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Abstract 
 
On-body sensors capture quantitative data from variety of bio-signals on a subject’s 
body with applications in health, sports and entertainment. With the increase in health 
costs, a need has arisen to monitor a patient’s condition out of hospital in a cost-
effective way. In healthcare applications on-body sensing systems can provide feedback 
information about one’s health condition either to the user or to a medical centre. They 
can also be used for managing and monitoring chronic disease, elderly people, and 
rehabilitation patients. In rehabilitation applications, such systems can be used to 
capture patient movement and monitor progress or provide feedback to enhance 
patients’ motor learning and increase rehabilitation effectiveness. Human motion 
capture systems are expected to generate motion data through several techniques that 
dynamically represent the posture changes of a human body based on motion sensor 
technologies. In motion analysis, the human body is typically modelled as a system of 
rigid links connected by rotary joints. In this paper after describing body models and 
their approximation by link-segment models, we introduce kinematics and inverse 
kinematics problems for determining motion. Different sensor technologies and related 
motion capture systems are then discussed. It is shown how motion data is derived from 
position and orientation for the different motion capture technologies. 
 
1.  Introduction 
 
Human body motion is captured through several sensor technologies and techniques for 
the purpose of health monitoring. Motion sensors involve accurate identification, 
tracking and post-processing of movement. Visual and non-visual based sensor 
technologies use different techniques to capture human body motion. In this paper, after 
describing body models and their approximation by link-segment models, we introduce 
kinematics and inverse kinematics problems for determining motion. Different sensor 
technologies and related motion capture systems are then discussed. It is shown how 
motion data is derived from position and orientation for the different motion capture 
technologies. Considering their limitations, we review the wearability challenges of 
these systems. Their drawbacks will be considered in terms of portability: portable 
motion capture systems should be less sensitive in accurate positioning of sensors and 
have more battery life time or less power consumption for their wider adoption as an 
assisted rehabilitation platform [1]. 
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Motion capture attempts to approximate human motion by a rigid-body model with a 
limited number of rotational degrees of freedom (DOF). In motion capture, an 
articulated figure is often modelled as a set of rigid segments connected by joints which 
are constraints on the geometric relationship between two adjacent segments. 
This relationship is expressed with parameters called joint angles measured in a number 
of planes. With careful selection of joints so that, for example, segments are connected 
to form a tree structure, a collection of the joint angles of all the joints corresponds 
exactly to a configuration of a figure. This correspondence provides an immediate 
computer representation of an articulated figure as shown in Figure 1; it is 
straightforward to compute the corresponding configuration [2]. Human motion capture 
techniques could be categorized according to the intended degree of abstraction 
imposed between the subject and the animated figure. Efforts to accurately represent 
human motion depend on limiting the degree of abstraction to a feasible minimum. 
Human body motion modelled by a rigid body model typically is approximated with a 
limited number of rotational degrees of freedom [3]. 
A non-rigid or deformable body may be thought of as a collection of many particles 
(infinite number of DOFs); this is often approximated by a finite DOF system. When 
motion involving large displacements is the main objective of a study, a deformable 
body may be approximated as a rigid body (or even a particle) in order to simplify the 
analysis.  
In motion analysis, modelling techniques determine the positions of bones of the subject 
or fitting of the skeleton. Depending on which activities are going to be modelled, there 
are several body segment representations of human motion [4]. Also if we assume that 
nearly all parts in the human body can move, it means that all movements of the human 
body are coordinated movements of the joints, and all movements can start 
independently from any one joint. A local coordinate system is established at the ends 
of the inboard bone centre, which is located near the body mass centre, for each joint. 
The movement of the outboard bone is represented as an orientation with respect to this 
local coordinate system creating a hierarchical structure. All the joints are organized in a 
hierarchical tree structure with the root node located at the lower back especially in gait 
analysis [5]. 
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Figure 1, The controlled degree of freedom of human model [6] 

2. Human body modelling for motion capture 
In general, there are two kinds of modelling technique: dependent and independent of 
sensor or marker placement. In modelling techniques that are dependent on marker 
placement, marker placement should be precise. In modelling techniques that are 
independent of marker placement, there is no need for the precise marker set-up, but 
they require a calibration process, which takes time. 

2.1. Dependent on marker placement 
In modelling techniques, which are dependent on marker placement, data may be 
acquired unilaterally or bilaterally for the calculation of internal joint centres, e.g. for 
the hip, knee, and ankle joints in case of modelling gait. Their 3D internal rotations can 
be calculated in addition to the 3D orientations of the pelvis and foot. This process can 
be done by using a special marker set which includes a pelvic frame, thigh wands and 
shank wands. Additional data is required for the calculation of internal joint centres and 
for the inverse dynamics calculation of joint moments and powers. This can be acquired 
from subject data and includes subject age and weight, joint widths, and leg-segment 
data (segment length, mass-ratio, centre-of-mass position, radius of gyration) [5]. 

2.2.Independent of marker placement 
Modelling techniques independent from marker placement are decomposed into three 
stages: partitioning the markers into rigid segment sets, estimating the position of joints, 
and deriving the corresponding skeleton dimensions respectively [6]. In the first stage it 
needs to be specified which marker belongs to which segment. This can be done 
manually by reference to the anatomic skeleton and making associations, or 
automatically. In the automatic method, an algorithm computes the distances between 
markers. It selects the biggest sets of markers in which all distance variations between 
all pairs of markers are under a certain threshold. This condition defines a rigid segment 
set [6]. 
 The markers that are attached onto adjacent segments theoretically move in a sphere 
centred on the joint that links the two segments. The position and orientation of a 
segment in space is completely defined by three points because a segment is modelled 
as a surface. Afterwards, we can compute the movement of the markers on adjacent 
segments defined by these markers in the reference model, and we can estimate their 
centres of rotation. The centres of rotations correspond to the joints. From their position 
in space we can compute the lengths of the segments as the distances between them. 
The joint positions are estimated as the centres of rotation weighted by the associated 
marker weight and the radius of the sphere. 
By applying the previously described procedures, the position of a set of joints can be 
estimated. The next step is to compute the length of each bone in the anatomical 
skeleton of the subject. One trivial approach is to estimate the length as the average 
distance between the estimated joints. A more elaborated one is to compute the length 
that minimizes the square of deviations. A global adjustment of the lengths can be used 
that minimizes the distance between the joints of a model and the estimated joints in 
each frame, adjusting in the same step all the other degrees of freedom of the model. 
 
After determining the position of joints in the human body model, joint angles should be 
calculated. The problem of finding a set of joint angles is referred to as the inverse 
kinematics problem. In solving the inverse kinematics problem, the main concern is 
finding a set of joint angles that corresponds to a given configuration. We need the 
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angles which the body segments make relative to each other to quantify the movements 
of the joint which connect them and therefore the human motion of interest. In inverse 
kinematics we know position of body and we attempt to find angles of joints. 
Conversely in forward kinematics, we know joint angles of a body and we try to 
compute the body configuration or position. So motion data is derived from different 
techniques depending on which sensor technologies are used for body sensing. 
 
3.  Sensor technologies for motion capture 
 
Body area sensing systems can capture bio-signals like electrocardiogram, blood 
pressure, body temperature, respiration rate, oxygen saturation, heart rate, skin 
conductivity, electromyogram, electroencephalogram, and body movement. The sensors 
can be skin electrodes, temperature probes, piezoelectric sensors, galvanic skin response 
sensors, pulse oximeters, gyroscopes, and accelerometers [6]. A wearable system may 
have a wide variety of components other than sensors like wearable components, smart 
textiles, processing units and advanced algorithms for data extraction and decision 
making.There are two categories of sensor technologies for motion capture: visual and 
non-visual. Visual technologies can be marker-based or markerless, while non-visual 
tracking sensors are inertial, magnetic, ultrasonic and electromechanical [7], (see figure 
2). In this section we review these technologies, their advantages and disadvantages and 
we discuss their potential for wider adoption in home-based rehabilitation systems. For 
home-based rehabilitation the reviewed sensor technologies have their own advantages 
and disadvantages. Visual marker-based technologies have high accuracy but they need 
camera set up in a motion capture environment which is not suitable for home-based 
rehabilitation. Similarly, magnetic and acoustic systems need transmitters and receivers, 
which should be set up in the environment. On the other hand, inertial and mechanical 
sensors do not need external set up in the environment; however they need precise 
alignment on the subject’s body. 

  

Figure 2. Motion capture systems using different sensor technologies [6] 
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3.1 Visual Sensors 
Two classes of visual tracking systems are visual marker-based and marker-free, 
depending on whether or not sensors or markers need to be attached to body parts. In 
visual marker-based tracking systems, cameras are applied to track human movements 
with markers that act as identifiers of the rigid body model landmarks. Marker-based 
systems are used because of the accuracy of marker position information.  They can be 
active or passive; active marker-based systems use light emitting markers, while passive 
ones use markers made of reflective material that do not require a power supply. One of 
the active visual tracking systems is Codamotion which is for 3 dimensional (3D) 
measurements. Its measurements have been commonly used as ground truth to evaluate 
motion measurements [6]. Although measurements of these systems are highly accurate 
with position resolution of about 0.05 mm, they need to be performed in a laboratory 
and cannot be used in home-based rehabilitation. 
Passive motion capture systems usually consist of 1–16 cameras, each emitting a beam 
of infrared light. Small reflective markers are placed on an object to be tracked. Infrared 
light emitted by the cameras is reflected back and picked up by the cameras. The system 
then computes a 3D position of the reflective target, by combining 2D data from several 
cameras [7].  The two common widely used passive visual motion capture system are 
Qualisys and VICON. These systems are designed to be used in virtual and immersive 
environments, and in medical science. Marker-based tracking systems are more accurate 
in comparison to other motion capture technologies, although they need precise 
calibration before each motion capture process and it should be performed in laboratory. 
Marker-free systems exploit optical sensors to measure movements of the human body 
without any sensor on the human body.  Human body motion can be tracked by cameras 
and is mainly concerned with the boundaries or features of human body on the images. 
Image based systems use computer vision techniques to obtain motion parameters 
directly from video footage without the use of special markers [8]. By using a proper 
camera set-up, including a single camera or a distributed-camera configuration, motion 
capture can be performed. A single camera readily suffers occlusion from a human 
body, due to its fixed viewing angle. Thus, a distributed-camera strategy is a better 
option for minimizing such a risk. In comparison to marker-based tracking systems, 
which are a less restricted to limited degrees of freedom due to mounted markers, 
marker-less based systems are a less restrictive motion capture technology but still the 
motion capture process are not convenient to be used in home based rehabilitation as 
they need camera set-up in the motion capture environment. 
 
3.2 Non-visual based 
 
Non-visual sensors such as inertial and electromechanical sensors are used in non-visual 
tracking systems. They enable motion capture without the need for external emitters and 
cameras. These sensors can be fitted in a garment or attached directly to the body. The 
advantage of non-visual tracking systems over visual tracking systems is that there can 
be ambulatory motion tracking, which means motion tracking by a portable motion 
tracking system outside the laboratory to capture daily activities, so they are applicable 
in home-based rehabilitation and there is no need for doing the experiments in special 
laboratories. 
Miniature inertial sensors, which are small, relatively cheap and have low energy 
consumption, are categorized into accelerometers and gyroscopes. Accelerometers 
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measure acceleration and gyroscopes measure angular velocity. By integration and 
double integration of gyroscope and accelerometer signals, respectively, one obtains 
some measure of orientation and position [6]. By knowing the initial position and 
orientation, we can find sensor orientation and position changes [9]. The position and 
angle of an inertial sensor cannot be correctly determined, due to the fluctuation of 
offsets and measurement noise, which lead to integration drift. Therefore designing drift 
free inertial systems is a challenge. On the other hand, these sensors can be used in 
home-based rehabilitation as there is no need for cameras to be set up.  
Mechanical sensors provide joint angle data to determine body posture. A goniometer is 
a sensor with attachments to the proximal and distal limb segments that span a joint to 
be measured. The sensor operates on the assumption that the attachment surfaces move 
with (track) the midline of the limb segment onto which they are attached and thereby 
measures the actual angular change at the joint. These devices provide an output voltage 
proportional to the angular change between the two attachment surfaces. Mechanical 
sensor accuracy should be carefully evaluated by testing them on individuals of various 
statures. Attachment and positioning of goniometers present several problems; in 
addition alignment of the goniometers with body joints is difficult [10] so it needs 
experts for system set-up in home-based rehabilitation. 
Strain and stress sensors have been developed for fabrics from piezo-electric to 
polyvinylidene fluoride (PVDF) polymer films.  These sensors can be integrated within 
textiles, or securely attached to them. Most are based on the principles that the electrical 
resistance of the flexible sensor changes during stretching. Many of the developed 
flexible strain sensors are based on using coated fabric technology [6]. The limitations 
of these kinds of sensors are their sensitivity to temperature and electromagnetic 
interference, tensile stiffness and transient output signals, which preclude their use in 
wearable garments. 
Motion capture data such as position and orientation of sensors can be generated from 
magnetic sensors as well. Magnetic motion tracking systems have been widely used for 
tracking user movements in virtual reality, due to their size, high sampling rate, and lack 
of occlusion. One of the common motion tracking systems with electromagnetic sensors 
is MotionStar by Ascension Technology Corporation. The system detects the position 
and orientation of the sensors by the magnetic field (either the Earth’s magnetic field or 
the field generated by a large coil). These systems offer good accuracy with no line of 
sight problems, so are more applicable for home-based rehabilitation. However, they are 
expensive, have high power consumption, and are sensitive to the presence of metallic 
objects in the environment [6]. 
Acoustic systems collect signals by transmitting and sensing sound waves, where the 
flight duration of a brief ultrasonic pulse is timed and calculated. These systems are 
used in medical applications, but have not been used in motion tracking. This is due to 
the drawbacks such as; (a) the efficiency of an acoustic transducer is proportional to the 
active surface area, so large devices are desirable; and (b) to improve the detected range, 
the frequency of ultrasonic waves must be low (e.g. 10 Hz), but this affects system 
latency in continuous measurement. In addition, acoustic systems require a line of sight 
between emitters and receivers [6], which is not suitable in assisted home-based 
rehabilitation. 
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4. Derivation of motion data from sensors’ signals 
 
As introduced before, different sensor technologies are used for motion capture. 
Depending on which of these sensors categories are used, there are different techniques 
to derive angles of joints on the modelled human body. Some sensor technologies like 
visual marker, magnetic and ultrasonic based systems derive the position of sensors and 
other ones like inertial and mechanical systems derive the orientation of sensors. 
Techniques for motion capture try to solve the inverse kinematics problem to find the 
angles of joints from position of sensors or to solve the kinematics problem to find the 
posture of body segments from the position of sensors. In next Section, we explain how 
angles of joints can be derived from sensors’ position and orientation. 
 
4.1. Deriving motion data from the position of sensors 

 
Motion capture systems which derive position of sensors in space, like optical, 

magnetic and ultrasound systems use similar techniques to determine the angles of 
joints and therefore kinematic parameters. As explained in Section 2.1, a skeletal model 
is built or adjusted by using a special calibration motion that highlights all the necessary 
degrees of mobility once per session [11]. Then the model is used to derive the motion 
trajectories of all the captured motions. Finally angular data are adjusted to adapt the 
motion to a virtual character. The process can be described in the following pipeline: 
calibration and capturing, knowing positions of cameras and markers, skeleton 
estimation, inverse kinematics processing, and determining the angle of joints. 

After installing the cameras, attaching markers to the subject is the second step. 
To obtain accurate results, markers should be positioned on the subject at specific 
anatomical locations. The cameras capture the movement of the markers rather than the 
body to which they are attached. Determining the skeleton of a subject means to find the 
3D positions of joints from the 3D marker locations and therefore determine the 3D 
positions of the bones of the subject.  

After deriving the 3D position of segments and joints from marker placements, 
finding the set of joint angles is the next step. The problem of finding a set of joint 
angles that corresponds to a given configuration is referred to as the inverse kinematics 
problem. We need the angles which the body segments make relative to each other to 
quantify the movements of the joint which connects them. A single marker can 
represent no more than a single point on a body segment as its motion is tracked. A pair 
of markers mounted upon a rigid segment presents sufficient information to describe 
both translational and rotational movement, though not fully, as rotations about axis 
joining the two markers remain undefined. 

The arrangement is typical of a simple stick-figure description of the human 
form where limb segments are indicated as straight lines between markers placed over 
joints. Though not very sophisticated, it is obviously far better than representing each 
limb segment by a single marker bearing no spatial relationship to markers on adjacent 
segments.  

To calculate the angles which the body segments make relative to each other, a 
rotation matrix is used which describes the orientation of the moving coordinate system 
on each body segment in comparison to a fixed coordinate system. The rotation matrix 
will translate movement from the fixed coordinate systems to the moving local 
coordinate system associated with the signals. This allows the angle between two 
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segments to be calculated. So the rotation matrix between the coordinate systems of a 
proximal segment and the coordinate system of distal segment relative to the proximal 
segment can be achieved by producing the corresponding rotation matrix of the two 
segments coordinates [12]. 

To calculate the orientation of a segment and its embedded coordinate frame, 
Euler angles are used. Euler angles are set of angles corresponding to rotations about 
given axes, usually orthogonal axes. The meaning and validity of the derived anatomical 
angles are determined by the choice of axes and rotation sequence. In order for limb 
segment angles to be clinically relevant we can define the orientation of the distal 
segment relative to the proximal segment by comparing the corresponding axes of the 
segment-embedded co-ordinate frames [6].  

4.2.  Deriving motion data  from the orientation of sensors 

Each body segment’s orientation and position can be estimated by integrating the 
gyroscope data and double integrating the accelerometer data in time. By using the 
calculated orientations of individual body segments and the knowledge of the segment 
lengths, rotations between segments can be estimated and the position of the segments 
can be derived under strict assumptions of a linked kinematic chain [13]. This process 
may have drift because of gyroscope offset, measurement noise, integration and so 
forth. Although these sensors give some measure of orientation, it is stated in [6] that 
inertial sensing cannot be used on its own to estimate relative position and orientation of 
sensors with respect to each other. The estimation of displacement and relative distances 
between sensors need to be determined using different methods. 
 In [6], relative distances between sensors were measured by acoustic signals. In this 
work each unit consists of inertial sensors and miniature microphones, which are used to 
record distances between pairs of sensors on the body. These distance measurements 
reduce the drift in purely inertial systems. The reconstruction algorithm estimates body 
posture by combining inertial and distance measurements with an extended Kalman 
filter that incorporates estimation of the body’s joint structure and poses.  
Another way of measuring the relative distance between sensors is using magnetic 
sensors. By combining inertial sensors with magnetic sensors, an ambulatory 6 degrees 
of freedom human motion tracking system has been designed in [14]. The magnetic 
system consists of three orthogonal coils with a magnetic field source fixed to the body 
and 3D magnetic sensors, which measure the fields generated by the source. Based on 
the measured signals, a processor calculates the relative positions and orientations 
between the source and sensor. Since accelerometers and gyroscopes can only measure 
changes in position and orientation and suffer from integration drift, an improved 
solution for position and orientation estimation is obtainable by combining 
measurements from both systems in a filtering structure [15]. In this method a 3D 
source of magnetic signals is used which can consist of one or three [16]-[17] circular 
coils that are mounted orthogonally with respect to each other [18]. 
 
5. Home Based Motion Capture Challenges 
 
5.1. Variability 
Variability in movement patterns plays a fundamental role in motion analysis. 
Inconsistencies due to placement errors of on-body sensors can come from three 
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primary sources: human error in the process of sensor/marker placement, the 
measurement system, and the subject under evaluation [19]. Variability is defined by the 
sum of variances from each independent source [20]. Sensor placement variation among 
technicians is the largest source of unwanted variability [6]. Inaccurate sensor 
placement causes measurement variability, which is a key impediment to the wider 
adoption of home-based assistive rehabilitation. Particular care should be taken to 
ensure that sweating, rapid movements and the placement of markers on the subject’s 
body during different trials and sessions do not affect sensor/marker positioning 
specified by the  
Given the clinical relevance of variability in motion capture measurements, it is critical 
that we summarize and compare motion data in a way that reflects the true nature of 
motion variability [21]. To measure variability among gait curves, some distance based 
measures have been used in literature, including the mean distance from all curves to 
the mean curve in raw 3-dimensional spatial data [6], the point-by-point intercurve 
ranges averaged across the gait cycle, and the norm of the difference between 
coordinate vectors representing upper and lower standard deviation curves in a vector 
space spanned by a polynomial basis [6].  
 
5.2. Energy efficiency 
 
The importance of body sensing systems to monitor patients over a prolonged period of 
time has increased with an advance of home healthcare applications. Wearable medical 
devices could eliminate patients’ dependence on clinical environments and allow 
monitoring at home. Body sensing platforms for monitoring of various biological and 
physiological signals face the challenge of how to achieve low power consumption as 
well as mentioned sensor placement challenge. The overall size of the electronic part of 
wearable systems is generally dominated by the size of the batteries. Hence to have less 
bulky systems, sensors need to operate with low power consumption.   
When considering the hardware platform, we can distinguish three major constituents 
consuming significant energy: computation units, communication units, and storage 
units. In body sensing systems the computation unit is usually centralized and far from 
the human body and signals can be sent via the communication units to the computation 
unit. Biological and physiological signals are usually saved in the centralized unit which 
can be connected to sources of power with fewer power restrictions in comparison to the 
sensors’ batteries. Energy efficiency of the communication units depends on the 
hardware and the protocols which are used to capture the biological signals and send 
them to the central computing units [22]. 
 
6. Conclusion 

In this paper after introducing human body modelling for motion capture, we 
reviewed sensor technologies for motion capture, and techniques to derive motion data. 
Motion capture systems are sensitive to exact positioning of sensors, or alternatively 
need a calibration procedure which is time consuming and requires training. For 
ambulatory motion capture and especially home-based rehabilitation, systems should be 
portable. Two important requirements of portable motion capture systems are tolerance 
to changes in the position of sensors and extended system life. Therefore, we reviewed 
causes and effects of variability in motion pattern, and energy efficiency of on-body 
sensing systems for the purpose of motion capture.  
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