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Abstract The accurate detection and tracking of pupil

is important to many applications such as human com-

puter interaction, driver’s fatigue detection and diag-

nosis of brain diseases. Existing approaches however

face challenges in handing low quality of pupil images.

In this paper, we propose an integrated pupil track-

ing framework namely LVCF, based on deep learning.

LVCF consists of the pupil detection model VCF which

is an end-to-end network, and the LSTM pupil motion

prediction model which applies LSTM to track pupil’s

position. The proposed network was trained and evalu-

ated on 10600 images and 75 videos taken from 3 realis-

tic datasets. Within an error threshold of 5 pixels, VCF

achieves an accuracy of more than 81%, and LVCF out-

performs the state of arts by 9% in terms of percentage

of pupils tracked. The project of LCVF is available at

https://github.com/UnderTheMangoTree/LVCF.
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1 Introduction

The analysis of eye information is beneficial to re-

searches in human computer interaction, human men-

tal state analysis, and behavior analysis (Hansen and Ji

2009). The eye information, which relies on eye track-

ing technology, includes gaze direction, eye mobile tra-

jectory, speed, etc. In recent years, eye tracking tech-

nologies have promoted developments in many areas.

One widely used area is the driver and pilot fatigue de-

tection. It is remarkable that PERCLOS (percent eye

closure) is the detected standard of driver fatigue in

the field of machine vision ( Dinges and Grace 1998;

Dinges et al. 1998; Mallis 1999). But beyond that, eye

movement data provide a detailed reflection of cogni-

tive information process (Ford et al. 1989; Lohse 1997).

Also, eye tracking has been used in virtual reality as in-

teraction techniques and advertisement design as locat-

ing consumer’s attention patterns (Meißner et al. 2019;

Resnick and Albert 2014; Jaiswal et al. 2019)

Despite being widely applied, accurate and robust

eye tracking still faces many challenges. According to

(Schnipke and Todd 2000), the pupil detection often

suffers from odd shape and size of pupil by occlusion

and off-axis of camera, motion blur or camera defocus-

ing. Due to these issues, eye tracking algorithms based

on pupil appearance may lose object (Li et al. 2005;

Fuhl et al. 2016).

In computer vision and image processing, great im-

provements in dealing with object detection have been

achieved due to the rapid advancement of computer

performance and deep learning (Krizhevsky et al. 2012).

Compared to traditional approaches, deep learning can

give robust feature extraction and powerful represen-

tation of objects. Two representative eye tracking al-

gorithms based on deep learning are DeepVOG (Yiu
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et al. 2019) and DeepEye (Vera-Olmos et al. 2019). The

former is based on pupil segmentation network, thresh-

olding and the direct least squares method (Fitzgibbon

et al. 1999), while the latter relies on residual and atrous

convolutional network (He et al. 2016; Chen et al. 2017).

Both of them have demonstrated a competitive perfor-

mance in terms of pupil detection and tracking. How-

ever, DeepVOG’s pipeline is complex and its perfor-

mance is prone to the illumination’s influence on the

pupil images. DeepEye is more robust to the illumina-

tion effect but difficult to deal with the occlusion from

eyelid or glasses.

Inspired by the power and effectiveness of deep learn-

ing, we propose a new approach to detect and track

pupil in this paper. The approach is comprised of two

parts: pupil detection and motion prediction. For the

pupil detection, we use V net (Milletari et al. 2016),

a network for object segmentation, as our threshold-

ing tool. We then propose a novel neural network CF

to take the output of V net and compute the pupil’s

parameters which include its radius and center coordi-

nates. We term the detection framework as VCF. For

the pupil motion prediction, we use long-short term

memory (LSTM) (Hochreiter and Schmidhuber 1997).

To develop a model requiring no decisive prior condi-

tions, we have built nine models with different input se-

quence size and architecture, and then chosen the best

one as our final LSTM prediction model. We integrate

the two networks above and term it as LVCF. The main

contributions of this paper include:

1. We have proposed a novel pupil tracking framework
based on neural network, utilizing both the appear-

ance of pupil and timing feature of pupil motion.

2. We are the first to apply LSTM model for learning

pupil transition rule, to our best knowledge. The

model shows great performance on tracking pupil

in video.

3. We have demonstrated the effectiveness and com-

petitiveness of the proposed approach by training

LVCF and evaluating its performance with multiple

realistic datasets.

This paper is organized as follows: Section 2 de-

scribes the related work in the field of pupil tracking

model. Section 3 introduces our proposed pupil tracking

framework, including its modeling, training, and opti-

mization. Section 4 evaluates the performances of the

proposed model from component to the whole system

through experiments, followed by the conclusion and

future work in Section 5.

2 Related Works

Pupil tracker aims to obtain the change of pupil

states (center point coordinates, contour, and so on) in

eye movement video. The pupil tracking methods can

be broadly classified into two categories: appearance-

based (see Bhunia et al. 2019) and behavior-based ( see

Zhu et al. 2002b; Zhu et al. 2002a; Zhu and Ji 2005).

The appearance-based pupil tracking methods tend

to detect pupil of each frame in the video. C. H. Mo-

rimoto et al. (2000) directly segmented the location of

pupil by subtracting bright pupil image and dark pupil

image under two near-infrared time multiplexed light

sources. Their method is simple and fast, but restricted

by experimental device and interfered easily by external

illumination. Lech Swirski et al. (2012) divided pupil

tracking process into three stages: approximately locate

the pupil region by Haar-like feature detector, precisely

locate the pupil center by automatic threshold calcula-

tion, pupil ellipse fitting by Canny edge detector and

a novel Random Sample Consensus (RANSAC) ellipse

fitting. Their model tried to solve the problem from

pupil ellipse for image captured by head-mounted eye

tracker. For their Haar-feature detector bases on pix-

els value in individual areas, their model fails to detect

pupil precisely when there exists similar pixel distribu-

tion in an area of image without pupil.

The behavior-based methods track pupil movement

mainly relies on temporal information of sequences (see

Yilmaz et al. 2006). These methods obtain object in-

formation in the first several frame images by object

detection algorithm, and then iteratively update ob-

ject state from previous frames in tracking interval. W.

Ketchantang et al. (2005) proposed a method based on

dynamic Gaussian Mixture Model (GMM) and Kalman

filter. They built a pupil template in gray-level by GMM

whose parameters are learned through the EM algo-

rithm. Kalman filter (1960) is then used to predict the

location of pupil. Zhi Wei Zhu et al. (2005) proposed

a real-time eye detection and tracking model for mea-

surement of eye position under various face orientations

by integrating mean-shift and Kalman filter. The model

utilizes variable lighting conditions to produce the dark

and bright pupil for highlighting pupil region among

other image places for detecting pupil. Note that both

of the two methods above use Kalman filter as tracking

methods. For the pupil transition model has not been

specified a prior so far, Kalman filter is applied under

the assumption of a linear model, which is a crude ap-

proximation to reality.

Deep learning based approaches have recently achiev-

ed the state-of-the-art results in many computer vision

tasks (Redmon and Farhadi2018; Ren et al. 2015; Good-
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fellow et al. 2014; Rajpal et al. 2019). Nianfeng Liu et al.

(2016b) proposed a pairwise filter bank based on con-

volutional neural networks (CNNs) to evaluate the sim-

ilarity between the input iris image pairs for heteroge-

neous iris detection. The team (2016a) also put forward

hierarchical convolutional neural network (HCNN) and

multi-scale fully convolutional network (MFCN) to pupil

segmentation without pre- and post-processing. Yuk-

Hoi Yiu at al. (2019) utilized fully convolutional neural

network (FCNN) with post-processing, and ellipse fit-

ting to obtain pupil parameters, location, and eccentric-

ity of pupil ellipses, which are used to estimate gaze by

reconstructing a 3D model of eyeball as input. Cycle

Generative Adversarial Networks (GANs) (2017) was

used to segment pupil and eyelid by Wolfgang Fuhl at

al (2019) who also applied the generator of Cycle GANs

to generate pupil image for increasing sample richness.

These deep learning based pupil detection models have

improved the accuracy and robustness of pupil track-

ing compared to conventional methods. However, they

have ignored, to a large extent, the timing information

for pupil motion. Therefore, we propose in this paper a

pupil detection and tracking framework based on both

the appearance and behavior information of pupil and

develop it through CNN and LSTM.

3 Materials and Methods

3.1 Datasets

For this study, we use three datasets for training of

VCF and the LSTM prediction model and testing their

performances. Some example images are shown in Fig-

ure 1.

The first dataset was acquired at our laboratory by

recruiting 9 students with healthy eyes (4 females, 5

males, 22-26 years old) from the School of Computer

Science and Engineering, Xi’an Technology University,

China. All subjects agreed to participate in the study.

We utilized a head-mounted acquisition device that places

a near-infrared camera in front of the eyes, yielding

video-oculography (VOG) videos at a 320x240 pixel res-

olution and a framerate of 30 Hz. Nine subjects were

asked to do random and slow pupil movements for 2

minutes. As a result, we collected 9 videos, each video

contains an average of 3600 pictures. To obtain the po-

sition and radius of pupil in every frame of these videos,

we used a deep learning image annotation tool, VGG

Image Annotator 1, by manually placing a circle on the

visible part of the pupil. We tested the LSTM prediction

1 http://www.robots.ox.ac.uk/~vgg/software/via/via.

html

model with the 9 videos. And then, we excluded those

duplicate and inappropriate images (like closed-eye im-

age) and chose 5000 images as dataset A for training

VCF.

Fig. 1: Examples of images from datasets. The first line

of pictures from a dataset acquired in our laboratory,

the second line from Świrski, and the third line from

LPW.

The second dataset was constructed from Świrski

(Swirski et al. 2012), which consists of 3760 pupil im-

ages. We chose only 600 images that have been provided

with morphologic information of pupil as our dataset B.

It was divided into 300 for training and 300 for testing

of VCF.

The third dataset was the Labelled Pupil in the

Wild (LPW) (Tonsen et al. 2016), which provided 66

videos at a framerate of 120Hz from 22 participants.

First, we randomly chose 5000 images as dataset C to

test VCF. Then, we trained the LSTM prediction model

using 59 videos, and the remaining 7 videos were used

to test the LSTM prediction model and LVCF.

3.2 LVCF: pupil tracking framework

LVCF takes raw video frames as input and returns

the parameters of pupil including its center coordinates

and radius as shown in Figure 2. It consists of LSTM

model for prediction and VCF model for detection. LVCF

tracker can be expressed in a piecewise function:

L(t) =

{
P (Lt|Lt − 1, Lt − 2), t ∈ T
F (xt), t /∈ T

(1)

where Lt and xt are the parameters of pupil and input

frame at time step t, respectively. T denotes tracking

interval, in which LSTM prediction model P predicts

pupil parameters at the current time based on the pupil
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Fig. 2: Overview of LVCF. The dotted line denotes that the parameters of the pupil in the image are predicted

through the corresponding LSTM prediction model, and the circle denotes the composition or update of LSTM

prediction model’s input matrix. First, the pupil parameters of the two frames are computed by VCF, and the

parameters are composed into an input matrix. Then, the matrix is fed into the LSTM prediction model for

predicting the third frame’s pupil parameters, from which LVCF enters into the tracking interval. After the

tracking interval, LVCF re-enters the detection stage. The process repeats until all frames are processed.

parameters of the previous two frames. In other periods,

F for VCF obtains pupil parameters from input frame

for detection. In the following sections, we introduce

VCF and the LSTM prediction model in detail.

3.3 VCF

Network architecture A common approach in pupil de-

tection is to assume that the pupil is the darkest ele-

ment in the concerned image. The traditional method

of detecting pupil is based on segmentation through in-

tensity thresholding. But this approach is easily affected

by changes in illumination or camera settings. Taking

a different approach, V net utilizes the capabilities of

fully convolutional neural networks to learn hierarchical

representation of raw input data. It has been success-

fully applied to medical image segmentation. In this pa-

per, we use the modified V net (Yiu et al. 2019) which

has convolution layer with 10x10 filter and approach

padding for achieving up-sampling and down-sampling.

Inspired by YOLO (Redmon et al. 2016), we obtain

the parameters of pupil through a single neural net-

work. Because our network consists of CNN and fully-

connect layers, we name it “CF”. CF computes the pa-

rameters of pupil from the output of V net. The pa-

rameters are defined by x, y, and r. (x,y) represents

the center coordinates of pupil, and r represents the

pupil’s radius.

CF divides an input image into a 7x10 gird. When

the center of pupil falls into a grid cell, this cell is called

responsible cell and used for obtaining the pupil’s pa-

rameters. For each grid, there is information about the

pupil’s 3 parameters and whether it is a responsible cell.

Therefore, CF’s final prediction is a 7x10x4 tensor. CF

has 13 convolutional layers followed by 3 fully connected

layers. Eventually, we combine V net with CF into VCF

as shown in Figure 3, which is an end-to-end approach

to compute pupil’s parameters.

Network training Because VGG obtains more abstract

representations through ImageNet (Krizhevsky et al.

2012), we use the pre-trained weights of VGG as the

initial weights of CF’s top 6 layers. Initially, the resid-

ual layers are set with randomly uniformed weights.

To increase the convergence rate of CF’s training,

the pupil’s x and y coordinates are replaced with offsets

of the corresponding grid cell location, and the pupil ra-

dius is divided by 64 which is usually the upper limit of

pupil radius so that these data fall between 0 and 1. We

use the ReLU activation function for the convolutional

layers, and the sigmoid function as activation function

for fully connected layers, except a special layer predict-

ing the responsible grid cell. This “special” layer is set

to the softmax activation function. The loss function of

CF for training is :

λ1

70∑
i=0

ξobji [(xi − x̂i)2 + (yi − ŷi)2] + λ1

70∑
i=0

ξobji (ri − r̂i)2

+

70∑
i=0

ξobji (ci − ĉi)2 + λ2

70∑
i=0

ξnoobji (ci − ĉi)2

(2)

where ξobji denotes whether pupil appears in cell i, which

is responsible for detection. For many grid cells do not

contain the center point of pupil, the output of those
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Table 1: Structural information of 9 LSTM prediction models

Model name model 2 1 model 3 1 model 4 1 model 2 2 model 3 2 model 4 2 model 2 3 model 3 3 model 4 3

Size of input layer (2,2) (3,2) (4,2) (2,2) (3,2) (4,2) (2,2) (3,2) (4,2)

Middle layers
LSTM layer with 25 neurons
LSTM layer with 25 neurons

LSTM layer with 50 neurons LSTM layer with 100 neurons

Output layers Fully connect layer with 2 neurons

cells often overpowers the responsible cell. This phe-

nomenon will cause model instable. To address this is-

sue, we increase the loss from the responsible cell and

decrease that from other cells. We set λ1 = 5 and

λ2 = 0.5 to accomplish this.

We train the network for 100 epochs on the train-

ing data from dataset A and B. Throughout training

we use the batch size of 32 and Adam (Kingma and Ba

2014) optimizer. For the first 23 epochs, the learning

rate is 10−3, and 10−4 for the remaining 77 epochs. We

use the weights provided by Yuk-Hoi Yiu et al (2019)

for V net.

3.4 LSTM prediction model

Model theory As the basic model of NLP, recurrent

neural networks (RNNs) (2015; 2012; 1997; 2015; 1997)

are connectionist models with the ability to selectively

pass information across sequence steps, while process-

ing sequential data one element at a time. To over-

come RNN’s issue on vanishing gradients, Hochreiter

and Schmidhuber (1997) introduced the original LSTM

model which added memory cell against RNN. Gers

et al. (1999) proposed an extended LSTM model by

adding forget gates and achieved better performance of

NLP. We base our prediction model on this extended

LSTM. The calculations of the LSTM model are de-

scribed by:

C̃t = φ(W ctxt +W chh(t−1) + bc) (3)

it = σ(W ixxt +W ihht−1 + bi) (4)

f t = σ(W fxxt +W fhht−1 + bf ) (5)

ot = σ(W oxxt +W ohht−1 + bo) (6)

Ct = C̃t � it + Ct−1 � f t (7)

ht = φ(Ct)� ot (8)

It can be seen that the model consists of the forget

gate f t for resetting model, the input gate it for writing

to model and the output gate ot for reading from model,

where σ(·) is the sigmoid function as activation function

proposed in Hochreiter and Schmidhuber (1997). C̃t is

the intermediate memory cell at the current moment,

where φ(·) is the tanh function designed for Zaremba

and Sutskever (2014). Ct is the intermediate memory

cell at the current moment which implements loop con-

structs with C̃t. The above gates are calculated from

the input state xt and ht, which denotes the value of

hidden layer of model at current time t. In the learn-

ing process of LSTM, all W and b of the model are

trained towards the output with increasing accuracy

compared with label. The above equations are common

to multiple-layer LSTM, where each layer takes input

from the layer below at the same time step and from

the same layer at the previous time step.

Model architecture At each time step t, the LSTM pre-

diction model takes in an input matrix composed by

pupil location of previous frames. We build nine mod-

els with different sizes of previous pupil state sequences,

and choose the one with the best performance as the

final LSTM prediction model to establish LVCF. The

details of these models are shown in Table 1. The pupil

state consists of 2 predictions: the pupil’s center coor-

dinates, x and y.

Model training We use a linear activation for every

layer of all nine models and optimize the Mean Abso-

lute Error (MAE) given by Equation (9) in the output

Fig. 3: Architecture of VCF. The modified V net has 7 convolutional layers and 8 de-convolutional layers. The

subsequent 13 convolutional layers and 3 fully connected layers form CF.
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Table 2: Training of 9 LSTM prediction models

Model name model 2 1 model 3 1 model 4 1 model 2 2 model 3 2 model 4 2 model 2 3 model 3 3 model 4 3

Batch size 1024 5120 1024 5120 5120 1024 6500 6500 6500

Epochs 10 30 10 40 20 10 50 50 50

Optimizer Adam Kingma and Ba (2014)

Learning rate 10−4

of all models. To avoid overfitting, we use the dropout

layer (Hinton et al. 2012) with rate 0.5 after every layer

of LSTM prediction model.

LOSSMAE = |Li
output − Li

label| (9)

Different models need different training to obtain

the optimum weights. The training methods correspond-

ing to 9 LSTM prediction models are shown in Table 2.

4 Results and Discussion

4.1 Pupil detection

Accuracy In this experiment, the accuracy of pupil’s

center detection is measured by the Euclidean distance

between the output coordinates of VCF and the la-

beled coordinates (i.e. the ground truth), while the ac-

curacy of pupil’s radius is measured by the absolute

distance between the output radius of VCF and the la-

beled radius. We compare VCF with DeepVOG (Yiu

et al. 2019) and DeepEye (Vera-Olmos et al. 2019) on

the dataset B and C.

First, we compare the results visually, by showing
some examples of pupil detection in Figure 4. Appar-

ently, VCF has achieved competitive results in both

pupil’s center detection and radius. Note that Deep-

Eye doesn’t detect radius, but it gives good results in

center detection.

Then, we evaluate the three algorithms quantita-

tively by comparing the percentage of images in which

the error of the pupil detection is within a threshold

of 1-5 pixels. The results are illustrated in Figure 5. It

can be seen from Figure 5a that VCF has achieved a

much higher detection rate of over 21% within the er-

ror threshold of 1 pixel, while DeepEye has a detection

rate of 10% and DeepVOG even less than 5%. How-

ever, for the thresholds of more than 1 pixel, VCF’s

performance drops. In the next subsection, we provide

detailed analysis of the drop. For the dataset C, Fig-

ure 5b shows that DeepVOG has the best performance

while DeepEye gives the worst. VCF’s performance in-

creases with bigger error thresholds and it achieves an

accuracy of more than 81% in terms of percentage of

Fig. 4: Example results of VCF, DeepVOG, and Deep-

Eye. The first three rows are sampled from dataset B,

and the rest from dataset C. The red circles or dots de-

note the detection result (pupil’s center or radius) while

the green ones denote the ground truth. When the de-

tected center is nearly perfect, i.e. with minimum error,

only is a green dot shown.

pupils detected within the error threshold of 5 pixels,

which is competitive to DeepVOG. Figure 5c shows the

error distribution of the radius detection of DeepVOG

and VCF. Clearly, VCF obtains a smaller radius de-

tection error than DeepVOG. Note that the dataset C

doesn’t have the ground truth of the radius, so it’s not

used for the comparison on radius.

Error analysis We can see from Figure 5 that, com-

pared to other approaches, VCF does not always pro-

duce the best results. In this section, we dissect the

process of VCF to analyze and understand the cause of
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(a) Pupil center: dataset B (b) Pupil center: dataset C (c) Pupil radius: dataset B

Fig. 5: Quantitative comparison of VCF, DeepVOG, and DeepEye for the detection of pupil’s center and radius.

Fig. 6: Sample of the images which the modified V net failed to segment correctly.

Fig. 7: Visualization of fully trained CF and detection results. The red circles or dots denote the detected center

or radius while the green dots are the ground truth of the center. When the detected center is nearly perfect, only

is a green dot shown.

failure of detection (with more than 5 pixels of error),

particularly on pupil’s center.

First, we found that some failures are caused by the

modified V net which failed to segment the pupil from

input image. The segmentation produced completely or

nearly black images. This happened to 10% images from

the dataset B and 0.04% from the dataset C. In these

images, the area around the pupil is shaded or com-

parably dark, as shown in Figure 6. The similarity of

intensity between the pixels in the pupil area and sur-

rounding pixels could be the reason of the failure of

segmentation by the modified V net.

Then, we analyze the failure cases, in which the

modified V net does segment pupil correctly, by visual-

izing some convolutional layers and the output layer of

CF. Figure 7 shows a random subset of feature maps of

the max pooling layer ( the last layer of every convo-

lutional stage) and the output layer related to pupil’s

center. In the feature map of output layers, the higher

a pixel’s value, the brighter the pixel. We select the

brightest one (small yellow block) as final result which

corresponds to the responsible cell in the 7x10 grid.

The reason for failure is that the brightest one does

not always give correct results. For example, it can be

seen from the third feature map of output layers that

the center of the pupil should have been detected cor-

rectly if the green block were chosen as responsible cell.

Moreover, as shown in Figure 7, the feature map of the
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first four max-pooling layers exhibits the salient fea-

ture of the pupil detected, i.e. oval-like; however it is

not the case for the fifth max-pooling layer. According

to Zeiler and Fergus (2014), the invariance (of the prop-

erties such as compositionality of the concerned object)

increases as the layer ascends. In future work, we will

investigate this inconformity in order to improve the

accuracy of detection.

Ablation study Compared with the last two fully con-

nected layers of VCF, the role of the other layers is un-

clear. To evaluate how the layers of VCF affects perfor-

mance, we conducted another comparison experiment

with different structure of the network by removing

some layers of VCF, as shown in Table 3. We removed

the fully connected layers, FC(1024) for VCF D1, the

convolution layers CV 2(64) for VCF D2, and the con-

volution layers CV 2(64) & CV 2(128) for VCF D3.

Note that since the parameter magnitude of VCF D3

has reached hundreds of millions, further reduction of

the convolution layers would make the model untrain-

able.

Table 3: Models in ablation study

V net CV 1(64) CV 1(128) CV 2(256) CV 2(128) CV 2(64) FC(1024) Parameter Name

X X X X X X X 7,351,576 VCF
X X X X X X 3,733,400 VCF D1
X X X X X X 41,937,624 VCF D2
X X X X X 316,007,256 VCF D3

To eliminate other distractions, we train VCF D1, 2

and 3 with the same datasets and approaches as VCF.

The images used for testing are randomly selected from

LPW. There is no same image in the training dataset
and test set. The results are illustrated in Figure 8. It

can be seen that, among the four models, VCF gives the

best results for all error thresholds. VCF D1 is slightly

better than VCF D2 within an error threshold of 1

pixel, with 32% and 31% accuracy respectively. But the

situation changes within the 5 pixels error threshold, in

which VCF D2 has achieved a much higher detection

rate of over 2% than VCF D1, with 84% and 82% accu-

racy respectively. Given a large number of parameters,

VCF D3 offers the worst performance, with the overall

accuracy rate not even reaching 30%.Therefore, VCF is

chosen as our pupil detection model.

4.2 Pupil tracking

In this section, we conduct 3 experiments. First, we

test LSTM prediction models on our laboratory videos

and then on the videos from LPW testing dataset to

demonstrate the model’s influence factor. In both tests,

Fig. 8: Detection results of VCF,VCF D1,VCF D2 and

VCF D3

we use the labeled center coordinates of the detection

frames so that the performance of LSTM prediction

model can be independently evaluated without influ-

ence of the detection accuracy of VCF. Finally, we test

the entire pipeline of LVCF, from detection to tracking,

using the videos from LPW testing dataset.

Fig. 9: Results of pupil’s tracking with nine LSTM pre-

diction models and the linear motion model Kalman

(1960) on our laboratory videos. Overall, the accuracy

decreases when the interval increases, and four of the

nine models, i.e. model 2 1, model 2 2, model 2 3 and

model 3 2 are always better than the linear model re-

gardless of the interval.

Tracking comparison and model selection Like the ex-

periment for VCF, the accuracy of tracking in this ex-

periment is measured by the Euclidean distance be-

tween the pupil’s center tracked and the labeled (ground

truth), within an error threshold of 5 pixels. Since the

prediction interval of tracking process is an important

parameter for the stability of our model, we took the ex-

periment on videos acquired from the laboratory with
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6 different intervals. Besides, we compare our model

with a linear motion model, the state transition func-

tion of Kalman filter. The tracking results in Figure 9

show that, with the increasing of the interval, the ac-

curacy rate decreases for all LSTM models. Because

the difference of running time between LSTM predic-

tion model and VCF is up to 55ms in the experiment

with a NVIDIA GeForce RTX2060 graphics processing

unit (GPU), we set the tracking interval to 3 which bal-

ances the accuracy and speed of LVCF. It can be seen

that, among all LSTM prediction models, “model 2 -

1”, ”model 2 2” and “model 2 3” give the better re-

sults. For instance, they have achieved 85%, 86%, and

85% of accuracy within an error threshold of 5 pix-

els, respectively. To further determine the best track-

ing model, we examined the detailed error distribution

against different error thresholds. As shown in Figure

10, the “model 2 2” achieves the best overall results.

Therefore, we use it as our LSTM prediction model

with 3 frames as the tracking interval for our subse-

quent experiments below.

Fig. 10: Prediction results of “model 2 1”, “model 2 2”

and “model 2 3”

Results analysis We randomly chose one of 7 videos in

LPW testing dataset and used 2000 frames to evaluate

the model’s tracking performance. With the model 2 2,

Figure 11 shows the tracking trajectory of pupil in the

video. This figure shows that LSTM prediction model

tracks pupil motion with high accuracy. Our hypothe-

sis is that the framerate of video is one of important

factors which affect the predication performance. To

prove it, we further conduct two experiments, one with

7 videos of LPW testing dataset with the framerate

120Hz, and the other with 9 laboratory videos of the

framerate 30Hz. As shown in Figure 12, the higher fre-

quency gives higher accuracy within an error threshold

of 5 pixels, though the low frequency performs better

under an error threshold of 2 pixels.

Fig. 11: Pupil’s motion trajectory. The red line illus-

trates the trajectory of tracking by our LSTM predic-

tion model. The blue line represents the ground truth

(of the pupil’s position). Our tracking is very accurate

(within the error threshold of 5 pixels), and the failure

frames, like those in the green box, only account for

1.8% of total number of frames.

Fig. 12: Prediction results of “model 2 2” in videos with

different framerate.

4.3 Detection and tracking with LVCF

To evaluate the performance of LVCF, we compare

it with DeepVOG and DeepEye using videos of LPW

testing dataset. In this experiment, we focus on the ac-

curacy of pupil’s center detection and tracking. It can

be seen in Figure 13 that, for the error thresholds of 4 or

more pixels, LVCF outperforms DeepVOG and Deep-

Eye, but DeepEye produces the best results for smaller

thresholds. The reason could be that, when an error

occurs in the detection phase, the error will propagate
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to the tracking phase until it enters the next detection

phase. This is a common problem of behavior-based

methods, which we will investigate further in the fu-

ture.

Fig. 13: Pupil’s center detection and tracking with

LPW. LVCF achieves the best results - a 68% detection

rate with less than 5 pixels of error, which outperforms

DeepEye by 4% and DeepVOG by 9%. It can also be

seen that LVCF achieves an 83% detection rate with

less than 10 pixels of error.

5 Conclusion

We have presented a novel pupil-tracking frame-

work, LVCF, which consists of two parts: VCF for de-

tection and LSTM model for prediction. We evaluate

VCF on a total of 5300 eye images from two publicly-

available datasets in comparison with two state-of-the-

art approaches. VCF has achieved competitive perfor-

mance and detected 81% of frames with less than 5

pixels error. We have demonstrated the application of

LSTM for learning the rule of pupil motion and ana-

lyzed 9 models of different output layer, middle layer,

and size of input layers to establish the best one for

tracking pupil. Combining the detection and tracking,

LVCF has obtained 68% of accuracy with less than 5

pixels error. The components of LVCF are available at

https://github.com/UnderTheMangoTree/LVCF. In fu-

ture work, we will investigate the common constraint of

behavior-based methods to optimize the performance of

LVCF, and meanwhile research the learned feature at

high layers of neural network to further improve the

accuracy of detection.
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Fuhl W, Santini TC, Kübler T, Kasneci E (2016) Else:

Ellipse selection for robust pupil detection in real-

world environments. In: Proceedings of the Ninth Bi-

ennial ACM Symposium on Eye Tracking Research

& Applications, ACM, pp 123–130

Fuhl W, Geisler D, Rosenstiel W, Kasneci E (2019)

The applicability of cycle gans for pupil and eyelid

segmentation, data generation and image refinement.

In: Proceedings of the IEEE International Conference

on Computer Vision Workshops, pp 0–0

Gers FA, Schmidhuber J, Cummins F (1999) Learning

to forget: Continual prediction with lstm

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A, Bengio Y (2014) Gen-

erative adversarial nets. In: Advances in neural infor-

mation processing systems, pp 2672–2680

Graves A (2012) Supervised sequence labelling. In: Su-

pervised sequence labelling with recurrent neural net-

works, Springer, pp 5–13

Hansen DW, Ji Q (2009) In the eye of the beholder:

A survey of models for eyes and gaze. IEEE trans-

actions on pattern analysis and machine intelligence

32(3):478–500

He K, Zhang X, Ren S, Sun J (2016) Deep residual

learning for image recognition. In: Proceedings of

the IEEE conference on computer vision and pattern

recognition, pp 770–778

Hinton GE, Srivastava N, Krizhevsky A, Sutskever

I, Salakhutdinov RR (2012) Improving neural net-

works by preventing co-adaptation of feature detec-

tors. arXiv preprint arXiv:12070580

Hochreiter S, Schmidhuber J (1997) Long short-term

memory. Neural computation 9(8):1735–1780

Jaiswal S, Virmani S, Sethi V, De K, Roy PP (2019) An

intelligent recommendation system using gaze and

emotion detection. Multimedia Tools and Applica-

tions 78(11):14231–14250

Kalman RE (1960) A new approach to linear filtering

and prediction problems. Journal of basic Engineer-

ing 82(1):35–45

Ketchantang W, Derrode S, Bourennane S, Martin L

(2005) Video pupil tracking for iris based identifica-

tion. In: International Conference on Advanced Con-

cepts for Intelligent Vision Systems, Springer, pp 1–8

Kingma DP, Ba J (2014) Adam: A method for stochas-

tic optimization. arXiv preprint arXiv:14126980

Krizhevsky A, Sutskever I, Hinton GE (2012) Ima-

genet classification with deep convolutional neural

networks. In: Advances in neural information pro-

cessing systems, pp 1097–1105

Li D, Winfield D, Parkhurst DJ (2005) Starburst: A hy-

brid algorithm for video-based eye tracking combin-

ing feature-based and model-based approaches. In:

2005 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’05)-

Workshops, IEEE, pp 79–79

Lipton ZC, Berkowitz J, Elkan C (2015) A critical re-

view of recurrent neural networks for sequence learn-

ing. arXiv preprint arXiv:150600019

Liu N, Li H, Zhang M, Liu J, Sun Z, Tan T (2016a)

Accurate iris segmentation in non-cooperative envi-

ronments using fully convolutional networks. In: 2016

International Conference on Biometrics (ICB), IEEE,

pp 1–8

Liu N, Zhang M, Li H, Sun Z, Tan T (2016b) Deepiris:

Learning pairwise filter bank for heterogeneous iris

verification. Pattern Recognition Letters 82:154–161

Lohse GL (1997) Consumer eye movement patterns

on yellow pages advertising. Journal of Advertising

26(1):61–73

Mallis MM (1999) Evaluation of techniques for drowsi-

ness detection: Experiment on performance-based

validation of fatigue-tracking technologies. PhD the-

sis, Drexel University

Meißner M, Pfeiffer J, Pfeiffer T, Oppewal H (2019)

Combining virtual reality and mobile eye tracking

to provide a naturalistic experimental environment

for shopper research. Journal of Business Research

100:445–458

Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully

convolutional neural networks for volumetric medical

image segmentation. In: 2016 Fourth International

Conference on 3D Vision (3DV), IEEE, pp 565–571

Morimoto CH, Koons D, Amir A, Flickner M (2000)

Pupil detection and tracking using multiple light

sources. Image and vision computing 18(4):331–335

Rajpal S, Sadhya D, De K, Roy PP, Raman B (2019)

Eai-net: Effective and accurate iris segmentation net-

work. In: International Conference on Pattern Recog-

nition and Machine Intelligence, Springer, pp 442–

451

Redmon J, Farhadi A (2018) Yolov3: An incremental

improvement. arXiv preprint arXiv:180402767

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You

only look once: Unified, real-time object detection.

In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 779–788

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn:

Towards real-time object detection with region pro-

posal networks. In: Advances in neural information

processing systems, pp 91–99

Resnick M, Albert W (2014) The impact of advertising

location and user task on the emergence of banner ad

blindness: An eye-tracking study. International Jour-

nal of Human-Computer Interaction 30(3):206–219



12 Lu Shi 1 et al.

Schnipke SK, Todd MW (2000) Trials and tribulations

of using an eye-tracking system. In: CHI’00 Extended

Abstracts on Human Factors in Computing Systems,

ACM, pp 273–274

Schuster M, Paliwal KK (1997) Bidirectional recurrent

neural networks. IEEE Transactions on Signal Pro-

cessing 45(11):2673–2681

Swirski L, Bulling A, Dodgson NA (2012) Robust real-

time pupil tracking in highly off-axis images. In: Etra,

pp 173–176

Tonsen M, Zhang X, Sugano Y, Bulling A (2016) La-

belled pupils in the wild: a dataset for studying pupil

detection in unconstrained environments. In: Pro-

ceedings of the Ninth Biennial ACM Symposium on

Eye Tracking Research & Applications, pp 139–142

Vera-Olmos F, Pardo E, Melero H, Malpica N (2019)

Deepeye: Deep convolutional network for pupil de-

tection in real environments. Integrated Computer-

Aided Engineering 26(1):85–95

Yilmaz A, Javed O, Shah M (2006) Object tracking: A

survey. Acm computing surveys (CSUR) 38(4):13–es

Yiu YH, Aboulatta M, Raiser T, Ophey L, Flanagin

VL, zu Eulenburg P, Ahmadi SA (2019) Deepvog:

Open-source pupil segmentation and gaze estimation

in neuroscience using deep learning. Journal of neu-

roscience methods

Zaremba W, Sutskever I (2014) Learning to execute.

arXiv preprint arXiv:14104615

Zeiler MD, Fergus R (2014) Visualizing and under-

standing convolutional networks. In: European con-

ference on computer vision, Springer, pp 818–833

Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired

image-to-image translation using cycle-consistent ad-

versarial networks. In: Proceedings of the IEEE in-

ternational conference on computer vision, pp 2223–

2232

Zhu Z, Ji Q (2005) Robust real-time eye detection and

tracking under variable lighting conditions and var-

ious face orientations. Computer Vision and Image

Understanding 98(1):124–154

Zhu Z, Fujimura K, Ji Q (2002a) Real-time eye detec-

tion and tracking under various light conditions. In:

Proceedings of the 2002 symposium on Eye tracking

research & applications, ACM, pp 139–144

Zhu Z, Ji Q, Fujimura K, Lee K (2002b) Combin-

ing kalman filtering and mean shift for real time

eye tracking under active ir illumination. In: Object

recognition supported by user interaction for service

robots, IEEE, vol 4, pp 318–321


