the removal of experts and addition of new ones based
on ADWIN (Bifet and Gavalda) |2007)) change detector, randomization at the en-
semble output using output code etc. For this method, five adaptive mechanisms
(including no change) are available, which are described below.

— LAMO (No adaptation). No changes are applied to the predictive model, cor-
responding to 0.

— LAM1 (Batch learning). After the arrival of the batch V; at time ¢ each expert
is updated with it.

— LAM2 (Removing an existing expert and adding a new one). The expert with
the lowest accuracy on the previously seen data is removed, and a new one
trained from the most recent batch is added.

— LAMS3. LAM1 (Batch learning) followed by LAM2 (Removing an existing
expert and adding a new one).

bLB (custom adaptive strategy). Having presented the separate adaptive
mechanisms, we now describe the bLLB, a batch version of the original LB. Its
strategy invokes batch learning (LAM1) after the arrival of each batch of data. If
ADWIN change detector detects a change, the expert with the lowest accuracy on
the previously seen data is removed, and a new one trained from the most recent
batch is added (LAM?2). The schematics of this strategy is shown in Figure .
This scheme fits in “Adaptation” boxes in Figures [2a] and 25

4.5 Batch BLAST (bBLAST) adaptation

bBLAST is an extension of BLAST (van Rijn et al., |2015) designed to operate on
batches of data instead of on single instances as in the original algorithm. BLAST
is an ensemble method using different types of base learners (as opposed to the
ones mentioned above) with Online Performance Estimation for the weighting. For
this method, four adaptive mechanisms (including no change) are available, which
are described below.

— BAMO (No adaptation). No changes are applied to the predictive model, cor-
responding to .

— BAM1 (Batch learning). After the arrival of the batch V; at time ¢ each expert
is updated with it.

— BAM2 (Reweighing the experts). For every instance [z,y] € V: experts are
reweighed according to Online Performance Estimation.

bBLAST (custom adaptive strategy). Having presented the separate adap-
tive mechanisms, we now describe the bBLAST, a batch version of the original
BLAST. bBLAST invokes the combination of the BAM1 (Batch learning) followed
by BAM2 (Reweighing the experts) after the arrival of each batch of data. The
schematics of this strategy is shown in FigureBb. This scheme fits in “Adaptation”

boxes in Figures 2a] and

Automated Adaptation Strategies for Stream Learning 15

At time t=1, Initialize the ensemble with I experts
and compute coloring.

v

—> Increment t. [€

v

Receive next batch input data X, at time t and
calculate predictions Y. At time t=1, Initialize a heterogeneous ensemble.

Y 7

Receive batch correct labels Y;.

\]/ —> Increment t.
Update the models with all training examples in the \l(
batch using the weights sampled from Poisson Choose the active classifier according to Online

distribution. (LAM1)

Performance Estimation. (BAM2)

v

Receive next batch input data X, at time t and
calculate predictions ;.

v

Receive batch correct labels Y;.

Replace a model with a higher error with a new i
one created from (X,, ;). (LAM2) — Update all experts with (X;, ¥;). (BAM1)

ADWIN change detector
detects an error change
in some classifiers.

(a) bLB (b) bBLAST

Fig. 5: bLB and bBLAST custom adaptation strategies.

5 Experimental results

In the following sub-sections we describe the empirical validation of the proposed
approaches. We start by describing the experimental methodology, including ex-
periment settings, specification of datasets, evaluation strategy, libraries and base
learners used. We then follow with the comparative analysis of regression and
classification results of the proposed and custom adaptive strategies.

5.1 Methodology

The purpose of the experimentﬂ in this section was to evaluate the usefulness of
the proposed strategies. For this purpose we have performed the empirical com-
parison of automated adaptation strategies proposed in with custom adaptive
strategies and with strategies involving repeated deployment of a single AM. The
goal of the automated adaptive strategies is to obtain performance comparable to
what one would obtain using a (usually protracted) manually optimised adaptive
strategy (including hyper-parameter selection). Therefore, if the proposed strategies
attain comparable, or not significantly worse accuracy levels than the custom strate-
gies, this shall be deemed a success. This section discusses the results in order of

10 All of the code except the SABLE algorithm, as well as all the datasets except Oxidizer
and Drier can be found on https://github.com/RashidBakirov/multiple-adaptive-mechanisms.
SABLE and the specified two datasets could not be shared because of confidentiality reasons.

16 Rashid Bakirov et al.

Table 1: Evaluated adaptive strategies

Result Description
BESTAM For all of the AMs (e.g. from DAMO to DAMY7 for the bDWM adapta-
tion) we repeatedly deploy the same AM on all of the batches. We then
select the best result among all of the runs. Note that this is a post-hoc
strategy used for benchmark purposes, as the AM delivering the best
result varies from dataset to dataset and is not known in advance.
BESTAM+4+RC The same as BESTAM while additionally using retrospective correction
after every batch. Note that the best AM here may be different to the
one from BESTAM.

XVSELECT Select AM (i.e. one of AMs from DAMO to DAMTY for the bDWM adap-
tation) based on the current data batch using the cross-validatory ap-
proach described in Section

XVSELECTH+RC The same as XVSELECT while additionally using retrospective correc-
tion after every batch.
CustoM Using custom adaptive strategy.
CustoM+RC The same as CusTOM while additionally using retrospective correction
after every batch.

introduced algorithms. For all of the algorithms we compare the MAE /accuracy
of strategies listed in Table

For SABLE, the experimentation uses five real world regression datasets listed
in Table in Appendix It has been shown, e.g. in (Bakirov et al.,2017; Martin
Salvador et al.| |2019) that these datasets present different levels of volatility and
noise. For the classification algorithms, we use five real world datasets listed in
Table [6] and 26 synthetic datasets listed in Table [7] and visualised in Figure [[3]in
Appendix [A]

For the real world datasets we use prequential evaluation (Dawid) [1984]) which
is a standard evaluation technique for data streams. For the batch scenario it works
as follows; at time ¢t we receive the data batch X, and predict the values/labels
9;. Then the true values/labels y, are made available, and we calculate the er-
ror/accuracy of our predictions. Subsequently {X¢,y,} are used for adaptation.
Thus, the predictions are always made on unseen data, which is not included in
the training data in any form. For synthetic datasets we generate an additional
100 test data instances for each single instance in training data using the same
distribution. The predictive accuracy on the batch is then measured on test data
relevant to that batch. This test data is not used for training or adapting models.

For the classification algorithms, the statistical significance of differences be-
tween the results is assessed using the Friedman test with post-hoc Nemenyi test,
which are widely used to compare multiple classifiers (Demsar}, |2006)). The Fried-
man test checks for statistical difference between the compared classifiers; if so,
the Nemenyi test is used to identify which classifiers are significantly better than
others. We report the results of the Nemenyi tests as Nemenyi plotﬂ They plot
the average rank of all methods and the critical difference per batch/base learner.
Classifiers that are statistically equivalent are connected by a line.

1 Freely available code from (DrawNemenyil [2019) and (Cardillo, 2009) were used to make
these plots.

Automated Adaptation Strategies for Stream Learning 17

For bDWM, bPL and bLB, Naive Bayes (NB) and Hoeffding Trees (HT)
(Domingos and Hulten| [2000) were used as base learners. Open source libraries
Prtools (Duin et al., 2007), Weka (Hall et al., |2009), MOA (Bifet et al., 2010a)
and scikit-multiflow (Montiel et al., 2018 were employed. As there is not any ran-
domness involved in the evaluation of datasets, a single run was used to compute
the MAE (for regression) and accuracy (for classification) values, except for bLB,
where 100 runs were used for each strategy.

5.2 Simple Adaptive Batch Local Ensemble (SABLE) results

Three different batch sizes for each dataset are examined in the simulations to-
gether using hyperparameters as tabulated in Table [§ in Appendix [A] These pa-
rameter combinations were empirically identified using grid search, optimising the
performance of the ORACLE strategy (Eq. .

The results of the experiments using SABLE for batch sizes n = 50,100, 200
are given in Table [2] These results suggest that most of the times XVSELECT and
XVSELECT+RC perform better or comparable to BESTAM and BESTAM+RC.
Overall XVSELECT or XVSELECT+RC had the lowest MAE with significant differ-
ence in 7 experiments out of 15. XVSELECT or XVSELECT+RC showed comparable
(not worse with significant difference) performance to BESTAM in 11 experiments.
The cases where XVSELECT and XVSELECT+RC perform noticeably worse are
Drier dataset with batch size of 100 and Sulfur dataset with all batch sizes. We
relate this to the stability of these datasets. Indeed, the BESTAM in all these
cases is the slow adapting sequence of SAM1, without any forgetting of the old
information. Difference in batch sizes is important for some datasets. This can
be related to the frequency of changes and whether they happen within a batch,
which can have a negative impact on XVSELECT and XVSELECT+RC. Retrospec-
tive correction (RC) has improved the performance of XVSELECT for some cases.
For the deployment of single AM, as seen in BESTAM and BESTAM+RC results,
RC is more useful for the larger batch sizes, presumably because more training
data prevents overfitting.

5.3 Batch Dynamic Weighted Majority (bDWM) results

The results of the Nemenyi test are shown in Figure m For four experiments out
of six, excluding NB base learner with batch sizes of 10 and 20, XVSELECT and
XVSELECT+RC are both ranked higher than the bDWM (CusToM strategy), in
some cases significantly so. For batch size 10 with NB as base learner, bDWM
performs better than both proposed approaches and for batch size 20, better
than XVSELECT+RC. The addition of retrospective correction does not seem to
bring obvious benefit to adaptive strategies; while improving the results in some
experiments, in most of the cases it decreases the accuracy. In terms of batch
sizes, increasing n seems to improve the performance of XVSELECT with NB base

12 The Wilcoxon signed-rank test assumes the null distribution is symmetric. This assumption
mostly holds for our data.

13 The full results tables with accuracy values of each approach on each dataset are accessible
from https://github.com/RashidBakirov/multiple-adaptive-mechanisms/tree/master/results.

18 Rashid Bakirov et al.

Table 2: SABLE results. The best performance in each row is indicated with bold
font. The AM which was found to deliver the best for performance for BESTAM
and BESTAM+RC is indicated in respective columns. Upwards arrow denotes the
cases when either XVSELECT or XVSELECT+RC performs better that BESTAM,
and downwards arrow denotes the opposite cases. Double lined arrows indicate a
significant difference according to Wilcoxon signed-rank test?] (Wilcoxon, |1945)

with p = 0.05.

n = 50
BESTAM BESTAM+4RC XVSELECT XVSELECT+RC
Catalyst ff 0.023 (SAM2) 0.028 (SAMS5) 0.021 0.023
Oxidiser 0.490 (SAM2) 0.501 (SAM4) 0.485 0.519
Drier 1 8.98x1076 (SAM1) 9.78x1076 (SAMO) 9.27x10=6 6.95x1076
Debutaniser | 0.117 (SAM1) 0.121 (SAM4) 0.122 0.122
Sulfur | 0.030 (SAM1) 0.051 (SAM3) 0.060 0.050
n = 100
BESTAM BESTAM4RC XVSELECT XVSELECT+RC
Catalyst ff 0.031 (SAM?2) 0.031 (SAM4) 0.030 0.029
Oxidiser | 0.542 (SAM4) 0.559 (SAM4) 0.569 0.566
Drier | 8.09x1076 (SAM1) 8.97x1076 (SAM1) 1.20x107° 1.12x107°
Debutaniser ff 0.117 (SAM1) 0.116 (SAM4) 0.145 0.112
Sulfur |} 0.031 (SAMI1) 0.058 (SAM2) 0.060 0.054
n = 200
BESTAM BESTAM4RC XVSELECT XVSELECT+RC
Catalyst 0.0495 (SAM4) 0.0519 (SAM5) 0.0492 0.0495
Oxidiser | 0.612 (SAM4) 0.611 (SAMS5) 0.631 0.676
Drier { 5.01x107% (SAM4) 5.01x107°% (SAM5) 4.67x107° 4.67x107°
Debutaniser 1 0.106 (SAM1) 0.105 (SAM4) 0.104 0.108
Sulfur |} 0.033 (SAM1) 0.039 (SAM1) 0.049 0.040

learner. In general, BESTAM provides the best results across all experiments, while
BeSTAM+RC performs slightly worse. It may be worth to reiterate that, for all of
the classification experiments, the BESTAM and BESTAM+RC repeatedly deploy
the single AM which delivers the best results specific for particular settings (dataset,
batch size, base learner). This AM is not known in advance, so this strategy is not
attainable in practice and is used for benchmark purposes.

5.4 Batch Paired Learner (bPL) results

For bPL and bPL+RC (CustoM and CusTOM+RC strategies) we have used the
threshold of 8§ = 1 for all the experiments. This value was chosen as it was ex-
perimentally established that the lower threshold values tend to provide better
results than the higher ones. At the same time, keeping 6 > 0 makes use of the
change counter mechanism, a characteristic feature of bPL (6 = 0 provided similar
results). We present the Nemenyi plots for both base learners on all three batch
sizes in Figure [7] Also for this algorithm, XVSELECT and XVSELECT+RC show
good performance and are ranked higher than the bPL for all batch sizes and base
learner combinations. For bPL adaptation, the BESTAM+RC performs well for all
of the settings, however the performance of BESTAM is poor for the low batch

Automated Adaptation Strategies for Stream Learning 19
Friedman p = 8.6009e-13 Friedman p = 9.327¢-06
co cD
1 2 3 4 5 6 1 2 3 4 5 6
J T | 4 | b | |
Best AM ; XVSelect BestAM J H \— bDWM+RC
bDWM XVSelectRC BestAM+RC bDWM
Best AM+RC bDWM+RC XVSelect XVSelect+RC
(a) Base learner: NB, n = 10 (b) Base learner: HT, n = 10
Friedman p = 2.67e-08 Friedman p = 1.0864e-10
CD CcD
1 2 3 4 5 6 1 2 3 4 5 6
Best AM J L—————— XVSelectRC BestAM —'7 — bDWM
Best AM+RC bDWM+RC BestAM+RC XVSelect+RC
XVSelect bDWM XVSelect bDWM+RC

(c) Base learner: NB, n = 20 (d) Base learner: HT, n = 20

Friedman p = 1.1781e-11

cD
1 2 3 4 5 6 CD
| | 1 2 3 4 5 6
Best AM ——— L howm } } } | } ‘ } }
XVselect XVSelectRC BestAM bDWM
Best AM+RC bDWM+RC BESAMERC bDWM+RC

XVSelect XVSelect+RC

(e) Base learner: NB, n = 50 (f) Base learner: HT, n = 50

Fig. 6: bDWM adaptation: Nemenyi plots (lower is better) of BESTAM,
BeEsTAM+RC, XVSeLEcT, XVSELECT+RC, CustoM (bDWM), Custom+RC
(bDWM+RC) strategies for different batch sizes n with NB and HT base learners.

sizes. Retrospective correction appears to be useful for bPL adaptation, providing
improvements for BESTAM and XVSELECT for most settings.

5.5 Batch Leveraged Bagging (bLB) results

bLB adaptation was implemented modifying the existing code from scikit-multiflow.
The default hyper-parameters were kept. We present the Nemenyi plots of the av-
erage accuracy values of 100 runs for each adaptive strategy for both base learners
on all three batch sizes in Figure[§] The performance of the proposed XVSELECT is
consistently better than the bLB (CusTouMm strategy) for all of the settings, mostly
significantly so. This is even more apparent for higher batch sizes. Behaviour of
RC in this case is noteworthy; XVSELECT4+RC performs consistently worse than
XVSELECT although still beats the bLLB in all of the settings bar one. On the other
hand, bLB with RC (CustoM+RC strategy) is always better than the bLB. It
is possible that for Leveraged Bagging, combining XVSELECT and RC makes the
adaptation overfit to the last batch, thus reducing the accuracy. For bLLB adapta-

20 Rashid Bakirov et al.

Friedman p = 8.4833e-08 Friedman p = 1.0641e-10
CD CD
(S S N B S S S S S S
= T
BestAM+RC 4 BestAM BestAM+RC BestAM
XVSelect+RC bPL+RC XVSelect+RC bPL
XVSelect bPL XVSelect bPL+RC
(a) Base learner: NB, n = 10 (b) Base learner: HT, n = 10
Friedman p = 6.4461e-08 Friedman p = 7.0736e-11
CD CD
G SN B S (S S DU S S
- ‘ o w ! : : ‘ . ‘ : :
BestAM+RC 4 \; bPL+RC BestAM+RC \; bPL+RC
XVSelect+RC ———— —— bPL XVSelect+RC bPL
XVSelect BestAM BestAM XVSelect
(c) Base learner: NB, n = 20 (d) Base learner: HT, n = 20
Friedman p =0 Friedmanp =0
CD CD
FA S R S S A SO SO B
t + t t 4 t I ‘ t t + t
BestAM+RC :'_] t;L bPL BestAM+RC 4 l_‘: bPL
BestAM bPL+RC BestAM bPL+RC
XVSelect XVSelect+RC ~ XVSelect XVSelect+RC
(e) Base learner: NB, n = 50 (f) Base learner: HT, n = 50

Fig. 7: bPL adaptation: Nemenyi plots (lower is better) of BEsTAM, BESTAM+RC,
XVSEeLECT, XVSELECT+RC, Custom (bPL), CusToM+RC (bPL+RC) strategies
for different batch sizes n with NB and HT base learners.

tion, the BESTAM outperforms the proposed approaches in most of the settings,
however there are no significant differences to the performance of XVSELECT.

5.6 Batch BLAST (bBLAST) results

bBLAST adaptation was implemented modifying the existing MOA code. In con-
trast to the algorithms in the previous sections, bBLAST uses not single but multi-
ple base learning algorithms; Hoeffding Tree, Naive Bayes, Perceptron, Stochastic
Gradient Descent, and k Nearest Neighbour. All of the parameters of the bBBLAST,
as well as those of base experts are kept at defaults of MOA. We present the Ne-
menyi plots of the average the accuracy values of the selected adaptive strategies
for all three batch sizes in Figure @ The performance of the bBLAST (Custom
strategy) is consistently better than the proposed adaptive strategies for all of the
settings, though not significantly different than XVSELECT+RC for batch sizes
n = 10 and n = 20. The RC effect here is the mirror opposite to the bLB;
bBLAST with RC (CustoM+RC) always performs worse than bBLAST, however
XVSELECT+RC always performs better than XVSELECT. Performance of BESTAM

Automated Adaptation Strategies for Stream Learning 21
Friedman p = 5.6621e-14 Friedman p = 1.9232e-09
CD CD
3 2 $ 4 3 ¢ i : H ¢
_] L i L
BestAM 4'_‘-{ bLB BestAM+RC 4 bLB
BestAM+RC XVSelect+RC XVSelect bLB+RC
XVSelect bLB+RC BestAM XVSelect+RC
(a) Base learner: NB, n = 10 (b) Base learner: HT, n = 10
Friedmanp =0 Friedman p = 1.1102e-16
CD CD
1 2 3 4 5 6 1 2 3 4 5 6
} ‘ } } } } } t t ‘ s t t \!
BestAM J L bLB BestAM 4 bLB
XVSelect bLB+RC BestAM+RC bLB+RC
BestAM+RC XVSelect+RC XVSelect XVSelect+RC
(c) Base learner: NB, n = 20 (d) Base learner: HT, n = 20
Friedmanp =0 Friedman p = 3.3307e-16
CD CD
(AL S BN SO S O SO S S
|
XVSelect :'-,7 I} bLB BestAM | IE bLB
BestAM bLB+RC XVSelect ——————— bLB+RC
BestAM+RC XVSelect+RC BestAM+RC XVSelect+RC

(e) Base learner: NB, n = 50 (f) Base learner: HT, n = 50

Fig. 8: bLLB adaptation: Nemenyi plots (lower is better) of BEsTAM, BESTAM+RC,
XVSEeLECT, XVSELECT+RC, CustoMm (bLB), CusTtoM+RC (bLB+RC) strategies
for different batch sizes n with NB and HT base learners.

and BESTAM-+RC strategies for this algorithm is markedly worse than for others
as they are often outperformed by XVSELECT and XVSELECT+RC.

5.7 Summary of classification results

The conducted experiments give insight on several questions. Firstly, we are inter-
ested whether the proposed adaptation strategies XVSELECT and XVSELECT+RC
provide comparable results to the custom strategies or to the best results achieved
by a repeated deployment of any AM. Secondly, we would like to know whether
the retrospective correction has really a positive effect on the accuracy of the pre-
dictions, and if so for which approaches. Finally, we would like to compare the
performance of the adaptive strategies on the synthetic data to this on real-world
datasets. To answer the first two questions we compare the results from sections
in Table [3] summing up the number of cases one approach was better and
worse than the other across all of the algorithms, batch sizes and base learners
(equal performance is represented by 0.5 in both “Better” and “Worse” columns).

In comparison to CusToM, XVSELECT and XVSELECT+RC has better accu-
racy for most experiments, often with significant difference. For these compar-

22 Rashid Bakirov et al.

Friedman p = 1.5068e-05 Friedman p = 5.2903e-07

CD

CD
1 2 3 4 5 6 1 2 3 4 5 6
‘ " : ‘ : N ‘ : ;
bBlast g \; BestAM bBlast 4 \; BestAM
XVSelect+RC XVSelect XVSelect+RC XVSelect
bBlast+RC BestAM+RC bBlast+RC BestAM+RC
(a) n=10 (b) n=20

Friedman p = 5.8904e-08

CD

1 2 3 4 5 6
bBlast J \— BestAM+RC

]
BestAM ‘ XVSelect

XVSelect+RC bBlast+RC

(c) n =150

Fig. 9: bBLAST adaptation: Nemenyi plots (lower is better) of BESTAM,
BeEsTAM+RC, XVSeLEcT, XVSELECT+RC, Custom (bBLAST), CustomM+RC
(bBLAST+RC) adaptive strategies for different batch sizes n.

Table 3: Comparisons of different approaches

Comparison Better (significant) Better ~Worse Worse (significant)
XVSELECT vs CUSTOM 11 6 1 3
XVSELECT+RC vs CusToOM 10 6 3 2
XVSELECT vs BESTAM 2 5 9 5
XVSELECT+RC vs BESTAM 4 2 3 12
XVSELECT4+RC vs XVSELECT 1 8 11 1
CustoM+RC vs CusTOM 3 9 8 1
BESTAM+RC vs BESTAM 4 5.5 8.5 3

isons XVSELECT and XVSELECT4+RC show similar results. Both XVSELECT or
XVSELECT+RC perform in average worse than BESTAM, however, for XVSELECT,
the performance is comparable (not significantly worse in majority of cases).

Furthermore, we consider the effects of RC separately for each approach, as it
has been shown that they could be different. For XVSELECT, deploying RC seems
to not have a critical effect. The positive effect of RC is more apparent on CusToM
strategy. For the BESTAM it should be noted that the best AM can be different
depending on dataset and even for the same dataset it is not necessarily the case
that BESTAM and BESTAM+RC will be based on the same AM. However, we can
still say if the best performing AM is known, the deployment of RC is likely to
have a negative effect on the accuracy.

Finally, to evaluate the performance of XVSELECT and XVSELECT4RC on the
synthetic vs. real world data, we have compared the results on these datasets
separately, across all of the algorithms and settings using Nemenyi plots on Fig-
ure [I0} It is possible to observe that the results of the proposed approaches is
closer to the BESTAM on the real world data, with XVSELECT, XVSELECT+RC
and CusToM+RC showing comparable performance. This may be related to the

Automated Adaptation Strategies for Stream Learning 23

Friedman p = 8.9721e-06 Friedman p =0

c co

1 2 3 4 5 6 1 2 3 4 5 6
L '

! —— ;
BestAM ‘ ‘ Custom BestAM Custom
BeStAM+RC XVSelect BeStAM+RC Custom+RC
XVSelect+RC Custom+Re XVSelect+RC XVSelect
(a) Real data (b) Synthetic data

Fig. 10: Nemenyi plots (lower is better) of BESTAM, BESTAM+RC, XVSELECT,
XVSELECT+RC, CustoM, CusToM+RC strategies for real and synthetic datasets.

more complicated nature of these datasets, where there may not exist a single
AM that markedly optimises the performance, an observation in line with our
earlier findings from (Bakirov et all 2015)). The performance of XVSELECT and
XVSELECT+RC is comparatively worse on synthetic data, which may be simple
enough for a single AM based adaptive strategy to deliver good results. Even for
this case, these two approaches outperform CusToMm with a significant difference.

5.8 Runtime analysis

We proceed with the analysis of the runtime performance of our approaches. First,
we note that with the assumption that the processing time for every batch, in-
cluding the prediction, adaptation, and accuracy/error calculation is bounded by
some constant, which is the case for all of the algorithms we consider, the runtime
complexity of any custom adaptive algorithm is O(n), where n is the number of
batches. In this case, the runtime complexity of XVSELECT is O(|G|qn) where |G|
is the number of available AMs and ¢ is the number of cross-validation fold, as for
every batch every AM with g¢-fold cross-validation is used. Retrospective correction
has the complexity of O(|G|n), as for every batch every AM is used once. Thus,
XVSELECT+RC has the complexity of O(|G|?qn). Since |G| and ¢ are constants,
it follows that O(|G|n) ~ O(|G|gn) ~ O(|G|*qn) ~ O(n), hence all the proposed
methods are in the same order of runtime complexity as the custom strategies.
For empirical runtime evaluation, we compare the performance of XVSELECT,
XVSELECT+RC, CustoMm, CusToM+RC strategies on classification dataset #28
(Power Italy) for different classification algorithms with n = 50 and NB base
learner in Table M initially without using any parallel processing. This dataset
was chosen as it is a relatively large sized real-world dataset. The results show
that the performance of our methods vary greatly depending on algorithm; e.g. for
XVSELECT+RC with 2-fold cross-validation, bPL adaptation has fastest relative
average batch processing time (only 2.69 times higher than CusToMm), whereas
bDWM adaptation has the slowest time (110.73 times higher than Custowm).
The differences in performances are explainable by the internal characteristics
of the algorithms. Batch processing time for XVSELECT and XVSELECT+RC is pro-

14 The results in this section are achieved on quad-core Intel Core i7-7700HQ CPU with core
frequency of 2.8 GHz. All adaptive strategies were run 10 times and the average results are
reported.

24 Rashid Bakirov et al.

portional to the batch runtimes with single AMs (e.g. when using CUSTOM strat-
egy). The longer batch runtimes are further extended by the cross-validation and
retrospective correction. Therefore, XVSELECT and XVSELECT+RC for bDWM
which has 8 AMs and can have about 20 active experts at the same time, has
much higher relative batch runtime than bPL, which has only three AMs and
two experts. Other interesting observation is that the RC does not always in-
crease the batch processing time as seen in the example of bPL, which inher-
ently deploys all of the AMs even without RC. This is also the case for bDWM
XVSELECT and XVSELECT+RC, where this may be attributed to the AMs de-
ployed by XVSELECT+RC strategy (e.g. less creation of new experts AMs, which
notably slow the model down).

Batch processing runtime can be improved by applying parallel processing
as both cross-validatory selection and retrospective correction are embarrassingly
parallel operations. Fully parallelising the adaptive strategy however requires avail-
able |G|q threads which can be prohibitive. Even the fully parallel implementation
may not be as efficient as the custom strategy, because the choice of the AM can
have an effect on the performance for the subsequent batches. This can be again
seen on an example of expert creation AMs.

To illustrate these points a further experiment is undertaken, where two modifi-
cations of bDWM are proposed. The first one, bDWM_Lite starts with two experts
and includes only two AMs, DAM4 (weights update, experts pruning and batch
learning) and DAMY7 (weights update, experts pruning, batch learning and expert
creation) instead of the original 8, which still allows to run the Custom strategy.
bDWM _Lite allows us to test the fully parallel implementation as it requires only 4
threads for this. The second modification, bDWM_Zero, mimics bDWM _Lite, and
in addition limits the ensemble to only two experts. This prevents the performance
degradation caused by expert creation. We experiment with XVSELECT+RC with
2-fold cross-validation and two parallelisatiorm choices, cross-validation (XV) par-
allelisation where parallel processing is applied to the cross-validation only, and full
parallelisation, where in addition to cross-validation, the retrospective correction
is also run in parallel. Figure|11] shows the average batch runtimes over the whole
dataset. Even without parallelisation, simply reducing the number of AMs from 8
to 2 (bDWM_Lite), results in performance increase by the factor of 6, while paral-
lelisation increases it even further. Limiting the number of experts further reduces
the average batch runtime to only 3 times more than the Custom. Note that for
bDWM _Zero the parallelisation does not decrease the runtimes by much and that
the full parallelisation doesn’t outperform XV only parallelisation. This can be at-
tributed to the already reduced runtime due to limited number of experts and the
parallel processing overhead which negates increase in performance. Further in-
sights are given in Figure It can be seen that for bDWM _Lite, average runtime
per batch increases as batches come in, due to the increase in experts, however
gradually flattens as the number of experts stabilizes around 20. Conversely, for
bDWDM _Zero, the runtime per batch is stable from the start.

15 Parallelisation is realised using Matlab Parallel toolbox.

Automated Adaptation Strategies for Stream Learning 25

Table 4: Relative and absolute (seconds, in brackets) single-core average batch run-
times of XVSELECT, XVSELECT+RC, CusToM, CusToM+RC strategies on classifi-
cation dataset #28 (Power Italy) for different classification algorithms with n = 50

and NB base learner.

Adaptive Strategy bPL bBLAST bLB bDWM
CusTOM 1 (0.036) 1 (0.004) 1 (0.179) 1 (0.056)
XVSELECT (2 folds) 2.687 (0.098) 7.67 (0.033) 3.594 (0.644) 112.232 (6.246)
XVSELECT (5 folds) 4.896 (0.178) 11.678 (0.05) 8.901 (1.595) 232.83 (12.957)
XVSELECT (10 folds) 8.797 (0.32) 17.2 (0.074) 17.622 (3.158) 455.76 (25.363)
CustoM+RC 1.003 (0.036) 6.692 (0.029) 3.008 (0.539) 35.105 (1.954)
XVSELECT+RC (2 folds) 2.676 (0.097) 13.205 (0.057) 6.062 (1.086) 110.728 (6.162)
XVSELECT+RC (5 folds) 5.078 (0.184) 14.912 (0.064) 11.348 (2.033) 224.421 (12.489)
XVSELECT4+RC (10 folds) 9.047 (0.329) 17.961 (0.077) 20.16 (3.613) 432.138 (24.049)

1.2

T
[Custom

[No parallelisation
XV parallelisation |
I Full parallelisation

0.8

Average batch runtime (s)

0.2

_H=m

Lite Zero

Fig. 11: Average batch runtimes for bDWM Lite and Zero, XVSELECT+RC strat-
egy on classification dataset #28 (Power Italy) with n = 50 and NB base learner.

6 Discussion and Conclusions

The core aim of this paper was to explore the issue of automating the adaptation
of predictive algorithms, which was found to be a rather overlooked direction in
otherwise popular area of automated machine learning. In our research, we have
addressed this by utilising a simple, yet powerful adaptation framework, which
separates adaptation from prediction, defines adaptive mechanisms and adaptive
strategies, as well as allows the use of retrospective model correction. This adapta-
tion framework enables the development of generic automated adaptation strate-
gies, which can be deployed on any set of adaptive mechanisms, thus facilitating
the automation of predictive algorithms’ adaptation.

We have used several automated adaptation strategies, based on cross-validation
on the current batch and retrospectively reverting the model to the oracle state
after obtaining the most recent batch of data. We postulate that the recently seen
data is likely to be more related to the incoming data, therefore these strategies
tend to steer the adaptation of the predictive model to achieve better results on
the most recent available data.

26 Rashid Bakirov et al.

160 —S— Lite \ -
——+— Zero)
Lite with XV parallelisation ¢
14 ——*—— Zero with XV parallelisation o

— & Lite with full parallelisation
Zero with full parallelisation

@

[0}

E 1+ .
g

3

) 5

g 08 PR R

<‘>< AR Sa &

E
I

0 10 20 30 40 50 60 70 80 90
Batch

Fig. 12: Average batch runtimes for bDWM Lite and Zero, XVSELECT+RC strat-
egy on classification dataset #28 (Power Italy) with n = 50 and NB base learner.

To confirm our assumptions, we have empirically investigated the merit of
automated adaptation strategies XVSELECT and XVSELECT+RC. For this purpose
we have conducted experiments on 10 real and 26 synthetic datasets, exhibiting
various levels of adaptation need.

The results are promising, as for the majority of these datasets, the proposed
automated approaches were able to demonstrate comparable or better performance
to those of specifically designed custom algorithms and the repeated deployment of
any single adaptive mechanism. However, it is not the goal of this paper to replace
existing custom strategies with the proposed ones. We rather see the benefit of the
proposed strategies in their applicability to all algorithms with multiple adaptive
mechanisms, so that the designer of the algorithm does not need to spend time and
effort to develop a custom adaptive strategy. We have analysed the cases where
proposed strategies performed relatively poorly. It is postulated that the reasons
for these cases were: a) lack of change/need for adaptation; b) insufficient data in
a batch; and c) relatively simple datasets, all of which have trivial solutions. We
have also identified that the choice of algorithm and base learner can affect the
performance of proposed strategies.

A benefit of the proposed generic automated adaptation strategies is that they
can help designers of machine learning solutions save time by not having to devise a
custom adaptive strategy. XVSELECT and XVSELECT+RC are generally parameter-
free, except for the number of cross validation folds, choosing which is trivial.

Automated Adaptation Strategies for Stream Learning 27

Naturally, the described strategies come at some cost in performance. This
cost varies between different algorithms and is dependent on the number of AMs
and other factors, such as number of experts. The runtimes can be reduced by the
parallelisation of cross-validatory selection and retrospective correction. It is also
conceivable for throughput requirements to be lower for batch learning scenario,
as the data is passed to the model only after the whole batch is accumulated.

7 Future Work

This research has focused on batch scenario. Adapting the introduced automated
adaptive strategies for incremental learning scenario remains a future research
question. In that case a lack of batches would for example pose a question of
data selection for cross validation. This could be addressed using data windows of
static or dynamically changing size. Using an alternative to cross validation can be
another solution. Another useful scope of research is focusing on a semi-supervised
scenario, where true values or labels are not always available. This is relevant for
many applications, amongst them in the process industry.

A dimension which may require more attention is further improvement of the
runtime performance of the proposed approaches. An obvious first step in this
direction is discarding the less useful, such as “do nothing”, AMs.

Further research directions include theoretical analysis of this direction of re-
search, where relevant expert/bandit strategies may be useful, as well as the exper-
iments with other ML tasks such as time series prediction, clustering and recom-
mender systems. Finally, as we have observed some discrepancies in performance
of the proposed approaches across algorithms/datasets/base learners, a natural
research direction is to investigate the reasons for these discrepancies. This would
also include experimentation with different base learners.

In general, there is a rising tendency of modular systems for construction of
machine learning solutions, where adaptive mechanisms are considered as separate
entities, along with pre-processing and predictive techniques. One of the features of
such systems is easy, and often automated plug-and-play machine learning (Kadlec
and Gabrys| 2009; Kedziora et al., [2020). Generic automated adaptive strategies
introduced in this paper further contribute towards this automation.

Acknowledgements We are grateful to anonymous reviewers for their valuable input. We
also would like to thank Evonik Industries AG for the provided datasets. Part of the used
Matlab code originates from Petr Kadlec and Ratko Grbi¢. Tomasz Maszczyk has provided
helpful coding advice. Thanks to Réman Arango for sharing his statistical wisdom.

28

Rashid Bakirov et al.

A Supplementary material.

Table 5: Regression datasets with IV instances and M features.

Name N M Description
1 Catalyst 5867 12 Highly volatile simulation (real conditions based) of cata-
activa- lyst activation in a multi-tube reactor. Task is the predic-
tion tion of catalyst activity while inputs are flows, concentra-
tions and temperatures 1StrackeljanL 2006)).
2 Thermal 2820 36 Prediction of NO, exhaust gas concentration during an in-
oxidiser dustrial process, moderately volatile. Input features include
concentrations, flows, pressures and temperatures
and Gabrys|7 2009)).
3 Industrial 1219 16 Prediction of residual humidity of the process product, rela-
drier tively stable. Input features include temperatures, pressures
and humidities (Kadlec and Gabrys} 2009).
4 Debutaniser 2394 7 Prediction of butane concentration at the output of the col-
column umn. Input features are temperatures, pressures and flows
(Fortuna et al., |2005).
5 Sulfur 10081 6 Prediction of SOz in the output of sulfur recovery unit.
recov- Input features are gas and air flow measurements
ery et a1.|, 2003|).

Table 6: Real world classification datasets with IN instances, M features and C

classes.

Name N M C Brief description
27 Australian 27887 6 2 Widely used concept drift benchmark dataset
electricity thought to have seasonal and other changes as well
prices as noise. Task is the prediction of whether elec-
(Elec2) tricity price rises or falls while inputs are days of
the week, times of the day and electricity demands
28 Power 4489 4 The task is prediction of hour of the day (03:00,
Ttaly 10:00, 17:00 and 21:00) based on supplied and
transferred power measured in Italy.

Chen et a1.|7 2015).
29 Contraceptive 4419 3 Contraceptive dataset from UCI repository (New-

man et all [1998) with artificially added drift

(Minku et al. [2010).

30 Iris 450 4 TIris dataset (Anderson,|1936; |Fisher} [1936) with ar-
tificially added drift (Minku et al., [2010).
31 Yeast 5928 10 Contraceptive dataset from UCI repository (New-

man et al) [1998) with artificially added drift

(Minku et al., 2010).

Automated Adaptation Strategies for Stream Learning 29

Table 7: Synthetic classification datasets used in experiments, with IN instances
and C classes, from (Bakirov and Gabrys) 2013). Column “Drift” specifies number
of drifts/changes in data, the percentage of change in the decision boundary and
its type. All datasets have 2 input features.

Data type N C Drift Noise/overlap

1 Hyperplane 600 2 2x50% rotation None

2 Hyperplane 600 2 2x50% rotation 10% uniform noise
3 Hyperplane 600 2 9x11.11% rotation None

4 Hyperplane 600 2 9x11.11% rotation 10% uniform noise
5 Hyperplane 640 2 15x6.67% rotation None

6 Hyperplane 640 2 15x6.67% rotation 10% uniform noise
7 Hyperplane 1500 4 2x50% rotation None

8 Hyperplane 1500 4 2x50% rotation 10% uniform noise
9 Gaussian 1155 2 4x50% switching 0-50% overlap

10 Gaussian 1155 2 10x20% switching 0-50% overlap

11 Gaussian 1155 2 20x10% switching 0-50% overlap

12 Gaussian 2805 2 4x49.87% passing 0.21-49.97% overlap
13 Gaussian 2805 2 6x27.34% passing 0.21-49.97% overlap
14 Gaussian 2805 2 32x9.87% passing 0.21-49.97% overlap
15 Gaussian 945 2 4x52.05% move 0.04% overlap

16 Gaussian 945 2 4x52.05% move 10.39% overlap

17 Gaussian 945 2 8x27.63% move 0.04% overlap

18 Gaussian 945 2 8x27.63% move 10.39% overlap

19 Gaussian 945 2 20x11.25% move 0.04% overlap

20 Gaussian 945 2 20x11.25% move 10.39% overlap

21 Gaussian 1890 4 4x52.05% move 0.013% overlap

22 Gaussian 1890 4 4x52.05% move 10.24% overlap

23 Gaussian 1890 4 8x27.63% move 0.013% overlap

24 Gaussian 1890 4 8x27.63% move 10.24% overlap

25 Gaussian 1890 4 20x11.25% move 0.013% overlap

26 Gaussian 1890 4 20x11.25% move 10.24% overlap

0.5

Rotating
Hyperplane °[%™ 0
;
0.5 -0.5]
20 20
Switching
Gaussian °© ¢
20 -20
6 6 6
Passing 4 4 ‘Rade. 4
Gaussian 2 2 ¢ 2
0 0 o il 0
-2 -2 o -2
15 0 5 10 15
8 8 8
) 5 6 .. 6
Moving 4 4 o ok 4
S 2 2 ".:\.'5%5_ % 2
Gaussian §| .« 0 AP 0
o - : -2
-1

Fig. 13: Synthetic datasets visualisation (Bakirov and Gabrys| |2013)).

30 Rashid Bakirov et al.

Table 8: SABLE hyperparameters for different datasets with batch size n, update
weights of descriptors do, 01, RPLS forgetting factor A, kernel width for descriptor
construction o, L RPLS latent variables and K batches

Dataset n K 40,01 A o L
Catalyst 50 117 0,1 0.5 1 12
Catalyst 100 59 0,1 0.25 1 12
Catalyst 200 30 0,1 0.5 1 12
Oxidizer 50 47 0.25, 0.75 0.5 1 3
Oxidizer 100 29 0,1 0.25 0.01 3
Oxidizer 200 15 0,1 0.25 0.01 3
Drier 50 25 0,1 0.25 0.01 16
Drier 100 13 0,1 0.5 0.1 16
Drier 200 7 0,1 0.25 0.01 16
Debutaniser 50 47 0.25, 0.75 0.5 1 6
Debutaniser 100 23 0.25, 0.75 0.25 1 6
Debutaniser 200 11 0,1 0.5 1 6
Sulfur 50 201 0.25, 0.75 0.5 1 7
Sulfur 100 100 0,1 0.5 0.1 7
Sulfur 200 50 0,1 0.5 0.1 7
References

Alcobé JR (2004) Incremental Hill-Climbing Search Applied to Bayesian Network Structure
Learning. In: Proceedings of the Eighth European Conference on Principles and Practice
of Knowledge Discovery in Databases, Volume 3202 of Lecture Notes in Computer Science.
Springer Verlag

Alippi C, Boracchi G, Roveri M (2012) Just-in-time ensemble of classifiers. In: The 2012
International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1-8

Anderson E (1936) The Species Problem in Iris. Annals of the Missouri Botanical Garden
23(3):457

Ba J, Frey B (2013) Adaptive dropout for training deep neural networks. In: NIPS’13 Pro-
ceedings of the 26th International Conference on Neural Information Processing Systems,
pp 3084-3092

Bach S, Maloof M (2010) A bayesian approach to concept drift. In: Advances in Neural Infor-
mation, pp 127-135

Bakirov R (2017) Multiple adaptive mechanisms for predictive models on streaming data. PhD
thesis, Bournemouth University

Bakirov R, Gabrys B (2013) Investigation of Expert Addition Criteria for Dynamically Chang-
ing Online Ensemble Classifiers with Multiple Adaptive Mechanisms. In: Papadopoulos H,
Andreou A, Iliadis L, Maglogiannis I (eds) Artificial Intelligence Applications and Innova-
tions, vol 412, pp 646-656

Bakirov R, Gabrys B, Fay D (2015) On sequences of different adaptive mechanisms in non-
stationary regression problems. In: 2015 International Joint Conference on Neural Networks
(IJCNN), pp 1-8

Bakirov R, Gabrys B, Fay D (2016) Augmenting adaptation with retrospective model cor-
rection for non-stationary regression problems. In: 2016 International Joint Conference on
Neural Networks (IJCNN), IEEE, pp 771-779

Bakirov R, Gabrys B, Fay D (2017) Multiple adaptive mechanisms for data-driven soft sensors.
Computers & Chemical Engineering 96:42-54

Bifet A, Gavalda R (2007) Learning from time-changing data with adaptive windowing. SITAM
International Conference on Data Mining 7:443-448

Bifet A, Holmes G, Gavalda R, Pfahringer B, Kirkby R (2009) New Ensemble Methods For
Evolving Data Streams. Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’09 pp 139-147

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010a) MOA: Massive Online Analysis. Journal
of Machine Learning Research 11(52):1601-1604

Automated Adaptation Strategies for Stream Learning 31

Bifet A, Holmes G, Pfahringer B (2010b) Leveraging bagging for evolving data streams. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol 6321 LNAI, pp 135-150

Cardillo G (2009) MYFRIEDMAN: Friedman test for non parametric two way
ANalysis Of VAriance. URL https://www.mathworks.com/matlabcentral/fileexchange/
25882-myfriedman

Carnein M, Trautmann H, Bifet A, Pfahringer B (2020) Towards automated configuration of
stream clustering algorithms. In: Communications in Computer and Information Science,
Springer, vol 1167 CCIS, pp 137-143

Carpenter G, Grossberg S, Reynolds J (1991) ARTMAP: Supervised real-time learning and
classification of nonstationary data by a self-organizing neural network. Neural networks
4:565-588

Castillo G, Gama J (2006) An Adaptive Prequential Learning Framework for Bayesian Net-
work Classifiers. In: Flirnkranz J, Scheffer T, Spiliopoulou M (eds) Knowledge Discovery in
Databases: PKDD 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, Lecture Notes in
Computer Science, vol 4213, pp 67-78

Celik B, Vanschoren J (2020) Adaptation Strategies for Automated Machine Learning on
Evolving Data. arXiv pre-print, URL http://arxiv.org/abs/2006.06480

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR Time
Series Classification Archive

Cinar A, Parulekar SJ, Undey C, Birol G (2003) Batch Fermentation: Modeling: Monitoring,
and Control. CRC Press

Dawid AP (1984) Present Position and Potential Developments: Some Personal Views: Statis-
tical Theory: The Prequential Approach. Journal of the Royal Statistical Society Series A
(General) 147(2):278

Demsar J (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of
Machine Learning Research 7(Jan):1-30

Domingos P, Hulten G (2000) Mining high-speed data streams. Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD 00 pp
71-80

DrawNemenyi (2019) drawNemenyi. URL https://github.com/sepehrband/drawNemenyi

Duin RPW, Juszczak P, Paclik P, Pekalska E, de Ridder D, Tax DMJ, Verzakov S (2007)
PRTools4.1, A Matlab Toolbox for Pattern Recognition”

Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments.
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council
22(10):1517-31

Fern A, Givan R (2000) Dynamic feature selection for hardware prediction. Tech. rep., Purdue
University

Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient and
Robust Automated Machine Learning. In: Advances in Neural Information Processing Sys-
tems 28 (NIPS 2015), pp 2962-2970

Fisher RA (1936) The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics 7(2):179-188

Fortuna L, Rizzo A, Sinatra M, Xibilia M (2003) Soft analyzers for a sulfur recovery unit.
Control Engineering Practice 11(12):1491-1500

Fortuna L, Graziani S, Xibilia M (2005) Soft sensors for product quality monitoring in debu-
tanizer distillation columns. Control Engineering Practice 13(4):499-508

Friedman N, Goldszmidt M (1997) Sequential update of Bayesian network structure. In: Pro-
ceedings of the Thirteenth conference on Uncertainty in artificial intelligence, pp 165-174

Gabrys B (2004) Learning hybrid neuro-fuzzy classifier models from data: to combine or not
to combine? Fuzzy Sets and Systems 147(1):39-56

Gabrys B, Bargiela A (1999) Neural Networks Based Decision Support in Presence of Uncer-
tainties. Journal of Water Resources Planning and Management 125(5):272-280

Gabrys B, Ruta D (2006) Genetic algorithms in classifier fusion. Applied Soft Computing
6(4):337-347

Gomes Soares S, Aradjo R (2015) An on-line weighted ensemble of regressor models to handle
concept drifts. Engineering Applications of Artificial Intelligence 37:392—406

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1):10

https://www.mathworks.com/matlabcentral/fileexchange/25882-myfriedman
https://www.mathworks.com/matlabcentral/fileexchange/25882-myfriedman
http://arxiv.org/abs/2006.06480
https://github.com/sepehrband/drawNemenyi

32 Rashid Bakirov et al.

Harries M (1999) Splice-2 comparative evaluation: Electricity pricing. Technical report. The
University of South Wales. Tech. rep., The University of South Wales

Hazan E, Seshadhri C (2009) Efficient learning algorithms for changing environments. In:
ICML ’09 Proceedings of the 26th Annual International Conference on Machine Learning,
pp 393-400

Herbster M, Warmuth M (1998) Tracking the best expert. Machine Learning 29:1-29

Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’01, ACM Press, New York, New York, USA, pp 97-106

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential Model-Based Optimization for General
Algorithm Configuration. In: LION’05 Proceedings of the 5th international conference on
Learning and Intelligent Optimization, Springer, Berlin, Heidelberg, pp 507-523

Tkonomovska E, Gama J, Dzeroski S (2010) Learning model trees from evolving data streams.
Data Mining and Knowledge Discovery 23(1):128-168

Jang JSR, Sun CT, Mizutani E (1997) Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence. Prentice Hall

Joe Qin S (1998) Recursive PLS algorithms for adaptive data modeling. Computers & Chemical
Engineering 22(4-5):503-514

Kadlec P, Gabrys B (2009) Architecture for development of adaptive on-line prediction models.
Memetic Computing 1(4):241-269

Kadlec P, Gabrys B (2010) Adaptive on-line prediction soft sensing without historical data.
In: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1-8

Kadlec P, Gabrys B (2011) Local learning-based adaptive soft sensor for catalyst activation
prediction. AIChE Journal 57(5):1288-1301

Kedziora DJ, Musial K, Gabrys B (2020) Autonoml: Towards an integrated framework for
autonomous machine learning. 2012.12600

Klinkenberg R (2004) Learning drifting concepts: Example selection vs . example weighting.
Intelligent Data Analysis 8(3):281-300

Klinkenberg R, Joachims T (2000) Detecting concept drift with support vector machines. In:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp
487494

Kolter JZ, Maloof MA (2007) Dynamic weighted majority: An ensemble method for drifting
concepts. The Journal of Machine Learning Research Volume 8,:2755-2790

Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K (2017) Auto-WEKA 2.0: Au-
tomatic model selection and hyperparameter optimization in WEKA. Journal of Machine
Learning Research 18(25):1-5

Kuncheva LI (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley-Blackwell

Lemke C, Gabrys B (2010) Meta-learning for time series forecasting and forecast combination.
Neurocomputing 73(10):2006—-2016

Lemke C, Riedel S, Gabrys B (2009) Dynamic combination of forecasts generated by diversifi-
cation procedures applied to forecasting of airline cancellations. In: 2009 IEEE Symposium
on Computational Intelligence for Financial Engineering, IEEE, pp 85-91

Littlestone N, Warmuth M (1994) The Weighted Majority Algorithm. Information and Com-
putation 108(2):212-261

Lloyd JR, Duvenaud D, Grosse R, Tenenbaum JB, Ghahramani Z (2014) Automatic construc-
tion and natural-language description of nonparametric regression models. In: Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI Press, pp 1242—-1250

Madrid JG, Escalante HJ, Morales EF, Tu WW, Yu Y, Sun-Hosoya L, Guyon I, Sebag M
(2019) Towards AutoML in the presence of Drift: first results, 1907.10772

Martin Salvador M, Budka M, Gabrys B (2016) Adapting Multicomponent Predictive Systems
using Hybrid Adaptation Strategies with Auto-WEKA in Process Industry. In: AutoML at
ICML 2016, 2011, pp 1-8

Martin Salvador M, Budka M, Gabrys B (2019) Automatic Composition and Optimization of
Multicomponent Predictive Systems With an Extended Auto-WEKA. IEEE Transactions
on Automation Science and Engineering 16(2):946-959

Minku L, White A, Xin Yao (2010) The Impact of Diversity on Online Ensemble Learning
in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering
22(5):730-742

Mohr F, Wever M, Hiillermeier E (2018) ML-Plan: Automated machine learning via hierar-
chical planning. Machine Learning 107(8-10):1495-1515

2012.12600
1907.10772

Automated Adaptation Strategies for Stream Learning 33

Montiel J, Read J, Bifet A, Kegl B (2018) Scikit-Multiflow: A Multi-output Streaming Frame-
work. Journal of Machine Learning Research 19(72):1-5

Newman D, Hettich S, Blake C, Merz C (1998) UCI repository of machine learning databases

Nguyen H, Woon Y, Ng W, Wan L (2012) Heterogeneous Ensemble for Feature Drifts in Data
Streams. In: Advances in Knowledge Discovery and Data Mining, Springer, pp 1-12

Nguyen TD, Maszczyk T, Musial K, Zoller MA, Gabrys B (2020) Avatar - machine learning
pipeline evaluation using surrogate model. In: Berthold MR, Feelders A, Krempl G (eds)
Advances in Intelligent Data Analysis XVIII, Springer International Publishing, Cham, pp
352-365

Olson RS, Moore JH (2019) TPOT: A Tree-Based Pipeline Optimization Tool for Automating
Machine Learning. Springer, Cham, pp 151-160

Oza NC, Russell S (2001) Online bagging and boosting. In Artificial Intelligence and Statistics
2001 pp 105 — 112

van Rijn JN, Holmes G, Pfahringer B, Vanschoren J (2015) Having a Blast: Meta-Learning
and Heterogeneous Ensembles for Data Streams. In: Data Mining (ICDM), 2015 IEEE
International Conference on, IEEE, pp 1003-1008

Rossi ALD, de Leon Ferreira ACP, Soares C, De Souza BF (2014) MetaStream: A meta-
learning based method for periodic algorithm selection in time-changing data. Neurocom-
puting 127:52-64

Ruta D, Gabrys B, Lemke C (2011) A Generic Multilevel Architecture for Time Series Pre-
diction. IEEE Transactions on Knowledge and Data Engineering 23(3):350-359

Sahel Z, Bouchachia A, Gabrys B, Rogers P (2007) Adaptive Mechanisms for Classification
Problems with Drifting Data. In: Proc. of the 11th International Conference on Knowledge-
based Intelligent Engineering Systems (KES’2007), Springer, Berlin, Heidelberg, pp 419-426

Schlimmer JC, Granger RH (1986) Beyond incremental processing: Tracking Concept Drift.
AAAI-86 Proceedings pp 502-507

Schmidt M, Lipson H (2007) Learning noise. Proceedings of the 9th annual conference on
Genetic and evolutionary computation - GECCO ’07 pp 1680-1685

Scholz M, Klinkenberg R (2007) Boosting Classifiers for Drifting Concepts. Intelligent Data
Analysis 11(1):1-40

Souza F, Aradjo R (2014) Online Mixture of Univariate Linear Regression Models for Adaptive
Soft Sensors. In: IEEE Transactions on Industrial Informatics, vol 10, pp 937-945

Stanley KO (2002) Evolving neural networks through augmenting topologies. Evolutionary
computation 10(2):99-127

Strackeljan J (2006) NiSIS Competition 2006- Soft Sensor for the adaptive Catalyst Monitoring
of a Multi—-Tube Reactor. Tech. rep., Universitidt Magdeburg

Street WN, Kim Y'S (2001) A streaming ensemble algorithm (SEA) for large-scale classification.
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining pp 377-382

Vakil-Baghmisheh MT, Pavesi¢ N (2003) A Fast Simplified Fuzzy ARTMAP Network. Neural
Processing Letters 17(3):273-316

Veloso B, Gama J, Malheiro B (2018) Self Hyper-Parameter Tuning for Data Streams. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Springer Verlag, vol 11198 LNAI, pp 241-255

Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble
classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD 03, ACM Press, New York, New York, USA, pp
226-235

Wasserman L (2000) Bayesian Model Selection and Model Averaging. Journal of Mathematical
Psychology 44(1):92-107

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts.
Machine Learning 23(1):69-101

Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6):80,
DOI 10.2307/3001968

Zhu X (2010) Stream Data Mining Repository, http://www.cse.fau.edu/~xqzhu/stream.html

Zliobaite I (2011) Combining Similarity in Time and Space for Training Set Formation under
Concept Drift. Intelligent Data Analysis 15(4):589-611

Zliobaite I, Kuncheva LI (2010) Theoretical Window Size for Classification in the Presence of
Sudden Concept Drift. Tech. rep., CS-TR-001-2010, Bangor University, UK

	1 Introduction
	2 Related Work
	3 Formulation
	4 Algorithms
	5 Experimental results
	6 Discussion and Conclusions
	7 Future Work
	A Supplementary material.

