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Deep Learning Aided Packet Routing in
Aeronautical Ad-Hoc Networks Relying on Real

Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization

Dong Liu, Jiankang Zhang, Jingjing Cui, Soon-Xin Ng, Robert G. Maunder, and Lajos Hanzo

Abstract—Data packet routing in aeronautical ad-hoc networks
(AANETs) is challenging due to their high-dynamic topology. In
this paper, we invoke deep learning (DL) to assist routing in
AANETs. We set out from the single objective of minimizing
the end-to-end (E2E) delay. Specifically, a deep neural network
(DNN) is conceived for mapping the local geographic information
observed by the forwarding node into the information required
for determining the optimal next hop. The DNN is trained by
exploiting the regular mobility pattern of commercial passenger
airplanes from historical flight data. After training, the DNN
is stored by each airplane for assisting their routing decisions
during flight relying solely on local geographic information. Fur-
thermore, we extend the DL-aided routing algorithm to a multi-
objective scenario, where we aim for simultaneously minimizing
the delay, maximizing the path capacity and maximizing the
path lifetime. Our simulation results based on real flight data
show that the proposed DL-aided routing outperforms existing
position-based routing protocols in terms of its E2E delay, path
capacity as well as path lifetime, and it is capable of approaching
the Pareto front that is obtained using global link information.

Index Terms—AANET, routing, deep learning, multi-objective
optimization

I. INTRODUCTION

Next-generation wireless networks are envisaged to sup-
port truly global communications, anywhere and anytime [1].
Current in-flight Internet access supported by geostationary
satellites or direct air-to-ground (A2G) communications typ-
ically exhibit either high latency or limited coverage. Aero-
nautical ad-hoc networks (AANETs) are potentially capable
of extending the coverage of A2G networks by relying on
commercial passenger airplanes to act as relays for forming a
self-configured wireless network via multihop air-to-air (A2A)
communication links [2, 3].

Due to the high velocity of aircraft and the distributed nature
of ad-hoc networking, one of the fundamental challenges
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in AANETs is to design an efficient routing protocol for
constructing an appropriate routing path at any time [4].
Traditional topology-based ad-hoc routing protocols [5], such
as the ad-hoc on-demand distance vector (AODV) [6] based
solutions, usually require each node to locally store a routing
table specifying the next hop. The routing table, however,
has to be refreshed whenever the network topology changes
during a communication session, hence imposing substantial
signaling overhead and latency in AANETs. Although sub-
stantial research efforts have been invested in improving the
stability of routing in AANETs [7, 8], they have a limited
ability to update their routing tables for prompt adaptation in
high-dynamic scenarios. Reinforcement learning based routing
algorithms, such as Q-routing [9] and its variants [10] were
proposed for improving the adaptability of routing in dynamic
environments. However, they require frequent information
exchange for trail-and-error in order to update the Q-table
(acting as the routing table) in an online manner, which still
suffer from the above issues when the network topology is
highly dynamic.

By contrast, another family of ad-hoc routing protocols,
namely position-based (or geographic) routing [15], only re-
quires the position information of the single-hop neighbors
and of the destination for determining the next hop. Since it
does not have to maintain routing tables, geographic routing
finds new routes almost instantly, when the topology changes.
Because the position information required for determining the
next hop can be readily obtained by each airplane using the
automatic dependent surveillance-broadcast (ADS-B) system
on board, geographic routing is more appealing in AANETs.
Greedy perimeter stateless routing (GPSR) [11] was one of
the most popular geographic routing protocols, which has
also inspired various extensions [12, 13] in AANETs. The
core idea of greedy routing is to forward the packet to
the specific neighbor that is geographically closest to the
destination. In [12], greedy routing was improved for avoiding
congestion by considering the buffer queue status of the next-
hop candidates. In [13], the mobility information was further
taken into consideration for choosing a more stable next hop.
However, greedy routing [11–13] is stifled when no neighbor
is closer to the destination than the forwarding node (this
situation is term as the communication void).

To elaborate, the limitation of position-based routing arises
from the fact that the nodes are unaware of the entire



2

TABLE I
COMPARISON WITH EXISTING ROUTING ALGORITHMS FOR AANETS

Routing Algorithms AODV [6]
MUDOR [7]

GPSR [11]
GLSR [12]
A-GR [13]

Q-Routing [9] &
its variants [10]

MQSPR [8] MOEA [14] Proposed
POMOR

Proposed
DL-aided
Routing

Centralized:
Global Topology Information
Low-Dynamic Scenario

√ √

Ad-Hoc (Topology-Based):
Routing Table
Low-Dynamic Scenario

√ √ √

Ad-Hoc (Position-Based):
Local Geographic Information
High-Dynamic Scenario

√ √

Single Objective
√ √ √ √

Mutliple Objective
√ √ √ √

Find All Pareto-Optimal Paths
√

network topology. Therefore, one of our ambitious goals
is to enable the forwarding node to infer the information
required for avoiding the communication void issue from its
local observation. Although the topology of AANETs evolves
dynamically, it exhibits certain patterns, since both the flight
trajectories and takeoff times are pre-planned and normally
repeated on a weekly basis. This suggests that the local
geographic information may be strongly correlated with that
of the whole topology, hence this correlation may be exploited
using historical flight data.

Another typical limitation of the existing routing protocols
designed for AANETs is that only a single-component ob-
jective function (OF) is optimized for improving a specific
network performance metric. However, the overall network
performance should be characterized by multiple metrics,
such as the end-to-end (E2E) packet delay, path capacity
and path lifetime. Accordingly, multi-objective optimization
(MOO) [16] can be adopted, where all components of the
OF are optimized simultaneously. Since multiple objectives
typically conflict with each other, they may not achieve their
respective optima at the same time. Hence, in contrast to
optimizing a single-component OF, typically there is no single
globally optimal solution in MOO, which is the best with
respect to all objectives. By contrast, the ultimate goal of
MOO is to discover all the Pareto-optimal solutions that
constitute the entire Pareto front, where none of the objective
can be improved without scarifying at least one of the other
objectives [16]. To expound a little further, the Pareto front
characterizes the optimal tradeoff relationship among multiple
potentially conflicting objectives. As a benefit, the network
operator may opt for any of the Pareto-optimal solutions along
the Pareto front according to the requirements of different ser-
vices. For example, for file downloading, it is more important
to increase the capacity than reducing the E2E delay, while
for voice calls, it is more important to reduce the E2E delay.

MOO has been leveraged in diverse problems in wire-
less networks [17, 18] and also been used for routing in
AANET [8]. However, multiple performance metrics were
combined by a linear weighted sum in [8], by which some
Pareto-optimal solutions may not be found, when the Pareto

front is non-convex. Alternatively, bio-inspired metaheuristics,
such as multi-objective evolutionary algorithms (MOEAs), can
be leveraged for solving the multi-objective routing prob-
lem [14], which have the potential to find the Pareto-optimal
solutions even in non-convex scenarios. However, MOEAs
require global knowledge regarding the status (e.g., delay,
capacity, lifetime) of every single possible link in the network
for running the optimization, which is not feasible in large-
scale AANETs.

Therefore, another radical goal of this paper is to devise
routing algorithm simultaneously optimizing multiple perfor-
mance metrics based on local information in a distributed
manner. As we mentioned before, the local geographic infor-
mation may be strongly correlated with the global topology
due to the regular mobility pattern of commercial passenger
airplanes. In this context, deep neural networks (DNNs) [19]
are capable of learning a direct mapping from the input
features to the desired output.

Against this background, we conceive a bespoke DL tech-
nique for learning routing in AANETs. We commence with a
single objective aimed at minimizing the E2E delay and then
extend our investigations to a multi-objective scenario, where
the E2E delay, path capacity, and path lifetime are jointly
considered as components of the OF. The contributions of this
paper are summarized as follows:

1) We propose a DL-aided routing algorithm for minimizing
the E2E delay in AANETs. Specifically, we use a DNN
that takes the coordinates of the next-hop candidates
as its input and outputs the information required for
determining the optimal next hop. The DNN is trained
offline by supervised learning, where the training labels
are obtained by running the shortest path algorithm using
historical flight data. With the aid of the pre-trained DNN,
the optimal next hop can be determined promptly, solely
based on local geographic information.

2) We further extend our DL-aided routing algorithm for
handling multi-component OF, namely simultaneously
minimizing the delay, maximizing the path capacity and
maximizing the path lifetime. To generate training la-
bels for the DNN, we propose a Pareto-optimal multi-
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TABLE II
SUMMARY OF MAIN NOTATIONS

N [t] Set of nodes available at TS t pn The nth node on path p
s
[t]
i , s̄

[t]
i Spherical/Cartesian coordinates of node i at TS t D[t](p) Delay of path p at TS t

θ
[t]
i Latitude of node i at TS t C[t](p) Capacity of path p at TS t
ϕ

[t]
i Longitude of node i at TS t L[t](p) Lifetime of path p at TS t
h
[t]
i Altitude of node i at TS t L[t](i, j) Lifetime of link i→ j starting from TS t
Re Earth radius p∗is Optimal path from node is to id
d[t](i, j) Distance between nodes i and j at TS t D[t]

∗ (j, id) Minimum delay from j to i at TS t
dth(h

[t]
i , h

[t]
j ) Maximum distance of a direct link D̂[t]

∗ (j, id) Estimated minimum delay using DNN

B[t]
i Neighbor set of node i at TS t D̃[t]

∗ (j, id) Estimated minimum delay using feedback
b
[t]
k (i) The kth neighbor of node i at TS t x

[t]
i Local information observed by node i at TS t

C[t](i, j) The capacity of link i→ j at TS t y
[t]
i , ŷ

[t]
i Desired/Actual output of the DNN at node i

W, f Transmission bandwidth/Carrier frequency f(·; θ) DNN with parameter θ
P, σ2 Transmit/noise power C[t]i Next-hop candidate set of node i
Gt, Gr Transmit/Receive antenna gain M[t]

i Mutual candidate set of node i, see (30)
D[t](i, j) Total delay of link i→ j mk The kth element in the sorted mutual candidate set
D[t]

que(i) Queuing delay at node i C̄[t]i Defined in (35)

D
[t]
tr (i, j) Transmission delay of link i→ j X[t]

∗ (j, id, εC , εL) Defined in (42)
D[t]

pr (i, j) Propagation delay of link i→ j X̂(j, id, εC , εL) The estimate of X[t]
∗ (j, id, εC , εL)

S Packet size X̃(j, id, εC , εL) The estimate of X[t]
∗ (j, id, εC , εL) using feedback

objective routing (POMOR) algorithm using the global
link information to obtain all the Pareto-optimal solutions
at a moderate polynomial complexity.

3) Our simulation results based on real flight data collected
over the North Atlantic Ocean and the European Conti-
nent show that:
• For minimum-delay routing, our DL-aided routing

outperforms the existing geographic routing and it is
capable of approaching the performance of the optimal
routing that relies on global link information.

• For multi-objective routing, our proposed POMOR
algorithm using global link information can find the
Pareto front for visualizing and analyzing the optimal
tradeoff between multiple performance metrics. When
relying solely on local information, our DL-aided
routing is capable of discovering paths that achieve
a performance closely the Pareto front obtained by
POMOR.

In Table I, we boldly and explicitly contrast our work to
the most pertinent routing algorithms designed for AANETs.
The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we propose our
DL-aided routing algorithm for single objective optimization
minimizing the E2E delay. In Section IV, we extend the DL-
aided routing to a challenging multi-objective scenario. Our
simulations results are provided in Section V, and finally,
Section VI concludes the paper.

II. SYSTEM MODEL

Consider an AANET formed by multiple passenger air-
planes and a ground station (GS). Let i denote the node’s index
and N [t] denote the set of node indices at timestamp (TS) t.
The position of node i at TS t is denoted by a 3D-vector
s

[t]
i =

[
θ

[t]
i , ϕ

[t]
i , h

[t]
i

]
where θ

[t]
i , ϕ[t]

i , and h
[t]
i denote the

latitude, longitude, and altitude of node i at TS t, respectively.
The main notations to be used throughout the article are
summarized in Table. II.

In Cartesian coordinates, the position of node i can be
converted as

s̄
[t]
i =

[
(Re + h

[t]
i ) cos θ

[t]
i cosϕ

[t]
i , (Re + h

[t]
i ) cos θ

[t]
i sinϕ

[t]
i ,

(Re + h
[t]
i ) sinϕ

[t]
i

]
(1)

where Re = 6371 km is the earth radius. Then, the Euclidean
distance between node i and node j at TS t can be expressed
as d[t](i, j) =

∥∥s̄[t]
i − s̄

[t]
j

∥∥.

Earth

Fig. 1. The maximum distance for direct communication between two nodes
above the horizon.

A pair of nodes can establish direct communications when
they have direct visibility, i.e., when they are both above the
horizon, as shown in Fig. 1. Then, the maximum communica-
tion distance between nodes i and j is given by

dth

(
h

[t]
i , h

[t]
j

)
=

√
(h

[t]
i +Re)2 −R2

e +

√
(h

[t]
j +Re)2 −R2

e .

(2)
Therefore, the condition that nodes i and j can establish a
direct communication link is d[t](i, j) ≤ dth(h[t]

i , h
[t]
j ).

Let B[t]
i = {j|d[t](i, j) ≤ dth(h

[t]
i , h

[t]
j )} denote the set

of nodes that can connect to node i, i.e., the neighbors of
node i. Moreover, we rank the neighbors by their distance to
the destination in ascending order and let b[t]k (i) denote the
kth neighbor of node i at TS t.

Upon assuming free-space path loss above the clouds, the
capacity of the direct link from node i to node j can be
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expressed as

C [t](i, j) = W log2

[
1 +

PGtGr

σ2

(
c

4πfd[t](i, j)

)2
]
, (3)

where W is the transmission bandwidth, P is the transmit
power, Gt and Gr denote the transmit and receive antenna
gains, respectively, σ2 is the noise power, c = 3× 108 m/s is
the speed of light, and f is the carrier frequency.

Let S denote the packet size. The delay of sending a packet
from node i to node j is composed by

D[t](i, j) = D[t]
que(i) +D

[t]
tr (i, j) +D[t]

pr (i, j), (4)

where D
[t]
que(i) denotes the duration that the packet spent

in the buffer queue of node i, which can be formulated as

D
[t]
que(i) =

∑Q
[t]
i

q=1
S

C[t](i,nq)
with Q

[t]
i denoting the number of

packets in the buffer queue of node i and nq denoting the next
hop for the qth packet in the queue, D[t]

tr (i, j) = S
C[t](i,j)

is the

transmission delay, and D[t]
pr (i, j) = d[t](i,j)

c is the propagation
delay from node i to node j.

Since the distance between a source node is and a desti-
nation node id may exceed the direct communication range,
the packet may traverse through multiple nodes until finally
reaching id. Let p , (p1, p2, · · · , pN ) denote a path having
N − 1 hops connecting nodes is and id, where pn denotes the
index of the nth node on path p. In particular, we have p1 = is
and pN = id.

We consider three metrics for routing path selection. The
first one is the E2E delay of the path, which is the summation
over the delay of each link along the path and can be
formulated as

D[t](p) =

N−1∑
n=1

D[t](pn, pn+1). (5)

The second one is the path capacity, which is limited by the
lowest link capacity along the path as

C [t](p) = min
n=1,··· ,N−1

C [t](pn, pn+1). (6)

Since AANETs have dynamic typologies, a communication
link breaks when the transmitter or receiver move out of each
other’s communication range. To reflect routing stability, we
consider the path lifetime as the third metric, which is defined
as the duration when every transmitter-receiver pair along the
path has direct visibility. A long path lifetime reflects a more
stable path, avoiding rerouting. Specifically, the lifetime of
path p starting from TS t can be formulated as

L[t](p) = min
n=1,··· ,N−1

L[t](pn, pn+1). (7)

where L[t](i, j) denote the lifetime of link i → j, which is
the duration of transmitter i and receiver j being within the
communications range, i.e.,

L[t](i, j) = max
∆t

{
∆t
∣∣∣ d[t+∆t](i, j) ≤ dth

(
h

[t+∆t]
i , h

[t+∆t]
j

)}
.

(8)
We can observe that the link lifetime L[t](i, j) depends on the
future distance between i and j in each time stamp, which

further depends on the coordinates of nodes i and j in each
future TS, i.e.,

{
s

[t+∆t]
i

}
t≥0

and
{
s

[t+∆t]
j

}
t≥0

. In practice,
the future positions of an airplane can be obtained from its
pre-planned trajectory.1 Then, the distance d[t+∆t](i, j) in
each future TS can be calculated for checking whether the
maximum communication range is reached, and hence the link
lifetime L[t](i, j) can be calculated effortlessly, by evaluating
(8) using the classic bi-section search method.

III. SINGLE-OBJECTIVE ROUTING

In this section, we first formulate a single-objective routing
problem aimed at minimizing the E2E delay and then propose
the corresponding DL-aided routing algorithm.

A. Problem Formulation
Let p∗is denote the optimal path minimizing the E2E delay

between an arbitrary source node is and the destination node
id at an arbitrary TS t. The routing optimization problem
minimizing the E2E delay can be formulated as

P
[t]
D : min

p
D[t](p) =

N−1∑
n=1

D[t](pn, pn+1) (9a)

s.t. d[t](pn, pn+1) ≤ dth(h[t]
pn , h

[t]
pn+1

),

∀n = 1, · · · , N − 1 (9b)

pn ∈ N [t], ∀n = 1, · · · , N (9c)
p1 = is, pN = id. (9d)

which can be regarded as a shortest path problem by treat-
ing the link delay as the “distance”. However, conventional
graph-based methods, such as Dijkstra’s algorithm, are not
applicable in practice due to the following reasons. To solve
a shortest path problem using Dijkstra’s algorithm, the global
knowledge regarding the graph is required. Specifically, the
whole network topology, the propagation and transmission
delay between every pair of airplanes, and the queuing delay
at each airplane should be known. This requires a central-
ized controller collecting all the required information, which
goes against the self-organized nature of AANETs. Moreover,
due to the high-dynamic network topology of AANETs, the
minimum-delay path changes rapidly over time, and hence
Dijkstra’s algorithm has to be re-run frequently in order to
keep the minimum-delay path up-to-date. Consequently, the
required global information should be frequently refreshed to
the controller, which imposes excessive signaling overhead.
Therefore, our goal is to solve problem P

[t]
D relying solely on

local information in a distributed manner.
In the following, we assume that each node is aware of its

own position, the positions of its neighbors as well as of the
destination, and then invoke DL for finding the optimal path.

B. DL-Aided Minimum Delay Routing Using Local Informa-
tion

1) Optimal Substructure: Problem P
[t]
D has an optimal

substructure as shown in Fig. 2. Specifically, assume that the

1When there is no pre-planned trajectory, the future positions can be
predicted based on the current coordinates, speeds and headings of nodes i
and j, assuming that they fly at a constant altitude, speed as well as heading.
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...
...

Neighbors

Fig. 2. Finding the optimal next hop using the optimal substructure. A straight
line indicates a direct communication link and a polyline indicates a minimum-
delay path between the two nodes it connects. For notational simplicity, we
omit subscript and superscript of “B[t]pn”, and the parentesis of “bk(pn)”

packet is currently located at node pn. Let j ∈ B[t]
pn denote the

index of pn’s neighbor and let D[t]
∗ (j, id) denote the minimum

delay from node j to the destination id. Then, the optimal next
hop minimizing the overall delay from the current forwarding
node pn to the destination id can be characterized by

p∗n+1 = arg min
j∈B[t]

pn

{
D[t](pn, j) + [1− Id(j)]D[t]

∗ (j, id)
}
,

(10)
where Id(j) = 1 if j = id, and Id(j) = 0 otherwise. Relying
on the optimal substructure, the optimal next hop can be
determined when D[t](pn, j) and D

[t]
∗ (j, id) for j ∈ B[t]

pn are
known. Consequently, the optimal path p∗is can be obtained by
determining the optimal next hop one by one until the packet
reaches its destination id.

Since D[t](pn, j) can be readily measured by the forwarding
node, the optimal next hop can be determined once the
minimum delay D

[t]
∗ (j, id) from each neighbor j ∈ B[t]

pn

to the destination is is obtained. Recalling that the goal is
to determine the optimal next hop relying solely on local
information, it can be accomplished if we can infer D[t]

∗ (j, id)

from local information. In practice, D[t]
∗ (j, id) depends on the

global network topology, which is strongly correlated with the
local topology due to the regular flight trajectory and schedule.
This motivates us to use a DNN for learning the relationship
between the local geographic information observed by the
forwarding node and the minimum delay from each neighbor
to the destination as follows.

2) Structure of the DNN: We first specify the input and
output of the DNN. To reflect the local topology observed by
the forwarding node i, the input feature of the DNN should
naturally include the position of node i and the positions of its
neighbors B[t]

i . However, the number of neighbors is in general
different for each node i ∈ N [t], while the DNN’s input
dimension is fixed. If each forwarding node sends its packets
to a neighbor that is far away from the destination, then the
overall number of hops required for reaching the destination
become excessive. Moreover, the computational complexity
increases with the number of neighbors. Therefore, it is
reasonable to rank the neighbors according to their geographic
distance from the destination in ascending order and only
consider the top-K ranked neighbors, i.e., b1(i), · · · , bK(i).
By further including the position of the destination id, the

input feature of the DNN can be finally formulated as

x
[t]
i =

[
s

[t]
i , s

[t]
b1(i), · · · , s

[t]
bK(i), s

[t]
id

]
∈ R3(K+2), (11)

Since the number of neighbors may be lower than K for some
nodes, we manually set s[t]

bk(i) = 0 if k >
∣∣B[t]
i

∣∣.
Recall that the DNN is used for learning the relationship

between the local geographic information and the minimum
delay from each neighbor to the destination. Therefore, the
desired output of the DNN is designed as

y
[t]
i =

[
D

[t]
∗ (b1(i), id), · · · , D[t]

∗ (bK(i), id)
]
∈ RK , (12)

where again, we only consider the top-K ranked neighbors
for fixing the output dimension of the DNN and manually set
D

[t]
∗ (bk(i), id) = inf2 for k >

∣∣B[t]
i

∣∣.
The structure of the DNN is shown in Fig. 3. Since each

dimension of the input has different units, e.g. [◦] for the
longitude and latitude while [km] for the altitude, we use batch
normalization [20] for normalizing each dimension across the
samples in a mini-batch to have zero mean and unit variance.

Hidden Layer 1 Hidden Layer 2 Output Layer
Input

Output

FC B
N

R
eL

U

FC B
N

R
eL

U

FC

Fig. 3. DNN architecture for minimum delay routing, where “FC” represents
the fully-connected layer, “BN” stands for batch normalization, and “ReLU”
is the rectified linear unit.

Let θ denote the collection of unknown parameters to be
trained. The DNN can be expressed as a function of x[t]

i with
parameter θ as f(x

[t]
i ;θ), whose output is the estimate of y[t]

i

formulated as

ŷ
[t]
i = f(x

[t]
i ;θ) =

[
D̂

[t]
∗ (b1(i), id), · · · , D̂[t]

∗ (bK(i), id)
]
,

(13)
where D̂[t]

∗ (bk(i), i) denotes the estimate of D[t]
∗ (bk(i), i), and

again, we manually set D̂[t]
∗ (bk(i), id) = inf for k >

∣∣B[t]
i

∣∣.
The expression of f(·;θ) is determined by cascading the

expression of each layer in the DNN as

ŷ = f(x;θ) = fK (· · · (fk (· · ·f1 (x;θ1) · · · ) ;θk) · · · ;θK) ,
(14)

where fk(·;θk) represents the kth layer of the DNN with
parameter θk.

Specifically, the relationship between the output yout and
input xin of the fully-connected layer is expressed as

yout = fFC(xin;W , b) = Wxin + b, (15)

where W and b denote the weight and bias parameters,
respectively. The batch normalization layer can be represented

2inf is defined as a very large number, e.g., inf = 108.
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by
yout = fBN(xin;γ,β) = γ ◦ xin − µ√

σ2 + ε
+ β, (16)

where “◦” denotes the element-wise multiplication, γ and
β are the scale and shift parameters, respectively, and ε is
a small constant introduced for ensuring numerical stability.
During training, µ and σ2 represent the empirical mean and
variance of the input mini-batch, respectively. During testing
(i.e., inference), µ and σ2 represent the population mean and
variance of the entire training set [20]. The rectified linear unit
(ReLU) layer implements the following operation

yout = fReLU(xin) = max{xin,0}, (17)

where the max operation is carried out in an element-wise
manner.

3) Offline Training: Since the takeoff times as well as the
trajectories of commercial passenger airplanes are pre-planned
and normally repeated on a weekly basis, the flight data on
the same day of different weeks are similar. Therefore, we
can train the DNN based on historical flight data or on the
pre-planned flight trajectories in an offline manner.

The goal of training is to minimize the loss function
composed of the mean squared error between the actual output
ŷ

[t]
i = f(x

[t]
i ;θ) and the desired output y[t]

i of the DNN,
yielding:

Ploss : min
θ

1

Ntotal

∑
t∈T

∑
i∈N [t]

∥∥∥y[t]
i − f(x

[t]
i ;θ)

∥∥∥2

, (18)

where T denotes the set of TSs of the historical flight data
and Ntotal is the number of training samples.

In the following, we first generate the training samples, in-
cluding the input x[t]

i and the desired output y[t]
i for t ∈ T and

i ∈ N [t]. For each TS t in the historical dataset, we can retrieve
the position of each node from the flight trajectories and create
a snapshot of the whole network topology. Consequently, for
each node i ∈ N [t], we can obtain the DNN’s input x[t]

i from
the position of each node.

To obtain the desired output y[t]
i as the training label, we

have to compute the minimum delay from each neighbor of
node i to the destination node, i.e., D̂[t]

∗ (j, id) for ∀j ∈ B[t]
i .

Since the position of each node can be retrieved from the
historical flight data, the transmission delay and propagation
delay of each link can be readily calculated based on the
expressions given after (4). As for the queuing delay, since we
aim to train the DNN for exploiting the correlation between
local and global network topology, which is independent from
the traffic load, we assume that the queuing delay is identical
and constant among all the nodes during training. In this way,
the total queuing delay is determined by the number of hops in
the path so that the network topology information is implicitly
reflected. Then, the delay of every link in the network can be
calculated by (4). Consequently, we can obtain the minimum
delay D

[t]
∗ (j, id) for ∀j ∈ B[t]

i by setting is = j and solving
problem P

[t]
D using any shortest path algorithm.

Upon obtaining the training set, we can train the DNN
by solving problem P

[t]
loss using stochastic gradient descent

algorithms, such as the Adam method [21]. We note that

the DNN is not designed and trained for a specific node.
Instead, it can be used by all the forwarding nodes during the
time window T in online testing. In fact, different forwarding
nodes are distinguished by their local geographic information
x

[t]
i and the desired DNN’s input-output pairs of all nodes
Nt during T , i.e., (x

[t]
i ,y

[t]
i ) for all i ∈ Nt and t ∈ T ,

are included in the training set. Therefore, once the DNN
becomes sufficiently well-trained, all the forwarding nodes are
able to obtain the required information for determining their
own optimal next hop from the same DNN by inputting their
own local geographic observation.

The benefit of all nodes using the same DNN is that it
enables a certain degree of parameter sharing among different
nodes, which improves the learning efficiency and scalability.
For example, when two nodes are close, they share a similar
set of neighbors and hence provide similar input for the DNN.
Moreover, the outputs of their DNNs (i.e., the minimum delay
from the neighbors to the destination) should also be similar,
which suggests that the DNNs of these pair of nodes should
be similar. This can be naturally achieved if the nodes share
the same DNN.

4) On-line Decision Without Feedback: Once the DNN has
become sufficiently well-trained, the DNN is copied to each
airplane in support of online routing decisions.

Assume that the packet is currently located at node pn. We
first specify the next-hop candidates, namely the set of nodes
where the next hop of pn is chosen from. Since the input
and output dimensions of the DNN are fixed, the next-hop
candidates are restricted the top-K ranked neighbors of pn.3

Moreover, to avoid loops in the path, the nodes that already
exist in the path should be excluded. Therefore, the next-hop
candidate set of pn is specified as

C[t]
pn = {b1(pn), · · · , bK(pn)}\{p1, · · · , pn} (19)

By observing the local geographic information, node pn
can calculate the delay from itself to each of its next-hop
candidates, i.e., D[t](pn, j) for j ∈ C[t]

pn , and gathers its input
features x[t]

pn for the DNN. Then, from the output of the
DNN, the forwarding node pn can obtain the estimate of the
minimum delay from each of its next-hop candidates to the
destination, i.e., D̂[t]

∗ (j, id) for j ∈ C[t]
pn .

According to the optimal substructure (10), a straightfor-
ward way of determining the next hop using the DNN is by
evaluating

pn+1 = arg min
j∈C[t]pn

{
D[t](pn, j) + [1− Id(j)] D̂[t]

∗ (j, id)
}
.

(20)
Recall that the training of DNN treats the queuing delay

as an identical constant for each node, while in reality the
queuing delay varies among nodes due to different traffic load
of each node. Moreover, although the weekly flight trajectories
and schedules are similar, there exist a certain mismatch
between the historical flight data and the current flight data.
Hence, there may exist errors between the minimum delay

3Although only considering the top-K ranked neighbors may potentially
degrade the performance, when K is sufficiently large, the performance
degradation is negligible as shown in our simulation results in Section V.
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Fig. 4. Comparison of the available information at the forwarding node for
determining the next hop.

D
[t]
∗ (j, id) and its estimate D̂

[t]
∗ (j, id), which degrades the

online routing performance. In the following, we introduce
a feedback mechanism for improving the online routing deci-
sions.

5) On-line Decision with Feedback: Let j1 ∈ Cpn denote
the index of the next-hop candidate of pn and j2 ∈ Cj1
denote the index of the next-hop candidates of j1, i.e., the
next-but-one or next-2-hop candidate of pn. Instead of directly
computing D̂[t]

∗ (j1, id) by inputting the geographic information
x

[t]
pn observed by the forwarding node pn into the DNN, we

let each next-hop candidate j1 ∈ Cpn compute D̂
[t]
∗ (j2, id)

by inputting their local geographic observation x[t]
j1

into the
DNN and measure the link delay D[t](j1, j2). Then, by letting
j1 ∈ Cpn report D[t](j1, j2) and D̂

[t]
∗ (j2, id) back to the

forwarding node pn, the minimum delay from j1 to the
destination can be estimated based on the optimal substructure
(10) using D[t](j1, j2) and D̂

[t]
∗ (j2, id). In the sequel, we

provide an example snapshot for illustrating the on-line routing
decision process relying on the feedback mechanism.

In Fig. 4, we first compare the information for determining
the next hop acquired both with and without the feedback
mechanism in an example snapshot. Let us assume that the
packet is currently located at node 1, i.e., pn = 1, and the
maximum number of neighbors to be considered as candidates
is K = 3. As shown in Fig. 4(a), the next-hop candidates of
node 1 are node 2, 3 and 4. The next-hop candidates of nodes
2, 3 and 4 are {5, 6}, {4, 7, 8} and {3, 8, 9}, respectively, as
shown in Fig. 4(b).

Without the feedback mechanism, node 1 first observes its
local geographic information x[t]

1 , which is then used as the
input of the DNN for estimating the minimum delays from
nodes {2, 3, 4} to the destination, i.e.,

[D̂
[t]
∗ (2, id), D̂

[t]
∗ (3, id), D̂

[t]
∗ (4, id)] = f(x

[t]
1 ;θ). (21)

Meanwhile, node 1 measures the link delays from itself to
nodes {2, 3, 4}, i.e., [D[t](1, 2), D[t](1, 3), D[t](1, 4)]. Accord-
ing to (20), the next hop can be determined by

pn+1 = arg min
j∈{2,3,4}

{
D[t](1, j) + [1− Id(j)] D̂[t]

∗ (j, id)
}
.

(22)
After introducing the feedback mechanism, the minimum

delay from the next-hop candidates {2, 3, 4} can be estimated

2

5

6

(a) Compute D̃
[t]
∗ (2, id)

7

8

3

4

(b) Compute D̃
[t]
∗ (3, id)

8

3

94

(c) Compute D̃
[t]
∗ (4, id)

Fig. 5. Compute D̃
[t]
∗ (j1, id), j1 ∈ C

[t]
pn for the first round to determine the

update order for decoupling the mutual dependence.

in the following manner instead. Specifically, nodes {2, 3, 4}
first observe their local geographic information x[t]

2 , x[t]
3 and

x
[t]
4 , respectively. The minimum delays from all the next-2-

hop candidates to the destination can be estimated based on the
DNN by inputting x[t]

2 , x[t]
3 and x[t]

4 , respectively. For example,
the minimum delays from nodes {5, 6} to the destination can
be estimated by[

D̂
[t]
∗ (5, id), D̂

[t]
∗ (6, id)

]
= f(x

[t]
2 ;θ)[: 2], (23)

where y[: n] denotes the first n elements of vector y. Similarly,
we can obtain[

D̂
[t]
∗ (4, id), D̂

[t]
∗ (7, id), D̂

[t]
∗ (8, id)

]
= f(x

[t]
3 ;θ) (24a)[

D̂
[t]
∗ (3, id), D̂

[t]
∗ (8, id), D̂

[t]
∗ (9, id)

]
= f(x

[t]
4 ;θ). (24b)

Meanwhile, nodes 2, 3 and 4 measure the link delays
{D[t](2, 5), D[t](2, 6)}, {D[t](3, 4), D[t](3, 7), D[t](3, 8)} and
{D[t](4, 3), D[t](4, 8), D[t](4, 9)}, respectively. Then, with the
aid of the feedback mechanism, node 1 now becomes aware
of the link delays between itself to its next-hop candidates as
well as the link delays between the next-hop candidates and
the next-2-hop candidates, as shown Fig. 4(b). This allows
the forwarding node to select the next-hop more wisely, since
more link information (i.e., the queuing delay of next-hop
candidates as well as the propagation and transmission delay
from each next-hop candidate to the corresponding next-2-hop
candidates) can now be taken into consideration by recursively
exploiting the optimal substructure.

Consequently, the minimum delay from nodes {2, 3, 4} to
the destination can be estimated using the optimal substructure
instead of using (21), as illustrated in Fig. 5. This is formulated
as follows

D̃
[t]
∗ (2, id) = min

j2∈{5,6}
D[t](2, j2) + D̂

[t]
∗ (j2, id) (25)

D̃
[t]
∗ (3, id) = min

j2∈{4,7,8}
D[t](3, j2) + D̂

[t]
∗ (j2, id) (26)

D̃
[t]
∗ (4, id) = min

j2∈{3,8,9}
D[t](4, j2) + D̂

[t]
∗ (j2, id). (27)
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It is worth noting that node 3 and node 4 are not only
the next-hop candidates of the forwarding node 1, but they
are also the next-hop candidates of each other. From (26)
and (27), we can see that the computation of D̃[t]

∗ (3, id) and
D̃

[t]
∗ (4, id) depends on the estimate D̂[t]

∗ (4, id) and D̂[t]
∗ (3, id),

respectively. This suggests that the estimate D̃[t]
∗ (4, id) can be

computed by

D̃
[t]
∗ (4, id) = min

{
D[t](4, 3) + D̃

[t]
∗ (3, id),

D[t](4, 8) + D̂
[t]
∗ (8, id),

D[t](4, 9) + D̂
[t]
∗ (9, id)

}
(28)

instead, where D̃[t]
∗ (3, id) is computed by (26). Compared with

using (27), the real-time link delays of node 3 to its next-
hop candidates, i.e., {D(3, 4), D(3, 8), D(3, 9)}, are also taken
into account when computing D̃[t]

∗ (4, id) using (28) and (26).
Alternatively, D̃[t]

∗ (3, id) can be also computed by

D̃
[t]
∗ (3, id) = min

{
D[t](3, 4) + D̃

[t]
∗ (4, id),

D[t](3, 8) + D̂
[t]
∗ (8, id),

D[t](3, 9) + D̂
[t]
∗ (9, id)

}
(29)

in a similar manner to (28). Consequently, the computation
of D̃[t]

∗ (3, id) and D̃[t]
∗ (4, id) are mutually dependent on each

other, as shown in (28) and (29).

The mutual dependence arises from the fact that the packet
can be sent between nodes 3 and 4 in either direction. How-
ever, link 4→ 3 and link 3→ 4 cannot co-exist in the optimal
path. In the following, we decouple the mutual dependence
by specifying the direction of the link between the mutually
dependent candidates and by specifying the order of mutually
dependent candidates for the minimum delay estimation.

In general, we define

M[t]
pn ,

{
j2

∣∣∣(j2 ∈ C[t]
pn

)
∧
(
∃j1 ∈ C[t]

pn s.t. j2 ∈ C[t]
j1

)}
(30)

as the mutual candidate set, which contains the specific next-
hop candidates of pn that are also the next-2-hop candidates
of pn. Since the delay to the destination decreases along the
optimal path, the packet should only be sent to a node having
a lower delay to the destination than that of the forwarding
node. Therefore, the nodes in M[t]

pn are sorted according to
the estimated minimum delay to the destination in ascending
order. Specifically, let mk denote the kth element ofM[t]

pn . We
have D̃[t]

∗ (m1, id) ≤ D̃[t]
∗ (m2, id) ≤ · · · ≤ D̃[t]

∗ (m|M[t]
pn |
, id).

For the example considered, assume that we have
D̃

[t]
∗ (3, id) < D̃

[t]
∗ (4, id) based on the value computed

from (26) and (27). Then, the link 3 → 4 is less likely to
exist in the optimal path. Therefore, we recompute the value
of D̃[t]

∗ (3, id) and D̃[t]
∗ (4, id) as follows

D̃
[t]
∗ (3, id) = min

j2∈{7,8}

{
D[t](3, j2) + D̂

[t]
∗ (j2, id)

}
(31)

D̃
[t]
∗ (4, id) = min

{
D[t](4, 3) + D̃

[t]
∗ (3, id),

D[t](4, 8) + D̂
[t]
∗ (8, id),

1

7

8

3

94

2

5

6

Fig. 6. The computation graph for determining the next hop pn+1.

D[t](4, 9) + D̂
[t]
∗ (9, id)

}
, (32)

where node 4 is no longer considered as the next-hop candidate
of node 3 and the computation of D̃[t]

∗ (4, id) depends on the
value of D̃[t]

∗ (3, id). Finally the next hop can be determined
by

pn+1 = arg min
j1∈{2,3,4}

{
D[t](1, j1) + [1− Id(j)] D̃[t]

∗ (j1, id)
}
.

(33)
The computation graph constructed for determining the next
hop pn+1 is summarized in Fig. 6 after decoupling the mutual
dependence.

In general, the computation of D̃[t]
∗ (j1, id) for j1 ∈ Cpn

is formulated as follows. We first initialize the value of
D̃

[t]
∗ (j2, id) for each j2 ∈ Cj1 and each j1 ∈ Cpn by

D̃
[t]
∗ (j2, id)← D̂

[t]
∗ (j2, id).

Next, we compute the value of D̃[t]
∗ (j1, id) for each j1 ∈ Cpn

in the first round as

D̃
[t]
∗ (j1, id)← [1− Id(j1)] · min

j2∈C[t]j1

{
D[t](j1, j2)

+ [1− Id(j2)] D̂
[t]
∗ (j2, id)

}
. (34)

After that, we find the mutual candidate set M[t]
pn defined

in (30) and sort its elements according to D̃
[t]
∗ (m1, id) ≤

D̃
[t]
∗ (m2, id) ≤ · · · ≤ D̃

[t]
∗ (m|M[t]

pn |
, id) using the value

computed by (34). Moreover, we define

C̄[t]
mk

= C[t]
mk
−
{
j
∣∣∣ (j ∈ C[t]

mk

)
∧
(
j ∈M[t]

pn

)
∧
(
D̃

[t]
∗ (j, id) > D̃

[t]
∗ (mk, id)

)}
, (35)

which excludes the specific next-hop candidates of mk that
are also in the sorted mutual candidate sets M[t]

pn and have a
higher minimum delay to the destination than that of mk.

Then, we recompute the value of D̃[t]
∗ (j1, id) for j1 ∈M[t]

pn

one by one according the rank of j1 in M[t]
pn . To be more

specific, for k = 1, · · · ,
∣∣M[t]

pn

∣∣, we compute

D̃
[t]
∗ (mk, id)← [1− Id(mk)] · min

j2∈C̄[t]mk

{
D[t](mk, j2)

+ [1− Id(j2)] D̃
[t]
∗ (j2, id)

}
. (36)

Finally, the next hop is determined by the optimal substruc-
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ture as follows

pn+1 = arg min
j∈C[t]pn

{
D[t](pn, j) + [1− Id(j)] D̃[t]

∗ (j, id)
}
. (37)

In Algorithm 1, we summarized procedure of the DL-aided
routing during the online decision phase.

Algorithm 1 DL-aided routing for minimizing the E2E delay

% Obtain the information for determining the

next hop

1: The forwarding node pn discovers its next-hop candidates
Cpn and measures the delay from itself to each next-hop
candidate D[t](pn, j1), j1 ∈ Cpn .

2: Each next-hop candidate j1 ∈ Cpn computes D̂[t]
∗ (j2, id)

using the DNN, measures D[t](j1, j2) for j2 ∈ Cj1 , and
feeds all the information back to node pn.

% Computations at the forwarding node for

determining the next hop

3: Initialize D̃
[t]
∗ (j2, id) ← D̂

[t]
∗ (j2, id) for each j2 ∈ Cj1 ,

j1 ∈ Cpn .
4: Update D̃[t]

∗ (j1, id) using (34) for each j1 ∈ C[t]
pn .

5: FindM[t]
pn defined by (30) and sort the element ofM[t]

pn by
D̃

[t]
∗ (m1, id) ≤ D̃[t]

∗ (m2, id) ≤ · · · ≤ D̃[t]
∗ (m|M[t]

pn |
, id).

6: for k = 1, · · · ,
∣∣M[t]

pn

∣∣ do
7: Find C̄[t]

mk defined by (35).
8: Update D̃[t]

∗ (mk, id) using (36).
9: Transmit the packet to

pn+1 = arg min
j∈C[t]pn

{
D[t](pn, j) + [1− Id(j)] D̃[t]

∗ (j, id)
}

10: Set n ← n + 1 and repeat steps 1 ∼ 9 until the packet
reaches the destination.

IV. MULTI-OBJECTIVE ROUTING

In this section, we extend our DL-aided routing to a chal-
lenging multi-objective scenario that considers both the E2E
delay as well as the path capacity and path lifetime. We first in-
troduce some basic concepts of MOO and formulate the multi-
objective routing problem for simultaneously minimizing the
delay, maximizing the capacity and maximizing the path
lifetime. Then, we solve the problem using global information
for obtaining the true Pareto front, and finally proposes an
efficient DL-aided multi-objective routing algorithm that relies
solely on local information for making online routing decisions
in practical AANETs.

A. Problem Formulation

A standard MOO problem can be formulated as

min
x

g(x) = [g1(x), g2(x), · · · , gM (x)] (38)

s.t. x ∈ X , (39)

where we have the following definitions.

Definition 1. Pareto dominance: Given a distinct pair of
solutions x1,x2 ∈ X , x1 is said to dominate x2, if and only
if:

1) gm(x1) ≤ gm(x2) for any m ∈ {1, 2, · · · ,M};
2) There exist an m ∈ {1, 2, · · · ,M} such that gm(x1) <

gm(x2).
Accordingly, in the objective space, g(x1) is said to dominate
g(x2).

Definition 2. Pareto optimality: A solution x ∈ X is said to
be Pareto optimal if and only if there does not exist another
point x′ ∈ X that dominates x. Furthermore, all the Pareto-
optimal solutions mapped in the objective space constitutes
the Pareto front.

Definition 3. Weak Pareto optimality: A solution x ∈ X is
said to be weak Pareto optimal if and only if there does not
exist another point x′ ∈ X such that gm(x′) < gm(x) for any
m ∈ {1, 2, · · · ,M}.

E2E Delay

Pa
th

 C
ap

ac
ity

Minimum Delay Path

Maximum Capacity Path

Fig. 7. Illustration of multi-objective routing.

Let us use a toy example to augment the above concepts
more concretely. In Fig. 7, we consider a twin-objective
routing problem, where the objectives are to simultaneously
minimize the E2E delay and maximize the path capacity,
i.e., min

p
[D(p),−C(p)]. Each point in Fig. 7 represents a

possible path p from the source node to the destination node,
while the x-coordinate and y-coordinate of a point indicate the
delay and capacity of the path, respectively. Specifically, the
black filled circles represent the non-Pareto-optimal solutions
(paths), whose capacity can be increased or E2E delay can
be reduced without sacrificing the other. By contrast, the red
hollow circles represent the Pareto-optimal solutions (paths),
which constitute the Pareto front. We can observe that the min-
imum delay and the maximum capacity cannot be achieved by
a single path. Instead, there is a optimal trade-off relationship
(characterized by the Pareto front) between the path capacity
and E2E delay, i.e., which specifics the minimum increment
of E2E delay required for achieving a certain path capacity
improvement and vice versa.

Finally, the multi-objective routing problem minimizing
the delay, maximizing the capacity and maximizing the path
lifetime can be formulated in the following standard form

P
[t]
D,C,L : min

p
[D[t](p),−C [t](p),−L[t](p)] (40a)
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s.t. (9b), (9c), (9d).

B. Multi-Objective Routing Using Global Information

In the following, we first solve problem P
[t]
D,C,L assuming

global information is available. The ε-constraint method [16]
has been developed for general MOO problems, which opti-
mizes one of the metric in the OF and treats the remaining
metrics as constraints. For the multi-objective routing problem
P

[t]
D,C,L, the following ε-constraint problem P

[t]
D (εC , εL) can

be formulated

P
[t]
D (εC , εL) : min

p
D(p) (41a)

s.t. C [t](p) > εC (41b)

L[t](p) > εL (41c)
(9b), (9c), (9d),

where we consider E2E delay minimization as the objective
while treat path capacity and lifetime as constraints because
the resulting problem can be solved effortlessly by modifying
a standard shortest path algorithm as shown later.

In general, a weak Pareto-optimal solution can be obtained
by solving the ε-constraint problem [16]. Then, by varying
the values of ε, multiple weak Pareto-optimal solutions can
be found. In particular, according to [16, Theorem 4.2], we
can obtain the following proposition.

Proposition 1. If the optimal solution of the ε-constraint
problem P

[t]
D (εC , εL) is unique, it is also a Pareto-optimal

solution of P[t]
D,C,L.

As for the AANET routing problem, since the link delay
D[t](i, j) is a strictly increasing function of distance d[t](i, j),
which can be regarded as a random variable due to the
uncertainty of flight position in 3D space, we can safely
assume that Pr

(
D[t](p1) = D[t](p2)

)
= 0 for arbitrary p1

and p2 that satisfies p1 6= p2. Therefore, the optimal solution
of P[t]

D (εC , εL) is unique. Then, by appropriately changing the
value of εC , εL and solving problem P

[t]
D (εC , εL), a series of

Pareto-optimal solutions can be found.
Considering (6), the minimum capacity constraint (41b)

is equivalent to min
n=1,··· ,N−1

C [t](pn, pn+1) > εC , which is

further equivalent to C [t](pn, pn+1) > εC ,∀n = 1, · · · , N −
1. Similarly, considering (7), the minimum lifetime con-
straint (41c) is equivalent to L[t](pn, pn+1) > εL,∀n =

1, · · · , N − 1. Therefore, problem P
[t]
D (εC , εL) can be solved

effortlessly by first deleting all the links that have a capacity no
higher than εC or have a lifetime no longer than εL, and then
applying any shortest path search algorithm. In Algorithm 2,
we modified the Floyd-Warshall algorithm for solving problem
P

[t]
D (εC , εL) as an illustration.
In Algorithm 3, we show how to choose the value of εC

and εL to find all the Pareto-optimal solutions of P
[t]
D,C,L.

Moreover, we have the following proposition regarding the
Pareto optimality of Algorithm 3.

Proposition 2. All the solutions found by Algorithm 3 are the
Pareto-optimal solutions of P

[t]
D,C,L and all the Pareto-optimal

solutions of P[t]
D,C,L can be found by Algorithm 3.

Algorithm 2 Modified the Floyd-Warshall algorithm for solv-
ing P

[t]
D (εC , εL)

1: procedure COMPUTEMINIMUMDELAY
2: Initialize dist[i, j] = inf, next[i, j] = null, ∀i, j ∈ N [t]

3: for each link i→ j do
4: if C [t](i, j) ≥ εC and L[t](i, j) ≥ εL then
5: dist[i, j]← D[t](i, j)

6: for each node i do
7: dist[i, i]← 0

8: for k ∈ N [t], i ∈ N [t], and j ∈ N [t] do
9: if dist[i, j] > dist[i, k] + dist[k, j] then

10: dist[i, j]← dist[i, k] + dist[k, j]
11: next[i, j]← next[i, k]

12: procedure FINDPATH(is, id)
13: if next[i, j] = null then
14: return p∗ = null

15: p1 = is, n = 1
16: while pn 6= id do
17: pn+1 ← next[pn, id]
18: n← n+ 1

19: return p∗ = (p1, p2, · · · , pn)

Algorithm 3 POMOR: Find all the Pareto-optimal solutions
of P[t]

D,R,L

1: Initialize εL ← 0, Pareto set P ← ∅
2: while εL 6= null do
3: Initialize εC ← 0, L ← ∅
4: while εC 6= null do
5: Obtain the optimal solution p∗is of problem

P
[t]
D (εC , εL) using any shortest path algorithm.

6: if p∗is = null then
7: εC ← null, εL ← null
8: else
9: εC = D[t](p∗is)

10: Add p∗is and L[t](p∗is) into sets P and L,
respectively.

11: εL ← minL
Output: The set of Pareto-optimal solutions P

Proof: See Appendix.
The complexity of Algorithm 3 is upper bounded by
O(N2

pNε), where Np is the total number of Pareto-optimal
solutions of problem P

[t]
D,C,Land Nε is the complexity of solv-

ing P
[t]
D (εC , εL). Specifically, when using the Floyd-Warshall

algorithm, we have Nε = O(|N [t]|3). When using Dijkstra’s
algorithm, we have Nε = O(Ne + |N [t]| log |N [t]|), where
Ne ≤

∣∣N [t]
∣∣2 is the number of all possible links in the

network.

C. DL-Aided Multi-Objective Routing Using Local Informa-
tion

Again, global information is not available in practical
AANETs. Hence, in the following, we propose the DL-
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Fig. 8. DNN architecture for multi-objective routing.

aided multi-objective routing algorithm relying solely on local
information.

Since the MOO problem P
[t]
D,C,L can be solved by solving

a series of ε-constraint problem P
[t]
D (εC , εL), we propose

the corresponding DL-aided routing algorithm for solving
problem P

[t]
D (εC , εL) relying solely on local information in

the following. Similar to the minimum delay routing problem
P

[t]
D , P[t]

D (εC , εL) also has an optimal substructure, which can
be formulated as

p∗n+1 = arg min
j∈B[t]

pn

{
D[t](pn, j) +D

[t]
∗ (j, id, εC , εL)

+ Iinf

[
C [t](pn, j) ≤ εC or C [t]

∗ (j, id, εC , εL) ≤ εC
]

+ Iinf
[
L[t](pn, j) ≤ εL or L[t]

∗ (j, id, εC , εL) ≤ εL
]}

(42)

where Iinf(X) = Inf if X is true and Iinf(X) = 0 otherwise,
D

[t]
∗ (j, id, εC , εL), C [t]

∗ (j, id, εC , εL) and L[t]
∗ (j, id, εC , εL) are

defined as follows. When there exists a path spanning from
node j to node id satisfying the minimum capacity constraint
εC and minimum lifetime constraint εL, D[t]

∗ (j, id, εC , εL) and
C

[t]
∗ (j, id, εC , εL) represent the delay, capacity, and lifetime

achieved by the minimum-delay path satisfying the capacity
and lifetime constraints. In particular, when there is no path
from j to id that satisfies the capacity and lifetime con-
straint, we define D

[t]
∗ (j, id, εC , εL), C [t]

∗ (j, id, εC , εL), and
L

[t]
∗ (j, id, εC , εL) as the delay, capacity, and lifetime achieved

by the path from j to id whose capacity and lifetime are closest
to εC and εL, respectively.

Since [D[t](pn, j), C
[t](pn, j), L

[t](pn, j)] can be readily
measured by the forwarding node pn, the optimal next hop
can be determined locally based on (42), once the value
of [D

[t]
∗ (j, id, εC , εL), C

[t]
∗ (j, id, εC , εL), L

[t]
∗ (j, id, εC , εL)] of

each next-hop candidate j ∈ Ci is available at pn.
Again, we use a DNN for estimating

[
D

[t]
∗ (j, id, εC , εL),

C
[t]
∗ (j, id, εC , εL), L

[t]
∗ (j, id, εC , εL)

]
. The structure of the

DNN is shown in Fig. 8. Specifically, the input is

x
[t]
i,εC ,εL

=
[
s̃

[t]
i , s̃

[t]
b1(i), · · · , s̃

[t]
bK(i), s̃

[t]
id
, εC , εL

]
∈ R3(K+2)+2,

(43)

where s̃[t]
i =

[
θ

[t]
i , ϕ

[t]
i , h

[t]
i , v

[t]
i , δ

[t]
i

]
. Compared with (11), the

speed v
[t]
i and heading δ

[t]
i of the airplane are further added

into the feature, because the path lifetime depends on them.
Moreover, εC and εL are also added into the feature to reflect
the path capacity and lifetime requirements. The desired output
of the DNN is

y
[t]
i,εC ,εL

=
[
D

[t]
∗ (b1(i), id, εC , εL), · · · , D[t]

∗ (bK(i), id, εC , εL),

C
[t]
∗ (b1(i), id, εC , εL), · · · , C [t]

∗ (bK(i), id, εC , εL),

L
[t]
∗ (b1(i), id, εC , εL), · · · , L[t]

∗ (bK(i), id, εC , εL),
]
. (44)

Again, we use θ to denote the paremeters of the DNN.
Then, the actual output of the DNN can be expressed as

ŷ
[t]
i,εC ,εL

= f(x
[t]
i,εC ,εL

;θ)

=
[
D̂

[t]
∗ (b1(i), id, εC , εL), · · · , D̂[t]

∗ (bK(i), id, εC , εL),

Ĉ
[t]
∗ (b1(i), id, εC , εL), · · · , Ĉ [t]

∗ (bK(i), id, εC , εL),

L̂
[t]
∗ (b1(i), id, εC , εL), · · · , L̂[t]

∗ (bK(i), id, εC , εL)
]
. (45)

Algorithm 4 provides the details of generating training
samples from historical flight data. The parameter θ can be
learned by minimizing the square error between the actual
output and the desired output of the DNN, which is formulated
as

min
θ

1

Ntotal
×∑

t∈T

∑
i∈N [t]

∑
εC∈EC

∑
εL∈EL

∥∥∥y[t]
i,εC ,εL

− f(x
[t]
i,εC ,εL

;θ)
∥∥∥2

. (46)

where EC and EL are sets of training samples for εC and εL,
respectively.

Again, we can use Adam for training the DNN. After
sufficient training, the DNN can be copied to each air-
plane for supporting the online routing decisions. Similar
to Algorithm 1, the DL-aided routing algorithm conceived
for solving P

[t]
D (εC , εL) can be obtained by exploiting the

optimal substructure (42) instead, i.e., replacing (34) by (47),
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D̃
[t]
∗ (j1, id, εC ,εL) = [1− Id(j1)] min

j2∈C[t]j1

{
D(j1, j2) + λ

[
εC − C [t](j1, j2)

]+
+ λ

[
εL − L[t](j1, j2)

]+
+ [1− Id(j2)]·

[
D̂

[t]
∗ (j2, id, εC , εL) + λ

[
εC − Ĉ [t]

∗ (j2, id, εC , εL)
]+

+ λ
[
εL − L̂[t]

∗ (j2, id, εC , εL)
]+]}

(47)

D̃
[t]
∗ (mk, id, εC , εC)← min

j2∈C̄[t]mk

{
D[t](mk, j2) + λ

[
εC − C [t](mk, j2)

]+
+ λ

[
εL − L[t](mk, j2)

]+
+ [1− Id(j2)] D̃

[t]
∗ (j2, id, εC , εL)

}
(48)

Algorithm 4 Generate training samples

1: Initialize EL = {ε(0)
L + α∆L}α=1,··· ,A and EC = {ε(0)

C +
β∆C}β=1,··· ,B

2: for t ∈ Ttrain do
3: D′[is]← Inf, C ′[is]← 0, L′[is]← 0 for all is ∈ N [t]

4: for α = 0, 1, · · · , A do
5: D′′[is] ← D′[is], C ′′[is] ← C ′[is], L′′[is] ← L′[is]

for all is ∈ N [t].
6: for β = 0, 1 · · · , B do
7: Find the optimal solution p∗is of P

[t]
D (ε

(0)
L +

α∆L, ε
(0)
C + β∆C) for all is ∈ N [t] using

Algorithm 2.
8: for is ∈ N [t] do
9: if p∗is 6= null then

10: D
[t]
∗ (is, id, εC , εL)← D(p∗is),

C
[t]
∗ (is, idεC , εL)← C(p∗is),

L
[t]
∗ (is, id, εC , εL)← L(p∗is).

11: D′′[is] ← D(p∗is), C ′′[is] ← C(p∗is),
L′′[is]← L(p∗is).

12: if β = 0 then
13: D′[is] ← D(p∗is), C ′[is] ← C(p∗is),

L′[is]← L(p∗is).

14: else
15: D

[t]
∗ (is, id, εC , εL)← D′′[is],

C
[t]
∗ (is, id, εC , εL)← C ′′[is],

L
[t]
∗ (is, id, εC , εL)← L′′[is].

16: if D[t]
∗ (is, id, εC , εL) 6= Inf then

17: Save
(
x

[t]
is

, y[t]
is,εC ,εL

)
as a training

sample.

replacing (36) by (48), and finally replacing (22) by

pn+1 = arg min
j∈C[t]pn

{
D[t](pn, j) + [1− Id(j)] D̃[t]

∗ (j, id, εC , εL)

+ λ
[
εL − L[t](pn, j)

]+
+ λ

[
εC − C [t](pn, j)

]+ }
, (49)

where λ is the penalty coefficient introduced for penalizing
the violation of the capacity or lifetime constraint. In practice,
λ is set to a limited value instead of infinity used in (42).
This is because when λ is excessive large, (47), (48) and (49)
become extremely sensitive to the estimation error.

In Algorithm 5, we summarize the procedure of the DL-

Algorithm 5 DL-aided multi-objective routing with given εC
and εL

% Obtain the information for determining the

next hop

1: The forwarding node pn discovers its next-hop candidates
Cpn and measures {D[t](pn, j1), C [t](pn, j1), L[t](pn, j1)}
for j1 ∈ Cpn .

2: Each next-hop candidates j1 ∈ Cpn com-
putes {D̂[t]

∗ (j2, id, εC , εL), Ĉ
[t]
∗ (j2, id, εC , εL),

L̂
[t]
∗ (j2, id, εC , εL)} using the DNN, measures
{D[t](j1, j2), C [t](j1, j2), L[t](j1, j2)} for j2 ∈ Cj1 ,
and feeds all the information back to pn.

% Computations at the forwarding node for

determining the next hop

3: Initialize D̃
[t]
∗ (j2, id, εC , εL) ← D̂

[t]
∗ (j2, id, εC , εL) for

each j1 ∈ Cpn , j2 ∈ Cj1 .
4: Update D̃[t]

∗ (j1, id, εC , εL) using (47) for each j1 ∈ Cpn
5: Find M[t]

pn defined by (30) and sort the element of M[t]
pn

by D̃∗(m1, id, εC , εL) ≤ · · · ≤ D̃∗(m|M[t]
pn |
, id, εC , εL).

6: for k = 1, · · · , |M[t]
pn | do

7: Find C̄[t]
mk defined by (35).

8: Update D̃[t]
∗ (mk, id, εC , εL) using (48).

9: Transmit the packet to pn+1 computed by (49).
10: Set n ← n + 1 and repeat steps 1 ∼ 9 until the packet

reaches the destination.

aided multi-objective routing during the online decision phase.
Upon varying the values of εC as well as εL, and then using
Algorithm 5 for the given εC and εL, multiple paths can
be discovered as the solutions of the multi-objective routing
problem P

[t]
D,C,L.

V. SIMULATION RESULTS

In this section, we evaluate and compare the performance
of the proposed routing algorithms with benchmark algorithms
via simulations based on real flight data.

A. Real Flight Data

To reflect different flight mobility patterns over different
airspace, the flight data was collected over the North Atlantic
ocean (i.e., NA scenarios) and the European continent (i.e.,



13

EU scenario) on two representative days. Specifically, the 25th
of December typically has the quietest flight traffic and the
29th of June typically has the busiest flight traffic over a year.
The status of each flight within the region considered was
recorded in the format of [TS, latitude, longitude, altitude,
speed, heading] for every 10 s over the complete 24 hours of
each selected date.

In Fig. 9, we illustrate a snapshot of the flight data at 15:00
UTC on 25 Dec. 2017 for the NA scenario and on 25 Dec.
2018 for the EU scenario. The packet destination is chosen to
be the London’s Heathrow Airport (LHR) and Istanbul Airport
(IST) for the NA scenario and EU scenario, respectively, as
labeled in Fig. 10(a) and Fig. 10(b). For the NA scenario, it
can be seen in Fig. 10(a) that strings of flights are heading
towards the destination in a similar direction, while for the
EU scenario shown in Fig. 9(b), the flight directions are quite
heterogeneous.

B. Simulation Settings

Due to the limited real flight data collected, we generate
more synthetic flight data based on the real flight data in
order to train and test the DL-aided routing algorithms on
different dataset. To reflect the mismatch between the training
and testing environments, we randomly shift each flight’s data
along the timeline for generating the synthetic flight data for
another day. By multiple realizations of the random shift based
on the real flight data, multiple days of the synthetic flight data
can be generated. Specially, the random shift is drawn from a
Gaussian distribution with zero mean and a standard deviation
of 30 min. We generate ten days of synthetic data based on
the real flight data on Dec. 25 and Jun. 29, respectively, where
six of them are used for training, three are used for validation
(e.g., tuning the hyper-parameters), and one is used for testing
outside the training and validation sets.

We further divided the training dataset into four time
windows, each six hours, where a DNN was trained separately.
In particular, for the simulations presented in the following, the
DNN was trained using the training flight data within a time
window of 12:00 ∼ 18:00 UTC. Once the DNN is well-trained,
the DNN can be used for assisting the routing decisions during
12:00 ∼ 18:00 UTC in the testing dataset without the need of
updating the DNN.

The transmit power is P = 30 dBm, the antenna gain is
Gt = Gr = 25 dBi, and the carrier frequency is f = 14
GHz [22]. The transmission bandwidth is W = 6 MHz and
the noise power is computed by σ2 = kTWF , where k =
1.3 × 10−23, T = 223.15 Kelvin (i.e., −50 ◦C at an altitude
of 10 km), F = 4 dB is the receiver’s noise figure [23]. The
packet size is S = 1 KBytes. To generate the labels for training
the DNN, the queuing delay is set as a constant D[t]

que(i) =
10 ms for each node during training. By contrast, to reflect
the heterogeneous traffic load of each node during testing,
the queuing delay of each node is randomly drawn from a
[1,+∞)-truncated Gaussian distribution with a mean value of
10 ms and a standard deviation of 5 ms.

All experiments are conducted on an ordinary personal
computer (PC) with AMD Ryzen™ 9 3950X CPU and a

single Nvidia Geforce RTX™ 2080Ti GPU. The DNNs are
implemented using TensorFlow 1.15 [24] on Windows 10.

C. Hyper-Paremeter Settings for DL-aided Routing Algo-
rithms

Each hidden layer of the DNN in Algorithm 1 has 100
neurons, as shown in Fig. 3. The first two hidden layers of
the DNN in Algorithm 5 have 300 neurons and the third
hidden layer has 100 neurons for each stream, as shown in
Fig. 8. We use He’s initialization [25] for all the hidden
layers and all the output layers are initialized from the uniform
distribution of [−3×10−3, 3×10−3]. The initial learning rate
for the Adam optimizer is set to 10−3. The mini-batch size for
gradient descent is 1000. The maximal number of neighbors
to be considered as the next-hop candidates is set to 10 for
Algorithm 1 and set to 40 for Algorithm 5. For Algorithms 4
and 5, εC and εL are swept over [20, 50] Mbps with a step
size of 2 Mbps and [0, 30] min with a step size of 5 min,
respectively, in order to discover multiple paths. The penalty
coefficient is set to λ = 10.

D. Performance Analysis and Comparison

The following routing protocols are considered for compar-
ison:

1) Optimal: The optimal path found by solving the miminal
delay problem P

[t]
D via the Floyd-Warshall algorithm,

which relies on the global information regarding the delay
of every possible link in the network.

2) Greedy perimeter stateless routing (GPSR): The routing
protocol proposed in [11], which is solely based on
local geographic information. Specifically, each node
forwards its received packet to the specific neighbor
that is geographically closest to the destination. When
a packet reaches a node where greedy forwarding fails,
the algorithm recovers by routing around the perimeter
of the region.

3) Geographic Load Share Routing (GLSR): The routing
protocol proposed in [12], which is based on the greedy
forwarding used in GPSR and also takes the queuing
delay of each next-hop candidate into consideration, when
deciding about the next hop.

4) Pareto Optimal: The Pareto-optimal paths found by Algo-
rithm 3, which relies on the global information regarding
the delay, capacity and lifetime of every possible link in
the network.

In Fig. 10, we compare the cumulative distribution function
(CDF) curves of the E2E delay of all the flights on the quietest
day, which can be regarded as the worst-case scenario for
AANETs. In particular, we show the results during a time
window of 15:00 ∼ 16:00 for a clear comparison. We can
see that GLSR outperforms GPSR, because the queuing delay
is taken into consideration. Our proposed DL-aided routing
(Algorithm 1) performs close to the optimal policy, achieving
lower E2E delay and higher success probability (defined as
the probability of E2E delay lower than 200 ms) than GPSR
and GLSR for both the NA and EU scenario. We note that
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Fig. 9. Flight data over the North Atlantic ocean and the European continent.
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Fig. 10. E2E delay comparison for NA and EU scenarios.

similar conclusions can be made when testing on other time
windows and on other days, which are not included here due
to the space limitations.

To explain how the DL-aided routing algorithm outperforms

the benchmark policies, we further compare the paths and
their corresponding E2E delays found by different routing
algorithms in an example snapshot for a particular flight in
each scenario. In Fig. 11(a), we show the paths found for
flight AA67 to LHR. We can see that GLSR encounters a
communication void, when the packet is forwarded to flight
DL415, and hence fails to find a path to the packet destination.
By contrast, GPSR use perimeter routing after it encounters
the communication void. Although GPSR can find a path to
the destination eventually, it struggles through many hops to
get around the void region. Since our DL-aided routing is
trained using the historical flight data and hence is embedded
with the topology knowledge, it can bypass the communication
void more efficiently than GPSR, and find a similar path to
the optimal path. In Fig. 11(b), we show the paths found for
flight AF264 to IST. We can see that the flight distribution
over the European continent is denser, and hence it is less
likely to encounter a communication void. Consequently, all
routing algorithms find paths with similar number of hops.
Since GPSR does not consider the queuing delay, it achieves
the highest E2E delay. In contrast, GLSR and our DL-aided
routing algorithms achieve lower E2E delay. Benefited from
the DNN and the feedback mechanism, each forwarding node
can exploit more information using the DL-aided routing
algorithm for determining the next hop, and hence DL-aided
routing achieve lower E2E delay than GLSR and performs
closely to the optimal path.

To test the routing algorithms when multi-component OF is
considered, we use the flight data on the busiest day, where
more paths are available between the source and destination
nodes due to more airplanes in the sky. Specifically, we
consider the paths from flight DL405 to LHR in the NA
scenario and the paths from flight BA480 to IST in the EU
scenario (both on 15:00 UTC Jun. 29, 2018) as examples for
demonstrating the relationship between delay, capacity and
lifetime achieved by the Pareto-optimal paths. In Fig. 12, we
plot the Pareto front of the multi-objective routing problem
P

[t]
D,C,L found by Algorithm 3, where each point represents

a Pareto-optimal path and the surface interpolated by all the
points visualizes the 3D Pareto front. Among all the Pareto-
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Fig. 11. Comparison of paths found by different routing algorithms.

Delay (ms) 0
50

100
150

200
250

Capa
city

(Mbps)

20
25

30
35

40
45

P
at

h
L
if
et

im
e

(m
in

)

0

10

20

30

40

50

Max Capacity Path
(212.3 ms, 35.4 Mbps, 7.7 min) 

Min Delay Path
(54.0 ms, 22.5 Mbps, 3.5 min) 

Max Lifetime Path
(72.6 ms, 22.5 Mbps, 34.8 min)   

(a) Flight DL405 to LHR, 15:00 UTC Jun. 29, 2018.

Delay (ms) 0
50

100
150

200
250

Capa
city

(Mbps)

20
25

30
35

40
45

P
at

h
L
if
et

im
e

(m
in

)

0

10

20

30

40

50
Max Lifetime Path

(54.3 ms, 25.5 Mbps, 40.5 min)  

Min Delay Path
(26.5 ms, 24.3 Mbps, 4.0 min)

Max Capacity Path
(99.3 ms, 41.1 Mbps, 0.7 min)

(b) Flight BA480 to IST, 15:00 UTC Jun. 29, 2018.

Fig. 12. 3D Pareto front.

optimal paths, we highlight the performance achieved by the
minimum-delay path, the maximum-capacity path and the
maximum-lifetime path. We can see that improving one metric
on the Pareto front will sacrifice at least one of the other two
metrics. For example, the minimum-delay path from flight
DL405 to LHR has a delay of 54 ms, a capacity of 22
Mbps, and a lifetime of 3.5min. To increase the capacity to
its maximum value of 35.4 Mbps, the lifetime increase to 7.7
min simultaneously while the delay increases to 212.3 ms. To
increase the lifetime to its maximum value of 34.8 min, the
capacity remains unchanged while the delay increases to 72.6
ms.

To further investigate the tradeoff relationship, we plot the
minimum-delay path, maximum-capacity path, and maximum-
lifetime path of the example snapshots in Fig. 13. We can
see that to achieve the maximum capacity, the number hops
increases to reduce the distance of each link, which results in
longer total distance from the source to the destination and
higher E2E delay. To show how the maximum-lifetime path
is selected, we further plot the flight direction of the nodes on
the maximum-lifetime path. We can see that, to achieve the
maximum path lifetime, the angle between the flight directions
of adjacent nodes is small so that the lifetime of each link is
maximized. Moreover, from Fig. 13(a), we can see that most
of the maximum-lifetime path share the same nodes with the
minimum-delay path. This is because the flight directions are
similar in the NA scenario, where strings of flights are heading
toward the destination continent.

Since there exist many Pareto optimal paths as shown in
Fig. 12 and maximizing the path lifetime may not be so impor-
tant as minimizing the delay or maximizing the capacity once
the path lifetime exceeds a certain threshold, in the following,
we treat the lifetime as a constraint and consider the tradeoff
between capacity and delay. Specifically, the minimum lifetime
constraint is set to 10 min. We compare the capacity and delay
of different routing algorithms in Fig. 14. Since GLSR and
GPSR may not guarantee the minimum lifetime constraint, we
also provide the corresponding path lifetime in the legend. We
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Fig. 13. Minimum-delay path, maximum-capacity path, and maximum-lifetime path.
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Fig. 14. Capacity and delay tradeoff. The minimum lifetime constraint for
“Pareto Optimal” and “DL-aided” is 10 min.

can see that our DL-aided routing (Algorithm 5) can find paths
having a performance approaching to the Pareto front and

dominate the paths found by GLSR and GPSR. Moreover, the
lifetime constraint is guaranteed simultaneously. By contrast,
GLSR fails to guarantee the lifetime constraint in both the
NA and EU scenarios, while GPSR can only guarantee the
lifetime constraint in the NA scenario, where most of the flight
directions are similar.

TABLE III
COMPLEXITY COMPARISON

Complexity Indicator SO-DNN MO-DNN

Number of parameters to be trained 1.5× 104 1.9× 105

Input feature dimensions 36 212
Number of training samples 9.1× 104 1.1× 107

Training time per iteration 2.3 ms 7.9 ms
Number of iterations for training 2× 103 104

Total training time 4.6 s 79 s
One-shot evaluation time 0.04 ms 0.09 ms

In Table III, we compare the training and testing complex-
ity of the DNN used in single-objective routing and multi-
objective routing, both in NA scenario on Jun. 29, 2018.
For ease of expression, the DNN used for single-objective
routing is termed as the SO-DNN, while the one used for
multi-objective routing is termed as the MO-DNN. Since the
MO-DNN has higher input dimension, more hidden layers and
more neurons per layer for learning the relationship between
the delay/capacity/lifetime and the thresholds, its number of
parameters to be trained is about 13 times higher than that
of SO-DNN. Moreover, because we have to sample different
thresholds for the training of the MO-DNN, its training set is
about a hundred times higher than that of the SO-DNN. As
a result, the number of iterations required for convergence is
5 times higher compared to the training of SO-DNN. Further
considering that the complexity per iteration of the MO-DNN’s
training is about 3.4 times higher than that of SO-DNN, the
total training complexity of the MO-DNN is about 17 times
higher than that of the SO-DNN, which can be done within
minutes using an ordinary PC.
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For the testing part, the multi-objective routing has to
evaluate the MO-DNN’s output for different input thresholds
in order to discover multiple paths. Therefore, the testing
complexity is proportional to the number of thresholds. For-
tunately, we can combine the different thresholds into a batch
and evaluate the MO-DNN’s output for all the thresholds in
parallel. Therefore, its computation time is similar to that
in SO-DNN. Moreover, in the testing phase, only one-shot
forward propagation is required for evaluating the DNN’s
output, which in general has significantly lower computational
complexity than that of training relying on numerous iterations
of back propagation. As a result, both the execution times for a
one-shot evaluation for the outputs of SO-DNN and MO-DNN
are less than 1 ms.

VI. CONCLUSIONS

In this paper, we proposed DL-aided routing policies for
AANETs formed by passenger airplanes, where DNNs are
invoked for learning the relationship between the local ge-
ographic information observed by the forwarding node and
the information that is required for determining the optimal
next hop. The DNN is trained by supervised learning based
on historical flight data and it is then stored by each airplane
for assisting their routing decisions during flight solely based
on their local information in a distributed manner. We further
extended the DL-aided routing algorithm to multi-objective
scenarios, where the delay, capacity and path lifetime were
jointly optimized. Our simulation results based on real flight
data showed that the proposed DL-aided routing outperforms
existing routing protocols in terms of their delay, capacity as
well as path lifetime, and it is capable of approaching the
Pareto front that is obtained using perfectly known global link
information.

It is worth noting that although AANETs can be formed in
many regions where the flight-density is high enough, it may
fail in certain regions where the flight-density is low. More-
over, MOO introduces extra the computational complexity
compared to single-objective optimization, resulting in higher
computation resource demand, as well as higher processing
time and power. Future research may integrate satellites into
the AANET for supporting truly global coverage and may
investigate how to further reduce the complexity of MOO.

APPENDIX

According to Proposition 1 and bearing in mind that the
solution of P[t]

D (εC , εL) is unique, we can see that all the so-
lutions found by Algorithm 3 are the Pareto optimal solutions
of P[t]

D,C,L. In the following, we prove the rest of Proposition 2.
For notation simplicity, we omit the superscript “[t]” in

what follows. Let pm,n denote a feasible solution found by
the mth iteration of the outer loop and the nth iteration of
the inner loop of Algorithm 3, and let Nm denote the total
number of the inner iterations of the mth outer iteration.
Then, according to steps 9 and 11 of Algorithm 3, pm,n is
the optimal solution of PD

(
C(pm,n−1),minn′ L(pm−1,n′)

)
,

n′ ∈ {1, · · · , Nm−1}. Moreover, since C(pm,n) > 0, pm,n is

also a feasible solution of PD
(
0,minn′ L(pm−1,n′)

)
. We first

prove the following lemma.

Lemma 1. There exists an ñ ∈ {1, · · ·Nm} such that
[D(pm,ñ),−C(pm,ñ)] dominates [D(p′),−C(p′)] for any
feasible solution p′ of PD

(
0,minn′ L(pm−1,n′)

)
that satisfies

p′ /∈ {pm,n}n=1,··· ,Nm
.

Proof: Considering step 9 of Algorithm 3 and bear-
ing in mind that the solution of P

[t]
D (εC , εL) is unique,

it is not hard to prove that D(pm,n) < D(pm,n+1)
and C(pm,n) < C(pm,n+1). Assume that there ex-
ists another feasible solution of PD

(
0,minn′ L(pm−1,n′)

)
,

p′ /∈ {pm,n}n=1,··· ,Nm such that [D(p′),−C(p′)] is not
dominated by pm,n for any n ∈ {1, · · · , Nm}. Fur-
ther assume that there exists an n0 ∈ {1, · · · , Nm −
1} such that D(pm,n0

) < D(p′) < D(pm,n0+1).
Since the optimal solution of PD

(
εC , εL

)
is unique,

[D(pm,n0
), −C(pm,n0

)] and [D(pm,n0+1),−C(pm,n0+1)]
are non-dominated by [D(p), C(p)] for any feasible solu-
tion p of PD

(
0, minn′ L(pm−1,n′)

)
according to Proposi-

tion 1. Then, we can obtain −C(pm,n0
) > −C(p′) >

−C(pm,n0+1), i.e., C(pm,n0
) < C(p′) < C(pm,n0+1).

Considering that pm,n0+1 is the optimal solution of
PD
(
C(pm,n0),minn′ L(pm−1,n′)

)
and p′ is a feasible

solution of PD
(
C(pm,n0

), minn′ L(pm−1,n′)
)
, we have

D(pm,n0+1) ≤ D(p′), which contradicts to D(pm,n0
) <

D(p′) < D(pm,n0+1). Similarly, we can readily obtain
contradictions when D(p′) < D(pm,1), or when D(p′) >
D(pm,Nm). Therefore, Lemma 1 is proved.

Next, we continue to prove the rest of Proposition 2.
Assume that there exists another feasible solution of PD,C,L,
i.e., p′′ /∈ {pm,n}, that is also a Pareto-optimal solu-
tion of P

[t]
D,C,L. According to step 11 of Algorithm 3, we

have minn′ L(pm−1,n′) < minn′ L(pm,n′). Let M denote
the total number of outer iterations and assume further-
more that there exist an m0 ∈ {1, · · · ,M} such that
minn′ L(pm0−1,n′) < L(p′′) ≤ minn′ L(pm0,n′). Since
C(p′′) > 0 and L(p′′) > minn′ L(pm0−1,n′), p′′ is also
a feasible solution of P(0,minn′ L(pm0−1,n′)). Then, ac-
cording to Lemma 1, there exists an ñ ∈ {1, · · · , Nm0

}
such that [D(pm0,ñ), C(pm0,ñ)] dominates [D(p′′), C(p′′)].
Moreover, since L(p′′) ≤ minn′ L(pm0,n′), we have L(p′′) ≤
L(pm0,ñ). Consequently, [D(pm0,ñ), C(pm0,ñ), L(pm0,ñ)]
dominates [D(p′′), C(p′′), L(p′′)], which contradicts to the
assumption that p′′ is Pareto-optimal. Similarly, we can easily
obtain contradictions when L(p′′) ≤ minn′ L(p1,n′), or when
L(p′′) > minn′ L(pM,n′). Therefore, all the Pareto-optimal
solutions of P

[t]
D,C,L can be found by Algorithm 3 and hence

Proposition 2 is proved.
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