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Abstract
1.	 The effects of biological invasions on native biodiversity have resulted in a range 

of policy and management initiatives to minimize their impacts. Although man-
agement options for invasive species include eradication and population control, 
empirical knowledge is limited on how different management strategies affect in-
vasion outcomes.

2.	 An individual-based model (IBM) was developed to predict how different re-
moval (‘culling’) strategies affected the abundance and spatial distribution of a 
virtual, small-bodied, r-selected alien fish (based on bitterling, Rhodeus sericeus) 
across three types of virtual river catchments (low/intermediate/high branching 
tributary configurations). It was then applied to nine virtual species of varying 
life-history traits (r- to K-selected) and dispersal abilities (slow/intermediate/fast) 
to identify trade-offs between the management effort applied in the strategies 
(as culling rate and the number of patches it was applied to) and their predicted 
effects. It was also applied to a real-world example, bitterling in the River Great 
Ouse, England.

3.	 The IBM predicted that removal efforts were more effective when applied to re-
cently colonized patches. Increasing the cull rate (proportion of individuals re-
moved per patch), and its spatial extent was effective at controlling the invasive 
population; when both were relatively high, population eradication was predicted.

4.	 The characteristics of the nine virtual species were the main source of variation in 
their predicted abundance and spatial distribution. No species were eradicated at 
cull rates below 70%. Eradication at higher cull rates depended on dispersal abil-
ity; slow dispersers required lower rates than fast dispersers, and the latter rapidly 
recolonized at low cull rates. The trade-offs between management effort and the 
outcomes of the invasion were, generally, optimal when intermediate effort was 
applied to intermediate numbers of patches. In the Great Ouse, model predictions 
were that management interventions could restrict bitterling distribution by 2045 
to 21% of the catchment (versus 90% occupancy without management).
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1  | INTRODUC TION

Biological invasions are an important component of global change 
(Simberloff et al., 2013), which have resulted in the application of a 
range of policy and management initiatives to minimize their impacts 
(Larson et  al.,  2011). Optimising population control efforts within 
management programs remains highly challenging, and considerable 
uncertainty remains in how to apply limited staff and financial re-
sources to population control measures, especially as to how these 
measures should be applied spatially and temporally (Maguire, 2004).

Following the introduction of a new species, the probability of 
an invasive population developing depends on the interactions of a 
range of biotic and abiotic factors, including the species' dispersal 
abilities and life-history traits, and the environmental conditions en-
countered (Catford et al., 2009). Dispersal rates are important and 
are influenced by habitat connectivity (Hastings et al., 2005), which 
is often more constrained in freshwaters than in terrestrial envi-
ronments (Gozlan et al., 2010; Radinger et al., 2017). Management 
responses also influence invasion probabilities (Britton et al., 2011), 
and their effectiveness generally increases when they occur soon 
after introduction, when the species is spatially constrained and of 
relatively low abundance (Rytwinski et al., 2019).

Effective strategies for controlling invasive species must consider 
two important aspects. First, the most efficient, cost-effective and 
safe means of removing individuals from a local population must be 
determined, which will vary by the invader's life stage and the ambi-
ent environmental conditions (Buhle et al., 2005). Second, the timing 
and location of the control measure needs determining. For example, 
in invasive plant management, there is debate about whether efforts 
should be focused at the range front, where the invader is of low 
abundance and patchy in distribution, or at the invasion core, where 
populations are established and usually more abundant (e.g. Hastings 
et  al.,  2006; Januchowski-Hartley et  al.,  2011). Invader dispersal 
rates and abundances can also be affected by habitat complexity, 
with terrestrial invaders generally spreading more easily in unfrag-
mented than fragmented landscapes (Dewhirst & Lutscher, 2009). 
Therefore, understanding the ease with which invaders spread in 
different environmental configurations needs consideration within 
management planning (Lurgi et al., 2016).

In managing freshwater invaders, the utility of individual-based 
models (IBMs) to predict rates of establishment and spread has re-
cently been highlighted (Dominguez Almela et al., 2020), along with 

comparisons of the methods for controlling and/or eradicating local 
populations (Rytwinski et al., 2019). There is, however, less known 
on how invader dispersal rates affect the long-term efficacy of pop-
ulation control, especially at large spatial scales and in open, linear 
systems. In rivers, while controlling invasive fish can be a manage-
ment priority, their removal usually relies on capture methods (e.g. 
nets, traps, electro-fishing; Rytwinski et al., 2019). Although these 
are effective at capturing (and culling) fish species across most of 
their size range (Davies & Britton,  2015), they are unlikely to re-
move all the population, and surviving individuals can then poten-
tially compensate for losses (Berry et  al.,  2012). This can result in 
culled populations rapidly recovering to their previous abundances 
and management objectives not being met (Davies & Britton, 2015; 
Dominguez Almela et al., 2020).

Here, our aim was to develop an IBM to predict the effects of 
management control strategies on invasive river fishes. We applied 
it within factorial experiments to ‘virtual’ invasive fish with a range 
of life-history traits in river networks of varying spatial complex-
ity to predict how different culling strategies affected fish spread 
and abundance. The objectives were to predict: (a) how altering the 
application of culling (rate/location/timing/life stage) affected the 
abundance and spatial distribution of an initial invasive fish, based 
on the demographic characteristics of bitterling Rhodeus sericeus, a 
small-bodied invasive fish (Dominguez Almela et al., 2020); (b) how 
invader abundances and distributions varied across nine virtual inva-
sive fish differing in life-history traits and dispersal abilities; and (c) 
the trade-offs between management effort (cull rate and the num-
ber of patches culled) and the predicted invader abundances and dis-
tributions to optimize management responses. The final model was 
then applied to a real-world scenario to predict how management 
interventions could have constrained the real-world invasion of bit-
terling in the River Great Ouse, Eastern England (Dominguez Almela 
et al., 2020).

2  | MATERIAL S AND METHODS

2.1 | Model configuration and virtual species

The model was implemented in a customized version of the individual-
based spatially explicit modelling platform RangeShifter (Bocedi 
et al., 2014, 2020), incorporating a new module for managing invasive 

5.	 Synthesis and application. This IBM predicted how management efforts can be op-
timized against invasive fishes, providing a strong complement to risk assessments. 
We demonstrated that for a range of species' characteristics, culling can control 
and even eradicate invasive fish, but only if consistent and relatively high effort is 
applied.

K E Y W O R D S

biological invasion, dispersal, RangeShifter, river catchment, simulation model
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species. River catchments of an overall mean extent of 74.5 ha and of 
three basic types were created using ArcGIS Pro, where the configura-
tion varied by the extent of its tributary branching: high branching (12 
tributaries), moderate branching (eight tributaries) and low branching 
(four tributaries). Each catchment type was replicated three times in 
slightly different configurations (Figure  1). All catchments were cre-
ated in raster format at 50-m resolution, and each cell was assigned a 
habitat quality score proportional to stream width (Dominguez Almela 
et al., 2020). Catchments comprised a mean of 298 (SD: ±20) cells di-
vided into a similar number of non-overlapping patches (mean = 44.9 
patches/catchment, SD = ±0.3), which were delineated manually such 
that no patch overlapped a confluence. The ratio of good to poor qual-
ity habitat sections was similar in all configurations; in the main stem, 
it was kept consistent at 1:1, and in the tributaries, the ratio was main-
tained across replicates within the branching groups (low/moderate/
high) at an overall mean of 8:15.

The initial virtual fish, whose demographic and dispersal param-
eters were drawn from bitterling (cf. Dominguez Almela et al., 2020), 
had the characteristics of an alien fish that followed a stage-structured 
population dynamic: juveniles (<1 year old), subadults (1–2 years) and 
adults (over 2 years). Its population parameters (Table 2; Table S1) were 
also similar to other small-bodied, invasive, pest fish species, such as 
topmouth gudgeon Pseudorasbora parva (Britton & Gozlan, 2013). It 
was set to reproduce once per year, exhibit density-dependent fecun-
dity and have a sex ratio at birth of 1M:1F. Its survival probability was 
also density dependent, applied and weighted per stage, so the effect 
of subadults on the survival of adults was 10% of the effect of adults 
on each other and on subadults (Dominguez Almela et al., 2020). After 
reproduction, juveniles, subadults and adults could disperse according 
to a density-dependent emigration probability, limited to one dispersal 

event per lifetime. Movement from the natal patch during the transfer 
phase of dispersal was modelled by the stochastic movement simula-
tor (SMS; Palmer et al., 2011), which simulates movement from cell to 
cell on the basis of perceived costs within a limited perceptual range 
and a tendency to follow a correlated path (directional persistence). 
A relative cost of movement map was derived from the habitat map, 
such that perceived costs were inversely related to habitat quality; 
thus, upon reaching a confluence, a disperser would more likely move 
into the wider of the two streams available. Individuals could settle in 
any non-natal patch subject to an inverse density-dependent settle-
ment probability (Table 2; Table S1).

For all model simulations, initial populations were established 
in 10 patches (including in tributaries) at the upstream end of the 
catchment (Figure 1). These were mainly in first and second order 
streams, the rationale being that this enabled the invasion front 
to spread mainly downstream into streams of higher order (Kim 
et  al.,  2021), although the direction of individual movement was 
stochastic in the model and could occur in either direction unless 
the fish was in a terminal patch. Propagule pressure by the random 
addition of further individuals into the system was not considered in 
the model. Each simulation (a single combination of culling parame-
ters and catchment; Table 1) was run for 30 years and replicated five 
times. A ‘control’ simulation was run for each catchment in which no 
management was applied.

2.2 | Experimental designs

The management of the modelled populations took the form of an 
annual cull, the format of which was controlled by a series of variable 

F I G U R E  1   Virtual catchments having a 
low number of tributaries (a1–3), medium 
(b1–3) and high (c1–3). Grey thick lines 
highlight the initialized patches in the 
upper areas of the catchment, and the 
arrows indicate the direction of flow 
along the main stem
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parameters. A specified number of patches was selected each year 
for culling in which individuals were subjected independently to a 
mortality probability determined as a stage-dependent logistic func-
tion of density and subject to a maximum culling rate. This means 
that the proportion of individuals removed from a patch per year 
(the ‘cull rate’) would depend on its density, and low invader num-
bers would translate into low removals, reflecting the difficulties of 
catching those individuals when the population is very low. In con-
trast, if the density was high, the logistic function would result in 
removal of a higher proportion of individuals up to a pre-defined 
maximum. Both the culling rate and the number of patches selected 
were kept constant across years. We modelled the cull as occurring 
after dispersal and its spatial application as biased towards recently 
colonized patches based on results from preliminary experiments 
(see Appendix S1–S3). Then, the first experiment assessed the in-
teraction of culling rate and number of patches culled by varying 
the cull rate on an initial virtual species across different numbers of 
patches (Experiment 1, Table 1). The second experiment varied the 
demographic (as type of demographic species, SpType) and disper-
sal (as type of dispersal species, SpDispType) characteristics of the 
model alien species that was being managed (Experiment 2, Table 1). 
Finally, in the third experiment, we applied the model to a real case 
study using bitterling as the model species and the Great Ouse as 
the model catchment, following the study by Dominguez Almela 
et al. (2020).

2.2.1 | Experiment 1: Interaction of culling and 
management effort

Six levels of the maximum number of patches culled (N), ranging from 
low to high numbers (4 to 24) of patches culled per year, were tested 
against eight levels of maximum cull rate (CR, 0.2–0.9; Table 1). The 
cull was applied to all three life stages simultaneously. The experi-
ment was run for all nine catchments (432 parameter combinations).

Following the model simulations, the results of Experiment  1 
were analysed using two population-level summary statistics that 
were extracted from the model output data:

where Nindt is the total number of individuals across the catchment 
at time t and n is the number of years during which there was active 
growth. The simulated population when no culling was applied was 
used to determine n, the number of years of approximately constant 
growth before the population growth trajectory began to decline.

where NOccupPatchest is the number of occupied patches at time t and 
n is the number of years for the period of active growth as above.

2.2.2 | Experiment 2: Trade-off between the 
number of patches culled and the cull rate within each 
patch across a range of species

This experiment evaluated a potential resource-limited trade-off 
between the maximum number of patches culled and the maximum 
cull rate within each patch across a further eight contrasting virtual 
species (specific culling strategy; SCS), to identify whether patterns 
detected in the initial species were common across species with con-
trasting life-history traits and dispersal abilities (Table 1). It was based 
on the assumption that the total management resource (finance, man-
power) was fixed annually, and so managing more patches in a year 
would result in reduced effort per patch, reducing the effects of the 
culling on the invader. For example, culling all patches would spread 
resources thinly across the whole catchment, so the lowest maximum 
cull rate (CR = 0.1) would have to be applied per patch in each year in 
this scenario (Table 1). The initial virtual species (Experiment 1) was 
the reference species, having intermediate demographic traits and 
dispersal abilities, and eight additional virtual species were developed 
that varied by their: (a) demographic traits and/or (b) dispersal traits. 
(a) ranged from being more intensely r-selected (i.e. higher fecundity, 
lower survival) to being more intensely K-selected (lower fecundity, 
higher survival). (b) Varied from being better dispersers by increasing 
stage-dependent maximum emigration probabilities (more dispers-
ers per generation) and decreasing maximum settlement probabil-
ity (more likely to keep moving), to poorer dispersers by decreasing 
stage-dependent maximum emigration probabilities (fewer dispersers 
per generation) and increasing maximum settlement probability (less 
likely to keep moving; Table 2). The experiment was applied to all nine 
catchments (729 parameter combinations).

As there was substantial variation between population trajec-
tories in the experimental predictions, fixing a specific year as the 
basis for calculating the rate of population increase (P1) and change 
in patch occupancy (Q1) was inappropriate. Therefore, for each repli-
cate simulation trajectory, the rate of population increase in the first 
decade (P10) was calculated, using:

where pop[year=10] is the number of individuals at year 10 and pop[-
year=1] is the number of individuals at year 1, and similarly for years 
6–15 inclusive to give P15; 11–20 (P20), 16–25 (P25) and 21–30 (P30). 
Finally, the maximum mean annual increase in population size achieved 
was determined as:

The same approach was used to calculate the maximum decadal rate of 
change in patch occupancy (Q2):

(1)Rate of population increase
(

P1
)

: P1 =
Nindt+n − Nindt

n
,

(2)

Rate of change in patch occupancy
(

Q1

)

: Q1 =
NOccupPatchest+n − NOccupPatchest

n
,

P10 =
pop

[

year = 10
]

− pop
[

year = 1
]

10
,

P2 = max (P10, P15, P20, P25, P30) .

Q10 =
NOccupPatches

[

year = 10
]

− NOccupPatches
[

year = 1
]

10
,
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where Q10 is the rate of change in patch occupancy for the years 1–10 
inclusive, NOccupPatches[year=10] is the no. of occupied patches at 
year 10 and NOccupPatches[year=1] is the no. of occupied patches at 
year 1, etc.

2.2.3 | Experiment 3: Case study on specific 
management to control bitterling in the Great Ouse

The predictive performance of our approach was evaluated using 
bitterling as the model invader and the River Great Ouse in Eastern 
England as the model river basin. The map of the catchment (including 
its division into 272 patches) and the key model parameters were taken 
from the study by Dominguez Almela et al. (2020), where the param-
eter estimates used were from their posterior distributions obtained 
by approximate Bayesian computation. The full posterior parameter 
distributions (from 250 simulations) were used to determine the level 
of culling needed for reducing the bitterling spatial range, using the 
culling scenarios applied in Experiment 2 (SCS; Table 1), giving a total 
of 2,250 parameter combinations. The simulations started in 1983 
when the species was first recorded in fisheries monitoring surveys 
(Dominguez Almela et al., 2020) and ran for 100 years, producing five 
replicates per set of parameter combinations. Values of rate of popula-
tion increase (P2) and change in patch occupancy (Q2) were calculated, 
with the mean of each set of five replicates providing a single predic-
tion for each posterior parameter combination per SCS, allowing the 
confidence intervals for variation only between posterior parameter 
sets.

2.3 | Statistical analyses

For both Pn and Qn, factorial linear models for each experiment were 
fitted using R version 3.6.3 (R Core Team, 2020) to partition the vari-
ance in the response variable. The models incorporated, as appropri-
ate, the management scenarios that were applied (N, CR and SCS), 

the three sets of river catchments (low, medium and high branch-
ing; B, ID) and species (SpID, SpType and SpDispType) (Table  1). 
The effect of the factor(s) that had the greatest influence on model 
outcomes was investigated further using posterior marginal means 
analyses (package ‘emmeans’, Lenth, 2020).

3  | RESULTS

3.1 | Experiment 1: Interaction of culling and 
management effort

The predicted effects of culling on both P1 and Q1 increased as 
both the maximum cull rate (CR) and maximum number of patches 
(N) increased, which together accounted for most of the variation 
(Table 3; Tables S2b and S3b). When CR was low, it had only minor 
effects on P1 and Q1, except when N was high (Figure 2). When CR 
was increased to a medium level (0.5, 0.6), then values of P1 and Q1 
suggested that culling could contain the spread of the invader, but 
when CR was ≥0.7, eradication of the species was possible if N was 
also high (at least 16 patches culled per year; Figure 2). All replicates 
led to eradication when CR was at least 0.8 and N was ≥12 patches 
per year, and also when CR was 0.9 and N = 8 patches per year.

3.2 | Experiment 2: Trade-off between the 
number of patches culled and the cull rate within each 
patch across a range of species

In general, the major source of variation in P2 and Q2 was from dif-
ferences between the characteristics of the nine species (SpType, 
SpDispType and SpID; Table 4; Tables S2b and S3b). Marginal means 
analysis between species type (SpType and SpID) and the SCS re-
vealed that P2 and Q2 could be substantially reduced when N was 
set at a relatively high number of patches, despite culling being at 
less than maximum efficiency (Figure 3; Figure S4). Five out of the 

TA B L E  1   Factorial design of simulated management experiments. Factors: number of patches culled (N), maximum culling rate (CR) and 
specific culling strategy (SCS)

Experiment 1

N 4 8 12 16 20 24

CR 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Experiment 2

SCS CR = 0.9
N = 5

CR = 0.8
N = 9

CR = 0.7
N = 14

CR = 0.6
N = 18

CR = 0.5
N = 23

CR = 0.4
N = 28

CR = 0.3
N = 32

CR = 0.2
N = 37

CR = 0.1
N = 41

Variation of species Three strongly K-selected species (one 'fast disperser', one 'intermediate disperser' and one 'slow disperser')

Three with similar demographic traits as for experiment 1 (one 'fast disperser', one 'intermediate disperser' and one 
'slow disperser')

Three strongly r-selected species (one 'fast disperser', one 'intermediate disperser' and one 'slow disperser')

Experiment 3

SCS CR = 0.9
N = 5

CR = 0.8
N = 9

CR = 0.7
N = 14

CR = 0.6
N = 18

CR = 0.5
N = 23

CR = 0.4
N = 28

CR = 0.3
N = 32

CR = 0.2
N = 37

CR = 0.1
N = 41
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nine species presented at least two scenarios in which the virtual 
species was eradicated in some of the replicates (Table 5). The sce-
nario where 0.8 cull rate (CR) was applied in nine patches (N) had 
the highest number of replicates across species in which eradica-
tion occurred (152 of 729 replicates). No species was eradicated at 
CR  <  0.7. Of the more r-selected species group, 82% of slow and 
28% of intermediate dispersers were successfully eradicated during 
simulations at CR ≥ 0.7 (Table 5). In particular, the scenario where 0.8 
cull rate was applied to nine patches predicted that for the r-selected 
slow dispersers, there were no replicates where the species was not 
eradicated. In r-selected fast dispersers, P2 and Q2 were reduced, 

but their populations were only predicted to be eradicated in a sin-
gle replicate (Figure 3; Figure S4). Conversely, 18% of intermediate 
and 61% of slow dispersers within K-selected species were success-
fully eradicated in simulations at CR ≥ 0.7, while fast disperser abun-
dances were reduced, but were never fully eradicated at any of the 
nine CR scenarios (Table 5; Figure 3; Figure S4).

There were also marked differences in the response of P2 and 
Q2 in relation to the different dispersal abilities of the nine species 
(SpDispType; Figure 4). Species with slow dispersal abilities required 
less effort to control, enabling lower numbers of patches to be 
culled to achieve similar outcomes as intermediate or fast dispersers 

TA B L E  2   The model parameters of the nine virtual species used in Experiment 2. See Table S1 for parameters common to all species

Parameter Strongly K-selected species
Intermediate 
demography

Strongly r-selected 
species

Fast disperser Species 1 Species 2 Species 3

Fecundity 30 63.77 180

1/b** (inds/ha) 823.73 1,750.96 4,942.34

Survival probability in juveniles 1 0.93 0.8

Survival probability in subadults 1 0.89 0.2

Survival probability in adults 0.5 0.4 0.1

Max. emigration probability in juveniles 0.4 0.4 0.4

Max. emigration probability in subadults 0.7 0.7 0.7

Max. emigration probability in adults 0.9 0.9 0.9

Max. settlement probability 0.6 0.6 0.6

Per-step mortality 0.01 0.01 0.01

Intermediate dispersal Species 4 Species 5* Species 6

Fecundity 30 63.77 180

1/b (inds/ha) 823.73 1,750.96 4,942.34

Survival probability in juveniles 1 0.93 0.8

Survival probability in subadults 1 0.89 0.2

Survival probability in adults 0.5 0.4 0.1

Max. emigration probability in juveniles 0.1 0.1 0.1

Max. emigration probability in subadults 0.18 0.18 0.18

Max. emigration probability in adults 0.18 0.18 0.18

Max. settlement probability 0.84 0.84 0.84

Per-step mortality 0.01 0.01 0.01

Slow disperser Species 7 Species 8 Species 9

Fecundity 30 63.77 180

1/b (inds/ha) 823.73 1,750.96 4,942.34

Survival probability in juveniles 1 0.93 0.8

Survival probability in subadults 1 0.89 0.2

Survival probability in adults 0.5 0.4 0.1

Max. emigration probability in juveniles 0.01 0.01 0.01

Max. emigration probability in subadults 0.05 0.05 0.05

Max. emigration probability in adults 0.14 0.14 0.14

Max. settlement probability 1 1 1

Per-step mortality 0.01 0.01 0.01

*Species 5 was the same as the single species used in Experiment 1 (and in preliminary experiments 0a, 0b in Supporting Information).; **1/b is the 
rate of density dependence, that is the rate at which mean fecundity decreases with increasing local density.
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at higher numbers of patches. Moreover, the intermediate and fast 
dispersers revealed some compensatory responses to the culling, 
suggesting their invasion could actually benefit from some culling 
scenarios through increased P2 and Q2.

3.3 | Experiment 3: Case study on specific 
management to control bitterling in the River 
Great Ouse

Our IBM predicted a significant response in this bitterling popula-
tion to the different culling scenarios in both P2 (F8,2,241 = 165.23, 
p < 0.001) and Q2 (F8,2,241 = 1,953.5, p < 0.001; Figure 5) analogous 
to that predicted in Experiment 2 for intermediate demography/dis-
persers (cf. Figure  4). Where Dominguez Almela et  al.  (2020) pre-
dicted bitterling would occupy 90% of patches in the river in 2045 
(Figure 6a), the application of a yearly SCS of CR = 0.7 and N = 14 
(5% of patches) was predicted here to result in the population occu-
pying only 21% of the area, which was similar to their spatial extent 
recorded in 1984 (Figure 6b).

TA B L E  3   Principal sources of variance explained (%) in the 
summary statistics rate of population increase (P1) and rate 
of change in patch occupancy (Q1) for Experiment 1. Factors: 
maximum number of patches culled (N), maximum cull rate (CR), 
catchment branching (B) and catchment ID number (ID)

Catchment-
related factors Management-related factors

B ID N CR CR × N

P1 4.5 4.2 22.4 44.3 13.5

Q1 1.4 0.7 23.2 51.7 17.5

F I G U R E  2   Interaction effects of the 
maximum cull rate (CR) and maximum 
number of patches culled (N) on the rate 
of population growth (P1) and change in 
patch occupancy (Q1) in Experiment 1
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4  | DISCUSSION

Our model predictions provide a series of novel insights that should 
assist decision-making for managers dealing with invasive fish spe-
cifically and invasive species more generally. Our IBM identified the 
optimal management effort (as specific culling strategies involving 
the cull rate and its spatial application) for invaders across a range 
of demographic traits and dispersal abilities. The model predic-
tions demonstrated that while eradication of invasive fish is possi-
ble by culling, it requires relatively high cull rates to be used, with 
the highest probability of eradication achieved in fish of low dis-
persal abilities. For fast-dispersing fish with both r- and K-selected 
characteristics, eradication was predicted to be difficult to achieve 
irrespective of the cull rate used, although the predictions did in-
dicate that the spatial spread and abundance of the invader can be 
constrained. Correspondingly, for fast-dispersing invasive fishes, 
the predictions suggest it is imperative for management control 
efforts to be implemented rapidly and utilize high cull rates where 
feasible. Such management insights have, so far, been unobtainable 
from meta-analyses of empirical data (e.g. Rytwinski et  al.,  2019). 
Moreover, when the IBM was applied to invasive bitterling in the 
River Great Ouse, England, the spatial extent of their invasion by 
2045 (90% of the catchment) was predicted to be constrained to 
their 1984 distribution (21% of the catchment) using an annual cull 
rate of 0.7 in 14 patches (around 5% of the catchment). This indicates 
that a long-term management control strategy could substantially 
constrain the invasion of an alien fish in a relatively open system, 
even if the species could not be eradicated.

Our IBM predicted that different culling strategies result in a 
range of effects on the population growth and spread of invasive 
species. If the annual specific culling strategy was held at a fixed 
level across all years, then increasing the number of patches culled 
per year must be matched by a reduction in the cull rate per patch. 
The predictions indicated that a reduced cull rate, even when applied 
over larger spatial areas, was generally ineffective in constraining 
the fish dispersal and population growth rates. Correspondingly, 
the application of low cull rates across large spatial areas is not an 
effective management option. In contrast, relatively high cull rates 
often predicted population eradication, even when the number of 
patches culled were not necessarily high (e.g. a cull rate of 0.9 in only 
eight patches). These predictions are thus important in the context 
of management planning of how specific culling strategies could be 
applied spatially and in relation to the ability of capture methods 
to remove high proportions of the target species within managed 

patches. They also demonstrated the compensatory responses that 
will occur within the fish population when the cull rate is too low, 
whereby the reduction in population size results in subsequently 
higher reproductive rates and abundances, and then faster dispersal 
(Berry et al., 2012).

Although the IBM was effective at predicting how the cull rate 
affects the abundance and dispersal of the invader, determining the 
extent of a fish population that can be removed effectively from a 
population using capture methods, such as electric fishing, can be 
difficult. While electric fishing is considered an effective fish cap-
ture technique, it has inherent issues relating to species detectability 
and detection bias (Beaumont,  2016). Its probability of capture is 
species dependent with, for example, it varying between 0.35 and 
0.64 across 15 stream fish species (Reid et al., 2009). It can also be 
relatively ineffective at capturing early life stages of fish, where al-
ternative methods might be more effective, such as micromesh seine 
nets and/or traps (Britton, Pegg, et  al.,  2011; Nunn et  al.,  2001). 
Nevertheless, electric fishing is regularly and successfully used to 
remove alien fish from invaded waters when chemical treatments 
cannot be applied, with the meta-analysis of Rytwinski et al. (2019) 
reporting a 58% success rate for population eradication and 56% for 
population control over a range of alien fish species.

The predicted outcomes of the specific culling strategies on the 
invading populations were also strongly influenced by the invad-
er's demographic traits. The initial virtual species, based on bitter-
ling, had a suite of demographic traits that were similar to those of 
small-bodied invasive fish more generally that are considered pests 
in many parts of the world and so often receive considerable man-
agement attention (e.g. Britton & Brazier, 2006; Britton et al., 2010). 
However, invasive fish with demographic traits that are less inten-
sively r-selected or even K-selected are also considered undesirable 
in many parts for the world. For example, relatively large-bodied alien 
fish of the Salmonidae family are often targeted for management in 
North America (Rytwinski et al., 2019) and common carp Cyprinus 
carpio have also received considerable management attention in 
many areas of the world, including Australia (Pinto et al., 2005) and 
South Africa (Davies et al., 2020). It was thus important to under-
stand how these initial predictions varied according to demographic 
traits and dispersal abilities. The predictions revealed that popula-
tion eradication was achievable in five of the nine virtual species, in-
cluding species with both r- and K-selected traits, but only when the 
cull rate was relatively high (≥0.7) and when at least 14 patches were 
culled. However, cull rates below 0.7 never resulted in eradication. 
That invasive fish with r-selected demographic traits were predicted 

SpType SpDispType SpID SCS SpType × SCS SpDispType × SCS

P2 33.21 34.13 6.37 11.09 3.61 1.71

Q2 4.62 56.87 1.12 20.42 0.95 3.69

TA B L E  4   Principal sources of variance 
explained (%) in summary statistics 
rate of population increase (P2) and 
rate of change in patch occupancy 
(Q2) for Experiment 2. Factors: type of 
demographic species (SpType), type of 
dispersal species (SpDispType), species 
ID number (SpID) and specific culling 
strategy (SCS)
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to be the most challenging to control and eradicate is arguably an 
intuitive result, as these traits, common in many invasive fish, en-
able the rapid development of highly abundant populations where 

individuals can then disperse (Gozlan et al., 2010). The eradication of 
two strongly K-selected virtual species was predicted, but only when 
they were intermediate or slow dispersers and at a high cull rate. The 
real-world simulation of bitterling in the River Great Ouse indicated 
that although population eradication would not occur under any of 
the specific culling strategies that were simulated, strong contain-
ment was possible.

These invasion management predictions should be applied to 
informing real-world invasion risk assessment processes (Vilizzi 
et al., 2019), which are fundamentally important in prioritizing the 
species and habitats for management (Roy et al., 2018). Best prac-
tice guidance on risk assessments for alien species indicates that two 
of the four main assessment components are their probable spread 
and impact (Roy et al., 2018). In our summary analysis of the IBM 
output data, we directly predicted invader spread, and the parame-
ter Pn can potentially predict impact due to the relationships of in-
vader abundance with impact (Jackson et al., 2015). Consequently, 
provided some basic knowledge of the demographic and dispersal 
traits is available for a specific species, our IBM predictions should 
inform the risk assessment responses on their spread and impact, 
especially where there is strong understanding of the invader's de-
mographic traits and dispersal abilities. This is because there were 
some strong differences in the responses of r- and K-selected spe-
cies, and across varying dispersal abilities, to the different culling 
strategies. For example, 82% of slow-dispersing r-selected species 
were eradicated at cull rates above 0.7% versus 61% of K-selected 
species, while eradication of fast-dispersing species was generally 
predicted to be unlikely. Although detailed information on the dis-
persal abilities of alien fish is often lacking, dispersal patterns are 
also likely to be catchment specific, varying according to, for exam-
ple, the flow regime, river network complexity and habitat suitability, 
and the extent of human modification of them (Caiola et al., 2014). 
Correspondingly, following the detection of a new alien fish within 
a river catchment, practitioners should rapidly assess its life-history 
traits (either directly or through literature review), its ability to 
disperse in the catchment (in relation to both the species' dispersal 
characteristics and the complexity of the river network) and its cur-
rent spatial extent (Britton et al., 2011). Concomitantly, the resource 
available for the control effort needs to be quantified, with identifi-
cation of the desired management outcome (eradication vs. control). 
In combination with the predictions outlined here across the differ-
ent fish life histories and dispersal abilities, and the culling gradients, 
this information should then enable more informed decision-making 
on the actual strategy to be implemented.

Our predictions thus provided considerable insights into how fish 
removal efforts and the traits of the target species interact to alter 
the outcomes of invasive fish culling strategies. Such insights are not 
possible from empirical studies due to their context dependencies, 
and often poor experimental planning (e.g. lacking baseline data and 
control sites; Rytwinski et al., 2019). However, we acknowledge that 
our modelling processes have some inherent limitations. For ex-
ample, while GIS techniques can accurately represent a linear river 
system, the division of the river into discrete patches, as required 

F I G U R E  3   Interaction effects of the species dispersal type 
(SpDispType) and specified culling strategy on the rate of change in 
patch occupancy (Q2) during Experiment 2. No data point shown at 
80% (nine patches) in the r-selected species as all replicates were 
extirpated
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by RangeShifter, has some subjectivity and does not faithfully rep-
resent the natural heterogeneity of actual rivers (Dominguez Almela 

et al., 2020). While our general results should be qualitatively robust 
to this discretization, future work exploring the consequences of 

TA B L E  5   Counts of replicates per scenario in which virtual species were eradicated. The maximum number of replicates possible per 
scenario and species is 45. Slow dispersers: Species 7, 8 and 9; Intermediate dispersers (‘Inter.’): Species 4 and 6; Fast disperser: Species 3. 
All other species had no scenarios where they were eradicated

Scenario Strongly K-selected
Intermediate 
demography Strongly r-selected

Dispersal ability
Species 4
Inter.

Species 7
Slow

Species 8
Slow

Species 3
Fast

Species 6
Inter.

Species 9
Slow

0.7 cull rate (CR), 
fourteen patches (N)

4 2 0 1 18 23

0.8 cull rate (CR), nine 
patches (N)

19 43 25 0 20 45

0.9 cull rate (CR), five 
patches (N)

1 37 7 0 0 43

F I G U R E  4   Interaction effects of the 
species dispersal type (SpDispType) and 
specified culling strategy on the rate of 
population increase (P2) and change in 
patch occupancy (Q2) for populations 
which were not eradicated during 
Experiment 2
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model choices related to the resolution of the spatial grid would be 
valuable. Also, model initialization always introduced the fish to the 
catchment's upper reaches, enabling the invasion front to disperse 
downstream into higher order streams, where established popula-
tions of invasive fishes are often abundant (Kim et al., 2021). In real-
ity, the release points of alien species are more stochastic, such that 
some dispersing aliens move from downstream to upstream areas 
(Vitule et  al.,  2012). The model also prohibited an individual from 
dispersing more than once in its life (Bocedi et al., 2014), an assump-
tion potentially violated by some riverine fishes (Fausch et al., 2002; 
Radinger & Wolter, 2014). Moreover, the model was based on a dis-
crete introduction of fish, and while invasions can occur from a single 
release event, multiple releases can also occur, which can increase 

the probability of invasion success as it overcomes issues such as 
founder effects (Lockwood et al., 2005). However, a key component 
of eradication attempts of invasive species is preventing their re-
introduction into the treated area, and so where management efforts 
are ongoing to control invaders, these efforts should also include 
increased regulation and surveillance that aim to prevent further re-
leases (Britton, Gozlan, et al., 2011). Finally, throughout the model, 
the total specific culling strategy was fixed across all years, as this en-
abled the model to account consistently for the relationship between 
cull rate and the number of patches culled. However, it is acknowl-
edged that in reality, resource availability might vary by year and, for 
high priority species, be increased in the short term. Moreover, it 
has already been discussed that the actual effort required to achieve 

F I G U R E  5   Effects of specified culling 
strategy on the rate of population 
increase (P2) and change in patches 
occupancy (Q2) of the bitterling species. 
Grey bars are 95% confidence intervals 
for the marginal means
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the higher cull rates might exceed the levels of effort used in the 
model due to the increased degree of difficulty of capturing fish from 
small populations (Britton, Pegg, et  al.,  2011). Consequently, while 
there is high confidence in our predictions of how the different cull 
rates applied across varying number of patches culled will affect the 
population of the target species, it is suggested that some caution 
is applied when considering that these strategies will all be of equal 
cost. Despite these issues, we argue strongly that the strength of our 
model is its ability to simulate the outcome of management interven-
tions to control populations of invasive species that cannot be pro-
vided empirically (Dominguez Almela et al., 2020). It thus represents 
a major step forward in understanding how to develop strategic ap-
proaches for managing alien species in the environment.

In summary, this work provided insights into the outcomes of 
different control efforts on invasive fishes, and highlighted that, de-
pending on the species characteristics, and the specific culling strat-
egy, these outcomes can vary in target populations, but can include 
eradication when the target species is of low or intermediate dispersal 
ability and when a high cull rate is applied. These predictions strongly 
complement existing invasion risk assessments, and demonstrate that 

individual-based models are powerful tools for predicting optimal 
management interventions for high-risk invaders.
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