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Abstract—Terrestrial Internet access is gradually becoming the
norm across the globe. However, there is a growing demand for
Internet access of passenger airplanes. Hence, it is essential to
develop aeronautical networks above the clouds. Therefore the
conception of an aircraft mobility model is one of the prerequisite
for aeronautical network design and optimization. However, there
is a paucity of realistic aircraft mobility models capable of
generating large-scale flight data. To fill this knowledge-gap,
we develop a semi-stochastic aircraft mobility model based on
large-scale real historical Australian flights acquired both on
June 29th, 2018 and December 25th, 2018, which represent
the busiest day and the quietest day of 2018, respectively. The
semi-stochastic aircraft mobility model is capable of generating
an arbitrary number of flights, which can emulate the specific
features of aircraft mobility. The semi-stochastic aircraft mobility
model was then analysed and validated both by the physical
layer performance and network layer performance in the case
study of Australian aeronautical networks, demonstrating that it
is capable of reflecting the statistical characteristics of the real
historical flights.

I. INTRODUCTION

Although every successive wireless generation has improved
the attainable throughput, their focus has been on terrestrial
global coverage of specific areas, where the high teletraf-
fic holds the promise of lucrative revenues for the service
providers. Specifically, the terrestrial 5G wireless system is
capable of providing 20 Gigabits-per-second (Gbps) peak
data rates and 100+ Megabits-per-second (Mbps) average data
rates. By contrast, there is limited Internet access on passenger
airplanes, which is also quite costly.

Hence, the concept of aeronautical ad-hoc networks
(AANETSs) has emerged for the provision Internet-Above-
the-Clouds [1]. Passenger airplanes can also be harnessed as
mobile base stations [2] for filling the large coverage holes in
sparsely populated areas, where it is challenging to deploy and
maintain the wireless infrastructure, as exemplified in Fig. 1
for Australia. However, the design, analysis, and optimization
of aeronautical networks critically hinge on the topology and
mobility of the aircraft. Hence, it is vital to develop a realistic
and reliable aircraft mobility model for the design, analysis
and optimization of aeronautical networks.

As one of the essential prerequisites, the mobility modeling
of roaming users and/or vehicles is a topic that has received
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Fig. 1. The 3G/4G/5G network coverages by Telstra, which are obtained
from https://www.nperf.com/en/map/AU/-/2445 Telstra/signal/ on February
21st, 2021. The network coverages by Optus and Vodafone are similar or
smaller than those covered by Telstra.

much attention due to its pivotal role in network characteri-
zation and network planning [3]. Hence, a methodical study
of the associated mobility models is imperative in support of
network development and optimization both in terms of the
routing/scheduling protocols in the network layer as well as the
associated signal processing algorithms of the physical layer.

Diverse mobility models have been conceived for mobile
ad hoc networks (MANETS) [4], vehicular ad hoc networks
(VANETsS) [5], [6], and Flying ad hoc Networks (FANETS) [7]
in order to evaluate their network performance and to design
suitable networking protocols. The classical random direction
model and random waypoint model have been investigated
both in MANETSs [8] and VANETs [9] as well as FANETs
[10], [11], since they are capable of capturing the mobility
characteristics of both users, as well as of manned and
unmanned aerial vehicles (UAVs). However, although these
ad hoc networks share the intrinsic feature agile mobility,
they also differ quite significantly in a range of specific
aspects, such as their velocity, direction pattern, network size,
and geographical coverage area as well as topology, which
require bespoke mobility modeling. Thus, the mobility models
developed for different ad hoc networks have to capture the
unique features of nodes.

Ad hoc networking between passenger airplanes was ini-
tially conceived by scientists at the German Aerospace Center
(DLR) [12] under the terminology of airborne mesh net-
working. The terminology of ‘airborne networks’ has also
been widely used in the context of UAVs and manned cargo
planes. Hence we will commence from characterizing the
mobility developed for airborne networks constituted both by
unmanned and manned aircraft (passenger airplanes).

Numerous contributions have been devoted to developing



mobility models for airborne networks [13]-[17]. In order to
improve their mobility-aware routing protocol design, Tiwari
et al. [13] defined a trajectory-based mobility model for
airborne networks constituted by wide-body aircraft based on
the flight plans of all the aircraft participating in the airborne
network backbone. However, this mobility model highly relies
on the pre-defined flight plan recorded, hence it is not scalable
for network expansion. Furthermore, it only investigated four
nodes in a area upto 2500m x 2500m, which is unsuitable
for aeronautical networks constituted by commercial passenger
airplanes. As a further development, the authors of [14]
proposed a spiral line based mobility model for improving the
smoothness of the synthetic trajectory. However, the backbone
nodes in [14] are UAVs rather than the wide-body aircraft of
[13]. A 3-dimensional (3-D) Gauss-Markov mobility model
was proposed in [18] for modelling the mobility of aircraft
flying at different altitudes, which was also referred to as a
multi-tier mobility model [19]. Rohrer et al. [15] developed
a 3-dimensional Gauss-Markov mobility model. As a further
advance, Li ef al. [20] improved the smoothness of a Markov-
like mobility model by incorporating three extra states, namely
the pre-decelerate, turn, and post-accelerate states. A semi-
random circular movement mobility model was developed in
[16] for simulating UAVs circling around a specific centre
in order to collect information in a particular target area.
Wan et al. [21] proposed a 2-D smooth turn based random
mobility model (2D-ST-RMM) by capturing the correlation of
the acceleration of airborne vehicles across both the temporal
and spatial coordinates, which is capable of reflecting the
characteristics of making smooth turns of different turn radii,
as well as capturing the tendency of aircraft travelling straight
and making turns of large radii. Five years later, Wan et al.
[22] developed a pair of realistic 3D-ST-RMMs for capturing
the diverse mobility patterns of fixed-wing aircraft, which
relied on coupling stochastic forces with the physical laws
that govern 3-D aerial maneuvers. In their 3D-ST-RMMs,
the model features were also introduced for determining the
movement of aerial vehicles, when they approach simulation
boundaries. Sharma er al. [17] conceived a mixed mobility
model for UAVs by combining the random waypoint based and
the uniform mobility models for characterizing the movements
of a UAV in vertical and horizontal directions, respectively.
The above mobility models may be classified as stochastic
mobility model, which is capable of reflecting the random-
ness well owning to their intrinsically random mechanism.
However, the capability of capturing randomness is attained at
the cost of degrading their capability of reproducing realistic
mobility patterns and the topology in emulating the flight-path
of commercial passenger airplanes, which are closely related
to the airport distribution over a given geographical area and
time period. Furthermore, none of the existing models has been
validated by real flight data.

By contrast, Graeupl created the Framework for Aeronau-
tical Communication System evaluation 2 (FACTS2) [23] to
support the development of new aeronautical data links for air
traffic guidance in Europe. As discussed in Graeupl’s paper,
the FACTS?2 air traffic mobility model relies on the analysis of
the years 2007 and 2008. Two reference days of average air
traffic were analysed for hourly aircraft generation rates for
each pair of airports in the database. The aircraft generation
rates were then extrapolated into the future by applying growth

factors published by the European organisation for the safety

of air navigation referred to as EUROCONTROL. Flights

were then simulated to fly along certain routes between the

identified airport pairs with take-off times modelled as a

stationary Poisson process according to the hourly aircraft

generation rates. The results have been shown by Graeupl to

model European air traffic quite closely [24].

The mobility models of [14], [16], [17], [20]-[22] have been
developed for UAVs, which exhibit distinctly different features
from those of passenger and cargo aircraft. Hereinafter, the
term ‘aircraft’ will refer to passenger aircraft. However, at the
time of writing, there is a paucity of mobility model developed
for commercial passenger airplanes. Nevertheless, Graeupl et
al. [23], [24] targeted both passenger and cargo aircraft under
the so-called Instrument Flight (IFR) rules. Although their
model could also be used for air-to-air communications, it
has only been used so far for the simulation of air-to-ground
communication in support of air traffic guidance in part of
the European airspace, rather than for investigating AANETS
linking aircraft to airport and for investigating the network
performance.

In Table I we boldly and explicitly compare the main
contributions of [13], [15], [18], [23], [24] to ours in this
paper, because [13], [15], [18], [23], [24] have the most
similar features to those of the passenger aircraft targeted
by us. By observing Table I, we can see that the existing
mobility models have never been validated by real flight data
in the open literature. Last but no least, there is a paucity of
realistic aircraft mobility models capable of capturing the node
distribution over a given geographic area and over a given time
period. Against this background, we develop a semi-stochastic
aircraft mobility model for the Australian airspace that is
capable of generating an arbitrary number of flights capturing
the flight distribution over a period of 24 hours, reflecting both
the real topology and the mobility pattern. Explicitly, our main
contributions can be summarized as follows:

(1) For the first time, we characterize the mobility features
of passenger aircraft based on large-scale real historical
flight data gleaned from flights in Australia, which in-
cludes the top-5 airlines’ flights on two representative
dates.

(2) We develop a semi-stochastic mobility model for passen-
ger aircraft, which is capable of generating an arbitrary
number of flights over Australia. In contrast to fully
stochastic mobility models that cannot accurately capture
the features of real flight mobility, our semi-stochastic
aircraft mobility model inherits the capability of captur-
ing near-realistic aircraft mobility, topology as well as
distribution over a given geographic area and time period,
while exhibiting the required element of randomness.

(3) We proposed a single-source-to-multiple-destination rout-
ing optimization scheme based on Dijkstras algorithm,
which is capable of finding the best routing path either
in terms of the end-to-end delay quantified by the number
of hops, or in terms of the end-to-end throughput from
a target aircraft to multiple ground stations (GSs) as
destinations.

(4) For the first time, we investigated the Australian AANET
based on large-scale real flight data both in the physical
and network layers. Furthermore, we demonstrated that
our semi-stochastic aircraft mobility model is capable of



TABLE 1
COMPARISON THE MAIN CONTRIBUTION OF MOBILITY MODEL FOR AIRBORNE NETWORKS.

Analysis/Validation [13] [18] [15] [23], [24] Ours
Real flight data A&V A&V
Topology A&V
Distribution A&V A&V
Connection ratio A&V
Area SE A&V
Throughput A A&VT A&V
Latency A A&V
Link life time A&V
Packet delivery A
Node WBA Aircraft Aircraft IFR Aircraft Passenger Aircraft
Comments European

A2G ATC

networks

A: Analysis V: Validation A & V: Analysis and validation Blank : No related work

1 For the air-to-ground networks developed for air traffic control. For the LDACS network, the simulation results have also

been validated by measurements.

emulating the real flights over the Australian airspace.
Hence, the model-based and real data based networks
exhibit similar performance.

(5) Finally, our semi-stochastic methodology is also applica-
ble to generating flights in other airspaces, such as the
dense airspaces over populated areas represented by Eu-
rope, the United States (US) and China. Furthermore, our
methodology is also suitable for modelling the airspace
over unpopulated areas represented by the North-Atlantic
(NA) region. Hence some statistical characteristics of the
dense European and NA airspace are also presented.

The rest of this paper is organized as follows. Section II
presents the methodology of developing our semi-stochastic
aircraft mobility model. In Section III, we present a distance-
based adaptive coding and modulation scheme specifically
designed for quantifying the link quality between a pair of
aircraft. The single-source-to-multiple-destination routing op-
timization scheme based on Dijkstras algorithm is discussed in
Section IV. Section V is devoted to the analysis and validation
of the semi-stochastic aircraft mobility model both in the
physical and in the network layer. The applicability of our
semi-stochastic aircraft mobility model to other airspaces is
discussed in Section VI. Finally, in Section VII, we conclude
and briefly discuss our future research ideas.

II. THE METHODOLOGY OF AIRCRAFT MOBILITY MODEL

In this section, we present our methodology of generating
aircraft traffic based on large-scale historical flight data exem-
plified by the Australian scenario. Nevertheless, the method-
ology presented below is also applicable to other scenarios.
The international airlines only have routes flying from/to the
international airports in Australia to/from other countries’
international airports. Our methodology of generating near-
realistic aircraft mobility is detailed as follows:

1) Identify the flight designators.

— Identify the airlines having most flights. Intuitively,
each airline typically schedules a single international
flight each day connecting a pair of international
airports with one of them located in Australia, whilst
the other one being in other countries/continents.
Hence, the number of international flights of a single
airline is typically less than that of a domestic
airline’s flights.

— Identify the flight designators of the top-5 Australian
domestic airlines. By checking the flight schedules
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Fig. 2. The top-5 Australian airlines and their number of flights scheduled
on June 29th, 2018 and December 25th, 2018.

of the airlines’ official website and the Australian
airports’ website, the top-5 airlines in terms of the
number of flights scheduled on each day are Quantas,
Jetstar, Virgin Australia, Tigerair and Rex (Regional
Express). Explicitly, their number of flights sched-
uled on June 29th 2018 and December 25th 2018
are shown in Fig. 2, where Christmas day of 2018
represents the quietest day having the least flights in
2018, whilst the date of June 29th 2018 represents
the busiest day having the most flights in 2018.

2) Download historical flights on the quietest day and on
the busiest day.
The historical flight data can be downloaded either man-
ually or automatically from Flightradar24 https://www.
flightradar24.com/. There are diverse sources available for
obtaining historical flight data, where commercial license
is required, such as Flightaware, Flightradar24, Flight
Tracker - OAG, Automatic Dependent Surveillance-
Broadcast (ADSB) -exchange, Aviation Edge, FlightStats,
Flightfinder and FlightView. All of them provide live
tracking functions for flights. However, historical flight
data are mainly provided by their so-called data service
at a fixed charge per query. Flightradar24 allows users to
customize their preferred historical flight data, hence we
opted for it as our source of the top-5 Australian domestic
airlines’ flight data on June 29th 2018 and December 25th
2018, respectively.

3) Harmonise the raw flight data.
The historical flight data downloaded from Flightradar24
is in raw format, which is based on a comma-separated
value (CSV) file containing floating point numbers, text
and special characters. It is not directly usable for anal-
ysis. The user has to first read and change the hybrid
format raw data to floating point number format, which
can be used for our following analysis. Furthermore, the
time intervals of raw data for each flight data are random,
which is unsuitable for analysis and validation. Hence, we
harmonised the flight data by employing a unified time
interval of A; = 10 seconds for each flight data.
Explicitly, given two time-data pairs (to, yo) and (¢1,y1),



the linear interpolation [25] of (¢,y) is given by

Y=Y Y1 — Yo

- , 1
t—ty t—to M

Furthermore, the data value y for a particular time instant
t can be calculated as

Y1 — Yo
t1 —to

With the aid of the linear interpolation operation of
Eq. (2), each data entry of altitude, latitude, longitude,
and speed can be interpolated at time intervals of A; = 10
s. To exemplify our interpolation, we present the flight
data of Jetstar’s JQ574 taking off from Melbourne and
heading to Brisbane on June 29th, 2018 as a specific
example. Explicitly, Fig. 3(a) - Fig. 3(d) present our com-
parison between the interpolated flight data of Jetstar’s
JQ574 and the real raw flight data of JQ574 in terms of
altitude, latitude, longitude and speed, respectively. There
are several typical phases of flight behaviours, such as
landing and taxiing, as well as climbing and en-route,
plus the potential holding phase encountered, when the
aircraft approaches the airport but has no clearance to
land. Our semi-stochastic aircraft mobility model exploits
a large scale dataset of real historical flights. Explicitly,
each flight data contains the entire flight path trajectory,
based-on the latitude, longitude, altitude, and speed seen
in Fig. 3 all of the above-mentioned flight-phases may be
readily recognized.

The timestamp on the z-axis is Unix Epoch time (UET),
which can be converted into a date and universal time
coordinated (UTC) format as follows:

Yy =yo+ (t—to) )

UTC time :(( (Tyz1/60) /60) /24)
+ DATE (1970, 1, 1), 3)

where Ty pr is a timestamp in UET format.

4) Archive the harmonised real flight data into a library.

5)

The harmonised real flight data are entered into our
library, which are accessible as benchmarked flight data
for generating artificial flight data as required.
Characterise the distribution of take-off time.

We assume the take-off time of each flight to be the
instant of changing its speed from zero to non-zero.
Hence the resultant take-off time may be slightly dif-
ferent from the scheduled take-off time published by the
airport/airline, which is typically a little bit later than
the published take-off time. Nevertheless, our method
represents the ‘real’ take-off time, which provides more
accurate flight status and topology than simply relying
on the published take-off time. Moreover, flight delays
routinely occur in reality due to weather, Air Traffic
Control (ATC) restrictions, bird flocks, knock-on effects,
etc.

In possession of the extracted take-off times, the sta-
tistical characteristics can be analysed. Explicitly, the
probability density function (PDF) of take-off times on
June 29th 2018 and December 25th 2018 are depicted in
Fig. 4(a) and Fig. 4(b), respectively. The corresponding
cumulative distribution functions (CDFs) of the take-
off times on June 29th 2018 and December 25th 2018

are depicted in Fig. 4(c) and Fig. 4(d), respectively.
The histogram of take-off times was then approximated
by classical distribution functions, such as the Weibull,
Gamma, Normal, Poisson and Students-t distribution.
Furthermore, we have also included the Kernel density
estimation (Kernel distribution) as a benchmark. How-
ever, Kernel Density Estimation does not constitute a
convenient parametric technique of estimating the PDF
of a random variable. Hence we will not adopt it for
generating the artificial take-off time, regardless of its
goodness-of-fitting accuracy.

The accuracy of distribution fitting can be tested by a
suite of test methods, such as the classic Chi-squared test,
Kolmogorov-Smirnov test (KS-test), Hosmer-Lemeshow
test, and Kuiper’s test, etc. The Chi-squared test has
been widely used, but its accuracy depends on having
a sufficiently large sample size for the approximations
to be valid. By contrast, the KS-test does not rely on
the sample size for its inference to be valid and it does
not depend on the specific shape of the CDF under test.
Hence, we have adopted the KS-test for quantifying the
accuracy of distribution fitting. Given the CDF F'(x) and
the empirical distribution function F,, for n independent
and identically distributed (i.i.d.) ordered observations,
the KS-test statistic is defined as [26]

Dn :SUp|Fn(Z)*F($)|, (4)

where sup, is the supremum of the set of distances,
while D,, is also known as the goodness-of-fit, which
is typically used for evaluating the accuracy of a specific
fitting operation. For the KS-test, a smaller value of D,,
represents a better fit.

The goodness-of-fit values of the six hypothesis distri-
butions investigated are summarized in Table II. Again,
without considering the non-parametric Kernel density
estimation, the Normal and the Weibull distributions have
the best goodness-of-fit for the take-off times on June
29th 2018 and December 25th 2018, respectively. More
specially, the mean and variance of Normal distribution
are py = 14.18 and o; = 4.97 for fitting the flight data
on June 29th, 2018, whilst the scale value and shape
value of the Weibull distribution are ¢; = 15.80 and
1y = 3.16 for fitting the flight data on June 29th, 2018.
By contrast, the mean and variance of Normal distribution
are up = 13.43 and op = 4.47 for fitting the take-
off time of flights on December 25th, 2018, whilst the
scale value and shape value of the Weibull distribution
are ¢p = 14.98 and ¢p = 3.36 for fitting the take-off
time of flights on December 25th, 2018.

6) Randomly generate take-off time according to the distri-

bution acquired in Step-5.

Given the distribution of take-off times acquired by
comparing the goodness-of-fit D,,, we can now artificially
generate a set of take-off times. In order to provide
further insights concerning the artificially generated flight
data, we consider both the best fitting and the second
best fitting distributions, hence both the Normal and the
Weibull distributions will be considered for generating
artificial flight data in our investigations. As shown in
Fig. 5(a) and Fig. 5(b), the take-off times generated by the
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Fig. 3. Comparison between the harmonised and the real raw flight data for the Jetstar JQ574 taking off from Melbourne and heading to Brisbane on June
29th, 2018. The raw flight data is directly obtained from Flightradar24.
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TABLE II
GOODNESS-OF-FIT D,, FOR DIFFERENT STATISTICAL MODELS OF THE DISTRIBUTION OF TAKE-OFF TIMES
Distributions Weibull | Gamma | Kernel | Normal | Poisson | Student-t
June 29th,2018 0.0848 0.1131 0.0339 0.0782 0.1504 0.0783
December 25th. 2018 0.0680 0.081° nnacn nneoa nncs nnzoda
0 Real flights
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Fig. 5. Comparing the artificially generated take-off times to the Normal and Weibull distributions

Normal and Weibull distribution are capable of accurately
matching the take-off time of the real historical flights
both on June 29th, 2018 and on December 25th, 2018.
Shift the real historical take-off to “randomly generated
take-off time”. A set of randomly selected real historical
flight data extracted from our database will be used as
baseline flight data. The associated take-off time is first
extracted by selecting the first non-zero speed value and
its corresponding timestamp. Let us denote the take-off
time of the randomly selected real historical flight data
by 7,.. Furthermore, given a randomly generated take-off
time T, obeying either the Normal or the Weibull dis-
tribution, the artificially generated flight data associated
with the speed interval of v, is given by

7

,’UT,N,NS] s if Tg > TT
7UT,N;ONS}7 ing<Tr
i T, =T,

[ONsaUT,la U’l‘,27 e
Ug: [U’I‘,NSJrl? Ur,2,"
v'f"

®)

where v, is a randomly selected real historical flight data
velocity, v, ; is the ¢-th element of v,., N is the length of
vector v,, O, is a row vector of length of N, having O
elements, which is calculated as:

]:(Tg _ Tr)
Ay '

Again, recalling the operation in Step-3, the time interval
between data samples is A; = 10 s. In Eq. (6), F()
is the operation converting the time difference between
T, and T, into seconds. Similarly, we can obtain the
artificially generated flight data of latitude 6, longitude
g, and altitude L, following the methodology of Eq. (5).
In a nustshell, the flight trajectory of the artificially
generated flight data (64,4, Lg,v,) follows a same
route as the historical flight data (0,., ¢.., L,., v,.), but they
have different takeoff time and landing time.

N, = (6)

III. DISTANCE-BASED ADAPTIVE CODING AND
MODULATION

In mesh networks of aircraft, the ground stations (GSs) are
typically located at the airport, which allows the aircraft to

directly communicate with Air traffic control for delivering
vital control messages. Apart from being either the source or
destination, the aircraft also provide relaying services during
their landing/take-off, taxiing and holding patterns [1], [27],
where these phases are associated with rather diverse channel
characteristics, especially the air-to-ground (A2G) or air-to-
air (A2A) links [28]. The A2G communications and A2A
communications rely on the same channel model for their
data transmission, but they have different maximum delay.
In the following, we present our distance-based ACM regime
used for both A2G and A2A communications, nevertheless,
the A2G data transmission relying on distance-based ACM
follows the same methodology.

Intuitively, there is a line-of-sight (LOS) path in A2A
communications, where the power ratio between the LOS path
and the diffuse components is given by [27]

a?
?a
where o € R is the amplitude of the LOS path and 3 € R
is the variance of the diffuse component having zero-mean

quadrature components.
Hence, given the Rician factor Kgjc, we have [27], [29]

KRice = @)

/ KRice
= —_—, 8
“ 1+ KRice ( )
1
=) —— 9
IB 1+ KRice ( )

In the aeronautical channel, the Doppler power spectrum
and delay power spectrum is dependent on the specific phase
of flight. The Doppler power spectral density function of the
A2A aeronautical channel can be modelled by Clarke’s [30]
formula given by

1
) < max )
p(fp) = { ngmax\/l—uD/fDmax)? liol < Jp (10)

, else,

where fp, . is the maximum Doppler shift. In the worst case,
the direction of the LOS path coincides with the heading of the
aircraft, hence resulting in a carrier shift of fp, s = fp,., for



the LOS path, whereas the scattered components arrive from
behind.

Furthermore, the pathloss of the A2A aeronautical channel
can be modeled as [29]

Liath 10ss [dB] = —154.06 + 201og;, (f) + 201log;, (d), (11)

where f [Hz] is the carrier frequency and d [m] is the distance
between the transmit antenna (TA) and receive antenna (RA).
The small-scale fading is characterized by the diffuse com-
ponents of the multi-path radio channels, which can be written
as [31]
N

1 , ,
hxvos (7, t)= ]\}Enooﬁzejen S iont L5 (1 — 1), (12)

n=1

where 7 is the excess delay, ¢ is the absolute time, N is the
number of echos, 6,, represents the phase of the n-th echo,
and fp, is the Doppler shift of the n-th echo.

By contrast, the line-of-sight (LOS) component is given by
[31]

hios () = €/2™Prost . § (1 — 7105) (13)

where fp, .. is the Doppler frequency of the LOS path, and
we have 1 os = 0 after time synchronization at the receiver
side.

Hence, recalling Eq. (12) and Eq. (13), the time-domain
channel impulse response (CIR) h (7,t) can be formulated as

h(7,t) = - hros (t) + - hnros (1),
= - el2mfest L § (7— — TLOS)
N

1 . .
+8: m = eIt (7).
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n=1

We employ the distance-based adaptive coding and mod-
ulation (ACM) scheme developed in [29], [32]. Explicitly,
the distance-based ACM aeronautical communication system
can switch its ACM mode based on the distance between the
desired pair of communicating aircraft.

Given the position of a pair of aircraft, say the transmit
aircraft a and the receive aircraft b, we can calculate their 3D
separation according to Eq. (15) - Eq.(17). Explicitly, having
the altitude, latitude and longitude (L, 0,,p,) of aircraft a,
its Cartesian coordinates p q, Py, and p. , are defined by

Pza = (RE + L) cos(0,) cos(p,), (15)
Py.a =(Rp + Lg) cos(0,) sin(p,), (16)
Pz.a = (RE + Lg)sin(6,). 17

The 3D separation between aircraft a and aircraft b is calcu-
lated as

da,b:\/|px,a — Pxb

where dgp is in [m]. In (4), pz.q,Dy,« and p, o are the 3D
Cartesian coordinates of aircraft a, while py 3, pyp and p, 3
are those of aircraft b.

Furthermore, the distance-based ACM scheme conceived
for aeronautical communications using K = 7 modes is
given in Table III, which can be designed according to our
investigations in [29]. Note that the default system parameters
in Table IV have been used in designing the distance-based

2+|py,a - py,b|2+|pz,a - pz,b|27 (18)

TABLE III
DISTANCE-BASED ADAPTIVE CODING AND MODULATION SCHEME FOR
AERONAUTICAL COMMUNICATIONS.

Mode k& Mode color Throughput Threshold dj,
(bps/Hz) (km)

0 None < 0.459 > 740.8

1 Red 0.459 500

2 Orange 1.000 350

3 Yellow 1.322 200

4 Green 1.809 110

5 Blue 2.197 40

6 Magenta 2.747 25

7 Purple 3.197 5.56

ACM of Table III. The transmit aircraft, say aircraft a*, selects
an ACM mode to transmit its data according to the adaptive
reconfiguration regime of

If di. < dZ: < dp_1 : choose mode k, (19)

where aircraft b* is the receive aircraft, k € {0,1,2,--- , K},
and we assume do = DA2A. When df. > DA2A | there exists
no adequate communication link, since the two aircraft are
beyond each others’ communication range. Since the minimum
flight safe separation must be obeyed, we do not consider the
scenario of d‘g: < Dpin- Explicitly, Dy, = 5.56 km is used
as the minimum safe separation distance, and D423 = 740.8
km is the maximum communication distance having a non-
zero throughput in A2A communication. When the distance
exceeds D222 | there is no adequate communication link.
The distance-based ACM designed in Table III is also
suitable for A2G communications, but the maximum A2G
communication distance is given by DA2S = 370.4 km as
limited by the radio horizon [1]. Hence, only the orange,
yellow, green, blue magenta and purple ACM modes are

available for A2G communication.

IV. SINGLE-SOURCE-TO-MULTIPLE-DESTINATION
ROUTING OPTIMIZATION BASED ON DIJKSTRAS SHORTEST
PATH FIRST ALGORITHM

Given the multihop nature of airborne mesh networks, the
packets have to be delivered through multiple wireless hops to
arrive at their final destination, such as a GS for accessing the
Internet. Hence, a seamless source to destination path must
be established in an aeronautical ad-hoc network (AANET)
to enable an aircraft to access the Internet [33], which is
the task of routing protocols. However, having an appropriate
address allocation is essential for facilitating reliable packet
exchange between airborne mesh network nodes. Airborne
mesh networks are self-configuring networks consisting of air-
craft nodes interconnected by wireless links, where an efficient
routing strategy has to be conceived for avoiding congestion
and for achieving the maximum throughput per aircraft. In-
tensive efforts have been devoted to routing protocol design
and routing optimization [34]-[38]. However, the choice of
routing protocols critically hinges on the specific topology and
mobility. The routing problem of the Australian aeronautical
network - similar to other AANETSs - typically has multiple
destinations, because an aircraft may potentially direct its
packets to any of the ground stations in order to access the
Internet. Hence, the above-mentioned routing algorithms may
be invoked for validating our semi-stochastic aircraft mobility
model in terms of its network layer performance. However,
further research efforts are required for optimizing the routing



algorithms for the multiple-destination Australian aeronautical
network, which is set aside for our future research. To expound
further Dijkstra’s algorithm [39] is capable of finding the
shortest distance or maximum end-to-end throughput to all
other nodes from that node of origin. In our investigations,
we will invoke Dijkstra’s algorithm to find the shortest path
from an aircraft to any GS as well as to find the best path
maximizing the end-to-end throughput, which will be used
both for characterizing our mobility model in terms of the
number of hops imposed, the end-to-end throughput and the
area spectral efficiency.

Dijkstra’s algorithm [39] is a powerful search technique,
which was specifically designed for finding the shortest path
between a pair of nodes quantified in terms of the number of
hops, each of which may of course have a different length in
Km. When A = 6 aircraft and B = 2 ground stations are
considered, we may construct the C' x C throughput matrix
W shown in Fig. 7, where C' = A+ B. Explicitly, the number
in each grid position represents the throughput in bps/Hz
conveyed between a pair of nodes using the ACM modes of
Table III. Once this hop-count or throughput matrix has been
constructed, Dijkstra’s search algorithm can be used for finding
the minimum number of hops from a certain aircraft to the
GSs. It also allows us to determine the maximum achievable
throughput for a certain aircraft at a complexity order of
O(C?) [39]. It is worth noting that the max throughput of
a specific route is limited by that of the lowest-throughput
hop.

In the following, we will further augment Dijkstra’s algo-
rithm by the quantitative example of Fig. 6. Explicitly, we
illustrate both the links between different aircraft and the links
between the aircraft as well as the ground station, relying
on the corresponding throughput matrix shown in Fig. 7. For
example, aircraft-5 is three hops away from GS-2 and in this
route, it has a connection to aircraft 2 and the throughput of
this link is 1.000 [bps/Hz], as seen in the throughput matrix
of Fig. 7 and Fig. 6 as well as in the ACM mode of Table III.
Similarly, the only aircraft connected to aircraft 2 in its route to
GS-2 is aircraft 1, with the corresponding throughput of 2.197
[bps/Hz] stored in the throughput matrix, as seen in Fig. 6 and
Fig. 7 as well as in the ACM mode of Table III. The throughput
of the link between aircraft 1 and the GS-2 is also shown
in Fig. 6 and again the throughput matrix of Fig. 7. Hence,
then end-to-end throughput of the routing path ‘aircraft-5 —
aircraft-2 — aircraft-1 — GS-2° is 1.000 [bps/Hz], which is
limited by the gold ACM mode of Table III. Alternatively,
there is another routing path for aircraft-5 accessing GS-1,
namely the routing path ‘aircraft-5 — aircraft-4 — aircraft-3
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Fig. 6. An example topology showing the links of the aircraft and ground
station. The corresponding throughput matrix is shown in Fig. 7.
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Fig. 7. A stylized throughput matrix of six aircraft and two ground stations for
a hypothetical example network. Explicitly, the number in each grid position
represents the throughput in bps/Hz conveyed between a pair of nodes using
the ACM modes of Table III.

Algorithm 1 Dijkstra’s Max-throughput search algorithm
Input
W, the starting aircraft index st, and the ground station
index e;
Output
the max throughput from aircraft index st to the ground
station index e
Require:
Initialise throughput vector C' with the st column of W
Initialise 7 = 0;
Initialise a flag n-length vector, visit, to check whether
the aircraft or ground station has been visited before;
: while : <n—1 do
temp = 0; //Initialise a n-legnth zero vector
J=0
while j < n do
if visit[j] == 1 then
templj] = Clj):
end if
Jj=J+1
end while
(value,index) < max(temp); //Pick the neighbour
aircraft that has the max capacity.
11:  wisit[index]| = 0;

VXN E RN

—_

122 7=0;

13:  while j <n do

14: if C[j] < min(C[indez], Windez, j]) then

15: C[j] = min(Clindez], Windex, j]); //Update the
current max-throughput C'j]

16: end if

17 j=g+ 1

18:  end while

19: t=1+1;

20: end while
21: return Cle];

— GS-1". However, its achievable throughput is limited by
the red ACM mode between aircraft-5 and aircraft-4. Thus,
the end-to-end throughput is 0.459 [bps/Hz], which will not
be selected owing to its low throughput.

More generally, Dijkstra’s max-throughput search algorithm
operates using the following steps:



TABLE IV

PARAMETERS USED IN VALIDATING THE SEMI-STOCHASTIC AIRCRAFT MOBILITY

Scenario related parameters

Airspace

Top-5 domestic airlines
Number of GSs

Representative dates considered

Time period considered

Total number of flights on December 25th, 2018
Total number of flights on June 29th, 2018
Latitude

Australian airspace
Quantas, Jetstar, Tigerair,
Virgin Australia and Rex
15

December 25th, 2018

June 29th, 2018

00:00 ~ 24:00

802

1007

Determined by each aircraft

Longitude Determined by each aircraft
Altitude Determined by each aircraft
Carrier frequency fc 5 GHz
Bandwidth B 6 MHz
Number of CPs 32
Number of subcarrier 512

Physical layer parameters factor KRjce 5dB

ACM
Minimum separation distance D,

As detailed in Table III
5.56 km

Maximum A2A communication distance DA 740.8 km
Maximum A2G communication distance D29 370.4 km
Total number of flights on June 29th, 2018 1007
Mean gy on June 29th, 2018 14.18

Semi-stochastic mobility model based Variance o ; on June 29th, 2018 4.97

on Normal distribution Total number of flights on December 25th, 2018 802
Mean gy on December 25th, 2018 13.43
Variance oy on December 25th, 2018 4.47
Total number of flights on June 29th, 2018 1007
Scale value ¢ on June 29th, 2018 15.80

Semi-stochastic mobility model based Shape value ¢ ; on June 29th, 2018 3.16

on Weibull distribution Total number of flights on December 25th, 2018 802
Scale value ¢ ; on December 25th, 2018 14.98
Shape value ¢ ; on December 25th, 2018 3.36

1) Initialise the max-throughput vector as C = W ;, where
C is a column of W.

2) Pick the source aircraft st and calculate the throughput
of the link leading to the adjacent aircraft and to the
ground stations.

3) Pick the next aircraft u; having the max throughput, and
if the capacity is higher upon visiting u;, then update the
current max-throughput C'.

4) Repeat the adjacent aircraft throughput calculations until
all the aircraft have been visited.

Dijkstra modified max-capacity search procedure is sum-
marized in Algorithm 1, which is capable of achieving the
maximum end-to-end capacity. Similarly, the minimum latency
imposed by the end-to-end transmission can be acquired upon
replacing the throughput by the delay quantified in terms of
the number of hops. For example, when using a typical 5G-
style transmit frame-structure, each node may add 10 ms of
relaying delay upon additionally taking into account the node-
distance in Km and the speed of light, the actual propagation
delay in seconds may be readily found.

V. VALIDATING THE AIRCRAFT MOBILITY MODEL

In this section, we will analyse both the achievable physical
layer link performance and the network layer performance in
terms of the number of hops, latency and link life time in end-
to-end transmission. Again, the dataset used for our analysis
and validation is based on the top-5 domestic airlines’ flights
on June 29th, 2018 and December 25th, 2018, namely on
Quantas, Jetstar, Tigerair, Virgin Australia and Rex (Regional
Express). The aircraft mobility model developed will also be
characterized in terms of its achievable link quality both in
the physical and network layer.

The default system parameters used for our analysis and
simulations are summarised in Table IV. Explicitly, this has a

bandwidth of B = 6 MHz and a carrier frequency of f, =5
GHz. Orthogonal frequency-division multiplexing (OFDM) is
used and the transmit power is set to 1 watt per antennas. A
typical Rician factor of Kgie = 5 dB is considered for the
aeronautical channel, as seen in Table. IV. Again, the default
system parameters of Table IV have been used in designing
the distance-based ACM of Table III.

In the following, ‘Real’ in the legend represents the real
historical flights. Furthermore, ‘Normal’ represents the flights
generated by our aircraft mobility model developed by relying
on the Normal distribution for the take-off time, which rep-
resents ‘the flights generated by the Normal distribution’. By
contrast, the label ‘Weibull’ represents the flights generated by
our aircraft mobility model relying on the Weibull distribution
for the take-off time, which represents ‘the flights generated by
the Weibull distribution’. The semi-stochastic aircraft mobility
model developed in this paper is capable of generating an
arbitrary number of aircraft scheduled on a date required for
the Australian aeronautical networks. However, in order to
validate its capability of capturing the trends of in the air over
24 hours and the network topology as well as all the other
key network characteristics, we generate the same number of
flights as the real number of historical flights in our following
investigation. Again, the aircraft mobility model developed is
capable of generating any number of flights in line with the
request of the designers.

A. The Number of Flights in The Air

In this subsection, we first informally characterize the
aircraft mobility model developed. The number of flights in
the air over a period of 24 hours is shown in Fig. 8 on
December 25th, 2018 and June 29th, 2018. The total number
of real flights is given here by the sum of the Top-5 Australian



airlines’ historical flights on June 29th, 2018 and December
25th, 2018, respectively. In order to validate our mobility
model, we artificially generate the same number of flights as
the real historical flights on June 29th, 2018 and December
25th, 2018, respectively.

Explicitly, the number of real flights is represented by solid
black lines, the flights generated by the Normal distribution
are represented by red dotted line, whilst the flights generated
by the Weibull distribution are marked by red dashed line. The
numbers of flights seen in the figure was generated based on
a single realization of a Normal or Weibull process. Observe
from Fig. 8(a) and Fig. 8(b) that the sky is quiet before 04:00
on December 25th, 2018 and on June 29th, 2018, respectively.
However, there are more and more flights in the air during
the daytime. The number of flights reaches its peak between
12:00 and 16:00 for both the real historical flights and for the
flights generated by our aircraft mobility model. Furthermore,
the number of flights generated by our aircraft mobility model
tends to follow the broad trend of the real historical flights.
However, there is a drop in the number of real flights at 11:00
both on December 25th, 2018 and on June 29th, 2018.

B. Physical Layer Performance

In order to analyse and validate our aircraft mobility model
at the physical layer, we select 12:00 as a specific representa-
tive time. The analysis and validation at other times of the day
follow the same methodology. Explicitly, let us take a glimpse
of the topology and link connection quality at 12:00 both on
December 25th, 2018 and on June 29th, 2018, respectively.
The link quality is closely tracked by the ACM models shown
in Table III. Explicitly, if the distance between a pair of
communicating aircraft is higher than 740.8 km, we say there
is no available ACM mode; if the distance is longer than
500 km but shorter than or equal to 740.8 km, the ACM mode
has a throughput = 0.459 [bps/Hz]; if it is longer than 350 km
but shorter than or equal to 500 km, the throughput is 1.000
[bps/Hz]; if it is longer than 200 km but shorter than or equal
to 350 km, the throughput is 1.322 [bps/Hz]; if the distance
is longer than 110 km but shorter than or equal to 200 km,
the throughput is 1.809 [bps/Hz]; if it is longer than 40 km
but shorter than or equal to 110 km, the throughput is 2.197
[bps/Hz]; if it is longer than 25 km but shorter than or equal

— Real
Normal
****** Weibull

No. of flights in air

8:00 12:00 16:00

Time
(a) Dec. 25th, 2018

20:00 24:00

Fig. 8. The number of flights in air over 24 hours in the Australian airspace

to 40 km, the throughput is 2.747 [bps/Hz]; if it is longer than
5.56 km but shorter than or equal to 25 km, the throughput
is 3.197 [bps/Hz]. Here we use 5.56 km as the minimum safe
distance between two aircraft.

As a specific example at 12:00 both on December 25th,
2018 and on June 29th, 2018, the network topology can be
readily illustrated by extracting each flight’s latitude, longitude
and altitude. To provide a glimpse of the location distribution
over Australia, we plot the associated 2D topology in Fig. 9 by
exploiting the latitude and longitude of each flight. By looking
at Fig. 9, we can see that most of the flights cluster near
the Eastern coast’s airspace both for the real historical flights
and for the flights generated by our aircraft mobility model
using both the Normal and the Weibull distribution. Note that
a slight topology difference can be observed by comparing the
real historical flights and the flights generated by our aircraft
mobility model, since there is some randomness both in the
number of flights generated at a specific time and in their
location distribution over the airspace. Nevertheless, the flights
generated by both distributions exhibit visual similarity to the
real historical flights in terms of topology.

Furthermore, the histograms of the ACM modes at 12:00 on
December 25th, 2018 and on June 29th, 2018 are shown in
Fig. 10(a) and Fig. 10(b), respectively, which provide a more
quantitative comparison between our aircraft mobility model
and the real historical flights. We can see from Fig. 10(a)
and Fig. 10(b) that most links use ACM mode 1 of Table III,
both on December 25th, 2018 and on June 29th, 2018. The
number of high-throughput links becomes less and less upon
increasing the ACM mode index.

C. Network Layer Performance

In this subsection, we investigate the achievable network
layer performance in terms of the ratio of successful connec-
tions to a GS, the number of accessible GSs, the minimum
number of hops leading to a GS, the area SE defined in
bps/Hz/million km?2 [40] and link life-time. In our investi-
gations, there are 15 GSs placed at 15 airports distributed
over Queensland, New Southwales, Victoria, South Australia,
Western Australia and Northern Territory. By jointly con-
sidering their geographical distribution and the busiest of
airports, the 15 GSs are placed at Sydney Airport, Melbourne
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Real flights at 12:00 of Dec. 25th, 2018

(a) Real

Real flights at 12:00 of Jun. 29th, 2018

(d) Real

Normal flights at 12:00 of Dec. 25th, 2018

(b) Normal

Normal flights at 12:00 of Jun. 29th, 2018

(e) Normal

Weibull flights at 12:00 of Dec. 25th, 2018

(c) Weibull

Weibull flights at 12:00 of Jun. 29th, 2018

(f) Weibull

Fig. 9. The topology with link connection quality on December 25th, 2018 and on June 29th, 2018, respectively. The subfigures (a)-(c) are topologies with
link connection quality on December 25th, 2018. The subfigures (d)-(f) are topologies with link connection quality on December 25th, 2018.
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Fig. 10. The histograms of the ACM modes at 12:00 on December 25th, 2018 and on June 29th, 2018, respectively, where the topology of the flights is

shown in Fig. 9.

Airport, Brisbane Airport, Perth Airport, Adelaide Airport,
Gold Coast Airport, Cairns Airport, Collarenebri Airport,
Hobart International Airport, Darwin International Airport,
Karratha Airport, Port Hedland International Airport, Ballina
Byron Gateway Airport, Coffs Harbour Airport and Ayers
Rock Airport (Connellan Airport).

First of all, we investigate whether a specific aircraft in
the air is capable of connecting to a GS, which means that
it is capable of accessing the Global Internet. The successful

connection ratio R.., is defined as

R — Neon

= 20
con N ) (20)

where N, is the number of aircraft that is capable of
connecting to at least one GS and N, represents the total
number of aircraft in the air.

The successful connection ratios over 24 hours on December
25th, 2018 and on June 29th, 2018 are shown in Fig. 11(a)
and Fig. 11(b), respectively. Observe from Fig. 11(a) that the
successful connection ratios are typically above 90% from
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Fig. 12. The average number of hops to a ground station

08:00 to 17:00 on December 25th, 2018, when there are more
flights in air during that period of the day. By contrast, the
successful connection ratios are typically above 96% from
08:00 to 20:00 on June 29th, 2018, since there are more
flights during that period of the day. Furthermore, we conclude
that the successful connection ratios have been significantly
improved compared to December 25th, 2018, again because
there are more flights on June 29th, 2018. We can also observe
that the successful connection ratio of the flights generated is
capable of closely tracking that of the real historical flights.

Furthermore, the averaged number of hops required by an
aircraft for accessing any of the GS is depicted in Fig. 13.
Explicitly, Fig. 13(a) depicts the result on December 25th,
2018, while Fig. 13(b) on June 29th, 2018, respectively.
Typically, an aircraft is capable of accessing a GS by a single
hop both on December 25th, 2018 and on June 29th, 2018,
especially during the period between 5:00 and 20:00, which
indicates that our placement of the 15 GSs across Australia
provides a good coverage for the flights in the Australian
airspace.

The achievable maximum area spectral efficiency (ASE)
defined by Alouini and Goldsmith [40] is investigated in
Fig. 14, whilst the corresponding averaged number of hops

4:00 8:00 12:00
Time

(b) Jun. 29th, 2018

16:00 20:00 24:00

is investigated in Fig. 16. Explicitly, the ASE is defined as
the total achievable end-to-end spectral efficiency of all links
divided by the total area of Australia. The achievable end-
to-end throughput of an aircraft is defined as the spectral
efficiency of an aircraft accessing any of the GSs. The area of
Australia is given by 7.692 million km?. By recalling Fig. 8(a)
and Fig. 8(b), we can see that the area spectral efficiency is
higher, when there are more flights in the air both on December
25th, 2018 and on June 29th, 2018, respectively. The flights
generated both by the Normal and by the Weibull distributions
are capable of approximating the maximum ASE achieved by
the real historical flights.

The average end-to-end throughput was investigated in
Fig. 15. Explicitly, Dijkstra’s algorithm described in Section IV
is invoked for finding the routing path of a targeted aircraft
with the objective of achieving maximum end-to-end through-
put. The end-to-end throughput is limited by the specific
link in the routing path that has the minimum link through-
put. Furthermore, the distance-based ACM scheme presented
Section III is also invoked for quantifying the achievable
throughput of each link. We can see from Fig. 15(a) that
the flights generated by the Normal and Weibull distributions
are capable of closely approaching the end-to-end throughput



= Real = Real
Normal
Weibull
4 4
3 3

1 No. of hops
ed No. of hops

1 =
0 0
8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00 24:00
Time Time
(a) Dec. 25th, 2018 (b) Jun. 29th, 2018

Fig. 13. The average number of hops to a ground station

32 32
= Real = Real

o Normal & s Normal
g 28 | s Weibull g 28 | mm===s Weibull
= u =
£ =
_5 N
= 2 ISP
2 2
T 16
£ 1 E 12
z &
£ 4 S
= =

0 0

4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00 24:00
Time Time
(a) Dec. 25th, 2018 (b) Jun. 29th, 2018

Fig. 14. The area spectral efficiency attained, when having the minimum number of hops to any GS

2.5 2.5
= Real = Real
+ Normal Normal
+ Weibull + Weibull

= 20 = 20
jani jasi
~ ~
Z Z
Z 15 = 15
= ”gc
g g
= =
Z 10 Z 10
g 8
3 ]
S =
= oy
a o5 = 05

0.0 = 0.0

4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00 24:00
Time Time
(a) Dec. 25th, 2018 (b) Jun. 29th, 2018
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achieved by the real historical flights between 8:00 and 21:00
on December 25th, 2018, when there are more flights in
air by recalling Fig. 8(a). Similarly, the flights generated by
the Normal and Weibull distributions are also capable of
approaching the end-to-end throughput attained by the real
flights from 5:00 to 17:00 on June 29th, 2018 by observing
Fig. 15(b).

The corresponding average number of hops associated
with achieving maximal end-to-end throughput on December
25th, 2018 and June 29th, 2018 are portrayed in Fig. 16(a)
Fig. 16(b), respectively. We can see that an aircraft may need
more hops for achieving a higher end-to-end throughput than
in Fig. 13, which depicts the averaged number of hops required
for accessing any of the GSs. Furthermore, by observing
Fig. 16(a) Fig. 16(b), we can also see that the flights generated
by the semi-stochastic aircraft mobility model is capable of
tracking the trend of the number of hops imposed over 24
hours.

The link life-time is defined as the duration of time for
a link to be maintained between a pair of aircraft, which
is one of the most important metrics in ad-hoc networks.
These results recorded for the real historical flights and for
the flights generated by our aircraft mobility model are shown
in Fig. 17. Explicitly, Fig. 17 portrays the histogram of link
life-time at intervals of 1/2 hour, whilst Fig. 17 portrays
their complementary cumulative distribution function (CCDF)
statistics. Observe from Fig. 17 that most of the links have a
link life-time of 3/4 hour and/or li hours both for the real
historical flights and the flights generated by the Normal and
Weibull distributions. There are almost no flights having a 2-
hour link life-time.

Furthermore, the link life-time may be improved by con-
ceiving sophisticated routing protocols. Intuitively, a pair of
aircraft having the same flying direction and similar speed
will have a long-lasting link connectivity, where the estimated
level-crossing rate of the link can be invoked as a metric for
finding long-lasting routing paths.

VI. DISCUSSIONS ABOUT THE APPLICABILITY TO OTHER
SCENARIOS

The methodology presented in Section II for our devel-
oping semi-stochastic aircraft mobility model is exemplified
by the Australian scenario and its performance is validated
by Australian flight data. However, it is also applicable to
other scenarios, such as Europe, the North-Atlantic (NA), the
United States (US) and China, provided that their historical
flight data is available. Having said that, naturally, the best
fitting distribution used for artificially generating new flights
is scenario-dependent. To elaborate, there are three typical
airspaces, namely sparse airspaces over populated areas, dense
airspaces over populated areas and trans-ocean airspaces. The
sparse airspaces over populated areas may be represented by
the Australian airspace, the dense airspaces over populated
areas are typical for Europe, US and China, whilst the trans-
ocean airspace may be represented by the NA airspace or
Trans-Pacific airspace. In the following, we will briefly high-
light the application of our semi-stochastic aircraft mobility
model both to the European scenario and to the NA scenario,
which represent the dense airspace over populated areas and
the trans-ocean airspace, respectively.

Explicitly, the Top-5 airlines transatlantic flights were ex-
ploited for our investigation of the NA scenario, which are
Delta Airlines, United Airlines, American Airlines, British
Airways and Lufthansa. Because there is significant time
difference between flights taking off from Europe and the US,
we investigate their statistical characteristics separately. Since
there are too many airlines in Europe, if we only consider top-5
airlines’ flights, they cannot cover all flight route paths across
Europe. Hence, we choose all of the departure and arrival
flights of the top-5 busiest airports for European scenario.
The top-5 busiest airports selected are Heathrow Airport, UK;
Charles de Gaulle Airport, France; Amsterdam’s Schiphol Air-
port, Netherlands; Istanbul’s Ataturk Airport, Turkey; Frank-
furt Airport, Germany. The goodness-of-fit values of the six
representative hypothesis distributions investigated are sum-
marized in Table V.

Again, without considering the non-parametric Kernel den-
sity estimation, the Gamma distribution has the best the best
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Fig. 17. The histogram of link life time in Australia

goodness-of-fit for the NA-EU side both on June 29th 2018
and on December 25th 2018, whilst the Student-¢ distribution
has the best goodness-of-fit for the NA-US side both on June
29th 2018 and on December 25th 2018. By contrast, the
Normal distribution has the best goodness-of-fit for Europe
scenario both on June 29th 2018 and on December 25th
2018. Furthermore, the best fitting parameters of the Gamma
distribution, Student-¢ distribution and Normal distribution are
summarised in Table VI, which can be used for generating
near-realistic flight data for both the NA scenario and Euro-
pean scenario by recalling the semi-stochastic aircraft mobility
models, respectively.

VII. CONCLUSIONS

Since there is a paucity of literature on aircraft mobility
models for generating near-realistic flight data for investigating
aeronautical networks, we developed a semi-stochastic aircraft
mobility model based on large-scale real historical flights
acquired on the quietest day and busiest day of 2018. The
proposed aircraft mobility model is capable of generating near-
realistic mobility that captures the statistical features of the
number of aircraft in air, their motion trajectory, topology, link
quality as well as network layer performance. The achievable
link quality of the physical layer was investigated by relying
on our distance-based ACM that is specifically designed
for aeronautical communications. In order to investigate the
network layer performance, we developed a single-source-
to-multiple-destination routing optimization scheme based on
Dijkstras algorithm. Furthermore, we analysed and validated
our aircraft mobility model by investigating and comparing the
statistical link quality, end-to-end -throughput, link connection
ratio to any ground station, the number of hops as well as
the link life-time. Finally, the key statistical parameters of
the distribution used for generating artificial flight data for
dense airspaces represented by European airspace and for
trans-ocean airspaces represented by the NA airspace were
characterized. Our future research will consider the multi-
component Pareto-optimization of similar networks.
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