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ORIGINAL RESEARCH ARTICLE

Intelligent geospatial maritime risk analytics using the 
Discrete Global Grid System
Andrew Rawson a, Zoheir Sabeur b and Mario Brito c

aDepartment of Electronics and Computer Science, University of Southampton, UK; bDepartment of 
Computing and Informatics, Talbot Campus, University of Bournemouth, Bournemouth, UK; cDepartment of 
Decision Analytics and Risk, Southampton Business School, University of Southampton, UK

ABSTRACT
Each year, accidents involving ships result in significant loss of life, 
environmental pollution and economic losses. The promotion of 
navigation safety through risk reduction requires methods to assess 
the spatial distribution of the relative likelihood of occurrence. Yet, 
such methods necessitate the integration of large volumes of het
erogenous datasets which are not well suited to traditional data 
structures. This paper proposes the use of the Discrete Global Grid 
System (DGGS) as an efficient and advantageous structure to inte
grate vessel traffic, metocean, bathymetric, infrastructure and other 
relevant maritime datasets to predict the occurrence of ship 
groundings. Massive and heterogenous datasets are well suited 
for machine learning algorithms and this paper develops a spatial 
maritime risk model based on a DGGS utilising such an approach. 
A Random Forest algorithm is developed to predict the frequency 
and spatial distribution of groundings while achieving an R2 of 0.55 
and a mean squared error of 0.002. The resulting risk maps are 
useful for decision-makers in planning the allocation of mitigation 
measures, targeted to regions with the highest risk. Further work is 
identified to expand the applications and insights which could be 
achieved through establishing a DGGS as a global maritime spatial 
data structure.
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1. Introduction

The safety of a navigating vessel is the responsibility of its master, who utilise their 
substantial experience, training and equipment to safely guide a vessel between ports 
and through potentially hazardous waterways (IMO, 2004). National administrations and 
harbour authorities have a duty to ensure the safety of these waterways are assessed, 
determining whether new risk controls such as pilotage or ship routeing schemes are 
warranted. Conventionally, this task relies on the judgment and experience of profes
sional navigators, but many have proposed maritime risk analysis as a field of scientific 
research to complement these efforts (Kulkarni, Goerlandt, Li, Banda, & Kujala, 2020; Lim, 
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Cho, Bora, Biobaku, & Parsaei, 2018). Such methods provide a systematic, evidence-based 
quantitative assessment of risks, overcoming limitations in expert judgment such as bias 
or heuristics (Kahneman, 2011; Tetlock, 2005).

The growth of maritime risk analysis as a science is a relatively recent development, 
emerging in the 1970s with work by Fujii and Tanaka (1971) and Macduff (1974) seen as 
the catalyst for this paradigm (Baksh, Abbassi, Garaniya, & Khan, 2018; Mazaheri, 
Montewka, & Kujala, 2013). From this, a significant body of diverse work has developed 
which have attempted to quantify the likelihood or consequence of an incident (Lim et al., 
2018). One of the key reasons for this growth is the increasing availability of data, in 
particular vessel traffic data which is generated from the Automatic Identification System 
(AIS). AIS is an automated electronic reporting system that is required on all commercial 
vessels, and is optionally carried by smaller ones, which transmit information about the 
geographic location, speed, direction and identification of vessels. It is no coincidence 
that the significant increase in maritime risk studies since the late 2000s documented by 
Lim et al. (2018) is mirrored by the substantial increased availability of AIS data around the 
same time, as shown by Lensu and Goerlandt (2019).

Yet, the presence of navigating vessels is not the only relevant risk factor, with 
bathymetry, pilotage, weather conditions and a myriad of other spatial factors contribut
ing to potential accidents. Therefore, it would be expected that combining vessel traffic 
and incident data with other heterogeneous datasets is essential for effective risk assess
ment, but this is only a relatively recent trend (Kulkarni et al., 2020). This is partly due to 
inherent processing challenges of combining massive and varied datasets and as a result 
studies are often limited to small regions, short time periods or simplistic methodologies 
(EMSA, 2018; Lensu & Goerlandt, 2019). This is a significant limitation in model develop
ment due to the relative infrequency of which accidents occur, with even the Dover 
Straits, one of the busiest waterways in the world having on average only 1.2 collisions 
each year (MAIB, 2014a). Therefore, computational methods to efficiently integrate sig
nificant volumes and varieties of maritime data can lead to more robust models that are 
scalable to large regions.

To overcome challenges of large data volume and variety, there has been a growing 
interest in the capabilities of big-data technologies within transportation (Milne & 
Watling, 2019). Big data processing architectures that are better suited to large and 
heterogenous data processing problems, such as Apache Spark, have been utilised for 
handling massive AIS datasets (Filipiak, Strozyna, Wecel, & Abramowicz, 2018; Scully, 
Young, & Ross, 2019; Wu, Xu, Wang, Wang, & Xu, 2017). However, these studies approach 
only the “volume” aspect of big data at the expense of the “variety” of datasets. By 
integrating other datasets, new opportunities and avenues of research are opened, 
such as machine learning which is a recent trend in risk assessment (Hedge & Rokseth, 
2020), but for which there is little work in the maritime domain (Dorsey, Wang, Grabowski, 
Merrick, & Harrald, 2020; Jin, Shi, Yuen, Xiao, & Li, 2019).

In order to facilitate this work, methods to combine massive and heterogenous spatial 
datasets are required. Conventionally this is achieved using Cartesian grids of latitude and 
longitude (Filipiak et al., 2018; Wu et al., 2017), however, this is inherently flawed in 
representing a spherical globe. In response to this, recent work has developed Discrete 
Global Grid Systems (DGGS) as a three-dimensional, regularised and uniformly discretized 
system of cells for multi resolution management of geospatial data. Some have argued 
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that such a system has many advantages, particularly when integrating multiple hetero
genous datasets, as is necessary in maritime risk analysis. However, there are few applica
tions of DGGS generally (Robertson, Chaudhuri, Hojati, & Roberts, 2020) and within 
maritime risk analysis specifically.

This study seeks to answer some of these questions by demonstrating a use case of big 
spatial data analytics for maritime risk assessment. An analytical framework, built around 
a DGGS spatial data structure, is developed to integrate significant AIS and historical incident 
data with numerous heterogenous exploratory variables including weather, bathymetry and 
location of infrastructure and risk controls. From this, it is demonstrated that such a framework 
serves as an effective basis for machine learning models to predict accident occurrence, 
specifically the likelihood of commercial ship groundings across the United States.

This work provides the following key contributions. Firstly, this study demonstrates 
how numerous different factors related to maritime safety can be obtained, digitised and 
integrated into maritime risk models, exceeding the scale of previous work. This fulfils 
a growing interest in the potential applications of integrated maritime datasets (Kulkarni 
et al., 2020; Lensu & Goerlandt, 2019) by offering a practical and suitable spatial data 
processing pipeline. Secondly, the use of DGGS in spatial risk assessment is presented and 
evaluated, of which there are recognised to be few examples (Robertson et al., 2020), 
demonstrating some clear advantages over traditional data structures. Thirdly, a novel 
methodology is proposed through which maritime risk can be strategically mapped using 
machine learning methods. Some have argued that machine learning methods offer 
significant advantages over more conventional maritime risk analysis methodologies 
but there are few examples (Adland, Jia, Lode, & Skontorp, 2021; Jin et al., 2019). Finally, 
there are few examples of big data processing for maritime risk assessment (Lensu & 
Goerlandt, 2019) and this work provides a framework and dataset through which numer
ous avenues of further work are possible.

The remainder of this article is organised as follows. Section 2 describes some key 
previous work on maritime risk assessment, particularly their methods and those that 
have sought to utilise big data. Section 3 describes the methodological approach taken, 
including the datasets, spatial framework and methodological steps. Section 4 provides 
some results and discussion of the aforementioned methods. Finally, the conclusions are 
presented in Section 5.

2. Data driven maritime risk assessment

2.1. Vessel traffic data

The majority of data driven models that assess the safety of navigation rely principally on 
AIS data to represent the movements of vessels. Under SOLAS Chapter V (IALA, 2002), AIS 
is required on all vessels over 300 tonnes on international voyage, all vessels over 500 
tonnes not on international voyage and most passenger vessels regardless of size. Some 
smaller vessels, including pleasure craft and fishing vessels, may choose to fit AIS to 
increase their visibility to larger vessels and improve safety. AIS includes dynamic data 
(ship position, speed and course) and static data (ship name and type) that is broadcast at 
regular intervals of between 2 seconds and 3 minutes depending on the type and activity 
of the vessel (IALA, 2011).
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A plethora of different research applications are enabled by AIS including traffic 
monitoring, emissions modelling, assessing noise/whale strikes amongst many others 
(Hilliard, Rezaee, & Pelot, 2018; Svanberg, Santen, Horteborn, Holm, & Finnsgard, 2019; 
Yang, Wu, Wang, Jia, & Li, 2019). To achieve these applications, most commonly, AIS data 
is processed as a relational database or within a Geographical Information System (GIS). 
Figure 1 compares the five principal methods through which AIS data is routinely 
represented in the literature. This includes vector data as points, lines or polygons, or 
raster data as a density grid. The specific choice of method should reflect both the 
purpose and scale of analysis. For example, constructing vessel outlines as swept paths 

Figure 1. Comparison between representations of AIS data.
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are useful to consider the specific circumstances of a transit or incident, but are mean
ingless at a national scale where ship density would have more utility. These approaches 
have known limitations which limit their scalability when applied to large datasets (MMO, 
2014).

The sheer volume and applications of AIS have been argued to fulfil the definitions of 
“big data” (Abualhaol, Falcon, Abielmona, & Petriu, 2018; Tsou, 2019). Namely:

● Volume – Historical ship traffic data, high resolution metocean data and other data 
types can be of significant size, exceeding computer memory (Chatzikokolakis, Zissis, 
Vodas, Spiliopoulos, & Kontopoulos, 2019). Databases need to be able to overcome 
these challenges and ingest massive quantities of data.

● Velocity – a vessel on transit could be expected to transmit positional data once 
every 10 seconds, or 8,640 times per day. MarineTraffic, one of the world’s leading 
commercial enterprises of AIS, record 520 million positions each day across 163,000 
unique vessels (MarineTraffic, 2017).

● Variety – 27 message types are transmitted for various purposes, each containing its 
own attributes (IALA, 2011).

● Veracity – AIS errors are common across a number of attributes. Harati-Mokhtari, 
Wall, Brooks and Wang (2007) analysed the accuracy of entered AIS information and 
found that 8% of transmissions were incorrect in some form. Furthermore, AIS can 
also be faked by generating and transmitting artificial data.

Where the scale of the AIS data under analysis expands, researchers are increasingly 
turning to big data solutions, offering both greater storage capacity and reduced proces
sing time. Filipiak et al. (2018) utilised Apache Spark to process 310 million vessel 
positions, calculating statistics and identifying anomalies, demonstrating both significant 
efficiencies and scalability over conventional methods. Other applications include extract
ing maritime traffic patterns for anomaly detection (Kontopoulos, Varlamis, & Tserpes, 
2020), characterising vessel behaviour near critical infrastructure (Scully et al., 2019), 
mapping global shipping routes from 21 billion vessel positions (Wu et al., 2017) or 
presenting novel data models (Widhalm & Dragaschnig, 2020). Few studies have investi
gated the use of big data processing for use in maritime risk assessment. An exception is 
the work by Zhang, Meng, and Fwa (2017) which utilised a Hadoop cluster to analyse 
vessel traffic in Singapore, noting that areas of hot spots of vessel speed coincided with 
areas where historical incidents had occurred. There is therefore a sparsity of studies that 
utilise massive AIS datasets for the purposes of maritime risk assessment.

2.2. Integration of vessel traffic and other datasets

Whilst research into AIS analysis has been a significant field of study, understanding the 
relative likelihood of accident occurrence requires additional datasets to be integrated. 
For example, wind and wave conditions are required to understand whether adverse 
conditions contribute to incidents such as container loss or capsize (Adland et al., 
2021). Similarly, integration of bathymetry with vessel traffic data is necessary to 
predict ship groundings. Lensu and Goerlandt (2019) present a structure for integrating 
AIS data and ice data to investigate ice navigation in the Baltic Sea. Other applications 
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for these integrated datasets include examining tidal offsets of transits at Keelung 
Harbour (Tsou, 2019) or predicting insurance claims for oceanic voyages (Adland 
et al., 2021). Yet, given this necessity, it has been recognised that combining vessel 
traffic, accident data and other datasets is a relatively recent trend (Kulkarni et al., 
2020).

Three broad categories of data are required for data driven maritime risk analysis. 
Firstly, incident data, which represent what happened, where and when. Secondly, 
a measure of vessel activity against which to benchmark the number of accidents, 
most commonly AIS data. Finally, integration with other exploratory variables or risk 
factors which might influence the relative propensity for accidents to occur. Within 
the literature, a plethora of factors have been proposed and tested, which are 
summarised in Table 1 (Bye & Aalberg, 2018; Hoorn & Knapp, 2015; Kim, Lee, & Lee, 
2019; Kite-Powell, Jin, Jebsen, Papkonstantinou, & Patrikalakis, 1999; Kristiansen, 2005; 
Mazaheri, Montewka, Kotilainen, Sormunen, & Kujala, 2014; Mazaheri, Montewka, & 
Kujala, 2016; Olba, Daamen, Vellinga, & Hoogendoorn, 2019b; Olba, Daamen, Vellinga, 
& Hoogendoorn, 2019a; USCG, 2005; Van Dorp, Harrald, Marrick, & Grabowski, 2008). 
The relationship between each risk factor and the propensity for accidents is often 
not straight forward. For example, whilst shallow depth is logically a cause of ground
ings, ships spend the majority of their time in deep water, actively avoiding areas of 
shallows, with the exception of the approaches to ports. Therefore, in most locations 
where there is shallow water, groundings have not occurred. As such a combination 
of these factors is often necessary to understand the root cause of an incident.

Not all recognised relevant risk factors can be easily integrated into data driven risk 
assessments. The inclusion of human and organisational factors is important due to the 
significance of these factors in the causation of maritime accidents. Yet, such factors 
are inherently difficult to implement into risk models. Attempting to quantify the level 
of alertness of a bridge team using data alone, without access to observations of the 
bridge environment, is if not impossible, beset with challenges. For example, fatigue of 
a watch keeper has caused numerous accidents (MAIB, 2014b), yet without monitoring 
the individual onboard, there is little opportunity for directly measuring this factor. 
One method to represent this is probabilistically using Bayesian Networks to differ
entiate the safety performance of crews, vessels or companies (Hanninen, 2014), but 
the state of this feature is not directly observable. A coastal state, coastguard or port 
would have no way of discerning which ship in their waters is more at risk of fatigue 
than others.

Some factors can be more easily represented, such as the weather conditions which 
can integrate with numerous earth observation datasets available to researchers. Others 
need to be derived or calculated, such as waterway complexity. One method proposed 
to represent this is through semi-structured interviews with expert navigators to rate 
the relative difficulty, such as conducted by Mazaheri et al. (2014). Yet, such an approach 
has clear limitations when attempting to scale it to national or international study areas. 
Given these challenges, there are relatively few studies that combine multiple hetero
genous datasets for predicting maritime risk. Furthermore, such studies require 
a consistent and standardised spatial data structure into which each dataset can be 
effectively integrated.
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2.3. Managing spatial data and the DGGS

As the world is inherently continuous there are an infinite number of locations at multiple 
resolutions. Digital representations must reduce this complexity through the use of 
generalisations or approximations. Conducting spatial analysis requires a data structure 
which has global extents into which data can be effectively binned, most commonly some 

Table 1. Significant causes of maritime accidents.
Category Cause Description Availability of data

Human and  
Organisational 
Factors

Inattention and 
Fatigue

Impacts decision making and position 
monitoring.

Not directly measurable.

Bridge Resource 
Management

Break down of communication onboard 
results in misunderstandings/poor 
decision making.

Not directly measurable.

Communication Communication between vessels can 
result in misunderstandings of 
intentions.

Not directly measurable.

Position Monitoring Failure to monitor position can result in 
vessel off course.

Not directly measurable.

Training and 
experience

Inexperience can impact decision 
making.

Not directly measurable.

Regulation Regulatory regime can require 
enhanced safety regimen onboard.

Not directly measurable.

Vessel and 
Mechanical 
Factors

Ship Dimensions and 
Manoeuvrability 
Characteristics

Less manoeuvrable vessels are 
constrained in ability to take evasive 
action.

AIS static data includes length, 
offsets and draughts. 
AIS MMSI/IMO Number can 
be linked to more detailed 
vessel databases such as IHS 
Fairplay.

Vessel Age Older vessels may be less well operated 
or have mechanical issues.

AIS MMSI/IMO Number can be 
linked to more detailed 
vessel databases such as IHS 
Fairplay.

Vessel Flag State and 
Safety Regime

Some flag states have greater safety 
regimes than others.

AIS data includes vessel flag, 
this can be linked to Paris 
MoU or Flag of Convenience 
datasets.

Vessel Speed Faster navigating vessels have reduced 
time to take evasive action.

AIS data includes vessel speed.

External Factors Traffic Density and 
Distribution

Higher traffic density increases 
interactions between vessels.

AIS data analysis to derive 
density/distribution 
measures.

Waterway Geometry More complex waterways require finer 
navigation skills than open sea.

Topography/geometry of 
waterways from charts/ 
digital landmass models.

Depth Shallow waterways have more 
potential for vessels to run aground.

Nautical charts (Paper/ENC), 
digital bathymetry models.

Weather (Visibility, 
wave, ice, darkness 
etc.)

Wind and waves can overwhelm/ 
capsize a vessel or offset the vessel 
from its intended course. Visibility 
impacts hazard perception.

Earth observation datasets, 
time of transit, ice charts.

Hydrodynamic Effects 
(E.g. Tidal, Bank 
Effect)

Impacts course-keeping ability in 
constrained waters.

Tidal atlases, hydrodynamic 
models.

Support Availability 
(VTS, Tugs, TSS, 
Pilotage, Aids to 
Navigation etc.)

Risk controls can monitor/manage 
passage safely or respond quickly 
following a mechanical failure.

Nautical charts, port directions.
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form of tessellation into a finite number of discrete elements. By using this approach, 
complex and heterogenous datasets can be grouped into local spatial objects, through 
which more traditional statistical models can be applied. This reduces the complexity of 
the analytical problem and is therefore more scalable to big data problems. Such an 
approach has been termed as a form of “congruent geography” (Goodchild, 2018).

Conventionally, spatial models in maritime risk analysis have utilised cartesian grid 
systems with fixed x-y dimensions (Filipiak et al., 2018; Wu et al., 2017). For example, a risk 
study of Australian waters utilised a regular 1 nm grid (DNV, 2013) whilst another for 
Washington State USA utilised a 0.5 nm grid (Van Dorp & Merrick, 2014). However, such 
a structure attempts to map a regular lattice onto a spherical globe, inevitably introducing 
a number of distortions in cell size and shape that could limit the validity of analysis 
(Battersby, Stebe, & Finn, 2016). These may be significant enough to distort results and 
correlations in maritime risk analysis through the Modifiable Areal Unit Problem (MAUP) if 
not properly recognised (Openshaw, 1977; Rawson, Sabeur, & Correndo, 2019). It has been 
demonstrated that by changing the resolution when conducting maritime risk analysis, 
a significant variation in correlations and accident rates can be provided (Rawson & Brito, 
2021). Alternatively, some studies utilise non-aggregated data as ship positions, but this 
can have significant computational challenges unless some downsampling is undertaken 
(Adland et al., 2021).

To overcome this, DGGS have been proposed as a spatial reference system that uses 
a hierarchical tessellation of equal-area cells to manage and present geospatial datasets. 
Whilst a Cartesian grid could be described as DGGS (Barnes, 2019), the term is more 
commonly applied to base solids of triangles and hexagons (Sahr, White, & Kimerling, 
2003). This approach increased in popularity in the 1990s with efforts focussed at devel
oping a Digital Earth for undertaking and representing spatial analysis (Goodchild, 2000). 
A DGGS, therefore can be constructed from platonic solids, and partitioned into ever 
smaller grids. DGGS has also been adopted by the Open Geospatial Consortium, where its 
standard specifications have been developed and internationally approved (Purss et al., 
2019).

DGGS are typically described by their base polyhedron, transformation from spherical 
to planar face and hierarchical spatial partitioning method. This latter aspect includes the 
aperture of the system, the ratio of shapes from one resolution to the next resolution (Sahr 
et al., 2003). For example, an ISEA3H system describes an Icosahedral Snyder Equal Area 
projection using hexagonal grids with aperture 3. Whilst DGGS can use many platonic 
shapes (Sahr et al., 2003), many propose that a hexagonal base model exhibits several key 
advantages. These include their more compact topology, uniformly high symmetry and 
uniform adjacency between adjacent cells. The more consistent cell area, distance 
between neighbouring cells and low perimeter to area ratio allows for less distortion 
when used for spatial statistics (Birch, Oom, & Beecham, 2007). Furthermore, hexagons 
have numerous visual properties over square grids, such as reduced ambiguity at edges 
rather than corners, a less regular structure which can be distracting and alignment on an 
additional axis (Barnes, 2019; Birch et al., 2007).

A number of DGGS packages have been developed. These include rHealPIX (Gibb, 
2016), OpenEAGGR (Riskaware, 2017), DGGRID (Barnes, 2016) and H3 (Uber, 2018). These 
packages allow for configuration of the types, resolution and aperture of the desired grid. 
There are few examples of these DGGS implementations within published research and 
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projects (Robertson et al., 2020). Purss et al. (2019) discussed a few proposed initiatives 
that sought to integrate DGGS within big data projects, albeit at an early stage. Some 
examples include Robertson et al. (2020) use of DGGS to model wildfires, and Jendryke 
and McClure (2019) spatial analysis of crime data. However, as yet there is little considera
tion of the relative merits of DGGS for maritime risk studies, and therefore this warrants 
further attention.

3. Methodology and datasets

3.1. Framework

In order to demonstrate the suitability of DGGS as a spatial data structure for maritime risk 
analysis, this study seeks to predict the frequency of ship grounding across the United 
States using machine learning. A 2-step framework is proposed (Figure 2). Firstly, numer
ous exploratory datasets are integrated using a DGGS and summarised using the python 
library Dask. Secondly, a supervised regression machine learning approach is utilised to 
predict the frequency of ship groundings within each DGGS cell.

3.2. Part 1: data preparation

Given the variety of datasets required in this study, a common spatial data framework is 
required to enable integration and a DGGS is proposed to achieve this. Whilst numerous 
DGGS packages are available in various languages, as part of the EU Horizon 2020 SEDNA 
project, the University of Southampton developed a python library that implemented the 
DGGRID R library (Barnes, 2016), called dggridpy (Correndo, 2019). The package enables 
DGGS cells to be constructed at varying resolutions, and spatial data indexed. A DGGS was 
constructed at resolution 7 (3,116 km2 area) using a hexagonal ISEA4H DGGS, accounting 
for approximately 22,000 grid cells across the study area.

In order to integrate the different datasets into the DGGS, several methods were required 
and are described in Figure 3. Firstly, point or comma separated value type data, such as 
vessel positions and incident locations, can be assigned a cell index number from the latitude 
and longitude using native indexing methods (Figure 3a). Secondly, vector spatial datasets 
such as polygons or lines can be converted by either writing the DGGS cells as polygons and 

Figure 2. Intelligent geospatial ship grounding model framework.
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performing a spatial join or sampling the data centroids as points and then indexing using 
the conventional method (Figure 3b). Thirdly, raster or NetCDF datasets can be converted by 
sampling the raster surface with centroids per cell and then assigning a DGGS cell id, before 
aggregating (through for example averaging) into a single DGGS cell value (Figure 3c). 
Alternatively, the centroids of the DGGS cells are identified and the corresponding value of 
that raster cell extracted (Figure 3d). There are strengths and weaknesses in each of these 
latter methods relating to rasters. For example, if the requirement were to assign depth 
values within a cell, extracting the raster values of the DGGS cell centroids would be relatively 
fast. However, if the requirement was to calculate the average depth of the cell it would be 
necessary to aggregate all of the raster cell values within the DGGS cell.

To support this aggregation, particularly given the significant vessel traffic data which 
exceeds 170GB, the python library Dask was utilised. Dask supports parallel computing 
through dynamic task scheduling and extended capability collections such as Panda’s 
dataframes. A Dask dataframe is a row-wise partition of a Panda’s dataframe such that 
each partition can be loaded into memory on-demand. A key advantage of Dask over 
other solutions such as Apache Spark, is the relative similarity and portability of existing 
python code using standard libraries into Dask. Whilst Spark supports python operations 
through PySpark, Dask requires minimal conversion of existing code. In addition, Dask 
also has good scalability, whilst maintaining functionality on a single machine.

3.2.1. Incident data
Under the Code of Federal Regulations 46 CFR 4.03/4.05, any marine casualty or accident 
occurring with US navigable waters, including grounding, collision, allision or flooding, 
shall be reported to the Coast Guard. A database of these incidents from 2002 to July 2015 
is available specifically for use by researchers. The dataset contains 132,717 incidents. In 
addition, given the proximity of Canadian waters, data from the Transportation Safety 
Board of Canada for 1995–2020 was supplemented, accounting for 81,000 records.

The 200,000 accidents from the combined US and Canadian databases were filtered 
based on their accident type and vessel types to commercial ship groundings. Several 
authors have reported issues with the quality of accident data (Mazaheri et al., 2014), and 
a manual check was made of several groundings that were reported in deep water and 

Figure 3. Methods of assigning DGGS cells to geospatial data.
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omitted as appropriate. Each accident can then be assigned the DGGS cell given the 
recorded latitude and longitude, with a total of 1,307 groundings. The annual grounding 
frequency within each DGGS can then be calculated (Figure 4).

3.2.2. Vessel traffic data
Marine Cadastre, a joint project by the Bureau of Ocean Management and the National 
Oceanic Atmospheric Administration (NOAA), publish AIS data collected from the US 
Coast Guard’s national network of AIS receivers. All AIS data for the year 2018 was 
extracted, approximately 2.5 billion vessel positions.

AIS data is broadcast at variable intervals based on the vessel type, speed and 
behaviour (IALA, 2002, 2011). Therefore, to provide an accurate measure of duration, 
interpolation of the data to standardised fixed intervals is necessary. Figure 5 describes 
the workflow to achieve this. Firstly, the extracted data was queried to filter the data to dry 
cargo and liquid tanker commercial vessels using the ship attributes. Secondly, to remove 
stationary vessels a filter is applied where the speed is less than 0.5 knots. Thirdly, the data 
is sorted by MMSI number and timestamp and a loop used to generate a Trip ID number. 
A Trip is defined as the continuous navigation of one vessel such that the subsequent time 
between positions is not greater than one hour, at this point it is considered that the 
tracking of the vessel is lost, and no further interpolation of the vessel is conducted. From 
this, each trip is then resampled to one-minute intervals and interpolated using the 

Figure 4. Ship grounding accident distribution.
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pandas resample and interpolate methods. The data can then be aggregated within each 
DGGS cell to show the annual hours of commercial vessel transit across the study area 
(Figure 6).

Figure 5. AIS data processing overview.

Figure 6. Vessel traffic data.
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3.2.3. Bathymetric and topographic data
Bathymetric data was available from NOAA’s National Center’s for Environmental 
Information’s ETOPO1 Global Relief model. The model provides 1 arc-minute global relief 
data in netCDF format at WGS84 datum. The average depth within each DGGS cell was 
then calculated (Figure 7). The high resolution GADM world landmass shapefile was 
utilised to determine the presence or absence of shore. In addition, a Euclidean 
Distance calculation was performed to generate a raster map of the study area at 
500 m resolution which determine the closest distance to that shoreline. The distance 
from shore of the centroid of each DGGS cell can then be calculated (Figure 7).

Within Table 1 it was identified that some risk factors for ship accidents relate to the 
difficulty or complexity of navigating a waterway (Mazaheri et al., 2014). To represent this, 
two measures were derived (Figure 8). Firstly, the AIS data was filtered to transiting vessels 
with speeds over 5 knots, and the course changes between each subsequent position 
calculated and averaged across all transits through that cell. This measure identifies 
locations with channels that require significant course changes and may be described 
as more navigationally complex. Secondly, where a DGGS cell intersected the land, the 
ratio of cell area to cell perimeter was calculated. Cells with a high ratio suggest that the 
coastline is varied, requiring greater navigational precision.

Figure 7. Bathymetric and topographic datasets.
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3.2.4. MetOcean data
Metocean data was extracted from the EU Copernicus Marine Environmental Monitoring 
Service, available in NetCDF format:

● Wind speeds – WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 – contains glo
bal six hourly mean wind speeds and directions at 0.25 degree resolution.

● Wave heights – GLOBAL_REANALYSIS_WAV_001_032 – contains three hourly mean 
wave heights and wave directions at a 0.2 degree resolution.

● Ice characteristics – METOFFICE-GLO-SST-L4-REP-OBS-SST – contains daily sea sur
face details including ice and temperature details at 0.05 degree resolution.

● Tidal flows – GLOBAL-ANALYSIS-FORECAST-PHY-001-024–HOURLY-MERGED-UV – 
includes hourly surface velocity fields on a 0.05 degree resolution.

In each case, the NetCDF data can be loaded and processed using the xarray python 
library, to enable standard statistical functions. The 2018 data is aggregated to provide 
average annual figures for all four metocean conditions (Figures 9 and 10). The data 
extent is limited to offshore waters and therefore missing values are imputed using the 
mean coastal values. This data allows characterisation of offshore waters as more exposed 
to stronger winds and higher wave heights, whilst inshore waters tend to have higher 
tidal flows. Furthermore, the presence of ice in the northern latitudes can be highlighted.

Figure 8. Navigational complexity.

BIG EARTH DATA 307



3.2.5. Infrastructure and risk controls
Marine Cadastre and the Homeland Infrastructure Foundation-Level Data Portal provide 
shapefiles of the locations of key infrastructure such as ports, pilot boarding stations and 
ship routeing schemes. Given that ports and pilot boarding stations represent specific 
points, these locations are buffered by 20 nautical miles to account for an approximate 
area. Such an approach lacks accuracy in specific waterways, but no such dataset of port 
limits or pilotage regions exists. In addition, the approximate limits of VTS areas are 
mapped based on CFR legislation and USCG websites. These datasets can then be joined 
to the DGGS through a spatial intersection (Figure 11).

3.2.6. Dataset summary
Table 2 provides summary statistics of the 22,268 DGGS cells and the different features 
used to develop the model. Each feature is joined utilising the DGGS cell index number.

3.3. Part 2: machine learning for maritime risk analysis

The resulting dataset consisted of approximately 22,000 DGGS cells that contains aggre
gated data of 13 features and one target label, namely accident frequency. Few have 
investigated the application of machine learning to maritime risk assessment (Dorsey 
et al., 2020; Jin et al., 2019), but such methods enable complex relationships to be 
represented between multi-dimensional data and therefore should be well suited to 
navigation safety. The prediction of accident locations y could be framed as a function 

Figure 9. Wind speeds and wave heights.
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of the dependent variables x as a form of supervised machine learning such that y = f(x). 
By training the algorithm on where accidents have occurred, the resulting outputs will 
indicate regions where the model expects groundings could occur, producing a national 
risk map to support decision makers.

The machine learning method (Figure 2) consists of several stages. Firstly, the data is 
split into training and testing datasets with the ratio of 70% to 30%. A Random Forest 
regression algorithm is then implemented using the library Scikit Learn, with parameter 
tuning conducted using randomised search with five-fold cross validation, optimising 
Mean Squared Error (MSE). Random Forest is an ensemble tree-based learning algorithm 
that has attractive properties such as training speed and robustness when using high- 
dimensional and unbalanced datasets (Breiman, 2001). Therefore, such a method should 
be well suited for maritime risk analysis with massive and heterogenous datasets.

Random Forest consists of many decision trees which are a non-parametric supervised 
learning method that seeks to learn simple decision rules inferred from the data features 
(Breiman, Freidman, Stone, & Olshen, 1984). Decision trees are constructed in a top-down 
recursive manner that partitions the data into different groups. At each step, a feature k is 
split by a threshold value tk so as to maximise the purity of each subset. The cost function 
(J) that is optimised can be represented as below, where G and m represent the impurity 
and number of instances of each subset respectively. 

J k; tkð Þ ¼
mleft

m
Gleft þ

mright

m
Gright (1) 

Figure 10. Tidal flows and ice thickness.
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To measure the purity of each node, different measures are available but the gini impurity 
is utilised here. The impurity (G) is a measure of the proportion of training instances that 
belong to the same class, where pi,k is the ratio of class k amongst the training instances in 
the i-th node. 

Gi ¼ 1 �
Xn

k¼1

pi;k
2 (2) 

Decision trees are prone to overfitting as the data can be continually split until a perfect 
replication of the training dataset is produced. To overcome this, random forest intro
duces several features (Breiman, 2001). Firstly, bagging (bootstrap aggregating) involves 
the training dataset being sampled with replacement. Secondly, randomly selecting 
attribute variables when splitting the dataset. This leads to decorrelation of each model. 
For regression problems, the final prediction is the average of each decision tree. In 
addition, random forest allows for the calculation of the relative importance of each 
feature in producing the predictions. Feature importance, also referred to as gini impor
tance is calculated by comparing how much the tree nodes that use each feature reduce 
the impurity on average (Breiman et al., 1984).

Figure 11. Presence of infrastructure.
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4. Results and discussion

4.1. Ship grounding risk model

The results are shown in Figure 12, indicating the spatial variation in ship grounding risk 
based on the trained Random Forest model. The R2 and MSE achieved on the test set are 
0.55 and 0.002 respectively. The risk map has many parallels with the map of incident 
locations shown in Figure 4. For example, high risk areas in the ports such as the Gulf of 
Mexico, as well as constrained waterways such as the Columbia River, St Lawrence River 
and Mississippi River are all shown to have high risk. Furthermore, both figures show low 
risk scores for offshore areas, with deep waters, and inshore areas where there is little 
vessel traffic. This suggests that the model has good predictive capability at determining 
the relative risk of grounding across a large area.

Significantly, the derived risk map also outputs values in regions which have not had 
historical groundings but are predicted to do so. For example, there have been limited 
incidents in the Puget Sound region of Washington State, yet this area includes the 
approaches to major ports of Vancouver and Seattle, with a complex and hazardous 
waterway. The risk model has identified this area as of concern based on the input features. 
Therefore, it might warrant further attention by navigation authorities to determine 
whether additional risk mitigation measures were required. Therefore, without the need 
for laborious and costly expert input, this approach serves to develop a strategic, high 
resolution and accurate risk map, to guide decision makers in managing navigation safety.

However, the resulting model has predicted groundings in some locations which 
appear unlikely. For example, several isolated offshore cells have significant depths of 
water but are predicted to have a relatively higher risk of grounding than others. A key 
contributor to this is both the relative low number and underreporting of accidents 

Table 2. Summary statistics of each DGGS cell.
# Name Type Min Mean Max Description

1 Grounding Frequency/year Cont. 0 0.004 6.44 Dependent variable
2 Total Vessel Exposure (hours) Cont. 0 198 72,634 More vessel activity increases likelihood of 

incidents.
3 Average Wind Speed (m/s) Cont. 2.0 6.1 10.0 Greater average wind speed reduces ship 

handling capability.
4 Average Wave Heights (m) Cont. 0.0 1.24 3.3 Greater average wave size reduces ship 

handling capability.
5 Average Tidal Flows (m/s) Cont. 0.00 0.03 1.27 Greater average tidal flow reduces ship 

handling capability.
6 Average Ice Thickness (m) Cont. 0.0 0.1 4.8 Greater ice thickness reduces ship 

maneuverability.
7 Average Depth (m) Cont. 0 2,524 7,908 Shallower depths increase risk of 

grounding.
8 Distance from Shore (km) Cont. 0 3,955 15,000 Closer navigation to shore increases risk of 

grounding.
9 Navigational Complexity – 

Topography (Ratio)
Cont. 0.0 4.3 14.0 More complex waterways increase 

likelihood of grounding.
10 Navigational Complexity – Course 

Changes (degrees)
Cont. 0 0.31 35.4 More complex waterways increase 

likelihood of grounding.
11 Presence of TSS (Binary) Binary 0 0.02 1 Presence of TSS reduces risk of grounding.
12 Presence of Pilot (Binary) Binary 0 0.02 1 Presence of Pilot reduces risk of grounding.
13 Presence of VTS (Binary) Binary 0 0.00 1 Presence of VTS reduces risk of grounding.
14 Presence of Key Ports (Binary) Binary 0 0.02 1 Presence of Ports increases risk of 

grounding.
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(Hassel, Asbjornslett, & Hole, 2011; Qu, Meng, & Li, 2012) and also inaccuracies in record
ing of accident location inherent in many databases. For example, Mazaheri et al. (2014)’s 
analysis of the HELCOM incident database required the removal of 10% of ship ground
ings as they had been labelled in areas of deep water. Similarly, Zhang, Sun, Chen, and 
Cheng (2021) analysed the IMO GISIS database, and accidents are erroneously located in 
the Sahara. Furthermore, it is notable that only 252 grid cells account for all of the 
commercial ship groundings and therefore this presents a significant imbalance that is 
a challenge for supervised machine learning methods (Leevy, Khoshgoftaar, Bauder, & 
Seliya, 2018).

Figure 13 shows the feature importance of the variables used in the ship grounding 
model. The two most important features for ship groundings are the density of commer
cial ship traffic and the navigational complexity of the waterway. Vessels are more likely to 
run aground in areas with many transits, greater numbers of course changes and shallow 
water. The depth of water is not as significant as might be expected, although there are 
high correlations between navigational complexity, depth and distance as they are similar 
measures of the waterway conditions. Metocean conditions might also contribute to ship 
grounding situations, however, given that the average wind speeds and wave heights are 
greater further offshore, where the depths are greater, this relationship is not significant. It 
is notable that many other factors such as presence of risk controls have very little impact 
upon the prediction of grounding. This is likely reflecting that in areas where depths are 
shallow and there is significant vessel traffic, pilotage and VTS controls are generally 
already in place.

Figure 12. Ship grounding risk model.
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The importance of including datasets other than vessel traffic is emphasised by 
retraining the algorithm utilising only vessel traffic as a single input. An R2 of 0.0 was 
achieved which is significantly less accurate than the model results utilising the other 
contributory datasets. Furthermore, in comparison to a linear regression algorithm, which 
achieved an R2 of 0.33, Random Forest achieved greater performance.

4.2. Benefits of DGGS in maritime big data

Maritime risk is a complex and multifaceted problem, and the analysis above demon
strates that it is necessary to integrate multiple datasets to derive accurate and realistic 
risk maps. This study has utilised DGGS in order to facilitate this integration and several 
benefits are of note. Firstly, there is a significant computational advantage in utilising 
aggregated spatial cells rather than coordinates (Purss et al., 2019). For instance, calcula
tions between features within cells are greatly simplified as distance no longer needs to 
be considered. An infinite number of coordinate pairs can be reduced to a discrete 
number of cells. As a result, calculations can be performed in parallel with cells distributed 
across any number of processors, using the unique cell index values. Whilst data- 
streaming has been performed through Dask, the scaling of the analysis using for instance 
Apache Spark across multiple nodes would greatly increase processing speed.

Secondly, DGGS cells are equal area and robust against distortions due to projection 
systems, which would be significant across large regions such as the United States EEZ. 
For example, Figure 14 demonstrates the distortion of a Cartesian regular grid of 10- 
degree cells and DGGS cells. Towards the polar regions, the Tissot’s Indicatrix, with 250 
nautical mile geodesic circles shows significant distortion, and whilst the DGGS distorts at 
the same rate, the regular Cartesian grid cells do not. As a result, the cell area at different 
latitudes would vary significantly, and may result in spurious statistical relationships as 
a result of the MAUP. Furthermore, it is possible that machine learning algorithms may 
become biased by latitude as a result, compromising the predictive capability of such 
a model. Therefore, normalisation of certain features such as vessel density by cell area 
may be required to ensure consistency (Eguiluz, Fernandez-Gracia, Irigoien, & Duarte, 

Figure 13. Feature importance.
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2016), but this increases computation and is inefficient. These issues are perhaps exacer
bated in the maritime domain, where many projection systems are optimised for national 
territorial coverage, often placing greatest distortion within the oceans.

Thirdly, compared to other methods of representing spatial data, such as points, 
aggregating data into cells enables the inherent representation of uncertainty and data 
quality (Goodchild, 2018). Where data has high quality and low uncertainty, the resolution 
can be reduced to a finer scale. Conversely, greater positional uncertainty can be reflected 
in a coarser resolution of the analysis, such that the data does not exhibit false precision 
(Robertson et al., 2020). This is particularly important when processing large volumes of 
data with a wide coverage, inherent to maritime datasets. In traditional analytical 
approaches, the user manually interacts with the dataset and therefore any significant 
gaps or errors might be more perceptible. Where the data processing is integrated into 
automated frameworks, unless the resulting outputs are perceived to be erroneous, these 
errors might not be identified. Both the AIS and incident datasets have uncertainties that 
need to be reflected. Within Section 4.1, some limitations with recording of incident data 
have been highlighted, but more fundamentally, many accident databases are limited to 
recording positions to degree and minute accuracy, such that positions can be up to one 
nautical mile from their actual location. AIS positional inaccuracies are typically less 
significant but do still occur (Iphar, Ray, & Napoli, 2019, 2020). This would be problematic 
were geospatial analysis conducted on the specific latitude and longitude or at a fine grid 
size. However, utilising a coarser grid size ensures that the general geographic relation
ships between features can be captured.

Figure 14. Distortion of cell area across study area.
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Fourthly, DGGS have inherent capabilities at conducting and visually representing 
multi-resolution analysis. This might reflect the use-case of the analysis, in this case 
conducting regional risk analysis warrants courser grid cells than representing individual 
shipping routes (Figure 15). Maritime trade is inherently multi-resolution and both global 
shipping patterns and local routes would be difficult to interpret at the same resolution. 
A multi-resolution DGGS has significant benefit for visualisation of outputs, ensuring that 
the results are meaningfully interpretable at different scales. Furthermore, this may be to 
reflect the resolution of the underling individual datasets, for example, vessel traffic data 
might be aggregated at a higher resolution than metocean data. In addition, some have 
argued that non-rectangular grids such as hexagons offer advantages for visual inter
pretation of spatial patterns (Barnes, 2019; Birch et al., 2007).

4.3. Towards strategic and real-time intelligent risk analysis

This paper has presented some high-level data handling and analysis of significant 
volumes and varieties of maritime datasets to inform a ship grounding risk assessment. 
This has utility to decision-makers for strategic assessment of risk, however, at this stage 
the work has been limited to only one hazard type and one vessel type. It is likely that the 
relationship between causal variables will differ between hazard type, for example, 
metocean conditions would have greater feature importance for predicting capsizes or 
equipment damage. Further work is planned to explore these relationships. In addition, 

Figure 15. Comparison of vessel traffic exposure at different DGGS resolutions.
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whilst Random Forest is a popular and sometimes powerful machine learning algorithm, 
other methods such as deep learning may also be more applicable to this subject and 
warrant further investigation.

Whilst strategic assessments are useful in managing a waterway and determining 
the need for risk controls, such as towage or pilotage, there would be significant 
value in real-time risk assessment. By conducting real-time monitoring of vessel 
positions and exposure to hazards, coastguards could identify emerging hazardous 
situations and intervene to prevent accident occurrence or prepare for Search and 
Rescue. Whilst some pilot projects are ongoing to develop such systems (Dorsey 
et al., 2020), it is an open area of research. Such a use case would require the 
inclusion of a temporal dimension, which is omitted by aggregating the datasets 
described in this paper. Such temporal datasets would be expected to be more 
correlated with accident conditions than aggregated ones. For example, the wind 
conditions at the time of an accident/transit are more relevant than aggregated 
seasonal averages (Adland et al., 2021; Rawson, Brito, Sabeur, & Tran-Thanh, 2021). 
The importance of temporal factors included in accident models has been shown in 
other disciplines such as road traffic collisions (Yuan, Zhou, Yang, Tamerius, & 
Mantilla, 2017). By including this dimension, it would be possible to develop the 
approach from an aggregated area model to a transit model, whereby the condi
tions of each individual vessel position can be mined, providing a far greater 
degree of granularity for risk modelling. Furthermore, an individual vessel model 
could allow the inclusion of other risk factors that have been argued to correlate to 
accident propensity, such as vessel type, age or flag state (Bye & Aalberg, 2018). 
However, there are still research gaps as to how other factors identified in Table 1 
such as fatigue and training or experience can be integrated into a quantitative risk 
model.

Yet, the significant challenge of maritime dataset processing necessary to combine 
spatiotemporal datasets for vessel traffic and accidents is increased in this approach. 
Given the advantages of DGGS that are demonstrated within this strategic work, it offers 
a useful spatial data structure for conducting real-time risk analysis through consistent 
and efficient data combination and visualisation, whilst accounting for their relative 
uncertainties. Furthermore, Purss et al. (2019) have proposed that DGGS can be extended 
through the implementation of datacubes, n-dimensional arrays of values, which would 
further improve the computational efficiency.

5. Conclusions

The management of navigation safety and prediction of the likelihood of accidents 
using quantitative techniques poses a number of methodological challenges. Some 
of these are principally related to the massive size and wide variety of relevant 
datasets which need to be integrated, processed and analysed in order to draw 
meaningful insights. This study has provided a framework and discussion of the 
opportunities that a DGGS offers to support intelligent big-data analytics for 
maritime risk assessment. By promoting consistent and efficient integration of 
massive vessel traffic, Earth Observation and other heterogenous datasets, DGGS 
can enable the development of automated strategic and real-time maritime risk 
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assessments, which would be of significant value for navigational authorities and 
coastguards to reduce the risk of loss of life and pollution at sea. The derived 
grounding risk maps enable evidence-based targeting of risk control measures to 
where they are most required, without the need for laborious, costly and poten
tially biased expert judgment. Furthermore, the resulting dataset can be used by 
other researchers for a multitude of other purposes.

Yet, whilst big-data analytics and machine learning methods offers opportunities for 
improving navigation safety, this work has identified several challenges that require 
further investigation. In particular, these relate to the representation of human factors 
in quantitative risk models which could improve the model outputs. However, this study 
has demonstrated that by combining a DGGS with machine learning algorithms, high- 
resolution, evidence-based and accurate risk maps can support decision makers in better 
managing the safety of vessels at sea.
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