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Abstract  26 

Marine Isotope Stage 6 (MIS 6; ca. 185-135 ka) is the penultimate glacial stage and 27 

constitutes the end of the Middle Pleistocene. This glacial period is typified by generally 28 

cold and dry conditions in the western Mediterranean region. Despite the relatively large 29 

number of pollen and speleothem studies of MIS 6 in this region, the number of MIS 6 30 

archaeological sites is low. Lazaret cave, situated at 26 m a.s.l. in the city of Nice in 31 

southern France, contains an archeological sequence (layers CII inf. to CIII) dated to MIS 32 

6. We present a multi-method approach using the small-vertebrate assemblages (mainly 33 

rodents and herpetofauna) from the entire sequence to characterize the climate and the 34 

environment of the site. The Mutual Ecogeographic Range, the Bioclimatic Model andthe 35 

Quantified Ecology methods, as well as the Taxonomic Habitat Index, Climatograms and 36 

the Simpson Diversity Index were used to reconstruct the palaeoenvironmental and 37 

palaeoclimatic conditions. The results suggest a generally cold climate with a relatively 38 

humid environment and a landscape dominated by deciduous temperate forests. The 39 

findings are consistent with the general trends reported from other proxies (large 40 

mammals, birds and marine gastropods) studied at Lazaret cave, other MIS 6 sites in the 41 

Mediterranean region with small vertebrate studies and the general trends shown by 42 

marine cores, terrestrial pollen sequences and speleothems from western Europe. Given 43 

the scarcity of data for MIS 6 archaeological sites, Lazaret cave constitutes an important 44 

site for our knowledge of the climate and the environment of this period. 45 

Key words: Mutual Ecogeographic Range; Bioclimatic Model, Quantified Ecology; 46 

Taxonomic Habitat Index, Climatograms; Simpson Diversity Index 47 

1. Introduction  48 

The end of the Middle Pleistocene is marked by the penultimate glacial period, 49 

Marine Isotope Stage 6 (MIS 6 - ca. 185-135 ka), which corresponds with the Saalian 50 
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glaciation in Europe (e.g. Roucoux et al. 2011; Magari et al. 2014; Railsback at al. 2015). 51 

MIS 6 was a glacial period where generally drier and cooler conditions have been detected 52 

in the Mediterranean region of Europe as compared to interglacial periods (e.g. Hodge et 53 

al. 2008; Wainer et al. 2013). During the second half of MIS 6 (from 150 ka) the global 54 

sea level was 100 m below that of today and the sea surface temperatures (STT) reached 55 

5 ºC lower with respect to current ones (e.g. Elderfield et al. 2012; Margari et al. 2014). 56 

Speleothem data (in Italy, France and Spain) and long pollen sequences (in Greece, 57 

France and from a marine core off the Portuguese coast) are available for western Europe 58 

(Fig. 1) showing the climatic and environmental conditions during the entirety of MIS 6 59 

(e.g. Margari et al. 2014; Tzedakis et al. 2003; Roucoux et al. 2011; Wilson et al. 2013; 60 

Bard et al. 2002; Hodge et al. 2008; Guiot el al. 1993; Ponel, 1995). For the early part of 61 

this glacial period, long pollen sequence data suggest a fluctuating tree abundance in 62 

Europe, while extreme conditions with tree loss have been detected for the latest part of 63 

MIS 6 (e.g. Roucoux et al. 2011), with a high amplitude climatic oscillations detected in 64 

the diatom species record (e.g. Wilson et al. 2021). In contrast, archaeological sites in 65 

western Europe dated to MIS 6 with small vertebrate studies are scarce. Existing ones 66 

include three Spanish sites, Sala de los Huesos in Maltravieso cave (Hanquet, 2011), 67 

Estanque de Tormentas de Butarque H-02 (Blain et al. 2017; Laplana et al. 2015) and 68 

Lezetxiki II (García-Ibaibarriaga et al. 2018), four sites in France, Baume Moula-Guercy 69 

(Desclaux and Defleur, 1997), Grotte des Cèdres (Defleur and Crégut-Bonnoure, 1995),  70 

Romain-la-Roche (Guérin et al. 2010) and Coudoulous 1 (Jaubert et al. 2003) and one 71 

site in Italy Poggetti Vecchi (Benvenuti et al. 2017) (Fig. 1). The aim of the present study 72 

is to characterize the environment and climate of the MIS 6 archeological sequence of 73 

Lazaret cave (Nice, France) using small mammals (mainly rodents) and herpetofaunal 74 

assemblages. Applying several paleoclimatic and paleoenvironmental tools to obtain a 75 
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multi-method approach, which it is hoped allows a better understanding of conditions in 76 

Western Europe during the penultimate glacial. 77 

2. Lazaret Cave  78 

Lazaret Cave is located in southern France on the Mediterranean coast of the city 79 

of Nice (43º 41’ 25’’ N, 7º 17’42’’ E) (Fig. 1). Lazaret cave is formed in lower Jurassic 80 

dolomite limestone and is 40 m long and 15 m wide with a celling of ca. 15 m high. The 81 

current entrance faces the southwest at 26 m a.s.l. and is ca. 100 m from the coast. The 82 

lower part of the cave sequence (Fig. 2) is composed by two marine transgressive phases. 83 

The first phase, Complex A or the Lower Marine Beach, is without fossils and is ascribed 84 

to Marine Isotope Stage 9 (MIS 9) (Lumley et al. 2004). The second phase, Complex B 85 

or the Upper Marine Beach, is rich in coral and marine mollusks dating to around ca. 230 86 

ka, corresponding to Marine Isotope Stage 7 (MIS 7) (Bahain, 1993; Michel and 87 

Yokoyama 2001). These marine deposits rest under a continental fill (Complex C) 6-88 

meters in thickness (Fig. 2), mainly composed of clays and gravels, which are capped by 89 

a stalagmitic layer (Complex E) dated between ca. 108-45 Ka (Shen 1985; Michel et al. 90 

2009). Complex C is divided into three stratigraphic sub complexes, CI, CII and CIII, 91 

which correspond to archaeological levels and date between 220-130 Ka (Michel, 1995; 92 

Michel et al. 2009). The bottom of the continental deposits, sub complex CI, is not well 93 

known as yet, but the CII and CIII sub complexes contain at least 29 archaeostratigraphic 94 

units (UA), CIIinf. (UA 29-26), CIIsup. (UA 25-13) and CIII (UA 12-1). These 95 

subcomplexes show a succession of hominin occupations, where humans and numerous 96 

faunal (vertebrates and invertebrates) remains have been recovered, together with 97 

abundant lithic bifacial tools attributed to the final Acheulean (e.g. Lumley et al. 2004; 98 

Hanquet et al. 2010; Valensi et al. 2007, among others). 99 

3. Material and methods 100 
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3.1.  Small vertebrate sorting, taxonomic and taphonomic study 101 

The small-vertebrate fossil remains used for this study come from the sub-complex 102 

CII inf., CII sup. and CIII from Lazaret cave, in which 29 archaeo-stratigraphic units 103 

(UA) of anthropic occupation have been identified (Fig. 2). Most of the small vertebrate 104 

remains have been recovered by water-screening from the excavation sediments, using 105 

two superimposed screens of 5 mm and 0.8 mm mesh sizes. The fossils were processed, 106 

sorted and classified at the “Laboratoire de Préhistoire du Lazaret” (Nice, France). The 107 

rodents from the sub-complexes CII sup. and CIII have been identified and partially 108 

published by Hanquet et al. (2010), Desclaux (2013) and Lumley et al. (2019), while the 109 

association pf CII inf. is presented here for the first time. The amphibians and reptiles 110 

from sub-complexes CII inf, CII sup and CIII have been published by Bailon 111 

(1991), Lumley (2004), Hanquet et al. (2010), Manzano (2015) and Lumley et al. (2019). 112 

 The rodent assemblages used for this study correspond to minimum number of 113 

5428 individuals, representing at least 16 taxa (Table 1: Fig. 3). The rodent remains were 114 

identified using systematic paleontological methods. Specific identification of this 115 

material rests principally on the best diagnostic elements: first lower molars for the 116 

subfamily Arvicolinae; and isolated teeth for the subfamilies Cricetinae, Murinae and 117 

Glirinae. The fossils were quantified using the minimum number of individuals (MNI) 118 

method for each sample (i.e. from each level) and determined by counting the diagnostic 119 

elements. A previous preliminary taphonomic study of sub-complex CII (UA25-27) has 120 

been published by in Hanquet (2011) and Desclaux et al. (2011) using the criteria 121 

proposed by Andrews (1990) and subsequently updated with the work of Fernández-Jalvo 122 

et al. (2016) for alterations caused by digestion present in rodent incisors and molars.  123 

Marmota marmota is not included in the environmental and climatic data analysis 124 

for the following reasons: 1) is not possible to use with all the methods because 125 
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theclimatic distributions data is not available for the species(e.g. Royer et al. 2020); 2) 126 

Due to it large size, the accumulation of M. marmota is not commonly caused by small 127 

bird of prey or small carnivore predatory activities (e.g. Armitage, 2003), like the other 128 

rodent species (e.g. Fernández-Jalvo et al. 2016). In addition, its presence in 129 

archaeological sites may also be the result of anthropic activities (e.g. Romandini et al. 130 

2012). In order to complement rodent reconstructions, the faunal lists of amphibians and 131 

reptiles published by Manzano (2015) have been used. The amphibian and reptile 132 

assemblages used for this study correspond to at least 20 taxa (Table 2). As no detailed 133 

taphonomical study of the remains has been done for sub-complexes CII sup and CIII and 134 

we used only the presence-absence of taxa for the amphibians and reptiles and no 135 

quantificationhas been included. 136 

3.2. Palaeonvironmental reconstruction 137 

In order to reconstruct the environment, we used two main methods to analyse the 138 

rodent assemblages, the Taxonomic Habitat Index (THI) and the Climatogram methods. 139 

The THI was developed by Andrews and Evans (1983), a method that considers the 140 

assemblage of rodent species identified, taking into account the diversity of the habitats 141 

where these species live, and regardless of their relative proportions. The representation 142 

of species by habitat has been done for Lazaret cave (Table 3) according to the current 143 

distribution of the rodent species in France (Le Louran and Quéré, 2003), as well as the 144 

distribution of the fossil rodent species in Pleistocene of France and western Europe, 145 

according to Andrews (1990), Chaline (1977,1983), Marquet (1993) and Desclaux et al. 146 

(2008). The Climatogram quantitative method applied to rodent assemblages was 147 

developed by Chaline (1977) and applied to numerous case studies (e.g. Marquet, 1993; 148 

Desclaux and Defleur, 1997; Hanquet and Desclaux, 2011; Foury et al. 2016; Leberton et 149 

al. 2016 or Crégut-Bonnoure et al. 2018). This method allows the climatic and 150 
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environmental variation represented by a stratigraphic sequence to be revealed. In this 151 

way the rodent associations of Lazaret cave have been grouped into six climate-ecology 152 

categories (Table 4).  153 

3.3.  Palaeodiversity reconstruction 154 

Among the large number of indices proposed for evaluating the biodiversity of a 155 

sample, species evenness is fundamental for assessing the homogeneity of an 156 

environment (Magurran and McGill, 2011). Evenness is a diversity index that is used to 157 

quantify how equal the various communities are numerically. The evenness of a 158 

community can be represented by the Simpson index of diversity, which is also equivalent 159 

to the probability of interspecific encounter (Simpson, 1949; Blois et al., 2010; López-160 

García et al., 2013): i.e., the Simpson index of diversity = 1 – Σ (pi2), where pi is the 161 

proportion of total individual samples belonging to the ith species. The evenness index is 162 

constrained between 0 and 1. The lower the variation in species within a community, the 163 

higher the value of the evenness index. The index will be close to 0 if there is a single 164 

dominant species. To avoid the statistical problems of high sample-size dependence, we 165 

have standardized the absolute values by dividing them by the total sample abundances, 166 

expressed as percentages of the MNI. This standardization allows the taxon evenness to 167 

be compared in samples of different size. This index of evenness was obtained using the 168 

Paleontological Statistics Program (PAST) (Hammer et al., 2001). 169 

3.4. Palaeoclimatic reconstructions 170 

In order to assess the palaeoclimatic data from Lazaret cave, we used the 171 

Bioclimatic Model (BM) and the Quantified Ecology (QE) methods on small mammal 172 

assemblages and the Mutual Ecogeographic Range (MER) and the Quantified Ecology 173 

(QE) methods on the herpetofaunal assemblages.  174 



8 
 

The BM was established by Hernández-Fernández (2001a and b) and we use the 175 

recently updated R script PalBER published in Royer et al. (2020). This method is based 176 

on the hypothesis that a significant correlation exists between climate and mammal 177 

communities. According to Hernández-Fernández (2001a and b); Hernández-Fernández 178 

and Peláez-Campomanes (2005) and Hernández-Fernández et al. (2007), mammal 179 

assemblages can be assigned to ten climatic types, five of which are represented by the 180 

rodent assemblages of Lazaret cave. These assemblages were analyzed using the Climatic 181 

Restriction Index (CRIi = 1/n, where “n” is the number of climatic zones where the 182 

species are represented and “i” is the climatic zone where the species appears) (Table 5) 183 

and was assigned to the following zones: IV Subtropical with winter rains and summer 184 

droughts; VI Typical temperate; VII Arid temperate; VIII Cold-temperate (boreal) and 185 

IX Polar. After obtaining this distribution, the Bioclimatic Component (BC; 186 

representation by level of each of the three available climates) was calculated using the 187 

following formula: BCi = (Σ CRIi) × 100/S, where S is the number of species per sub-188 

complex at Lazaret cave. From the BC, a mathematical model was elaborated using a 189 

multiple linear regression (Hernández-Fernández and Peláez-Campomanes, 2005); by 190 

means of a series of functions, this allows the estimation of mean annual temperature 191 

(MAT) and mean annual precipitation (MAP).  192 

The QE was developed by Jeannet (2010). This method is based on the combination 193 

of geographic and climatic distributions of small vertebrate species today, in this case we 194 

use the small mammal and herpetofaunal assemblages separately (Table 6), calculated 195 

from the sum of the climatic parameters (mean temperature and mean precipitation) by 196 

species divided by the total of species represented in each sub-complex of Lazaret cave. 197 

On the basis of these methods, two climatic factors are estimated: the mean annual 198 

temperature (MAT) and the mean annual precipitation (MAP).  199 
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The MER method (Blain et al., 2009, 2016) has been used to estimate the 200 

temperature and precipitation, for which we used the current geographical ranges of the 201 

herpetofaunal species present in the Lazaret cave assemblages. To determine the current 202 

spatial distributions of European amphibians and reptiles, we used the data from Sillero 203 

et al. (2014), represented in a geographic coordinate system (datum WGS 84) with a 50 204 

× 50 km grid. Once the common overlapping area of the species from the assemblage was 205 

identified, approaching a more precise common species distribution area, the UDA-ODA 206 

discrimination methodology (Fagoaga et al., 2019) was applied. This procedure, partially 207 

derived from the MER method, sharpens each species distribution creating the real 208 

Occupied Distribution Areas (ODA) that will be used as current analogue associations 209 

from where climatic parameters will be extrapolated to past fossil assemblages. For 210 

example, the upper elevation limits of Pelobates cultripes (1770 meters) and Pelodytes 211 

punctatus (2000 meters) (Cejudo, 1990; Guixé et al., 2009) were used to obtain more 212 

precise areas within the overlapping area in which all the species could coincide. 213 

The climate data are from WorldClim 2.0 (Ficks and Hijmans, 20176), also codified 214 

in a geographic coordinate system (datum WGS 84). Both data sets were processed using 215 

the ArcGIS 10.5 application (Redlands, 2011). The bioclimatic information used are the 216 

bioclimatic variables BIO1 (annual mean temperature) and BIO12 (mean annual precipi-217 

tation) from Hijmans et al. (2005). The mean and standard deviations were calculated 218 

using the statistical program IBM SPSS Statistics 22. 219 

The same climatic parameters were calculated for Lazaret today (1970-2000), 220 

choosing an area of 3,5 km2 surrounding the site (i.e, in a radius of 1 km). MAT have 221 

been estimated to be 15.0 ± 0.17ºC and MAP to be 811.70 ± 3.8 mm. 222 

4. Results  223 

4.1.  Taphonomic remarks 224 
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The results obtained in the previous taphonomic studies by Hanquet (2011) and 225 

Desclaux et al. (2011) from units UA 27-25 (CII inf. and CII sup.) show that most of the 226 

small mammal accumulations were the result of predation by nocturnal birds of prey. The 227 

signs of digestion in the small mammal bones and teeth suggest that four nocturnal raptors 228 

(Bubo bubo, Asio otus, Asio flammeus and Strix aluco) may have been responsible for the 229 

accumulations at Lazaret cave (Hanquet, 2011; Desclaux et al. 2011). These kinds of 230 

predators do not generally display specific prey consumption patterns (Andrews, 1990). 231 

Therefore, palaeoecological interpretations based on the relative abundance of the rodent 232 

taxa from Lazaret cave are likely to be reliable indicators of the habitat in which the 233 

predators hunted. 234 

In the case of the amphibians and reptiles, a taphonomic study has been carried out 235 

by Manzano (2015) for units UA 27-26 (CII inf.). It suggested that the bone accumulation 236 

is in situ because the bone surfaces lack polish and that no skeletal elements are missing. 237 

The skeletal remains show a high level of fragmentation, mostly with angular and 238 

irregular fractures attributable to diagenetic processes in the cave (Pinto-Llona and 239 

Andrews, 1999; Manzano,2015). The signs of digestion in amphibian and reptile bones 240 

are rare and can hardly be recognized. Traces of digestion have been observed in some 241 

bones of Rana temporaria, but the intensity of this digestion is very low (category 1, type 242 

Tyto alba; sensu Pinto-Llona and Andrews, 1999). 243 

4.2.  Small vertebrate assemblages 244 

The rodent assemblage of complex C (including CII inf., CII sup. and CIII) of 245 

Lazaret cave is dominated by two species, the field vole (Microtus (Agricola) agrestis, 246 

more than 700 individuals) and the wood mouse (Apodemus (Sylvaemus) sylvaticus, more 247 

than 400 individuals). These two taxa represent more than 75% of the sub-complex (4209 248 

individuals) in relation to the total number of individuals (5428 individuals) (Table 1). 249 
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Both species are also present in other MIS 6 sites with small mammal studies in France, 250 

such as Coudoulous I in Lot (Jaubert et al. 2003), Romain-la-Roche in Doubs (Guérin et 251 

al. 2010) and Moula Guercy in the Ardèche (Desclaux and Defleur, 1997) as well as sites 252 

in the Iberian Peninsula such as Lezetxki II in the Basque Country (Garcia-Ibaibarriaga 253 

et al. 2018). Both species are relatively abundant later on in western Europe during the 254 

late Pleistocene, with records in the Italian and Iberian Peninsula as well as in southern 255 

France (e.g. Royer et al. 2016; Berto et al. 2019; López-García 2011). On the other hand, 256 

while A. (S.) sylvaticus is currently present across the whole of France, M. (A.) agrestis 257 

is probably absent in the Maritime-Alps region (https://inpn.mnhn.fr). Moreover, while 258 

A. (S.) sylvaticus is an adaptable species, inhabiting a wide variety habitats including all 259 

types of woodland (Torre et al. 2002), M. (A.) agrestis mainly inhabits wet meadow areas 260 

and forests with dense herbaceous understories (Krystufek et al. 2016), suggesting that 261 

humid and open woodland landscapes dominated at the time the accumulation of rodents 262 

in sub-complexes CII inf., CII sup. and CIII of the Lazaret cave were being formed. 263 

Among the herpetofauna, five taxa are the most abundant in the Lazaret assemblage, 264 

including Bufo bufo, Rana temporaria, Angis fragilis, Coronella austriaca and Vipera 265 

spp. Their presence in the Mediterranean region usually indicates a colder climate with a 266 

humid environment in a landscape composed of mountain and valley habitats (Valensi et 267 

al. 2007). The distribution of herpetofaunal species among the sub-complexes is relatively 268 

homogeneous. However, urodeles (Ichtyosauria alpestris and Salamandridae indet.) and 269 

Hyla sp. are only recorded from CII sup. and Pelobates cultripes is absent from CIII. For 270 

squamate reptiles, CII inf. is the least diverse assemblage with an absence of Timon 271 

lepidus, Malpolon monspessulanus, Natrix gr. natrix, Coronella cf. girondica and 272 

Zamenis scalaris which are present in the other sub-complexes. The absence of such 273 

Mediterranean species may suggest that CII inf. would be colder than the other sub-274 

https://inpn.mnhn.fr/


12 
 

complexes. However, Podarcis is absent from CII sup. and the snakes Hierophis 275 

viridiflavus and cf. Zamenis longissimus are not recorded in CIII (Table 2). 276 

4.3. Palaeoenvironmental and Paleoclimatic approach 277 

In comparison with current climatic data (Table 7), the bioclimatic model and the 278 

quantified ecology methods applied to the small mammals of the Lazaret cave sub 279 

complexes suggested a generally colder climate (ΔMATCII = −6.7 °C and -6.2 ºC; 280 

ΔMATCIII= -6.35 ºC and -6.2 ºC) and with relatively lower rainfall (ΔMAPCII = -294 mm 281 

and -201 mm; ΔMAPCIII = -243 mm and -210 mm). The herpetofaunal assemblages also 282 

suggest cold climate conditions with somewhat less harsh temperatures than 283 

reconstructed by the rodents (ΔMATCIIsup = −4.4°C and -3.8ºC; ΔMATCIIinf = −3.8°C and 284 

-4.5ºC; ΔMATCIII= -4,0ºC and -4.1ºC). They also indicated different results for rainfall. 285 

The MER reconstructed MAP suggests slightly more humid conditions (ΔMAPCIIsup = 286 

+70.4 mm; ΔMAPCIIinf = +15.9 mm; ΔMAPCIII = +18 mm), whereas the QE reconstructed 287 

rainfall suggests a dryer climate (ΔMAPCIIsup = -123.7 mm; ΔMAPCIIinf = -104.6 mm; 288 

ΔMAPCIII = -149.2 mm) than reconstructed using the small mammals. Taking into 289 

account the chronological placement of these sub complexes, CII and CIII (between ca. 290 

175-130 Kya), these could correspond to MIS 6 substages 6d to 6a (Fig. 4). These data 291 

are also concordant with the percentage representation in both sub complexes, CII and 292 

CIII, of the species associated with climate categories VI (typical temperate, related with 293 

a temperate deciduous forest), VII (Arid temperate, related with a steppe and cold desert), 294 

VIII (Cold-temperate, related to a boreal coniferous forest-taiga) and IX (Polar, related 295 

with Tundra) which represents more than 70% of the Bioclimatic Component of the 296 

bioclimatic model (Table 8). It is also consistent with the relatively high representation 297 

(10 of 17) of small mammal species that require mean temperatures below 10ºC (Table 298 

5), according to the Quantified Ecology method.  299 
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On the other hand, both methods (THI and Climatograms) used in the 300 

environmental reconstruction at Lazaret cave with rodent assemblages indicate a 301 

landscape dominated by deciduous temperate forest and humid meadows with a 302 

significant representation of shrublands (Fig. 4). The percentage of deciduous forest 303 

obtained with the THI has values around ca. 35% in all the sub-complexes (Table 9), 304 

mainly represented by the most abundant species M. (A.) agrestis and A. (S.) sylvaticus 305 

and to a lesser extent by Eliomys querciuns, Muscardinus avellanarius, Glis glis and 306 

Clethrionomys glareolus. These five last species are also those indicative of a temperate 307 

forest using the Climatogram method, with percentages ranging between ca. 21-35% (Fig. 308 

4; Table 10). Following the environmental category Mediterranean, Shrubland and 309 

Humid habitats are the most abundant, between 16-21 %, according to the THI method 310 

(Fig. 4; Table 9). The Mediterranean category is mainly represented by the species E. 311 

querciuns, G. glis, M. avellanarius, Microtus (Iberomys) brecciencis, A. mosbachensis 312 

and Pliomys sp. nov.. The Shrubland category is mainly represented by G. glis, Cricetus 313 

cricetus, Microtus (M.) arvalis, M. (I.) brecciensis and Pliomys sp. nov.. Finally, the 314 

humid habitat is mainly represented by C. cricetus and M. (A.) agrestis. M. (A.) agrestis 315 

is responsible for the percentage representation of humid meadows, between 48-58%, 316 

obtained with the Climatogram method (Fig. 4; Table 10). 317 

Finally, the Simpson index (1-D) indicates a relatively high diversity (>0.5) with 318 

similar values in the three studied sub complexes (1-DCIII-CIIsup. = 0.6 and 0.67) from 319 

Lazaret cave (Fig. 5). This is a signal of a relatively heterogeneous vegetation (mainly 320 

related to deciduous forest, shrubland and mountain habitats) and rodent community 321 

(relation between number of species and individual’s distribution in each sub complex) 322 

(Fig. 5). These most abundant rodents are one mouse (A. (S.) sylvaticus) and five vole 323 
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species (M. (A.) agrestis, M. (T.) multiplex, A. mosbachensis and Pliomys sp. nov.) which 324 

represent more than 50 individuals in each sub complex (Fig. 5). 325 

5. Discussion 326 

5.1. Comparison with other Lazaret environmental proxies 327 

The environmental studies done using other proxies from Lazaret cave include the 328 

published works on herpetofauna (amphibians and reptiles), birds, marine gastropods, and 329 

large mammals from subcomplexes CIII and CII sup (Hanquet et al., 2010 and Valensi et 330 

al., 2007). In general, all the studied proxies from complex C of Lazaret cave indicate a 331 

cooler climate and a more humid environment than today (Hanquet et al. 2010; Valensi 332 

et al. 2007; Valensi and Abbassi, 1998). Former quantification of climate based on 333 

herpetofauna at the level of the UAs (Manzano, 2015)  using the MER method at a 334 

regional level (200 km around the site) and QE for the sequence of Lazaret suggested an 335 

alternance of temperate and cold phases during a globally colder than present MIS 6. Cold 336 

periods (CII inf. and CIII) were characterized by MAT as being between 12 and 9.6ºC 337 

(i.e. -5.4ºC to -3ºC in relation to the present climate). CII sup., however, shows a general 338 

improvement in climatic conditions with MAT indicating temperatures between 12 and 339 

14ºC (i.e. -3ºC to -1ºC). Reconstructed MAP suggested somewhat lower levels of rainfall 340 

than today for temperate periods (around 700 mm; i.e. 100 mm lower than present level) 341 

in opposition to much higher values obtained for cold periods with MAT reaching peaks 342 

above 1000 mm (i.e. +200 mm in comparison with the present amount) (Manzano, 2015). 343 

Some of the UAs (UA27, 18, 15 and 3) were said to correspond to non-analogue 344 

herpetofaunal communities (Manzano, 2015), but even with a larger stratigraphical 345 

consideration (i.e., at level of complexes) we found no non-analogue assemblages when 346 

MER was used at a European scale. If climate reconstructions are quite similar concerning 347 

anomalies (Δ) between Manzano (2015) and the present reconstructions, some differences 348 
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can be seen according to the methods applied. According to the MER, CII sup. would be 349 

slightly warmer than the two other complexes, whereas, according to QE, CII sup. is 350 

slightly warmer than CIII and CII inf. (Table 7). However, the differences fall within one 351 

standard deviation and are therefore not significant. The same issue is observed 352 

concerning precipitation. MER suggests a globally more humid climate whereas QE a 353 

slightly dryer climate, but again most of the differences observed falls within the standard 354 

deviation. In conclusion, climate indications obtained from the QE method on 355 

herpetofauna is more in accordance with the occurrence of thermophilus, typically 356 

Mediterranean, species (T. lepidus, M. monspessulanus and Z. scalaris) in the different 357 

sub-complexes and in line with the results obtained by Manzano (2015) at a regional 358 

level. 359 

The large mammal assemblage has a faunal composition dominated by Cervus 360 

elaphus and Capra ibex. More specifically the sub-complex CIIsup. is composed of more 361 

temperate species, with the abundance of C. elaphus, the presence of Bos primigenius and 362 

Capreolus capreolus and a lower representation of C. ibex, than sub complex CIII, where 363 

Rangifer tarandus and Bison priscus are well represented and C. ibex is more abundant 364 

(Valensi et al. 2007). The avifaunal assemblage of sub-complexes CIIsup. and CIII has 365 

sedentary species associated with cold climates such as Aegolius funereus, Bubo 366 

scandiaca and Tetrao tetrix (Hanquet et al. 2010). In general, the avifaunal assemblage 367 

shows a predominance of species from cold climates and open environments, together 368 

with species related to temperate climates and open environments as well as rock and 369 

mountain habitats, with a remarkable closing of the vegetational landscape between 370 

CIIsup. and CIII sub complexes (Hanquet et al. 2010). Finally, the marine gastropods 371 

assemblage highlights the presence of Melarhaphe neritoides, a Mediterranean 372 

Littornidae species, together with Nordic Littornidae, Littorina saxatilis and Littorina 373 
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fabalis. The association of these gasteropods indicates a cooling of the sea in sub complex 374 

CIII respect to CII (Valensi et al. 2007). In general, the data obtained from the different 375 

methods applied to the rodent assemblages are in concordance with the trend shown by 376 

the other proxies, with a relatively cold climate and a humid environment in relation to 377 

today (Fig. 4). When considered according to sub-complexes within the cave sequence, 378 

the results obtained from the rodent assemblages agree with the herpetofaunal data in that 379 

there is a similar association in sub-complexes CII sup. and CIII (Table 1). However, the 380 

cooling and/or closure detected in the other proxies from CII sup. to CIII are not observed 381 

with the rodent results (Fig. 4). Nevertheless, relative colder conditions have been 382 

detected with the rodent assemblage in sub complex CII inf., in relation to the overlying 383 

complexes (Fig. 4). This is mainly indicated by the presence of Lasipodomys gregalis 384 

(narrow-headed vole) in sub complex CII inf., a species that currently inhabits tundra and 385 

forest tundra from the White Sea to the Kolyma River in Russia and in the steppes of 386 

Kazakhstan, Kyrgizia, SW Siberia, Yakutia, Mongolia and Northern China (Batsaikhan 387 

et al. 2016). 388 

5.2. Comparison with other MIS 6 sites 389 

As noted above, there are few archaeological sites in western Europe dating to MIS 390 

6 with small vertebrate studies. Together with Lazaret cave, four sites have been studied 391 

in France, Baume Moula-Guercy (Desclaux and Defleur, 1997, Defleur et al.,1998; 2001, 392 

Defleur and Desclaux, 2019; Defleur et al., 2020), Grotte des Cèdres (Defleur and Crégut-393 

Bonnoure, 1995), Romain-la-Roche (Guérin et al. 2010) and Coudoulous 1 (Jaubert et al. 394 

2003), three in the Iberian Peninsula, Sala de los Huesos in Maltravieso cave (Hanquet, 395 

2011), Estanque de Tormentas de Butarque H-02 (Blain et al. 2017; Laplana et al. 2015) 396 

and Lezetxiki II (García-Ibaibarriaga et al. 2018) and one in Italy, Poggetti Vecchi 397 

(Benvenuti et al. 2017). Regarding the expansion of the continental glaciers in western 398 
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Europe during MIS 6 (Batchelor et al 2019), the composition of the rodent assemblages 399 

of the aforementioned sites may be influenced by the position of the localities (Fig. 6). 400 

Strictly cold species, such as Dicrostonyx torquatus (Artic lemming), Lasiopodomys 401 

gregalis and Lemmus lemmus (Norway lemming) are only represented in French sites, 402 

while in Iberian and Italian sites these species are not present, and the assemblages are 403 

composed mainly of temperate taxa.  404 

Indeed, if we take the example of Baume Moula-Guercy, located in the Ardèche 405 

(France), along the Rhône corridor rodent species characteristic of open environments 406 

and cold climates, such as Dicrostonyx torquatus, Allocricetus bursae, Lasiopodomys 407 

gregalis and Sicista betulina (northern birch mice) are represented in levels assigned to 408 

MIS 6 (XIX to XVI). These small mammals are associated with large mammals such 409 

Rangifer tarandus (reindeer) and Mammuthus primigenius (woolly mammoth). Further 410 

south, in Provence, in the Grotte des Cèdres, these cold species are however absent in the 411 

levels dating from MIS 6 (Defleur and Crégut-Bonnoure, 1995). Rodent associations are 412 

present at the Grotte des Cèdres with a more temperate character (such as M. (I.) 413 

brecciensis, M. (A.) agrestis, Eliomys quercinus, M. (T.) duodecimcostatus and A. (S.) 414 

sylvaticus), similar to what is observed in the CIII and CII complexes of the Lazaret cave. 415 

It would therefore indicate that a latitudinal gradient was relatively well pronounced in 416 

south-eastern France during the late middle Pleistocene (MIS 6). 417 

In Poggetti Vecchi Unit 2 the rodent assemblage is composed of Arvicola 418 

amphibius, Microtus (Terricola) sp. and Microtus cf. M. arvalis (Benvenuti et al. 2017). 419 

In H-02 the rodent assemblage is composed of Allocricetus bursae, Arvicola cf. sapidus. 420 

Microtus (Microtus) arvalis, Microtus (Iberomys) brecciensis and A.gr. sylvaticus-421 

flavicollis (Laplana et al. 2015). In Maltravieso-SH the rodent assemblage is composed 422 

by Eliomys quercinus, M. (Ibeormys) brecciensis, Micortus (Terricola) cf. 423 
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duodecimcostatus, Allocricetus bursae and A.(Sylvaemus) sylvaticus (Hanquet, 2011). In 424 

the lower layers Lezetxiki II, the more abundant rodent species are A. amphibius, M. 425 

(Agricola) agrestis and M. (Terricola) sp. (García-Ibaibarriaga et al. 2018). During MIS 426 

6 Lazaret combines, the presence of strictly Mediterranean species, such as M. (I.) 427 

brecciensis and M. (T.) savii with strictly cold species, such as L. gregalis. This 428 

phenomenon could be related to the position of the site, as previously suggested by 429 

Valensi et al. (2007) and Desclaux (2013), showing that the glacial expansion in the 430 

Maritime-Alps during MIS 6, caused changes in ecology and the area forms a transitional 431 

zone between the steppe identified in the southern limits of permafrost in France and the 432 

forest and grass identified in in the Italian peninsula (Fig. 6). The area therefore may have 433 

acted as a refugial leading edge for some more temperate species. 434 

The nature of the Maritime-Alps coastal areas during MIS 6 was not the same 435 

during the cold stages of the Late Pleistocene. For example, during MIS 4, Mammuthus 436 

primigenius is observed in level 6 of Grotte du Prince and Foyer III of Grotte du Cavillon, 437 

in Ventimiglia, at the French-Italian border (Moussous et al., 2014). Furthermore, during 438 

MIS 2, the cold climate was also sufficiently marked to allow populations of Mammoths 439 

(Mammuthus primigenius) to reach the Mediterranean shores of Liguria, as evidenced for 440 

example by the observations of Braun and Palombo (2012) in the Arene Candide cave in 441 

Finale Ligure, Onoratini et al. (2011) in the Barma Grande, in Ventimiglia. It is possible 442 

that the occurrence of cold adapted taxa in Mediterranean coastal areas only took place 443 

during the Late Pleistocene and that during the Middle Pleistocene the glacial stadials 444 

did not have the same intensity, at least in this region of Europe. 445 

5.3. Comparison with other environmental and climatic proxies in western Europe  446 

Studies of marine cores, terrestrial pollen sequences and speleothems have been 447 

done in western Europe containing the MIS 6 fluctuations (Margari et al. 2010; 2014, 448 
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Roucoux et al. 2011, Wilson et al. 2013, Tzedakis et al. 2003, Guiot et al. 1989; 1993, 449 

Ponel, 1995, Bard et al. 2002, Hodge et al. 2008, Wainer et al. 2013). 450 

The analysis of pollen from the marine core MD01-2444 off the Portuguese coast 451 

divided the penultimate glacial, on basis of the amplitude of the millennial-scale 452 

variability in two main periods (one between 185 to 160 Kya and the other one between 453 

150-135 Kya), with a transitional period (between 160-150 Kya). The early period is 454 

mainly characterized by a prominent oscillation in foraminiferal isotopes and tree pollen 455 

values while the last period is mainly characterized by mild temperature swings in the 456 

Antarctic and minimum tree pollen values. This suggests that MIS 6 is characterized by 457 

cool climatic conditions with an open forest environment (Margari et al. 2010; 2014). 458 

The terrestrial pollen sequences of Ioannina and Tenaghi Philippon in Greece 459 

suggest generally cool and wet conditions for the MIS 6 (Roucoux et al. 2011, Wilson et 460 

al. 2013, Tzedakis et al. 2003). Similarly, the French pollen sequences of Les Echets and 461 

Grande Pile, have mean temperatures and precipitation estimated suggesting MAT 462 

between 12 ºC and 4 ºC and MAP between 200 mm and 800 mm lower than at present 463 

(Guiot et al. 1989; 1993, Ponel, 1995).  464 

The speleothem data coming from the Italian Argentarola cave, the Spanish Gitana 465 

cave and French Villara cave, show lower rainfall values during glacial periods and 466 

specifically characterize MIS 6 by cool and humid climatic conditions (Bard et al. 2002, 467 

Hodge et al. 2008, Wainer et al. 2013). 468 

These data are consistent with the results obtained here where different methods 469 

were applied to the rodent assemblages of Lazaret cave. On one side, the methods applied 470 

to estimate climatic parameters show a generally cold conditions with relatively low 471 

rainfall for all subcomplexes analyzed. On the other hand, the methods applied to 472 

investigate the vegetational landscape show a habitat dominated by deciduous temperate 473 
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forest with humid meadows including relatively high proportions of scrublands (Fig. 4; 474 

5).  475 

The apparent difference in results between the climatic parameter method and the 476 

landscape representation method could be due to a difference in rainfall regime predicted. 477 

Even if the rainfall is lower, however, the way in which precipitation is distributed 478 

throughout the years may have more impact on the vegetation. Unfortunately, it is 479 

currently not possible to reconstruct this variable. 480 

6. Conclusions 481 

On basis of a multi-method approach using the small-vertebrate assemblages of 482 

Lazaret cave MIS 6 sequence to reconstruct the past climate and environment, our 483 

analysis enables the following conclusions to be drawn: 484 

1) The set of the used methods applied to the small-vertebrate associations (mainly 485 

rodents and herpetofauna) from the MIS 6 Lazaret cave sequence suggest a cold 486 

climate with a relatively humid environment dominated by deciduous temperate 487 

forest.  488 

2) The comparison with other proxies (large mammals, birds and marine gastropods) 489 

identified at Lazaret cave shows, in general, the same environmental and climatic 490 

trend (cold climate and relatively humid environmental conditions) as identified 491 

using the small vertebrate assemblages. 492 

3) The comparison with other MIS 6 sites in western Europe that include small 493 

vertebrate studies, shows that, although Lazaret cave is more similar to 494 

Mediterranean sites, than to sites in central France, it combines the presence of 495 

Mediterranean species, such as M. (I.) brecciensis or M. (T.) savii with strictly 496 

cold species, like L. gregalis. This could be related to the geographical position 497 

of the cave, that provides for this period, with the glacial expansion in the 498 
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Maritime-Alps, a transitional zone between the French cold steppe and the warmer 499 

Italian forest-grassland. 500 

4) Finally, the comparison with other climatic and environmental proxies (marine 501 

cores, terrestrial pollen sequences and speleothems) in western Europe 502 

demonstrates similar environmental (open forest landscape) and climatic 503 

conditions (cool and relatively wet climate with a relatively low rainfall values) 504 

as those detected using the small-vertebrate assemblages from Lazaret cave during 505 

MIS 6. 506 
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 811 

Figure 1. Location of the Lazaret cave and the other MIS 6 sites mentioned in the 812 

manuscript. Archaeological sites: MTV-SH (Hanquet, 2011), H-02 (ETB) (Blain et al. 813 

2017; Laplana et al. 2015), Lezetxiki II (García-Ibaibarriaga et al. 2018), Moula-Guercy 814 

(Desclaux and Defleur, 1997), Cèdres (Defleur and Crégut-Bonnoure, 1995), Romain-la-815 

Roche (Guérin et al. 2010), Codoulous (Jaubert et al. 2003), Poggetti Vecchi (Benvenuti 816 

et al. 2017). Pollen sequences: MD01-2444 (Margari et al. 2014), Les Echets (Guiot, 817 

1993), La Grande Pile (Ponel, 1995), Ioannina (Roucoux et al. 2011), Tenaghi Philippon 818 

(Tzedakis et al. 2003). Speleothem data : Gitana cave (Hodge et al. 2008), Villars cave 819 

(Wainer et al. 2013), Argentola cave (Bard et al. 2002). 820 

 821 

Figure 2. Stratigraphic section of Lazaret cave. ESR ages taken from Michel et al. 822 

(2009). 823 

 824 

Figure 3. Some rodent’s teeth identified from Lazaret cave. 1-4. m1 left Microtus 825 

(Agricola) agrestis; 5-7 m1, two left-one right Microtus (Terricola) multiplex; 8-11. m1, 826 

two left-two right Arvicola mosbachensis; 12-13. M11, one right-one left Pliomyssp. 827 

nov.; 14-15. M1 and M2 right and M1 left Apodemus (Sylvaemus) sylvaticus; 16. m1 right 828 

Cricetus cricetus. All teeth are in occlusal view. 829 

  830 
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Figure 4. Comparison of the climate and landscape values obtained with the rodent’s 831 

assemblages from the different complex and sub-complex of Lazaret Cave with the 18O 832 

isotope curve values (modified from Railsback et al. 2015) for the MIS 6. BM: 833 

Bioclimatic Model; QE: Quantified Ecology; MAT: Mean Annual Temperature; MAP: 834 

Mean Annual Precipitation; TF: Temperate forest; RF: Riparian Forest; HM; Humid 835 

Meadow; DF: Deciduous Forest; HH: Humid Habitat; Sh: Shrubland; Med: 836 

Mediterranean; THI: Taxonomic Habitat Index. 837 

 838 

Figure 5. Values obtained of the Simpson diversity index (1-D) for the sub-complexes of 839 

Lazaret cave. MNI: Minimum Number of Individuals 840 

 841 

Figure 6. Location of the different archaeological sites with small vertebrate studies in 842 

relation with the MIS 6 glacial expansion (modified from Litt et al. 2007). 1. Lazaret 843 

cave; 2. Romain-la-Roche; 3. Moula-Guercy; 4. Codoulous; 5. Grotte des Cèndres ; 6. 844 

Poggetti Vecchi; 7. Lezetxiki II; 8. Maltravieso-Sala de los Huseos; 9. Estanque de 845 

Tormentas Butarque (H-02) 846 

 847 

Table 1. Minimum number of individuals (MNI) and percentage of minimum number of 848 

individuals (% MNI) of the rodent’s assemblage from the different sub-complexes of 849 

Lazaret cave. 850 

 851 

Table 2. Herpetofaunal presence/absence faunal list from the different sub-complexes of 852 

Lazaret cave 853 

 854 

Table 3. Repartition of the rodent species according to the Taxonomic Habitat Index 855 

(THI) 856 

 857 

Table 4. Repartition of the rodent’s species according to the Climatogram method 858 

 859 

Table 5. Repartition of rodent’s species in climates types according to the Bioclimatic 860 

Model. IV Subtropical with winter rains and summer droughts; VI Typical temperate; VII 861 

Arid temperate; VIII Cold-temperate (boreal) and IX Polar. 862 

 863 

Table 6. Repartition of small-vertebrate species by mean temperature and mean 864 

precipitation according to the Quantified Ecology method. 865 

 866 
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Table 7. Comparison of the data obtained by means of the various climatic methods used 867 

applied to the small vertebrate assemblage’s sub-complexes of Lazaret cave with the 868 

current mean temperature and precipitation. MAT: Mean Annual Temperature; MAP: 869 

Mean Annual Precipitation; SD: Standard deviation of the obtained values; Δ: difference 870 

with the nowadays values. 871 

 872 

Table 8. Repartition of rodent’s species by climate types to obtain the Bioclimatic 873 

component (BC) values. CRI: Climatic Restriction Index; S: total number of the species; 874 

IV Subtropical with winter rains and summer droughts; VI Typical temperate; VII Arid 875 

temperate; VIII Cold-temperate (boreal) and IX Polar. 876 

 877 

Table 9. Repartition of the percentages obtained with the Taxonomic Habitat Index (THI) 878 

applied to the Lazaret cave rodent’s assemblages 879 

 880 

Table 10. Repartition of the percentages obtained with the Climatogram method applied 881 

to the Lazaret cave rodent’s assemblages 882 


