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Abstract

Deep neural networks are known to be vulnerable to adversarial attacks. The empir-

ical analysis in our study suggests that attacks tend to induce diverse network archi-

tectures to shift the attention to irrelevant regions. Motivated by this observation, we

propose a regularization technique which enforces the attentions to be well aligned

via the knowledge transfer mechanism, thereby encouraging the robustness. Our reg-

ularizer first extracts spatial attention maps that produced by the original models as

additional knowledge about the training point, then feeds it into the adversarial train-

ing regimen of the defensive model. Resultant model exhibits unprecedented robust-

ness, securing 63.81% adversarial accuracy where the prior art is 51.59% on CIFAR-10

dataset under 20-iteration PGD attacks in untargeted, white-box scenario. In addition,

we go beyond performance to analytically investigate the proposed method as an ef-

fective defense. The significantly flattened loss landscape provides strong evidence

that models trained by our method achieve superior performance without relying on

gradient obfuscation, showing real robustness. Codes and models for our experiments

are available at: https://github.com/lizhuorong/Adversarial-Robustness-via-Attention-

Transfer/tree/master.

https://github.com/lizhuorong/Adversarial-Robustness-via-Attention-Transfer/tree/master
https://github.com/lizhuorong/Adversarial-Robustness-via-Attention-Transfer/tree/master


1 Introduction

Whereas deep neural networks (DNNs) have performed a broad spectrum of machine

learning tasks with exceptional performance [Pouyanfar et al., 2018], they are surpris-

ingly fragile to adversarial samples [Szegedy et al., 2013]. For example, in image classi-

fication task, by imposing imperceptible perturbation on a legitimate sample intention-

ally, the resultant image can drastically change the classification results [Biggio et al.,

2013, Goodfellow et al., 2014a, Pei et al., 2017]. Even worse, these adversarial images

can be transferred across different models[Papernot et al., 2016a, Szegedy et al., 2013],

which enables the black-box adversarial attacks without any knowledge of the targeted

model [Papernot et al., 2017]. It thus raises serious concerns over the robustness of

these system and hinders their deployment in reliability-critical and security-sensitive

applications, such as autonomous driving and identity authentication [Biggio and Roli,

2018]. It is important to note that such adversarial perturbation is an issue also common

in linear classification and regression problems [Anjos and Marcel, 2011, Biggio et al.,

2013, 2014, Fogla and Lee, 2006, Huang et al., 2011]. This problem has thus attracted

enormous attention and encouraged high activity on adversarial defense methods [Cisse

et al., 2017, Goodfellow et al., 2014b, Li et al., 2020, Szegedy et al., 2013, Tramèr et al.,

2017, Yan et al., 2018], which can be roughly categorized into three catalogs: using net-

work add-on, changing network architecture and adversarial training [Akhtar and Mian,

2018]. Our work falls into the adversarial training group and revolves around a view of

model regularization.

Whereas the perturbations imposed on the original sample to craft adversarial sam-

ple are small, the change on output prediction is significant. This motivates us to shed a
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Figure 1: Correlation between attention shift and the change of prediction. From

left to right columns, we show the original image, attention map for original image, and

attention map for corresponding adversarial image, respectively. Adversarial images are

generated w.r.t VGG16 [Simonyan and Zisserman, 2014] by PGD attack method[Madry

et al., 2017]. Below the attention map we show the predicted label. Redder regions

contribute more to the model prediction. It can be observed that when the attention shift

is significant, the adversarial sample can successfully change the original decision of the

classifier (“lorikeet”→“black swan”). Otherwise, model can still retain its prediction

(“mastiff”→“mastiff”).

light on how these perturbations gradually exacerbate as the image propagates through

the deep network, and finally alter the original prediction. To that end, we conduct
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Figure 2: Examples of attention maps of different representative DNNs (VGG16 [Si-

monyan and Zisserman, 2014], DenseNet [Huang et al., 2017] and ResNet50 [He et al.,

2016]) for prediction. For each group, we show example image on the left, and atten-

tion maps of clean image (top) and its perturbed counterpart (bottom) on the right. On

the one hand, all the networks are able to focus on the class-specific object (i.e., the

accordion) when given the clean images. On the other hand, attention shift or shrinkage

can be widely observed when the network is applied to adversarial images, leading to

erroneous prediction.

an empirical analysis of the model attention using the class activation map [Selvaraju

et al., 2017, Zhou et al., 2016], which not only encodes model’s interpretation regarding

to the correct label of the image, but also indicates to what extent each spatial location

of a given image contributes to the prediction of the network. It is thus expected to be

considerably discriminative as a feature1 and compelling as a proof-of-concept for our

idea.

Through analysis, we observed close correlations between adversarial attacks and

1The term “feature” in this work refers to the representations of images extracted by the hidden layers

of DNNs, rather than the image pixels.
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Figure 3: Evolution of the attention shift in different attack rounds under PGD

attack with perturbation radius ε = 16/255. From left to right columns: orig-

inal image and attention map for images after 0, 2, 8, 16 rounds of attack.

Stronger attack generally causes more significant attention shift to change the

prediction(top:“damselfly”→“spider monkey”;bottom:“borzoi”→“saluki”).

attention shifts. Specifically, Figure 1 shows that when the attention shift is significant,

the adversarial sample can successfully change the original decision of the classifier

(“lorikeet”→“black swan”). Otherwise, model can still retain its prediction, suggesting

a causal link between the attention shift and the change of prediction. To make sure

this is not specific to the network we used, we further examine across diverse network

architectures. Figure 2 shows that attention areas of different architectures tend to over-

lap largely. For instance, all the networks focus on where the accordion lies, albeit the

extensions of attention areas are not exactly the same. Besides, Figure 2 also reveals

that the occurrence of attention deviation is not limited to specific networks. Moreover,
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we qualaitatively analyze the correlations between the strength of attacks and the de-

viation of attention. To that end, we use attacks optimized with different iterations to

indicate attacks of different strength. As shown in Figure 3, stronger attacks generally

cause more significant attention shift.

In other words, successful attacks mislead the classifier by substantially diverting

or dispersing its original attention across irrelevant regions. In contrast, a classifier

robust to adversarial attacks is supposed to retain its attention on object that is specific

to the true class. Therefore, we are motivated to restrict the attention shifts, so that it

becomes difficult for the adversary to deceive the classifier. To that end, we elaborate

a regularizer on basis of the knowledge transfer, as illustrated in Figure 4. The general

intuition behind the proposed regularizer is to approximate the reliable attention areas

relative to true label when apply a teacher network to clean samples, and then train

a student network by aligning its attention with that of the teacher, so as to suppress

the fluctuation and retain attention on the class-specific object when the targeted model

undergoes adversarial attacks.

Extensive evaluations show that models trained with the proposed method signifi-

cantly outperform the state-of-the-art robust classifiers. They are thus suitable for de-

ployment in security-sensitive settings. To summarize, our main contributions in this

paper are threefold:

(1) We introduce an attention transfer based adversarial training (abbreviated as

ATAT for simplicity), a procedure to train DNN-based models to be more resilient to

adversarial attacks. It features an introduction of attention transfer mechanism, which

first extracts spatial attention maps that produced by the original models as additional
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knowledge about training points, then feeds it into the adversarial training regimen of

the defensive model.

(2) We set new state-of-the-art adversarial accuracy on both CIFAR-10 (ε = 8/255)

and CIFAR-100 (ε = 8/255) datasets under a wide range of untargeted attacks in the

highly challenging white-box scenarios. Specifically, we achieve 76.74% , 63.98% ,

70.15% and 63.81% adversarial accuracy on CIFAR-10 under typical attacks named

FGSM, IFGSM (20), PGD (7) and PGD (20), respectively, with improvement over the

previous art by up to 16%.

(3) We go beyond performance to analytically investigate the proposed method

as an effective defense. We find that models trained with ATAT create flattened loss

landscape, where one can move a long distance in input space without moving far in

output space, thus consistent to adversarial perturbations.

2 Background and related work

We assume familiarity with neural networks [Szegedy et al., 2013], image classification,

adversarial attacks [Papernot et al., 2016b] and defense [Goodfellow et al., 2014b]. We

briefly review the key details and notation below.
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2.1 Neural networks

Given a neural network with K layers, the feedforward dynamics induced by an input

x0 are usually denoted as

xl =


ϕ(hl), for l = 1, ..., K − 1

softmax(hl), otherwise

where ϕ is a non-linear function that transforms the input hl = W lxl−1 + bl into a

neural activity vector xl, W l is a matrix of weights, and bl is a vector of biases. We also

denote the network’s composite transformation in an end-to-end form and as a function

xK = fθ(x
0), where θ denotes parameters of the network.

2.2 Image classification

To train such a network in the context of image classification, the objective is to mini-

mize the expected risk

min
θ
E(x,y)∼D[L(fθ(x), y)]

where example x ∈ Rd and the corresponding label that represented as a one-hot vector

y ∈ Rc are drawn from an underlying data distribution D, and L denotes the loss

function, e.g., the cross-entropy loss defined by

Lce(y, fθ(x)) = −yTlog(fθ(x)).

Empirically, we minimize the expected risk on a finite training set {(xi, yi)}ni=1 ∼ D

and estimate the risk on the holdout test data with average loss, which is also known as

the Empirical Risk Minimization (ERM).

9



2.3 Adversarial attacks and adversarial training

Though models with low empirical risk work well on the holdout test set, they may de-

grade spectacularly in situation where adversarial examples abound due to the induced

distribution shift [Biggio et al., 2013, Szegedy et al., 2013]. An intuitive defense, ad-

versarial training, effectively alleviates the issue of distribution shift by generating the

adversarial samples on-the-fly and adding them to the training set [Goodfellow et al.,

2014b, Madry et al., 2017]. Essentially, it adapts the ERM paradigm to the adversarial

images, towards models resistant to adversarial attacks. Many efforts have been devoted

to developing adversarial training methods. First, Goodfellow et al. [Goodfellow et al.,

2014b] propose to feed the classifier with both clean and perturbed samples generated

by Fast Gradient Sigh Method (FGSM). Kurakin et al. [Kurakin et al., 2016] raise the

issue of label leaking and suggest a replacement of FGSM that is defined w.r.t true la-

bel. However, this has been demonstrated less robust to the attacks that constructed by

Tramèr et al. [Tramèr et al., 2017]. Madry et al. [Madry et al., 2017] propose a strong

defense against universal attacks. Formally, they cast the adversarial training into a

min-max optimization problem:

min
θ
E(x,y)∼D[ max

δ∈Sp(ε)
L(fθ(x+ δ), y)]

where δ is the additive perturbation that subjects to `p-norm budget ε. Whereas the outer

optimization is to achieve resistance against adversaries by minimizing the empirical

risk, the inner maximization corresponds to the generation of adversarial examples.

Typically, this can be solved by gradient-based optimization, for example the one-step
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method such as FGSM [Goodfellow et al., 2014b].

x+ ε · sgnOxL(fθ(x), y)

or the iterative variant, Projected Gradient Descent (PGD) method, which can be for-

mulated as

xt+1 = PSp(ε)(xt + α · sgn(OxL(fθ(xt), y)))

where sgn(·) is the sign function and α is the step size. We denote by PSp(ε)(·) the op-

erator that projects the input into the feasible region Sp(ε). In particular, PGD attack is

adopted in [Madry et al., 2017] to achieve universal robustness. We thus abbreviate this

method to AT-PGD hereafter for simplicity. This method achieves the first empirically

robust classifier on CIFAR-10 dataset and becomes the foundation of the state-of-the-art

adversarial training methods.

AT-PGD provides a flexible framework compatible with various realizations, which

leaves room for a flurry of activity in adversarial training. Our work uses AT-PGD

as the underlying basis and revolves around a view of model regularization, to align

the representation with salient data characteristics. There has been work before which

focuses on the regularization techniques [Kannan et al., 2018, Mao et al., 2019, Qin

et al., 2019, Zhang et al., 2019]. The work we present here is closely related to the

Adversarial Logit Pairing (ALP) [Kannan et al., 2018], which highlights the similarity

in logit predictions of the model for a clean sample and its adversarial counterpart,

and achieves improved robustness over AT-PGD when evaluated under targeted attacks.

Our method mainly differs in three aspects: the robust feature we focus on, the way

how we enforce the feature alignment, and the attacks we aim to defend against. All

these factors together contribute to our superiority in performance. Another prior work
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that inspires us is proposed by Xie et al. [Xie et al., 2019], which suggests architecture

modifications to denoise the feature maps that hallucinated by adversarial perturbations.

In contrast to it, our method does not require any architecture changes, but we are still

able to denoise the contaminated feature maps.

3 Method

Armed with preliminaries briefly reviewed above, we now introduce a defense mecha-

nism to enhance the resistance against adversarial attacks. As shown in the empirical

analysis (see Figure 1-3), subtle perturbations in input space are magnified to cause

substantial attention divergence between original and adversarial images, thus diverting

the prediction of classifiers. Our solution is therefore motivated to retain the model at-

tention on object that is specific to the true class. To that end, we first need to filter out

attention area with back-propagated gradients provided by the true label (Section 3.1).

Then we formulate the attention transfer as a regularization term to the fundamental

adversarial training (Section 3.2), to align the attention of the learner on both benign

and malicious samples with the benchmark attention. Finally, the attention transfer pro-

cedure is fitted into the adversarial training framework, to suit our goal of defending a

DNN-based classifier against adversary (Section 3.3), as illustrated in Figure 4.

3.1 Visual Attention Extraction

Motivated to identity the attention, i.e., the hidden neuron activations w.r.t specific class,

here we draw on recent work in CNN visualizations [Hendrycks and Gimpel, 2016,
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Figure 4: Schematic representation of attention transfer based regularizer. We use

attention-oriented transfer learning in conjunction with the adversarial training, where

the supervised signal comes from attention that activated at certain layers of the orig-

inal model by clean image, and carries guidance information relative to classification

to the resultant model. This model is thus expected to suppress the attention deviation

that progressively amplified by small perturbation on the input, so as to make good

predictions on both clean and adversarial images.

Selvaraju et al., 2017, Zhou et al., 2016]. We consider a layer of network and the

corresponding activation tensor A ∈ RC×W×H , which consists of C feature maps with
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width W and height H . A mapping function is required to flatten this 3D tensor into a

2D spatial map asM : RC×W×H → RW×H .

To that end, we need to compute the statistics across all the channels. With the

implicit assumption that feature map in different channel can act as a basis detector for

specific visual pattern, we can use a weighted combination of the presence of patterns

that relevant to the final decision. Therefore, the location map can be computed as

Lc =
∑
k

wckAk (1)

where Ak ∈ RW×H is the k-th feature map and wck is the weight that corresponding

to class c for k-th feature map, which can be approximated by spatially pooling the

gradients:

wck = g(
∂yc

∂Ak
) (2)

where g(·) denotes Global Average Pooling (GAP) as suggested in Ref [Zhou et al.,

2016], to prevent overfitting as well as to preserve the location information that lost in

fully-connected layers. Intuitively, the gradient-based weight above indicates to what

extent Ak contributes to class c. As the weighted summation value of the spatial loca-

tion is not necessarily positive, we proceed with a ReLU activation to suppress negative

values that indicate confusion caused by other classes, while to only highlight features

that positively impact on the attention, as Ref [Selvaraju et al., 2017]. Thus, the atten-

tion map that obtained by issuing the input x to the network Q with respect to class c is

computed as:

ATT cQ(x) = ReLU(
∑
k

g(
∂yc

∂Ak
Ak(x)) (3)
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3.2 Attention Transfer

To encourage the defensive model to focus on the ground-truth class-specific object, we

use knowledge transfer [Buciluǎ et al., 2006, Hinton et al., 2015] to enable the attention

of standard classifier on benign images to be transferred to the learner, i.e., the defensive

network. Let us consider adversarial training in the transfer learning paradigm. Given

a standardly trained classifier, we can regard it as a teacher since it provides reliable

attention area that is specific to the ground-truth class when issued with clean image.

Correspondingly, its defensive version plays the role of a student during training and

borrows valuable class-specific knowledge from the powerful teacher model. Accord-

ingly, the defensive network is expected to get its generalization ability improved out-

side the training set of the standard model, thus maintain accuracies when it encounters

perturbed images. Notice that being different from the transfer learning proposed by

[Hinton et al., 2015], we keep the network architecture of the student the same as that

of the teacher to train, rather than simplifying the network from the complex teacher

network. This is justified by our goal which is adversarial training, rather than model

compression.

To encourage a student has attention maps that resembling those of the teacher, we

first define transfer loss w.r.t spatial attention maps. In general, the transfer loss can be

computed across multiple activation layer for which we want to proceed with attention

transfer. Let θS and θT be the parameters of the student network and teacher network,

respectively. J denotes the indices of all layers for which we want to transfer attention.

15



Then the attention-transfer loss can be formulated as

Lat =
∑
l∈J

‖v(ATT lT (x1))− v(ATT lS(x2))‖p (4)

where v(·) denotes the vectorization operation, v(ATT lT ) and v(ATT lS) are therefore

the vectorized form of attention map that activated at the l-th layer of the teacher and

the student, respectively. Notice that training data x1 and x2 need not to be identical

according to transfer learning paradigm. Essentially, Eq.(4) can act as a metric that

bridging the deviated attention to the instructive attention, which are obtained by issuing

benign examples to the standard classifier.

In the adversarial training paradigm, we feed both the original image xori and its

adversarial counterpart xadv to the defensive network, which is initialized with the same

parameters as the original network and is updated during training. Built on Eq.(4), we

can align the attention by encouraging the learner to mimic the powerful teacher. Thus,

the attention-transfer loss can be written as:

Lat =
∑
l∈J

‖v(ATT lT (xori))− v(ATT lS(xadv))‖p.

+ ‖v(ATT lT (xori))− v(ATT lS(xori))‖p (5)

Different norm type ‖·‖p can be used and we set p = 2 in our experiment to encour-

age inter-class confidence. As for the layer l, we choose the topmost convolution layer

since higher-level visual pattern can be activated as the layer goes deeper [Bengio et al.,

2013, Mahendran and Vedaldi, 2016]. However, we do not prefer the deepest layer

that immediately followed with the softmax output, where critical spatial information

is discarded as the attention tensor got compressed and flattened into a vector.
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3.3 Attention-transfer-based Adversarial Training

With the attention-transfer loss designed above, we now can guide the attention of de-

fensive model and accordingly alleviate the attention shifts induced by strong malicious

perturbation. To fully capture the data characteristic, we also take into account the non-

spatial feature, the logits vector, as suggested in [Kannan et al., 2018]:

Llp = ‖pS(xori)− pS(xadv)‖2 (6)

where pS is a function that maps from input image to the logits vector through the stu-

dent network S. Experiment in Section 4 shows that it contributes to enhanced robust-

ness when utilized as a supplement to our proposed loss, but not so strong when used

alone. Finally, the overall loss of the proposed scheme can be calculated as follows:

Ltotal = Lce + λ1Lat + λ2Llp (7)

where Lce is the loss function for adversarial training (i.e., the cross-entropy loss on

a mixture of natural and adversarial samples for correct classification), λ1 and λ2 are

weights that controlling the regularization effects of the respective component.

4 Experiments and Results

In this section, we first compare our method with several baselines on the CIFAR-10 and

CIFAR-100 datasets. In addition, we conduct an ablation study to examine the impact

of each component of our method on adversarial performance. Finally, we go beyond

the performance to analyze the loss landscape and the generalization of our model.
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4.1 Experimental Settings

Datasets and classifier. We empirically validate the proposed method on the pop-

ular CIFAR-10 dataset as well as the more challenging CIFAR-100 dataset [Krizhevsky

et al., 2009].For both datasets, we use Wide ResNet as the classifier, which has been

adopted in most of the previous works on adversarial training.

Baselines for comparison. Baseline methods we compare to include: (1) standard

training using legitimate images only (Standard), (2) an unified adversarial training

framework with PGD attacks (AT-PGD) [Madry et al., 2017], which is one of the most

strong defenses, (3) adversarial training with additional logit pairing as a regularizer

(ALP) [Huang et al., 2011] ,which is the state-of-the-art approach that has withstood

intensive scrutiny, (4) a recently proposed regularization-based defense with represen-

tation learning (TLA) [Mao et al., 2019]. We use ATAT to denote the attention-transfer-

based adversarial training introduced in Section 3.

Implementation details. To be comparable to the baseline methods, we follow the

common protocols in [Madry et al., 2017]. Specifically, during training, we generate

the adversarial samples by PGD optimization with step size of 2/255 for 7 steps. These

attacks are `∞-bounded and with perturbation radius ε = 8/255. As for testing, effective

attacks including one-step attack, e.g. FGSM [Goodfellow et al., 2014a], and itera-

tively optimized attacks, such as I-FGSM and PGD. For PGD attacks, we run 7 and 20

iterations on CIFAR-10, and run 10 and 20 attack steps on CIFAR-100 as suggested

in [Madry et al., 2017] and [Mao et al., 2019]. We consider white-box settings, where

the defense is particularly challenging as the adversaries have full access to the model

parameters.
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Evaluation metrics. Model robustness in adversarial attack scenario is usually mea-

sured by adversarial accuracy, i.e., the percentage of times the model makes correct

prediction on adversarial images under untargeted threats. In this study, we also take

the nominal accuracy (i.e., the classification accuracy on natural images) into consid-

eration to avoid sacrificing the nominal accuracy for adversarial accuracy. Besides, it

is noteworthy that the adversarial accuracy we adopt in this study is a more rigorous

metric than the attack success rate under targeted attacks [Engstrom et al., 2018].

4.2 Comparative Experiments

We evaluate the visual classification performance of models trained with different de-

fense methods under white-box, untargeted attacks. As suggested in [Engstrom et al.,

2018], a defense that robust against untargeted adversarial attacks is stronger than the

one only robust against the targeted attacks. To close in on the true robustness, we eval-

uate models under a wide range of attacks. Experimental results are shown in Table 1

and 2. From these comparisons, we can observe that models trained with the proposed

ATAT can comfortably outperform the others.

Experiment on CIFAR-10. We summarize the classification accuracy on the natu-

ral images (Nominal) and various malicious images in Table 1. It can be observed that

Standard model completely breaks down under attacks, while AT-PGD [Madry et al.,

2017], ALP [Kannan et al., 2018], TLA [Mao et al., 2019] and our ATAT separately

achieves 49.70% , 52.32% 53.87%and 70.15% improvement over it under PGD(7) at-

tacks. Notably, the proposed ATAT method achieves superior performance under all

attacks with a clear margin. It is also observed that improved adversarial accuracy
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Table 1: Classification accuracy comparison of the proposed method

with baseline methods on CIFAR-10 dataset1.The highest accuracy of

each column is in bold to show the best performance that is specific to

the attack. The proposed ATAT comfortably outperforms all the base-

line methods under a wide range of attacks and sets a new state-of-the-

art.

Models
Nominal

accuracy

Adversial accuracy under attack(step(s))

FGSM(1) FGSM(20) PGD(7) PGD(20)

Standard 95.01 13.35 0.00 0.00 0.00

AT-PGD 87.25 56.22 45.82 49.70 45.87

ALP 86.52 60.57 46.17 52.32 46.28

TLA 86.21 58.88 51.77 53.87 51.59

ATAT 91.89 76.74 63.98 70.15 63.81

1 Attacks crafted on CIFAR-10 are `∞-bounded with perturbation radius ε = 8/255

under white-box setting. Baselines for comparison include AT-PGD [Madry

et al., 2017], ALP [Kannan et al., 2018] and TLA [Mao et al., 2019]. We use

the published results where possible.

over Standard is always accompanied by a decrease in the nominal accuracy, which is

an inherent trade-off exists in all defensive models [Ilyas et al., 2019]. Nevertheless,

ATAT merely gets 3.12% lower nominal accuracy than Standard, which is supposed to

be outweighed by the considerable gain in adversarial robustness, e.g. 63.81% higher

accuracy for the strong PGD(20)-perturbed images.

20



Table 2: Classification accuracy comparison of the proposed method

with baseline methods on CIFAR-100 dataset2.ATAT performs the best

under a wide range of attacks, which also demonstrates that ATAT gen-

eralizes better to unseen adversarial samples.

Models
Nominal

accuracy

Adversial accuracy under attack(step(s))

FGSM(1) FGSM(20) PGD(10) PGD(20)

Standard 78.68 7.8 0.00 0.00 0.00

AT-PGD 61.14 29.24 24.03 24.82 24.09

ALP 66.04 31.83 26.65 27.50 26.60

ATAT 76.22 62.65 28.84 35.03 28.72

2 Attacks on CIFAR-100 are also `∞-bounded with perturbation radius ε = 8/255

under white-box setting. But to the contrary of CIFAR-10 dataset, no published

results of baselines on the more challenging CIFAR-100 can be found in the orig-

inal paper. Therefore, we recreate all the baselines. However, TLA is not shown

in the table as we are currently not able to achieve competitive results using TLA

[Mao et al., 2019].

Experiment on CIFAR-100. We further turn to a more challenging dataset, CIFAR-

100, to verify the proposed method. With ten times the categories of CIFAR-10 while

only one-tenth images per category, CIFAR-100 greatly increases the training difficulty.

Results in Table 2 hold for this challenge as well - generally lower accuracy can be

observed when compared to those in Table 1. Table 2 shows the proposed ATAT stands

out amongst the rest, setting a new state-of-the-art with improvement by up to 30% for

single-step attack and 7% for iterative attack.
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Figure 5: Ablation study by removing different components from ATAT defined in

Eq.(7). From left to right: attention maps for raw model, model considering attention

transfer loss, model considering logit pairing loss and full model, respectively. All the

models trained with regularizer(s) show significant improvement in discrimination over

the raw model, and the completed model presents the most desirable overlap with the

object of interest.

The fact that undefended model is susceptible to all adversaries on both CIFAR-

10 and CIFAR-100 datasets exposes the weakness of networks trained with legitimate

images only, which emanates from the huge gap between classification accuracy cor-

responding to clean inputs and perturbed images. In contrast, models with adversarial

training and examined in this study, i.e., AT-PGD, ALP, TLA and ATAT, are able to

significantly narrow the gap. It is suggested that adversarial training is beneficial to en-

hancing model’s generalization outside the training set, thus maintains accuracy when

encounter perturbed image.

4.3 Ablation Study

We first compare against ablations of the full model to investigate if all components

in Eq.(7) are essential. In this experiment, we use the PGD-based adversarial train-
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Figure 6: Effect of the proposed regularizer on rectifying model attention and thus

the prediction. Left: adversarial training with the use of attention-based regularizing.

Right: adversarial training without attention regularizer. For each group, we present

examples of adversarial images crafted from CIFAR-10, attention maps for raw model

and defended model, respectively. Attention rectified by the proposed regularizer al-

most perfectly overlaps the class-specific object, intuitively demonstrating the instruc-

tive effect of the proposed regularizer on attention. Subsequently, predictions can be

rectified accordingly.

ing as our baseline model and activate/deactivate the component by simply setting the

corresponding weight as 1/0. Figure 5 represents an example image of CIFAR-10 and

attention maps from different models on the adversarially perturbed image. Since the

standard model is trained on natural images only, its attention on adversarial image

can barely well align with the object of interest, as shown in Figure 5. By gradu-

ally combining additional components we can observe considerable improvement. To

be specific, significant boost in discrimination can be achieved by simply adding the
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proposed attention-based regularizer during the adversarial training, which justifies the

motivation to introduce the proposed regularizer. Notice that all the models trained

with additional regularizer(s) can yield considerable improvement over the raw model,

suggesting that the regularization-based adversarial training is a sensible principal for

adversarial defense. In these cases, model trained with the completed mode presents

the most desirable overlap on the object of interest. We therefore conclude that the full

mode performs the best.

To better understand the contribution of the attention-transfer-based regularizer, we

further examine whether it plays a critical role in defending adversarial attacks. To

do so, we visualize how the attention is rectified by adversarial training w/o the pro-

posed regularizer and how the prediction is changed accordingly. Attention maps of

raw model on adversarial samples in Figure 6, which illustrates the notable attention

shift and shrinkage induced by human-undetectable adversarial perturbation, justify our

motivation to enforce attention alignment. By examine the effect on attention, we found

that adversarial training with our regularizer can desirably rectify the attention and thus

the decision (e.g., “airplane” →“ship”, and “truck”→“automobile”). In contrast, de-

fense solutions without explicit constraint on attention fail to align the model attention

with ground-truth region of interest in many cases.

4.4 Analysis

Resistance to Gradient Obfuscation. We have already evaluated our models and

demonstrated constant superiority in the comparative experiments, as presented above.

In this part, we go beyond performance and analytically investigate the proposed method
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Figure 7: Resistance to gradient obfuscation. The loss landscapes before (top) and

after (bottom) ATAT-based training are shown for comparison. Examples are the image

1450 (left) and 7558 (right) of CIFAR-10 test set. The substantially reduced loss and

significantly flattened surface reveal real robustness achieved by our training.

through the lens of loss landscapes. This is useful for indicating whether the trained

models give false sense of security, which is often due to gradient obfuscation. In par-

ticular, one type of gradient obfuscation happens when the loss landscape is highly non-

linear, which hinders the adversary from constructing an adversarial example within a

few gradient-based iterations [Athalye et al., 2018, Carlini and Wagner, 2017, Uesato

et al., 2018]. On the contrary, gradient obfuscation will not occur when the loss surface

is flat.

25



Figure 8: Classification performance of models evaluated under PGD attacks with

different steps. Left: Results within 100 attack steps. Right: Zooms in the results within

20 attack steps. Defensive models (i.e., AT-PGD and ATAT) are trained on CIFAR-10

with perturbation budgets of 8/255 and steps of 7.

Figure 7 shows the comparison of loss landscapes of ATAT-trained model and raw

model. Loss surface is generated by varying the input along the space defined by the ad-

versarial perturbation (da = sgn(Oxf(x)) and a random direction (dr = Rademacher(0.5)),

in the vicinity of the data point chosen from the test set. It can be observed that the sur-

face of the undefended classifier (top), which is trained by standard cross-entropy over

natural samples, is highly bumpy. In contrast, model trained with proposed method (bot-

tom) not only achieves substantially reduced loss but also gives a significantly flattened

surface near the input, which provides strong evidence that our superior performance is

not because of gradient obfuscation, showing real robustness

Generalization to Attacks of Different Strength. We also want to see whether our

defended model can well generalize to attacks of different strength. To do so, we train
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the defended models with attacks of 7-step optimization and evaluate the model under

attacks of different iterations. The perturbation budgets are fixed at 8/255 while the

PGD steps are varied from 1 to 100 to indicate attacks of different strength. Figure

8 shows our model is secured under a wide range of attack strengths. Moreover, the

degradation in adversarial accuracy is more graceful for model trained with ATAT than

those trained with standard adversarial training, demonstrating good generalization.

5 Conclusion

We present a regularization-based adversarial defense in this study, which draws inspi-

ration from the evidence that adversary deceives the model by significantly distorting

the high-level representation space. The proposed method distinguishes itself from oth-

ers by using a transfer learning scheme for defending, which bridges the original and

adversarial domain by learning the visual attention as the domain-invariant feature rep-

resentation. This is beneficial to enhancing DNNs’ generalization outside the training

set, thus maintain accuracies when encounter adversarial images. The resultant model

comfortably outperforms all the baseline methods and sets a new state-of-the-art on the

CIFAR-10 dataset.

There is still room for improvement in the adversarial robustness on CIFAR-100 as

we achieve the current results by simply setting the same hyper-parameters as we did on

CIFAR-10. However, we do not feel such improvement necessary to show the promise

of our method, as we do not strive for the end results but rather we explore how much

of an effect the proposed regularizer can have on adversarial training.
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We further plot the loss landscapes of the resultant model and found no obvious gra-

dient obfuscation, suggesting its actual security. Whereas we provided explanation that

matches both our intuition and the experiments results, formal analysis is still needed to

get close to its real robustness. Moreover, as the anti-perturbation ability of our model

relies on the representability of the training set, we plan to incorporate other attacks

besides the universal gradient-based attack, such as the gradient-free attacks, hopefully

advancing the robustness even further. Notice that the proposed method requires no

architectural modifications and thus can enhance the robustness to adversarial attacks

on most off-the-shelf DNN-based classification systems.
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