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A B S T R A C T

Infrared images can distinguish targets from their backgrounds based on difference in thermal radiation, whereas visible

images can provide texture details with high spatial resolution. The fusion of the infrared and visible images has many advantages

and can be applied to applications such as target detection and recognition. This paper proposes a two-layer generative adversarial

network (GAN) to fuse these two types of image. In the first layer, we generate fused images using two GANs: one uses the infrared

image as input and the visible image as ground truth, and the other with the visible as input and the infrared as ground truth. In the

second layer, we transfer one of the two fused images generated in the first layer as input and the other as ground truth to GAN to

generate the final fused image. Experiment results have demonstrated that the proposed approach is able to achieve better

performance against existing methods on preserving both texture details from visible images and thermal information from infrared

images.
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1. Introduction

The fusion of infrared (IR) and visible images is to integrate inherent properties of both images and merge
their salient information to produce a fused image. As shown in Fig. 1 (a)(b), visible images usually have the
characteristics of high resolution, and rich texture information, while IR images that are captured by infrared
sensors are normally of high contrast and more robust against external factors such as weather[1]. The fusion of
advantages of both IR and visible images has made success on target detection in military and civilian
applications[2,3]. In the past decades, based on the fusion strategies and theories[4], many fusion algorithms
have been proposed, such as hybrid models[5,6], multi-scale transform[7,8], saliency-based methods[9,10],
sparse representation[11,12], neural network[13,14], subspace[15,16], and others[17,18]. Traditional methods,
like those based on multi-scale transform or sparse representation, make pixel-level operations directly on
source images (IR and visible), though it's challenging to establish direct correlation between the pixels of the
source images that have completely different imaging principles.

In recent years, research on deep learning (DL) has become more and more extensive, especially in image
processing, and it starts to apply to image fusion by extracting deep features automatically. Liu et al. [19,20]
initial proposed the methods to use CNN for IR and visible image fusion. The method has a good performance in
image generation, but it is difficult to control the process of generating images, and some information had lost in
the process. Recently, some scholars presented other DL frameworks to fuse IR and visible images[21,22]. They
proposed a CSR-based framework and densely connected convolutional networks for image fusion, respectively.
However, DL-based methods are not end-to-end models, and they need to be trained beforehand. No matter
whether the network weights are generated by training or provided by other feature extraction models, some
transforms or operations, like those in siamese convolutional network and VGG-network, are still needed to
accomplish the final fusion process[23,24]. To address this issue, Ma eta. [25] proposed a novel IR and visible
image fusion method, FusionGAN, based on a generative adversarial network (GAN). FusionGAN works just like
an adversarial game, between retaining the thermal radiation information and the appearance texture
information[25]. The network model of FusionGAN is effective and relatively simple, and the fusion results can
be further improved by adjusting the network and loss functions. Since the discriminator in FusionGAN has no
ground truth to determine whether the data is true or false, FusionGAN uses the visible image as the ground
truth image, which leads to the fused image tend to have more texture details and less thermal radiation
information.
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Figure 1. (a) IR image; (b) Visible image; (c) Fused image by FusionGAN; (d) Fused image by our method, showing clear texture of

the trees and the building .

Motivated by FusionGAN, in this paper we propose a two-layer GAN network for the IR and visible image
fusion, as shown in Fig. 2. In the first layer, we feed IR image or visible image to two generators (G) to generate
fused images respectively, and use the other image as ground truth. Then in the second layer we feed one of the
two images generated by the first layer to G to generate fused image, and feed the other to discriminator (D) as
the ground truth image.

Figure 2. Framework of the two-layer GAN.

Our experiments have demonstrated that our proposed network is able to produce fused images with
improved performance against the state-of-arts by preserving both texture details from visible image and
thermal radiation information from IR image. Fig. 1 (c)(d) shows an example of fused images by FusionGAN and
our method.

Among the remaining sections of this paper, Section 2 reviews traditional and deep learning based fusion
methods. Section 3 presents the proposed approach, including the network structure, loss function and training
flow of our model. Section 4 gives our experimental results, including qualitative illustration and quantitative
analysis and comparison to the state-of-arts. We conclude the paper with future work in Section 5.
2. Related works
2.1 Conventional Fusion Methods

The conventional methods mainly include sparse representation based methods[26,27], the multi-scale
decomposition (MSD)-based methods[28,29], hybrid models-based methods[5,30], and neural network-based
methods[31,32]. MSD-based methods resolve the source images into components of different scales, and each
component indicates sub-images of different scales. Then, the methods fuse the sub-images at different scales
according to the given rules and obtain the fusion image through the corresponding inverse multi-scale
transforms. Sparse representation based methods tend to build an over-complete dictionary from vast
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high-quality natural images. Then, the source images can be sparsely represented by the learned dictionary.
Most of the image fusion methods based on neural network mainly adopt pulse-coupled neural network (PCNN)
or its variants. PCNN based methods extract local details through its own biological characteristics and gain
better fusion results when the gradient and phase information are considered beforehand.
2.2 Deep learning based image fusion

In the last few years, convolutional neural networks (CNNs) have attained great success in many image
processing applications. Prabhakar et al.[33] presented a deep learning framework for fusing static
multi-exposure images. This method proposed a new idea for information fusion by CNNs. For the image fusion,
Liu et al.[34] presented a Siamese convolutional network to get the weight graph and solve the multi-scale
problem by the image pyramid. Moreover, another fusion approach, “DenseFuse”, was proposed by Li et al.[35],
adopt dense blocks to store more information from the middle layers. Obviously, DL based methods have made a
great breakthrough in the image fusion. However, the method based CNN must satisfy a critical precondition that
is, the ground truth should be available beforehand. On this case, the CNN methods for the image fusion build a
deep model to determine every patches’ fused degree in the source images, and then calculate a weight map for
generating the final image[34]. Li et al.[35] proposed Dense Net based CNN for make full use of each convolution
layer and get good results. However, the aspects like network architecture can still be further improved. Recently,
Ma et al.[25] innovatively proposed the method with GAN, and formulated the fusion as an adversarial game
between keep the thermal radiation information and visible texture information. Instead of pre-training, the
method used IR and visible image patches to train the network.
2.3 Generative adversarial networks

The GAN was initial proposed by Goodfellow et al.[36] In 2014, and it has attracted wide attention in deep
learning. The algorithm is based on minimax game and provided a easy and effectual method for evaluating
target distribution and generating new samples. GAN framework include two models: generative model(G) and
discriminative model(D). The model build an adversarial game between the G and D, G take the noise �� as
input, and try to generate a different sample data to fool D. D determine whether the input is from the real data
distribution. Finally, the samples be generated by generator which cannot recognize by D as the final data. The
Schematic diagram as follows:

Figure 3. The schematic diagram of the generative adversarial network

The adversarial formula as follows:

))]D(G(z)[log(1E[logD(x)]E(G,D)Vmaxmin z~Pz(z)x~Pdata(x)GAN
DG

 (1)

In the function ���������, the first item signifies the entropy of data from real distribution judged by D. D
tries to maximize the mark. The second item is the entropy of the data generated by G from random inputs
discriminated by D. D tries to make this item bigger and equivalently minimize the ��� � � to assurance its
ability to distinguish untruth from truth. In short, D wants to maximize the function ��������� and minimize the
function ���������.

Compared to the traditional fusion method, GAN has many advantages such as no need to use Markov chain
or expand approximate reasoning network for training and sample generation[36]. In this paper we take these
advantages propose a two-layer GAN network for fusing IR and visible images.
3. Our Fusion Framework
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The structure of our proposed two-layer GAN is illustrated in Fig. 2. It's worth mentioning that, during the
experiment, we have also changed the input of G in the second layer, i.e. taking the second fusion result of the
first layer as the input, and the first fusion result as the ground truth. The final fusion results were quite similar,
thanks to the symmetric features of the proposed structure.
3.1 The Structure of G

Our model has three generators that have the same structure as shown below in Fig. 4.

Figure 4. The network structure of the generator.

G is a convolution neural network and has five layers, the first four layers are set to 3×3 filters, and 1×1
filter in the last layer. Every layer’s stride is set to 1, and no padding operation in convolution. In order to keep
the source’s details, only introduced convolutional layer and no downward sampling, which also keeps the same
size of the input and output images [37]. Moreover, to avoid the disappearing gradient, we adopt the rules of
deep convolutional GAN[38] for batch normalization and activation function. To surmount the sensitivity to data
initialization, we used batch normalization in the first four layers, which can make our model more stable and
also help the gradients to back propagate to each layer effectively. For the activation function, we use leaky ReLU
activation function in the first four layers, and the tanh activation function in the last layer.
3.2 The Structure of D

Our model has three discriminators which have the same structure but different input images and ground
truth images, as illustrated in Fig. 2. The network structure of the generators is as follows:

Figure 5. The network structure of the discriminator.

D is a five-layer convolution neural network which has 3×3 filters in the first four layers, and the stride set
as 2 without padding. This is dissimilar from G, for the D is a classifier, which first extracts feature map from the
input image and then classifies it. Hence, it works in the same way as the pooling layer, setting the stride as 2.
Want not to introduce noise, we do not pad the input image. We used the batch normalization layer from the
layer 1 to layer 4. In addition, we adopt the Leaky ReLU activation function in the first four layers. The last layer is
a linear layer for classification.

The core of GAN algorithm is the adversarial loss, through which we can establish the adversarial
relationship between G and D. Below we introduce the adversarial loss of our model in detail.
3.3 The Loss Function of G

For the network have three generators and three discriminators, we introduce the loss functions,
respectively. Motivated by FusionGAN[25], we split the loss function into two terms: the adversarial loss and
content loss for the generators, and the positive loss and negative loss for the discriminators.

G1: The first G’s input is the IR image, and output is the fused image IIRV . The loss function consists of two
terms:

��� � ��
A � ��

� (2)
Where G�� denotes the G’s total loss. The first term ��

A denotes the adversarial loss between the



generator G and discriminator D, defined as:

��
A � �

� ���
� �������� t ������ (3)

Where IIRV and N denote the fused image with n ∈ �n and the number of fused images, respectively. ��
is the value that generator tricks discriminator to believe in fake data, which in our method is set as 0.8.

The second term ��
C represents the content loss, since the thermal radiation information of infrared image

is characterized by its pixel intensities. The edge information in the image is particularly important for target
detection, so it is an important basis for the loss function, and we added the weight of the edge information in
the formula. We also enforce the fused image IIRV to have similar intensities as IIR specifically. Let IIRV

' as the
edge points of the fused image, IIR

' as the points that corresponds to IIRV
' in the image of IIR . The content loss

is then defined as:

��
� � �

�
� ���� t ��� ��

� � � �
� ��㈠

� �����
' t ���

' ��� (4)

Where S represents the area of the input images, ∙ F stands for the matrix Frobenius norm, and � is the
weight which we set as 2 in our method.

G2: The second G’s input is the visible image, and the output is the fused image IVIR . Similar to G1, the
loss function consists of two terms:

��� � ��
A � ��

� (5)

��
A � �

� ���
� �������� t ����� (6)

��
� � �

�
� ∇���� t ∇�� ��

� (7)

The explanation of these three formulas is the same as above for the generator G1. ∇ means the gradient
operator.

G3: The third G’s input is the fused image IIRV from the first layer and the output is the final fused image
Iff . The loss function consists of two terms:

��� � ��
A � ��

� (8)
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A � �

� ���
� ������� t ����� (9)
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� � � �
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� ����
' t ����

' ��� � � ∇��� t ∇���� ��
� (10)

The explanation of these three formulas is the same as above. � is a positive parameter controlling the
trade-off between two terms, which in our method is set as 100. The larger this value, the more information of
the fused image is retained by the second fused image.
3.4 The Loss Function of D

The loss function contains two terms: the deviation degree of the ground truth image from the expectation
and the deviation degree of fused image from the expectation. The three D have same loss function which
consists of two terms:

�� � �
� ���

� �����ali�r �ai��� t ��� � �
� ���

� �����i䂺�l�� t ����� (11)

where � and � denote the parameters of the fused image ��i䂺�l� , and the ground truth image
��ali�r �ai�� respectively, while D x denote the classification results of the x. We set the parameter � as 0.8,
since we regard the ground truth images as the real image thus making it close to 1. On the contrary, we set the
parameter � as 0.2, since we regard fused image as the fake images thus making it close to 0. This setting is to
balance the loss function. While optimizing D, we try to minimize ����i䂺�l�� , so that D is always able to
distinguish the fake data from the truth. The smaller �� mean that more details of the ground truth image are
transferred to the elementary fused image generated by G. The adversarial game between G and D gradually



complete the fusion process so that the final fused images have comprehensive information from source images.
4. Experiments and Results

In our experiments, we adopted 40 pairs of IR and visible images from the TNO database[39] which includes
visual, near-infrared, and long-wave infrared or thermal, night time imagery. All images have already been
pre-aligned. We divided 40 pairs into two parts: 30 pairs for training and 10 pairs for testing. For 30 pairs of
images are not enough to train a good model, we crop each image by setting the stride to 12, and each patch is
of the same size 128×128. As a result, we combined 35,283 pairs of images together as the training data set.
4.1 Details of training

During the training, we set iteration number k as 10, step number as 2, and cropped the training images into
128× 128 batches without overlapping. We fed the image batches to G, which then generates fused image
batches. We fed IR batches and fused image batches to D, which output the loss �D and �G.At the end of iteration,
G generates the fused image. Fig. 6 shows our GAN's training process.

We first train the discriminator k times, and use the optimizer solver as that in[40]. Then we train the
generator until the end of iterations.

Figure 6. Training process of GAN.

In the training process, we will train three pairs of G and D. The first pair takes visible images as input and IR
images as ground truth. Through the training, the network with the first pair can generate fused image that
contains more thermal radiation information. The second pair takes IR images as input and visible images as
ground truth. The network with the second pair, after training, can generate fused image that contains more
texture details. The third pair takes the images that are generated by first network as input and the images that
generates by second network as ground truth for training. After these trainings, the final fused images will then
retain salient details from both IR and visible images.
4.2 Objective Evaluation Metrics

In the task of infrared and visible image fusion, there is no real ground truth, so it is difficult to conduct the
objective evaluation. As a result, researchers take a reasonable way to apply several fusion metrics to make an
overall evaluation[41]. In our experiments, we used eight objective fusion metrics to evaluate the fusion results.
The eight metrics were entropy (EN) which measures the amount of information the fused image contains.
Mutual information (MI) which is used to evaluate the mutual information of fused images. Structural similarity
(SSIM) measures the mean structural similarity between the source images and fused image. Spatial frequency
(SF) [42] measures the spatial frequency of the fused image. Standard deviation (SD)[43] measures the contrast
of the fused image which influences the visual attention. The sum of the correlation of differences (SCD)[44] is an
independent index for judging the amount of information transmitted from source images to the fused image.



The feature mutual information (FMI)[45] is based on information theory and measures the mutual information
between image features. QABF[46] is a local measure used to estimate the degree of retention of significant
information in fused images. For all eight metrics, the larger value means the better fusion performance.
4.3 Subjective Evaluation

To elaborate and compare the fusion effects of different methods clearly, the fusion results obtained by
different methods of ten pairs are shown in Fig. 7 and Fig. 8.

The comparing methods in our experiment include NSST-PAPCNN[47], nonsubsampled contourlet transform
(NSCT)[48], curvelet transform(CVT)[49], convolutional sparse representation (CSR)[50], dual-tree complex
wavelet transform (DTCWT)[51], cross bilateral filter(CBF)[52], Latent Low-Rank Representation(LATLRR)[53],
weighted least square(WLS)[54], convolutional neural network based fusion (CNN)[55], and a GAN based
method (FusionGAN)[25]. We used the codes provided by the authors or a well-known toolbox to generate the
fused images from the source images, i.e. the IR and visible images.
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Fig. 7. The results for the first 5 groups. (a)IR image, (b)VIS Image, (c)NSST-PAPCNN, (d)NSCT, (e)CVT, (f)CSR, (g)DTCWT, (h)CBF,

(i)LATLRR, (j)WLS, (k)CNN, (l)FGAN, (m)OURS. Note that in the last two rows, for clear comparison we select a

small region (i.e., the red box) in each fused image, and then enlarge and put it in the right corner.
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Fig. 8. The results for the last 5 groups. (a)IR image, (b)VIS Image, (c)NSST-PAPCNN, (d)NSCT, (e)CVT, (f)CSR, (g)DTCWT, (h)CBF,

(i)LATLRR, (j)WLS, (k)CNN, (l)FGAN, (m)OURS. Note that in the last two rows, for clear comparison we select a small region (i.e., the

red box) in each fused image, and then enlarge and put it in the right corner.

The first two rows in Fig. 7 and 8 represent IR images and visible images, and the last row is the fusion
results of our method. Overall, the results show that all the methods can fuse the information of visible image
and IR image well to some extent. However, it can be seen that, compared to other methods, FusionGAN and
ours make the target area (such as buildings, people and cars) more prominent in the fused images, which is
conducive to automatic target detection and localization. This could be attributed to the fact that FusionGAN and
ours are able to preserve more thermal radiation information in the IR images, while other comparing methods
focus more on exploiting the texture details in the visible images.

Between FusionGAN and our method, we can see that our results contain slightly more abundant details,
and they are more suitable for human visual perception, as shown in the red boxes in Fig. 7 and 8. For example,
the solider in the fourth column of Fig. 7 and the hand of the umbrella bearer in the second column of Fig. 8 are
presented more clearly by ours than that by FusionGAN. In the second column of Fig. 8, the hand of the umbrella



bearer is fused more appropriately and more clearly by ours than FusionGAN. And in the third column of Fig. 8,
the corner of the roof highlighted in the box fused by FusionGAN is fuzzy, while our result is sharper. This
demonstrates our method’s excellent performance in terms of simultaneously preserving thermal radiation
information and texture details.

For quantitative comparisons, we evaluated all methods through the above-mentioned eight metrics. The
results are plotted in Fig. 9 and the averages of 10 fused images for 8 metrics are listed in Table 1.

Table 1. The average values of 10 fused images for the 8 metrics.

Methods EN MI QABF FMI SSIM SD SF SCD

NSST_PAPCNN 7.062735 14.12547 0.349003 0.893138 0.6545 41.70837 0.487205 1.44104

NSCT 6.67294 13.34588 0.442946 0.899258 0.678554 30.47823 0.559955 1.56964

CVT 6.684161 13.36832 0.4151 0.895826 0.664334 30.46991 0.515316 1.55008

CSR 7.308307 14.61661 0.441369 0.867851 0.607427 49.43395 0.502694 1.06805

DTCWT 6.648422 13.29684 0.410618 0.894699 0.664047 30.05842 0.562504 1.54710

CBF 6.96852 13.93704 0.354673 0.857701 0.547844 37.91702 0.511339 1.27858

LATLRR 6.618689 13.23738 0.408749 0.891143 0.730806 30.45902 0.583359 1.60302

WLS 6.887689 13.77538 0.413503 0.88595 0.674388 38.43261 0.527757 1.69113

CNN 7.195607 14.39121 0.44262 0.89764 0.662346 48.1034 0.498179 1.63320

FusionGAN 6.49529 12.99058 0.21183 0.880279 0.639393 29.35145 0.630014 1.32043

Ours 7.321885 14.25377 0.443773 0.871807 0.726497 49.78707 0.630342 1.56132

In Table 1， the best values for each metric are presented in bold face. It can be seen that our method
achieves the best performance in EN, QABF, SD, and SF. For other metrics, the performance of our method is not
far from the best. High EN and SD values indicate that our fused images have higher contrast, while high QABF
means our fused image is superior in conspicuousness. Also, a high SF indicates the images fused by the
proposed method contain more texture details. However, our method has slightly lower SCD, which will be our
future work to optimize the network structure and loss function further.

EN MI

QABF FMI



SSIM SD
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Figure 9. Quantitative values of eight metrics.

5. Conclusions
Inspired by FusionGAN, we propose a two-layer generative adversarial network for the fusion of infrared

and visible images. The proposed network can simultaneously retain the thermal radiation information from
infrared image and the texture details from visible image. Our experiments demonstrate that compared to
FusionGAN and other existing approaches, our fusion results can highlight salient information in the images such
as potential targets more clearly, which is important for target detection and recognition applications. The
quantitative comparisons with the state-of-the-arts on eight evaluation metrics also reveal that our method can
not only produce better visual effects, but also keep more details existing in the source images. In our future
work, we will optimize the structure and the loss functions of our framework so that the fused images have more
texture details and target radiation information.
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