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Integrated paper: Acute cardiovascular responses to slow and deep 

breathing in normotensive non-pregnant and pregnant women 

 

Introduction  

 

Slow and deep breathing (SDB) is recommended by the American Heart Association for 

use as an adjunctive treatment for hypertension (Brook et al. 2013). A recent meta-

analysis of studies of SDB in primary hypertension found that following daily practice of 

SDB reductions of up to 5.26 mmHg for systolic blood pressure (SBP) and 2.97 mmHg 

for diastolic blood pressure (DBP) were observed (Chaddha et al. 2019). However, there 

is limited understanding of the acute cardiovascular responses to SDB, which produce 

the error signal(s) to reduce blood pressure (BP) chronically, as well as a lack of research 

investigating the underlying mechanisms (Gerritsen and Band 2018). 

 

A recent study (Felton et al. 2021 – in preparation) revealed that SDB increased the 

amplitude of respiratory sinus arrythmia (RSA) and BP oscillations, with maximal 

amplitudes occurring at 6 breaths.min-1. However, 6 breaths.min-1 was the lowest 

breathing frequency assessed and it is unknown whether lower breathing frequencies 

could increase the amplitude of cardiovascular oscillations further. To date, previous 

studies that have compared cardiovascular responses to SDB at a range of frequencies 

have done so using a SDB protocol that reduced breathing frequency dynamically, with 

only short durations at each individual SDB frequency (Anderson et al. 2009; Zhang et 

al. 2009). A systematic characterisation of the acute cardiovascular responses to a range 

of steady-state SDB frequencies is therefore needed. This may also shed light on the 

potential error signal(s) responsible for the anti-hypertensive effect of SDB following daily 

practice. 

 

Felton et al. (2021) found that there was no difference between the acute cardiovascular 

responses of men and women to SDB. However, pregnancy induces a series of 

cardiovascular adaptations, which may change the acute response to SDB, compared 

with those of non-pregnant women. During pregnancy, baseline cardiovascular 

measures such as heart rate, stroke volume and cardiac output are increased above 

normal non-pregnant levels (Soma-Pillay et al. 2016). It is possible that these changes 

in baseline cardiovascular function may influence the acute cardiovascular response to 

SDB. Additionally, the health benefits and reductions in BP associated with SDB are 

suggested to be related to diaphragmatic breathing (Gerritsen and Band 2018), however 

during pregnancy the diaphragm is forced upwards by as much as 5 cm (Elkus and 
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Popovich Jr 1992), which may limit its mobility and the ability to perform SDB and/or 

achieve any associated health benefits. 

 

The need to understand the acute responses to SDB during pregnancy is important due 

to a specific condition called pregnancy-induced hypertension (PIH). PIH is defined as 

high blood pressure, presenting after 20 weeks of pregnancy, which was not present 

prior pregnancy (NICE: National Institute for Health and Care Excellence 2019). PIH 

occurs in up to 15% of pregnancies (James and Nelson-Piercy 2004) and there is an 

increased risk for obstetric complications for these women (Scantlebury et al. 2013). 

There is potential for SDB to offer an effective treatment for PIH (Felton et al. 2021), and 

women who develop PIH are a promising group in which to investigate SDB as a potential 

treatment method. Firstly, many pregnant women are highly motivated to adhere to and 

undertake non­pharmacological interventions (Adams et al. 2009) as many have an 

aversion to medication (Twigg et al. 2016). The aetiology of PIH has also been linked to 

high breathing frequencies (Fischer and Voss 2014) and dysfunctional breathing (Jerath 

et al. 2009). SDB may be an important component of behavioural interventions aimed at 

reducing BP (Sica 2011) and therefore pregnant women are an ideal group to investigate 

the use of SDB to treat hypertension. 

 

Prior to undertaking an intervention there is a need to characterise and understand the 

acute responses to SDB of pregnant women and whether these differ from non-pregnant 

women. This normative and baseline data is needed as a comparison before moving 

forward to use SDB with women who develop PIH. The characterisation of acute 

cardiovascular responses can also support the development of SDB interventions 

designed specifically for pregnant women, based on their measured acute 

cardiovascular responses, including recognition of any preferences for specific breathing 

frequencies. Consequently, the present study compared the acute cardiovascular 

responses of non-pregnant and pregnant women to SDB at a range of breathing 

frequencies.  

 

Methods 

 

All experiments conformed to the Declaration of Helsinki and the experimental protocol 

was approved by Bournemouth University’s Research Ethics Committee. Written 

informed consent was obtained from all participants prior to participating in the study.  
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Participants 

Forty-one women participated in the study: 23 healthy non-pregnant women and 18 

healthy pregnant women. All non-pregnant participants were of reproductive age as 

defined by the World Health Organization (2006) and all pregnant women were over 20 

weeks gestation. Participants were recruited from the local student and staff population 

and using local antenatal and maternal groups including social media. All pregnant 

women were nulliparous and were carrying single pregnancies. Participants diagnosed 

with any cardiovascular or respiratory disease were excluded, as were smokers and 

women who vaped. All participants were normotensive at the time of data collection and 

the pregnant women submitted regular BP measurements until birth to confirm they did 

not subsequently develop high BP during their pregnancy.  

 

Participants attended one session at the Cardiorespiratory Research Laboratory at 

Bournemouth University. Prior to the data collection session participants refrained from 

eating for 2 hours and from caffeine, strenuous exercise and alcohol for 12 hours. 

Average lab conditions during data collection were 24.0 ± 3.2 oC, 992.6 ± 13.5 hPa, 42.6 

± 10.6%. 

 

Slow and Deep Breathing Protocol 

Participants completed five breathing conditions in a randomised order; spontaneous 

breathing (Sfr), 4 (4Ffr), 6 (6Ffr), and 8 (8Ffr) breaths.min-1, and a dynamic frequency 

using an optimisation algorithm (Dfr), which maximised respiratory sinus arrythmia 

(RSA). All breathing conditions were 5-minutes in duration with a 5-minute break of 

normal breathing between each measurement. All SDB conditions were delivered using 

Bournemouth University’s Brythm app, which delivers either fixed breathing frequencies 

(4Ffr, 6Ffr, 8Ffr) or uses a novel, bespoke algorithm to deliver a personalised dynamic 

frequency (Dfr). The bespoke algorithm maximises cardiovascular perturbation, using the 

amplitude of RSA as the controlled variable. Changes in RSA are measured from a finger 

sensor (photoplethysmography), connected via the headphone socked of an iPad. The 

app displays visual feedback on an iPad screen to guide breathing; user’s inhale when 

the dome graphic rises and exhale when the dome falls (Figure Error! No text of 

specified style in document.-1). 
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Figure Error! No text of specified style in document.-1 Screenshots of Brythm 
graphic 
N.B: Arrows do not appear on app but are shown here to display the direction of graphic 
movement. 

 

Breathing frequencies of 4 and 8 breaths.min-1 were chosen to bookend the widely 

reported ‘optimal’ breathing frequency of 6 breaths.min-1 (Cullins et al. 2013; Russo et al. 

2017), in order to explore cardiovascular responses at a wider range of SDB frequencies. 

Following completion of the protocol, the pregnant participants were asked which 

breathing condition they felt most comfortable breathing at and would choose to use if 

they were asked to continue undertaking the breathing exercise daily until birth.  

 

Data Acquisition 

During each breathing condition, respiratory airflow, ECG and arterial blood pressure 

(ABP) were monitored continuously. Participants were seated in an upright position, at 

an approximate angle of 60o. Respired flow rate was measured continuously using a 

heated pneumotachograph (Model 3700, Hans Rudolph Inc., Kansas, USA), connected 

to a flow measurement system (RSS 100-HR, Hans Rudolph Inc., Kansas, USA) while 

participants wore an oronasal mask (Oro Nasal 7450 V2 Mask, Hans Rudolph Inc., 

Kansas, USA). 

 

A 3-lead ECG measured heart rate continuously, whilst non-invasive beat-to-beat ABP 

was obtained using finger photoplethysmography (Finapres NOVA, Finapres Medical 

Systems, The Netherlands). Finapres derived ABP was calibrated using a brachial cuff 

prior to and halfway through data collection. Analogue outputs from the Finapres NOVA 

and the flow meter were sampled continuously at 250Hz via an analogue to digital 

converter (NI USB-6218 BNC, National Instruments Inc.) and captured using bespoke 

acquisition and analysis software (LabView 2015, National Instruments, Inc.). The 

LabView software corrected for the 4 second delay between the Finapres NOVA output 

and the respiratory output. Stroke volume (SV) was calculated using the Modelflow 

method by the Finometer. Total peripheral resistance (TPR) was calculated as mean 

arterial pressure divided by cardiac output (Q̇). Pulse wave analysis (PWV) was 

calculated as the distance between sternal notch and Finometer finger cuff divided by 

pulse transit time (Hansen 2010). Pulse transit time was calculated as the time delay 

between the peak of the R wave of the ECG and the peak of the pressure pulse recorded 

at the finger.  

 

Data Analysis 

The LabView bespoke software calculated and analysed variables beat-by-beat and 

breath-by-breath, including the minimum, maximum and mean values for each inhalation 
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and exhalation breath phase. Data were averaged across each 5-minute breathing 

condition.  

 

Values are expressed as means ± SD unless stated otherwise. Statistical analysis was 

undertaken using SPSS Statistics 26 (IBM Corp.). After normality was confirmed 

(Shapiro Wilk) repeated measures ANOVA with planned pairwise comparisons using 

Bonferroni corrections were used. Between group (pregnant and non-pregnant) 

comparisons used independent samples t-tests. Reported p values are those following 

adjustment for repeated comparisons. For all analyses, P was set at 0.05. 

 

Respiratory sinus arrhythmia (RSA) was calculated using two methods 1) the difference 

between the average heart rate (fc) during inhalation (fci) and exhalation (fce) (fcΔ); 2) the 

difference in maximum and minimum beat-to-beat intervals (RR) during inhalation and 

exhalation respectively (RSA). RSA is a variable calculated to determine the amplitude 

of heart rate rhythms using the ‘peak-valley’ method, which was also used to analyse all 

variables including BP in the present study.  

 

The following calculations of variables are displayed on an example sinewave in Figure 

Error! No text of specified style in document.-2 (with corresponding calculation 

numbers). Inter-breath phase indices (Δ) were quantified as the difference between 

mean inspiration (i) and mean expiration (e) values for all variables (calculation 4). Peak-

valley (PV) indices were calculated as maximum minus minimum values during 

inspiration (Δi: calculation 6) and expiration (Δe: calculation 5). Inter-breath phase PV 

indices (ΔPV) were calculated using maximum inspiration minus minimum expiration, or 

minimum inspiration minus maximum expiration, dependent on which calculation gave 

the largest difference. Calculation 7 shows an example using the calculation maximum 

inspiration minus minimum expiration. PV indices irrespective of breath phase, known 

as peak-valley breath phase independent calculations (ΔPV_Ind), were calculated as the 

difference between the maximum and minimum values, irrespective of the breath phase 

in which they occurred.  
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Figure Error! No text of specified style in document.-2 Calculations for example 
cardiovascular variable plot 
1) Ave = average of whole breath. 2) i = Average inspiration. 3) e = Average expiration. 4) Δ = i – 
e (average inspiration – average expiration). 5) Δe = Max E – Min E. 6) Δi = Max I – Min I. 7) ΔPV 
= Max I – Min E (Note ΔPV calculation varies and can be Min I – Max E depending on which 
calculation provides largest difference). 

 

Results 

 

Data were collected from 41 participants. Six participants were excluded from the 

analysis; three due to technical errors in the measurement of respiratory airflow, two 

because the participant failed to adhere to the prescribed breathing condition and one 

due to failure of the acquisition system to save the signal data. Consequently, data 

analysis was performed on data from 18 non-pregnant women and 17 pregnant women 

(Table Error! No text of specified style in document.-1). There were no significant 

differences in age, stature, systolic blood pressure (SBP) or diastolic blood pressure 

(DBP) between non-pregnant and pregnant participants. Mass was significantly greater 

(28%) in pregnant women, accounted for by the growing fetus. 
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Table Error! No text of specified style in document.-1 Participant characteristics 

 Non-pregnant Pregnant P value 

 n = 18 n = 17  

Age (years) 30.1 ± 8.8 32.0 ± 5.4 0.455 

Stature (m) 1.66 ± 0.5 1.67 ± 0.8 0.706 

Mass (kg) 65.6 ± 10.3 84.1 ± 13.4 <0.001* 

Baseline SBP (mmHg) 113.9 ± 9.1 118.2 ± 7.7 0.141 

Baseline DBP (mmHg) 68.9 ± 8.0 71.9 ± 7.9 0.265 

Gestational age (weeks) N/A 31.4 ± 5.2 N/A 

Systolic blood pressure (SBP), diastolic blood pressure (DBP); *significant difference between 
groups. 

 

Respiratory variables 

 

Table Error! No text of specified style in document.-2 shows the respiratory 

parameters for both groups. Breathing frequency (fr) was not significantly different 

between pregnant and non-pregnant women for any breathing conditions, including 

spontaneous breathing. The dynamic breathing frequency (Dfr) was significantly different 

from 6 breaths.min-1 for pregnant women (p=0.02), but not for non-pregnant women. All 

other breathing frequencies were significantly different from each other. Sfr was not 

correlated with gestational age (R2=0.14) and neither was the average optimal breathing 

frequency based on RSA maximisation during Dfr (R2=0.11). 

 

Tidal volume was significantly higher for pregnant women during spontaneous breathing  

(Sfr, p=0.015), but not during any SDB conditions. Duty cycle remained consistent 

throughout conditions and was not significantly different between groups or between 

breathing conditions. 

 

Table Error! No text of specified style in document.-2 Respiratory parameters 

  Sfr 8Ffr Dfr 6Ffr 4Ffr 

fr 
Non-pregnant 13.3 ± 2.1¥¤†§ 8.0 ± 0.0*¤†§ 6.3 ± 1.1*¥§ 6.0 ± 0.0*¥§ 4.0 ± 0.0*¥¤† 

Pregnant 14.2 ± 2.7¥¤†§ 8.0 ± 0.1*¤†§ 7.0 ± 1.1*¥†§ 6.0 ± 0.0*¥¤§ 4.0 ± 0.0*¥¤† 

VT 
Non-pregnant 0.4 ± 0.2¥¤†§ 0.9 ± 0.4*†§ 1.0 ± 0.4* 1.1 ± 0.4*¥ 1.3 ± 0.4*¥ 

Pregnant 0.8 ± 0.5¤†§ 1.1 ± 0.3§ 1.1 ± 0.3*§ 1.5 ± 0.7* 1.6 ± 0.6*¥¤ 

TI / 

TTOT 

Non-pregnant 0.42 ± 0.0¥¤†§ 0.48 ± 0.0* 0.48 ± 0.0* 0.50 ± 0.1* 0.48 ± 0.0* 

Pregnant 0.54 ± 0.4 0.52 ± 0.2 0.48 ± 0.1 0.47 ± 0.0 0.56 ± 0.3 

Data represent mean ± SD (non-pregnant n = 18, pregnant n = 17); Spontaneous breathing (Sfr), 
fixed breathing frequency of 4 breaths.minute-1 (4Ffr), 6 breaths.minute-1 (6Ffr), 8 breaths.minute-1 
(8Ffr), optimisation algorithm dynamic breathing frequency (Dfr); breathing frequency (fr) in 
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breaths.min-1, tidal volume (VT) in L, duty cycle (TI /TTOT); Significantly different from Sfr (*), 8Ffr 
(¥), Dfr (¤), 6Ffr (†), 4Ffr (§); P<0.05. 

 

Arterial blood pressures 

 

There were no significant differences for mean SBP or DBP between breathing 

conditions or between groups (see supplementary data). SBP and DBP peak-valley 

amplitude during breath phase (maximum minus minimum values) were significantly 

greater during both inspiration (Δi) and expiration (Δe) for all SDB conditions compared 

with spontaneous breathing (Table 7-3). This was true for both pregnant and non-

pregnant women (p<0.001). The only significant difference in SBPΔPV between 

pregnant and non-pregnant groups was for the 6Ffr condition (p=0.001).  

 

Peak-valley breath phase independent values (ΔPV_Ind) were higher for both pregnant 

and non-pregnant women compared with peak-valley analysis linked to breath phase 

(ΔPV). 

 

Table Error! No text of specified style in document.-3 Peak-valley differences (±SD) 

for blood pressure variables (mmHg) 

Data represent mean ± SD (non-pregnant n = 18, pregnant n = 17); Non-pregnant (NP), Pregnant 
(P); Spontaneous breathing (Sfr), fixed breathing frequency of 4 breaths.minute-1 (4Ffr), 6 
breaths.minute-1 (6Ffr), 8 breaths.minute-1 (8Ffr), optimisation algorithm dynamic breathing 

 

 Sfr 8Ffr Dfr 6Ffr 4Ffr 

Effect of 

condition 

P value 

Group 

difference 

P value 

SBP 

Δi 

NP 3.6 ± 1.7¥¤†§ 8.2 ± 2.9*¤†§ 12.8 ± 5.4*¥ 13.5 ± 4.6*¥ 15.5 ± 6.1*¥ <0.001 

0.925 P 3.4 ± 1.5¥¤†§ 9.1 ± 2.6*¤† 11.2 ± 3.7*¥ 11.7 ± 3.8*¥ 12.9 ± 4.9* <0.001 

SBP 

Δe 

NP 4.5 ± 2.5¥¤†§ 6.9 ± 2.7*¤†§ 10.2 ± 4.6*¥ 10.5 ± 4.6*¥ 12.1 ± 6.6*¥ <0.001 

0.592 P 3.7 ± 1.6¥¤†§ 7.4 ± 2.5*¤† 9.0 ± 2.4*¥ 9.7 ± 3.0*¥ 11.7 ± 6.1* <0.001 

SBP 

ΔPV 

NP -8.6 ± 3.6 -13.1 ± 7.0§ -11.5 ± 13.6§ -15.3 ± 9.5§ 2.3 ± 18.4¥¤† 0.001 

0.005 P -7.7 ± 2.6§ -8.5 ± 9.0§ -3.7 ± 13.1§ 0.8 ± 14.7§ 12.3 ± 9.8*¥¤† <0.001 

SBP 

ΔPV_Ind 

NP 15.0 ± 6.1 17.5 ± 5.6 19.1 ± 6.3 19.0 ± 5.1 17.4 ± 6.9 0.014 

0.089 P 12.9 ± 4.7§ 13.9 ± 3.7 15.9 ± 3.1 15.9 ± 3.8 17.6 ± 6.0* 0.033 

DBP 

Δi 

NP 2.5 ± 1.2¥¤†§ 5.2 ± 1.8*¤†§ 8.8 ± 2.9*¥ 9.3 ± 3.1*¥ 10.0 ± 3.0*¥ <0.001 

0.118 P 1.8 ± 0.8¥¤†§ 6.6 ± 2.2* 7.7 ± 2.7* 7.5 ± 3.5* 7.6 ± 3.1* <0.001 

DBP 

Δe 

NP 3.2 ± 1.6¥¤†§ 5.6 ± 2.1*¤†§ 7.6 ± 3.1*¥ 8.2 ± 3.2*¥ 8.8 ± 3.1*¥ <0.001 

0.553 P 2.7 ± 1.3¥¤†§ 6.7 ± 2.2*† 7.6 ± 1.8* 8.3 ± 2.2*¥ 9.9 ± 4.0* <0.001 

DBP 

ΔPV 

NP -4.0 ± 2.2¥§ -7.6 ± 2.0*§ -1.9 ± 11.2§ -3.4 ± 11.1§ 11.6 ± 7.3*¥¤† <0.001 

0.097 P -4.6 ± 1.7†§ -6.1 ± 6.7†§ 0.7 ± 9.3§ 5.3 ± 9.1*¥ 11.4 ± 3.4*¥¤ <0.001 

DBP 

ΔPV_Ind 

NP 9.9 ± 4.4 10.6 ± 2.9 12.1 ± 3.3 12.1 ± 2.5 12.7 ± 3.3 0.014 

0.130 P 7.9 ± 2.8†§ 9.7 ± 2.8 10.3 ± 2.4 10.4 ± 2.7* 12.8 ± 5.5* 0.005 
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frequency (Dfr); systolic blood pressure (SBP; mmHg), diastolic blood pressure (DBP; mmHg); 
within inspiration difference (∆i), within expiration difference (∆e), inter-breath phase peak-valley 
difference (∆PV), breath phase independent peak-valley difference (∆PV_Ind); Significantly 
different from Sfr (*), 8Ffr (¥), Dfr (¤), 6Ffr (†), 4Ffr (§); P<0.05. 

 

A high correlation (>0.8) was observed between SBPΔi and SBP and between SBPΔe 

and SBP, including DBP equivalents, across all breathing conditions. To reveal the 

change in the amplitude of BP oscillations relative to mean BP, percentage change BP 

oscillations were calculated during each breath phase (peak-valley difference (Δi or Δe) 

as a percentage of average BP during corresponding inspiration or expiration (Figure 

Error! No text of specified style in document.-3). All SDB conditions were significantly 

different from Sfr for all percentage BP oscillations (%SBPΔi, %DBPΔi, %SBPΔe, 

%DBPΔe) for both non-pregnant and pregnant women. There were no significant 

differences between groups.
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Figure Error! No text of specified style in document.-3 Blood pressure oscillations: Relative change for systolic blood pressure of Δi (A), Δe (B) 
and diastolic blood pressure of Δi (C), Δi (D) 

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 4 6 8 10 12 14 16

S
B

P
 P

V
∆

i 
c

h
a

n
g

e
 (

%
)

A

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 4 6 8 10 12 14 16

D
B

P
 P

V
∆

i 
c

h
a

n
g

e
 (

%
)

Non-pregnant FfR

Non-pregnant SfR

Non-pregnant DfR

Pregnant FfR

Pregnant SfR

Pregnant DfR

C

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 4 6 8 10 12 14 16

D
B

P
 P

V
∆

e
 c

h
a

n
g

e
 (

%
)

Breathing frequency (breaths.min-1)

D

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 4 6 8 10 12 14 16

S
B

P
 P

V
∆

e
 c

h
a
n

g
e
 (

%
)

Breathing frequency (breaths.min-1)

B



11 

Systolic blood pressure (SBP), diastolic blood pressure (DBP); within expiration difference (∆i); within expiration difference (∆e); Fixed breathing frequency (Ffr) 
Spontaneous breathing (Sfr), optimisation algorithm dynamic breathing frequency (Dfr). Variable calculated as SBP∆i as a percentage of average SBP during 
inspiration, or equivalent during expiration and for DBP.  
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Antenatal appointment recorded BP data (available for 58.8% of participants), revealed that 

no pregnant participants who submitted data developed hypertension following participating 

in the data collection session (defined as SBP <140 mmHg and/or DBP <90 mmHg). 

 

Heart rate and respiratory sinus arrythmia 

 

Peak-valley amplitude changes in heart rate during inspiration were significantly different 

between pregnant and non-pregnant women for all SDB conditions, except Sfr (Table Error! 

No text of specified style in document.-4). There was also a significant increase for mean 

heart rate between non-pregnant and pregnant women, and for mean heart rate during 

inspiration and expiration for all conditions (see supplementary data). Peak-valley amplitude 

during expiration (fcΔe) and inter-breath phase (fcΔPV) were significantly higher during all SDB 

conditions compared with Sfr for both pregnant and non-pregnant participants (Table Error! 

No text of specified style in document.-4). 

 

Table Error! No text of specified style in document.-4 Peak-valley differences (±SD) for 
heart rate (fc) and respiratory sinus arrythmia (RSA) 

 

 Sfr 8Ffr Dfr 6Ffr 4Ffr 

Effect of 

condition 

P value 

Group 

difference 

P value 

fc 

Δi 

NP 5.4 ± 2.2¥¤†§ 14.4 ± 6.9* 15.5 ± 6.2* 15.5 ± 5.9* 15.9 ± 7.1* <0.001 

0.002 P 4.5 ± 2.9¥¤†§ 8.4 ± 5.0* 9.3 ± 5.2* 9.6 ± 5.8* 11.3 ± 5.7* <0.001 

fc 

Δe 

NP 7.3 ± 3.2¥¤† 14.3 ± 6.0* 14.1 ± 8.4* 13.4 ± 6.7* 10.3 ± 8.3 <0.001 

0.145 P 6.1 ± 4.4¥¤ 10.5 ± 5.2* 9.9 ± 4.6* 9.7 ± 4.0 11.0 ± 6.0 0.004 

fc 

ΔPV 

NP -6.6 ± 5.1¥¤†§ 16.1 ± 8.9*¤† 20.7 ± 8.5*¥ 20.6 ± 7.5*¥ 21.1 ± 9.5* <0.001 

0.044 P -3.1 ± 7.4¥¤†§ 13.4 ± 6.8* 15.3 ± 7.8* 15.1 ± 6.8* 11.2 ± 12.7* <0.001 

RSA 

(s) 

NP 0.12 ± 0.1¥¤†§ 0.21 ± 0.1*¤† 0.25 ± 0.1*¥ 0.25 ± 0.1*¥ 0.25 ± 0.1* <0.001 

0.002 P 0.07 ± 0.1¥¤†§ 0.13 ± 0.1* 0.15 ± 0.1* 0.15 ± 0.1* 0.15 ± 0.1* <0.001 

Data represent mean ± SD (non-pregnant n = 18, pregnant n = 17); Non-pregnant (NP), Pregnant (P); 
Spontaneous breathing (Sfr), fixed breathing frequency of 4 breaths.minute-1 (4Ffr), 6 breaths.minute-1 
(6Ffr), 8 breaths.minute-1 (8Ffr), optimisation algorithm dynamic breathing frequency (Dfr); heart rate (fc; 
beats.min-1), respiratory sinus arrythmia (RSA; s); within inspiration difference (∆i), within expiration 
difference (∆e), inter-breath phase peak-valley difference (∆PV); Significantly different from Sfr (*), 8Ffr 
(¥), Dfr (¤), 6Ffr (†), 4Ffr (§); P<0.05. 

 
RSA was significantly lower for the pregnant women, compared with non-pregnant women for 

all breathing conditions (p<0.001). RSA during SDB for pregnant women increased to a level 

similar to that observed during spontaneous breathing (Sfr) for non-pregnant women (Figure 

Error! No text of specified style in document.-4) and plateaued (saturated) at 6 breaths.min-

1 (6Ffr) for both groups. The maximum amplitude of RSA during SDB (≤6 breaths.min-1) was 
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2.1 times higher than RSA during Sfr for both the non-pregnant and pregnant group, albeit 

lower in absolute terms for pregnant women. 

 

 

Figure Error! No text of specified style in document.-4 Respiratory sinus arrythmia (RSA) 
response to slow and deep breathing 
Values are mean ± SD; Respiratory sinus arrhythmia (RSA); Fixed breathing frequency (Ffr) 
Spontaneous breathing (Sfr), optimisation algorithm dynamic breathing frequency (Dfr). 

 

Stroke volume and cardiac output 

 

Mean stroke volume (SV) and cardiac output (Q̇) were significantly higher for pregnant 

participants than non-pregnant participants (supplementary data). Peak-valley amplitude for 

SV and Q̇ during inspiration and expiration (SVΔi, SVΔe, Q̇Δi, Q̇Δe) were significantly different 

during all SDB conditions compared with Sfr for non-pregnant and pregnant participants (Table 

Error! No text of specified style in document.-5). The only exception was SVΔi, which was 

not significantly different between 8Ffr and Sfr for non-pregnant women. Peak-valley SV was 

significantly different between pregnant and non-pregnant women during all SDB conditions 

but not during Sfr (p<0.005). Peak-valley breath phase independent values were higher for SV 

and Q̇, compared with peak-valley values linked with breath phases for both non-pregnant and 

pregnant women. 
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Table Error! No text of specified style in document.-5 Peak-valley differences (±SD) for 
stroke volume (SV) and cardiac output (Q̇) 

Data represent mean ± SD (non-pregnant n = 18, pregnant n = 17); Non-pregnant (NP), Pregnant (P); 
Spontaneous breathing (Sfr), fixed breathing frequency of 4 breaths.minute-1 (4Ffr), 6 breaths.minute-1 
(6Ffr), 8 breaths.minute-1 (8Ffr), optimisation algorithm dynamic breathing frequency (Dfr); stroke volume 
(SV; ml), cardiac output (Q̇; ml.min-1); within inspiration difference (∆i), within expiration difference (∆e), 
inter-breath phase peak-valley difference (∆PV); breath phase independent peak-valley difference 
(∆PV_Ind). Significantly different from Sfr (*), 8Ffr (¥), Dfr (¤), 6Ffr (†), 4Ffr (§); P<0.05. 

 

Total peripheral resistance and pulse wave velocity 

 

Table Error! No text of specified style in document.-6 shows a significant increase in TPRΔi 

and TPRΔe during SDB compared with Sfr for both pregnant and non-pregnant women.  

 

 

 

 

 

 

 

 

 Sfr 8Ffr Dfr 6Ffr 4Ffr 

Effect of 

condition 

P value 

Group 

difference 

P value 

SVΔi 

 

NP 5.1 ± 2.0¤†§ 7.3 ± 3.9§ 7.1 ± 3.5*§ 7.7 ± 4.0*§ 11.8 ± 4.9*¥¤† <0.001 

0.014 P 5.8 ± 2.0¥¤†§ 9.0 ± 2.8*†§ 10.7 ± 3.7*§ 11.0 ± 3.3*¥§ 15.3 ± 5.0 *¥¤† <0.001 

SVΔe 

 

NP 5.6 ± 2.0¥¤†§ 8.2 ± 3.1*§ 8.9 ± 4.0*§ 9.2 ± 3.9* 13.5 ± 6.3*¥¤ <0.001 

0.827 P 5.2 ± 1.9¥¤†§ 7.9 ± 2.3*§ 9.2 ± 2.3*§ 9.6 ± 2.3*§ 12.5 ± 3.7 *¥¤† <0.001 

SV 

ΔPV 

NP -8.9 ± 5.5§ -13.1 ± 8.0§ -13.8 ± 8.5 -14.6 ± 7.6 -18.6 ± 6.9*¥ 0.001 

0.002 P -8.0 ± 6.5 -2.9 ± 12.1 -3.4 ± 15.1 -1.7 ± 14.8 -0.4 ± 17.7 0.119 

SVΔPV 

_Ind 

NP 11.9 ± 4.2§ 13.7 ± 5.9 13.6 ± 6.4 13.4 ± 6.4 16.2 ± 6.4* 0.027 

0.361 P 13.0 ± 4.0§ 13.4 ± 4.1§ 15.5 ± 5.6 15.6 ± 4.6 18.0 ± 5.2*¥ 0.002 

Q̇Δi NP 292 ± 119¥¤†§ 1092 ± 646* 1107 ± 561* 1129 ± 607* 1073 ± 474* <0.001 

0.063 P 586 ± 293¥¤†§ 1151 ± 348* 1340 ± 468* 1292 ± 422* 1453 ± 300* <0.001 

Q̇Δe NP 414 ± 184¥¤†§ 831 ± 359* 840 ± 469* 787 ± 424* 747 ± 413* <0.001 

0.018 P 563 ± 265¥¤†§ 920 ± 243* 1012 ± 336* 1040 ± 355* 1164 ± 479* <0.001 

Q̇ 

ΔPV 

NP -738 ± 203¥¤†§ -638 ± 1153¤†§ 402 ± 1268*¥ 493 ± 1208*¥ 903 ± 923*¥ <0.001 

<0.001 P -745 ± 663¥¤†§ 1181 ± 732* 1432 ± 870* 1431 ± 842* 1452 ± 901* <0.001 

Q̇ΔPV 

_Ind 

NP 1352 ± 1982 1302 ± 667 1366 ± 1038 1191 ± 565 1018 ± 540 0.489 

0.409 P 1198 ± 341 1382 ± 302 1602 ± 553 1496 ± 373 1426 ± 282 0.006 
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Table Error! No text of specified style in document.-6 Peak-valley differences (±SD) for 
total peripheral resistance (TPR) and pulse wave velocity (PWV) variables 

 

 Sfr 8Ffr Dfr 6Ffr 4Ffr 

Effect of 

condition 

P value 

Group 

difference 

P value 

TPR 

Δi 

NP 1.8 ± 2.2¥†§ 4.0 ± 1.9* 3.0 ± 1.2 4.3 ± 2.4* 3.5 ± 1.7* <0.001 

0.001 P 1.1 ± 0.6¥¤†§ 1.8 ± 0.8* 2.0 ± 0.8* 2.0 ± 0.9* 2.2 ± 0.7* <0.001 

TPR 

Δe 

NP 2.1 ± 2.0† 3.1 ± 1.4 2.8 ± 1.5 3.7 ± 2.3* 3.2 ± 1.3 0.020 

0.006 P 1.1 ± 0.6¤†§ 1.7 ± 1.1† 2.0 ± 1.2* 2.2 ± 1.1*¥ 2.2 ± 1.0* <0.001 

TPR 

ΔPV 

NP 2.3 ± 3.8¤† 0.8 ± 4.7 -3.3 ± 2.7* -3.3 ± 5.1* 0.3 ± 4.8 <0.001 

0.115 P 0.4 ±1.7¥¤† -2.8 ± 1.3* -2.9 ± 1.2* -2.5 ± 1.7* -0.7 ± 2.7 <0.001 

TPRΔPV 

_Ind 

NP 6.0 ± 6.3 5.2 ± 2.1 4.4 ± 1.9 5.4 ± 2.7 4.1 ± 1.7 0.192 

0.002 P 2.5 ± 1.1 3.0 ± 1.4 2.9 ± 1.2 2.8 ± 1.4 2.6 ± 1.1 0.159 

PWVΔi NP 0.2 ± 0.1¥¤†§ 0.4 ± 0.2* 0.5 ± 0.2* 0.5 ± 0.2* 0.4 ± 0.1* <0.001 

0.194 P 0.2 ± 0.1¥¤†§ 0.6 ± 1.3*†§ 0.3 ± 0.1* 0.4 ± 0.2*¥ 0.5 ± 0.2*¥ <0.001 

PWVΔe NP 0.3 ± 0.1¥¤† 0.4 ± 0.2* 0.5 ± 0.2* 0.4 ± 0.2* 0.4 ± 0.2 0.001 

0.528 P 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.4 0.3 ± 0.1 0.5 ± 0.2 0.088 

PWV 

ΔPV 

NP 0.4 ± 0.1¥¤†§ -0.7 ± 0.5*† -0.6 ± 0.3*† 0.6 ± 0.3*¥†§ -0.3 ± 0.5*† <0.001 

0.002 P -0.32 ± 0.2 -0.05 ± 1.4 -0.42 ± 0.5 -0.14 ± 0.5 -0.14 ± 0.6 0.158 

Data represent mean ± SD (non-pregnant n = 18, pregnant n = 17); Non-pregnant (NP), Pregnant (P); 
Spontaneous breathing (Sfr), fixed breathing frequency of 4 breaths.minute-1 (4Ffr), 6 breaths.minute-1 
(6Ffr), 8 breaths.minute-1 (8Ffr), optimisation algorithm dynamic breathing frequency (Dfr); total 
peripheral resistance (TPR; mmHg.min.L-1), pulse wave velocity (PWV; m.s-1); within inspiration 
difference (∆i), within expiration difference (∆e), inter-breath phase peak-valley difference (∆PV), breath 
phase independent peak-valley difference (∆PV_Ind). Significantly different from Sfr (*), 8Ffr (¥), Dfr (¤), 
6Ffr (†), 4Ffr (§); P<0.05. 

 

Preferred breathing condition 

 

Fifty five percent of pregnant participants preferred the 6Ffr condition. Additionally, another 4 

participants chose 6Ffr as their second preferred condition, where they had little preference 

between 2 conditions as their favourite. There was no correlation between preferred breathing 

frequency and gestational age (R2=0.00). 

 

Discussion 

 

The present study builds on work from Felton et al. (2021 – in preparation) to characterise 

acute cardiovascular responses to SDB, including an analysis of the inter- and intra-breath 

phase perturbations created by breathing. The first set of analyses show that heart rate, stroke 
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volume and cardiac output were significantly higher in pregnant women during spontaneous 

breathing (Sfr), which is in agreement with the known adaptations caused by pregnancy 

(Sanghavi and Rutherford 2014). Pregnant women had higher cardiac output and stroke 

volume at equivalent breathing frequencies, compared with non-pregnant women, which is 

consistent with the higher cardiovascular response seen during aerobic exercise in pregnant 

women (Hegewald and Crapo 2011).  

 

Although heart rate was higher in the pregnant group, their RSA was significantly lower for all 

breathing conditions, being just 58% the value observed in non-pregnant women during 

spontaneous breathing. This observation is consistent with the 65% difference found by 

Miyazato and Matsukawa (2010). SDB caused a significant increase in RSA for both non-

pregnant and pregnant women compared with spontaneous breathing (Sfr); relative RSA 

(maximum RSA compared with baseline RSA) increased by a maximum of 48% and 47%, 

respectively. Therefore, although absolute maximum RSA was higher in the non-pregnant 

group (0.25 v. 0.15 s), the response to SDB created almost a 50% increase in the amplitude 

of RSA. This is consistent with the absolute RSA response to relaxation, which was also lower 

in pregnant women compared with no pregnant women (DiPietro et al. 2012). Thus, during 

SDB breathing, the present study found a similar relative (%) increase in RSA amplitude, 

despite a lower absolute RSA amplitude. 

 

SDB increased RSA in pregnant women to levels similar to the RSA observed during 

spontaneous breathing for non-pregnant participants, revealing the ability of SDB to return 

RSA to pre-pregnancy levels. As an attenuated RSA has been suggested as a biophysical 

marker of pre-eclampsia (Lakhno 2016), the ability of an intervention to increase RSA during 

pregnancy is promising. Attenuated RSA per se is not the cause of hypertension, but reflects 

the functional state of the autonomic nervous system (Buchner 2018), and as there is an 

overactivity of the sympathetic arm during PIH, changes in RSA may reflect an improvement 

in the balance of the autonomic nervous system. Although it should be noted that RSA’s ability 

to reflect the autonomic nervous system is queried (see point: counterpoint series) (Eckberg 

2009; Julien et al. 2009; Karemaker 2009b, 2009a), and therefore any suggestions of 

relationships must be carefully interpreted. Whether SDB can increase long-term RSA in 

pregnant women after daily SDB practice is unknown but needs investigating.  

 

RSA is a well-established physiological parameter, which is calculated using the peak-valley 

method to quantify acute changes in heart rate induced by the two phases of breathing. RSA 

is quantified irrespective of the breath phase in which the heart beat was recorded, but the 

kinetics of the heart rate response to breathing are such that the peak of heart rate almost 



17 

always occurs during inspiration, whilst the trough occurs during expiration. However, the 

kinetics of haemodynamic responses are slower than for heart rate, with the peaks and 

troughs induced by each breath phase often occurring in the next (opposite) breath phase. 

The present study sought to reveal this phenomenon, as well as overcoming it, but using two 

different peak-valley methods of analysis, 1) peak-valley amplitude calculated with respect to 

breath phase; 2) breath phase independent peak-valley amplitude (akin to RSA). This 

approach reveals the true magnitude of perturbations created by SDB, as well as the influence 

of response kinetics upon this amplitude. When only mean values are examined, the results 

mask the complex response including the increase in the amplitude of oscillations that occur 

to maintain homeostasis during SDB. 

 

The amplitude of BP oscillations (both SBP and DBP) during inspiration and expiration 

increased as breathing frequency reduced, reaching a peak at 4 breaths.min-1 (4Ffr), which 

was up to 4 and a half times higher (14.3%, 10 mmHg) than during spontaneous breathing 

(Sfr; see Figure Error! No text of specified style in document.-3). This supports the data 

from Felton et al. (2021 – in preparation), which suggested that the amplitude of BP oscillations 

may be further increased at breathing frequencies below 6 breaths .min-1. However, although 

the amplitude of BP oscillations was further increased below 6 breaths.min-1, there was no 

significant difference at 4Ffr from the response during 6Ffr suggesting minimal differences 

between SDB conditions. The difference was only an average 1.2 mmHg (±0.7 mmHg) 

between 4Ffr and 6Ffr, which is unlikely to produce a meaningful clinical difference between 

the two conditions if used as a long-term SDB condition. 

 

Total peripheral resistance was significantly lower in pregnant women compared with non-

pregnant women in the present study, which is most likely attributable to vasodilation that 

occurs during pregnancy (Ngene and Moodley 2017). Levels of BP are reliant on the balance 

between total peripheral resistance and cardiac output. Therefore, to maintain BP during 

pregnancy, cardiac output is increased to counteract the decreased total peripheral resistance 

(Moser et al. 2012). In the present study there was no significant differences in BP between 

pregnant and non-pregnant women, despite the lower total peripheral resistance, due to a 

significantly higher cardiac output in the pregnant women group. 

 

Interestingly, although an increased tidal volume was expected in pregnant women  (McAuliffe 

et al. 2002), this was only observed during spontaneous breathing (Sfr), where tidal volume 

was double that of non-pregnant women. There were no significant differences in tidal volume 

between non-pregnant and pregnant women during any SDB conditions, suggesting an ability 

of the respiratory system of pregnant women to adapt comfortably to reduced breathing 
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frequencies in a similar way to non-pregnant women. Tidal volume in the pregnant women 

group increased significantly as breathing frequency was reduced below 8 breaths.min-1. 

 

Finally, there were limited differences in the cardiovascular responses observed in the present 

study between the SDB conditions of 4Ffr, 6Ffr and Dfr, however for many variables (such as 

percentage amplitudes of BP oscillations) the 8Ffr condition did not deliver a significantly 

different cardiovascular response compared with spontaneous breathing (Sfr). This suggests 

that 8 breaths.min-1 may be too high a breathing frequency to elicit the full cardiovascular 

response of SDB. As a group, the eighteen pregnant women chose 6 breaths .min-1 (6Ffr) as 

their preferred breathing frequency if they were asked to continue with the SDB exercise daily 

until birth Additionally, there was no correlation between gestational age and preferred SDB 

frequency, or for optimal breathing frequency derived from the bespoke optimisation algorithm, 

suggesting that all SDB frequencies are manageable at all stages of gestation. Therefore, the 

present study suggests that future studies should utilise 6 breaths .min-1 (6Ffr) for SDB 

interventions with pregnant women, which provides a good compromise between the 

optimising physiological responses and participant preference. 

 

Conclusion  

 

The present study adds to growing evidence that the analysis of inter- and intra-breath phase 

haemodynamic oscillations are vital to reveal the true extent of the cardiovascular 

perturbations created by SDB. The cardiovascular responses to SDB are similar in healthy 

pregnant and healthy non-pregnant women, with no significant differences in relative 

amplitude of BP oscillations and a similar relative increase in RSA from baseline values (Sfr). 

RSA is attenuated during spontaneous breathing in pregnant women, but can be increased 

acutely to non-pregnant levels by SDB. The data support future studies investigating the long-

term changes to RSA, BP and other cardiovascular variables following daily practice of SDB 

using a breathing frequency of 6 breaths.min-1. 
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