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Deep Learning Aided Routing for
Space-Air-Ground Integrated Networks Relying on

Real Satellite, Flight, and Shipping Data
Dong Liu, Jiankang Zhang, Jingjing Cui, Soon-Xin Ng, Robert G. Maunder, and Lajos Hanzo

Abstract—Current maritime communications mainly rely on
satellites having meager transmission resources, hence suffer-
ing from poorer performance than modern terrestrial wireless
networks. With the growth of transcontinental air traffic, the
promising concept of aeronautical ad hoc networking relying
on commercial passenger airplanes is potentially capable of
enhancing satellite-based maritime communications via air-to-
ground and multi-hop air-to-air links. In this article, we conceive
space-air-ground integrated networks (SAGINs) for support-
ing ubiquitous maritime communications, where the low-earth-
orbit satellite constellations, passenger airplanes, terrestrial base
stations, ships, respectively, serve as the space-, air-, ground-
and sea-layer. To meet heterogeneous service requirements, and
accommodate the time-varying and self-organizing nature of
SAGINs, we propose a deep learning (DL) aided multi-objective
routing algorithm, which exploits the quasi-predictable network
topology and operates in a distributed manner. Our simulation
results based on real satellite, flight, and shipping data in the
North Atlantic region show that the integrated network enhances
the coverage quality by reducing the end-to-end (E2E) delay
and by boosting the E2E throughput as well as improving the
path-lifetime. The results demonstrate that our DL-aided multi-
objective routing algorithm is capable of achieving near Pareto-
optimal performance.

Index Terms—Deep learning, routing, multi-objective opti-
mization, space-air-ground integrated network

I. INTRODUCTION

Next-generation wireless networks are envisaged to support
high-speed, low-latency and high-reliability communications,
anywhere and anytime. Yet, more than 70 percent of the
Earth surface is covered by oceans and the ever increasing
activities scattered across the ocean have created great demand
for maritime communications. At the time of writing, shipping
mainly relies on satellites for seamless coverage [1]. However,
due to the wide coverage area of a satellite, the transmission
bandwidth allocated to each user device is rather limited, even
when high-throughput satellites are relied upon [2]. Moreover,
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geosynchronous-equatorial-orbit (GEO) satellites have a high
propagation delay of about 120 ms, while their low-Earth-
orbit (LEO) counterparts appear above the horizon for short
duration and suffer from Doppler-effects.

On the other hand, the number of intercontinental passenger
airplanes above the ocean is significant and there is an increas-
ing demand for in-flight Internet connectivity. Similar to ships,
airplanes also face the same satellite connection limitations as
their maritime counterparts. In this context, the compelling
concept of aeronautical ad-hoc networking (AANET) was
proposed to form a self-configured wireless network via mul-
tihop air-to-air (A2A) communication links [3]. Nevertheless,
the coverage of AANETs hinge on the flight density, which
fluctuates during a day.

Therefore, it is a nature inspiration to conceive the combina-
tion of satellites and airplanes to form a space-air-ground inte-
grated network (SAGIN) [2, 4] for supporting future maritime
communications. However, due to the inherent characteristics
of heterogeneity, self-organization, and time-variability, the
design and optimization of SAGINs faces numerous chal-
lenges [5]. A fundamental one is to design an efficient routing
protocol for constructing an appropriate packet routing path
at any given time in order to accommodate the high-dynamic
network topology.

Recent advances in artificial intelligence have inspired di-
verse applications in wireless communications [6, 7], including
maritime communications [8]. Taking the routing problem for
example, a deep learning (DL) aided routing algorithm was
proposed in [9] for balancing the traffic in SAGIN. Yet, the
network topology was assumed to be static and the global node
status had to be known for making routing decisions. To handle
the high-dynamic network topology, a deep reinforcement
learning (DRL) aided routing algorithm was conceived in [10]
for AANETs. By solely relying on local- rather than global-
information, the powerful DRL-aided routing advocated is
capable of achieving near-optimal end-to-end (E2E) delay.

Nevertheless, apart from the E2E delay, the overall network
performance of SAGIN should be characterized by multiple
metrics [11], such as the throughput and the path-lifetime to
minimize rerouting for maintaining seamless connectivity. The
heterogeneous services of SAGINs have different quality of
service requirements and it is vital but challenging to strike
compelling tradeoffs among the various potentially conflicting
optimization objectives. Therefore, instead of finding a particu-
lar optimal solution such as the minimum-delay or maximum-
throughput route, the ultimate goal is to discover the entire
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Pareto front of all Pareto-optimal routes. Explicitly, for a
Pareto-optimal delay-throughput pair, neither of them can be
improved without sacrificing the other.

In this article, we propose a satellite-airplane-terrestrial
integrated solution for supporting ubiquitous high-quality
maritime communications. In contrast to the satellite-UAV-
terrestrial solution proposed in [12], where the air-layer is
only beneficial for local coverage enhancement due to limited
energy onboard of unmanned aerial vehicles (UAVs), our air-
layer relies on the commercial passenger flights regularly fly-
ing across the ocean, hence providing long-duration and wide-
range coverage. To solve the challenging multi-component
routing-optimization problem high-dynamic networks, we de-
sign a DL-aided solution solely relying local- rather than
global-information. Simulations are conducted based on real
satellite, flight, and shipping data over the North Atlantic
ocean. The results show the near-Pareto-optimality of our DL-
aided multi-objective routing in terms of reducing the E2E
delay, increasing the E2E throughput, and enhancing the path-
lifetime.

II. SATELLITE-AIRPLANE-TERRESTRIAL INTEGRATED
ARCHITECTURE

In this section, we introduce the multi-layer network ar-
chitecture conceived for supporting maritime communications,
compare the characteristics of different layers, and formulate
the performance metrics.

A. Multi-Layer Network Architecture

The SAGIN is composed by three layers, namely the
ground/sea-layer, the air-layer, and the space-layer, as shown
in Fig. 1.

Air-Layer

Ground/Sea-Layer

Space-Layer

Fig. 1. Multi-Layer Network Architecture

1) Ground/Sea-Layer: The ground/sea-layer includes ships,
on-shore base stations (BSs), and satellite/airplane ground
station (GS). Each ship seeks a wireless connection to the
BS or the GS on land. The on-shore BSs are deployed along
the coast, but their coverage range is quite limited, connecting
the ships that are densely clustered in the vicinity of ports,
harbors, and waterways. The GSs are deployed for connecting
the air- as well as space-layer and serve as the gateway for
accessing the terrestrial core network.

2) Air-Layer: The air-layer is formed by the AANET
consisting of commercial passenger airplanes. Each airplane
is able to establish air-to-ground/sea (A2G) links with GSs or
ships, as well as establish A2A links with nearby airplanes,
when the transmitter and receiver are within the communica-
tion range. The A2G links operate at 14 GHz in the Ku-band
with a bandwidth of 250 MHz according to Qualcomm’s Next-
Gen Air-Ground system envisaged for in-flight broadband
access. For implementation simplicity, we assume that the
A2A links also operates at 14 GHz as in [2].

The maximum A2G and A2A link distances mainly depend
on the altitude of the transmitter and receiver, because the
direct visibility of two points is limited by the curvature of
the Earth. For example, given a common flight altitude of
12 km, the maximum A2G link and A2A link distances are
about 390 km and 780 km, respectively. The maximum A2G
link distance determines the maximal coverage area on the
ground/sea, i.e. the footprint, of a single airplane. For the
aforementioned example, the radius of an airplane’s maximum
footprint can be also estimated as 390 km. Given the velocity
of airplanes, such as 900 km/h (i.e., 0.25 km/s) during cruise,
the maximum visibility duration of an airplane observed at
ground/sea (i.e. the maximum lifetime of an A2G link) can
be estimated as 780/0.25 s ≈ 3120 s = 52 min. On the other
hand, based on the maximum A2A link distance, it can be
estimated that each airplane can be connected to dozens of
other airplanes on average, given a practical flight density of
10−5 airplane/km2 [3], which makes multi-hop transmission
possible for crossing the ocean.

3) Space-Layer: A LEO satellite constellation (SC) is
considered for the space-layer due to its relatively low
propagation-delay compared to GEO satellites. As an illustra-
tion, the LEO SC is deployed according to the Iridium-Next
SC, which contains 66 operational LEO satellites at an altitude
of 781 km.

To support high throughput, we consider satellites using Ka-
band according to the 3GPP specifications, where both the
downlink (at 20 GHz) and uplink (at 30 GHz), have a band-
width of 400 MHz [13]. Each satellite can communicate with
its neighboring satellites via inter-satellite links at 23 GHz, and
can form 48 spot-beams down to the Earth with a frequency
reuse factor of three [2]. As a result, the footprint radius of
each spot-beam is about 200 km and of the full beam is about
2300 km. The orbital velocity of a satellite can be calculated as
7.5 km/s according to its altitude, resulting in the maximum
lifetime for a satellite-to-ground/sea (S2G) link of about 10
min, which is much lower than that of the AANET.

Although the total bandwidth of LEO SC is higher than
that of the A2G link, it is shared by all the air and ground/sea
devices within each spot-beam. By contrast, multiple airplanes
may be available for serving the devices within a certain area.
Given a practical airplane density of 10−5 airplane/km2, the
available bandwidth per A2G link can be twice higher than
that of per S2G link.

B. Routing Performance Metrics
To support various services, multiple metrics should be

considered for characterizing the routing performance in the
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SAGIN. In this article, we focus on the E2E delay, E2E
throughput, and path-lifetime, which are defined as follows:

1) The E2E delay is defined as the summation of all the
delay components along the path from the source-node
(SN) to destination-node (DN). Specifically, Dlink(i, j)
denotes the link-delay between nodes i and j, which
is composed of the propagation-delay and transmission-
delay, and Dque(j) denotes the queuing-delay at node j.

2) The E2E throughput is defined as the achievable data-
rate between the SN and DN, which is limited by the
lowest-throughput link along the path, where C(i, j) is
the throughput between nodes i and j, which can be
calculated using Shannon’s capacity formula.

3) The path-lifetime is defined as the duration when every
transmitter-receiver pair along the path has direct visibil-
ity, which is limited by the lowest link-lifetime along the
path. We use L(i, j) to denote the link-lifetime between
nodes i and j, which describes the duration of direct
visibility between nodes i and j.

In the SAGIN considered, the maximum A2A link dis-
tance is shorter than the minimum S2G link. Therefore, the
propagation-delay of each link in AAENT is lower than
that in the LEO SC. However, since the AANET normally
requires multiple hops for covering a long distance, say in
the transatlantic scenario, it may result in longer accumulated
queuing-delay, and hence increases the overall E2E delay.

On the other hand, due to the shorter link distance of
AANETs and owing to their potentially higher available band-
width per user device, the E2E throughput of AANET may be
higher than that of LEO SC. Moreover, again, the velocity
of an airplane is much lower than that of a LEO satellite,
hence its path-lifetime is potentially longer than that of LEO
SC, which may improve its routing stability. Nevertheless,
the airplane density fluctuates during a day due to the flight
schedules. Consequently, the coverage of AANET is time-
varying. By contrast, LEO SC is capable of providing 24-
hour global coverage. Therefore, it is worth investigating the
integration of AANET and LEO SC for combining the benefits
of both networks.

III. DEEP LEARNING AIDED ROUTING

For ease of exposition, we commence from a single-
objective routing problem minimizing the E2E delay, and in-
troduce the corresponding DL-aided routing algorithm. Then,
we extend it to a challenging multi-objective scenario where
the E2E delay, E2E throughput, and path-lifetime are simul-
taneously optimized.

A. Single-Objective Routing

When the global information regarding the network topol-
ogy, the queuing-delay of each node and the link-delay be-
tween every two nodes are available, the E2E delay min-
imization problem can be solved by classic shortest-path
search algorithms by treating the summation of link-delay and
queuing-delay as the “distance”, i.e. the edge weight. However,
the node positions change rapidly due to the high velocity

of airplanes and LEO satellites. Consequently, this may im-
pose substantial signaling overhead for keeping the required
information up-to-date in order to implement any shortest-path
algorithm. Therefore, finding the minimum-delay path in a
distributed manner that solely relies on local information is
desirable.

...
...

Neighbors of 

FN DN

Fig. 2. Optimal substructure of the minimum-delay routing problem.

To commence, we revisit the minimum-delay routing prob-
lem, which has a optimal substructure shown in Fig. 2. Assume
that the packet is currently located at the forwarding node (FN)
pn. Then, the optimal next hop minimizing the overall E2E
delay from the current FN to the DN pdes can be characterized
by

pn+1 = argmin
b∈B
{Dlink(pn, b) +Dque(b) +D∗(b, pdes)}, (1)

where B is set of nodes that are within the communication
range of the FN, i.e. the set of neighbors, and D∗(b, pdes)
presents the minimum delay from each neighbor b to the DN.

The optimal substructure indicates that if we know the
delay from the FN to each of its neighbor, and also know
the minimum delay from each of its neighbors to the DN,
then the optimal next hop can be readily obtained from (1).
Consequently, the optimal routing path can be obtained by
determining the optimal next hop one by one until the packet
reaches its DN.

In practice, the delay from the FN to each of its neighbor
can be readily measured by each neighbor and fed back to
the FN almost instantly, while the minimum delay from each
neighbor to the DN largely depends on the global network
topology, which is dynamic and it is not known at the
FN. Fortunately, the satellite trajectories can be accurately
predicted and the passenger flight trajectories are pre-planned
before takeoff with fixed pattern and schedule. This suggests
that the global network topology is strongly correlated with
the local topology and such correlation can be learned from
the quasi-predictable trajectories, which further motivates us
to use a single-objective deep neural network (SO-DNN), for
learning the mapping from the local geographical features
to the minimum delay commencing from each of the FN’s
neighbors to the DN.

To reflect the local topology, the input features of the SO-
DNN are designed as the coordinates (including the latitude,
longitude and altitude) of the FN’s neighbors and of the DN.
The desired output of the SO-DNN is the minimum delay from
the neighbors to the DN.
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Fig. 3. Offline training and online routing decision.

The training procedure of the SO-DNN is shown in Fig. 3,
where the SO-DNN is trained in a supervised manner. The
goal is to minimize the loss function composed of the mean-
squared-error between the actual output and the desired output
of the SO-DNN. To generate the training samples, we can
retrieve the position of each airplane and each satellite at each
timestamp from the pre-planned flight trajectories as well as
the predicted satellite trajectories, and then create a series of
snapshots regarding the whole network topology.

For each snapshot of the network topology, the link-delay
can be calculated based on the coordinate of each node and
the delay model. As for the queuing-delay, since we aim for
training the SO-DNN for embedding the network topology
information, which is independent of the packet traffic, the
queuing-delay is set to the same and constant for all the nodes
during training. In this way, the total queuing-delay is actually
determined by the number of hops along the path. Then, a
standard shortest-path algorithm, such as the Floyd-Warshall
algorithm, can be used for computing the minimum delay
between each possible source-destination pair as the training
label (i.e. the desired output of the SO-DNN). In Fig. 3(a), we
summarize the offline training phase.

Once the SO-DNN is sufficiently well trained, it can be
copied to each airplane before takeoff for supporting their
online routing decisions. During the online routing decision
phase, the FN obtains the required coordinates from the
on-board automatic dependent surveillance-broadcast (ADS-
B) system, and gathers the input features for the SO-DNN.
Then, from the output of the SO-DNN, the FN can obtain
the estimate of the minimum delay D̂∗(b, pdes) from each of
its neighbors to the DN, as shown in Fig. 3(b). Finally, by
substituting the estimated minimum delay together with the

delays measured by and fed back from each neighbor into the
optimal substructure (1), the next-hop can be determined.

To improve the online adaptability further, we can re-
cursively exploit the optimal substructure. Specifically, the
minimum delay from each neighbor to the DN in (1) can be
estimated by recursively using (1) instead of by directly using
the SO-DNN. Then, by allowing each neighbor to estimate
the minimum delay from its neighbor (i.e. the next-but-one
neighbors of the FN) to the DN using the SO-DNN, and by
letting each next-but-one neighbor feed back the link- and
queuing-delays, additional real-time delay information can be
exploited for improving the routing decisions.

B. Multi-Objective Routing

Next, we conceive multi-objective routing for simultane-
ously minimizing the E2E delay, maximizing the E2E through-
put and maximizing the path-lifetime.

Typically, bio-inspired metaheuristics, such as multi-
objective evolutionary algorithms (MOEAs), are harnessed
for solving multi-objective optimization problems. However,
MOEAs require global knowledge regarding the status (e.g.,
delay, throughput, lifetime) of every single possible link in the
network for running the optimization, which is not feasible in
large-scale SAGINs having high-dynamic network topology.
Moreover, the Pareto optimality of MOEAs are not mathe-
matically guaranteed.

Again, we resort to DL in order to exploit local informa-
tion for solving the multi-objective routing problem without
requiring global information. Similar to the minimum-delay
routing problem, we first discover its optimal substructure. The
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multi-objective routing problem can be transformed into the
following ε-constraint problem:

Objective: Optimize routing to minimize the E2E delay
Subject to: E2E troughput larger than εC

and path-lifetime larger than εL.

It can be proved that all Pareto-optimal solutions can be
obtained by solving the aforementioned ε-constraint problem
with moderate complexity [14, 15]. Furthermore, by varying
the values of εC and εL, all the Pareto-optimal solutions and
hence the entire Pareto front can be found.

Then, our goal is to solve a series of constrained minimum-
delay (single-objective) routing problems. Given the net-
work topology, the queuing-delay of each node, and the de-
lay/throughput/lifetime of each link, the constrained minimum
delay routing problem can be solved effortlessly by modify-
ing the standard shortest-path algorithm using the following
procedure:

1) Convert the constrained minimum-delay routing problem
into a standard shortest-path equivalent problem by delet-
ing all the links that have a throughput no higher than εC
or have a lifetime no longer than εL.

2) Solve the converted shortest-path problem.
The above procedure can be regarded as adding an infinite

delay penalty to the link that violates the throughput or life-
time constraint, and then solve the converted minimum-delay
problem using the standard shortest-path algorithm. Therefore,
similar to (1), we can derive the optimal substructure for
determining the next hop as follows

pn+1 =argmin
b∈B
{Dlink(pn, b) +Dque(b) +D∗(b, pdes, εC , εL)

+ λ[εC − C(pn, b)]+ + λ[εC − C∗(b, pdes, εC , εL)]+︸ ︷︷ ︸
Penalty for violation of throughput constraint

+ λ[εL − L(pn, b)]+ + λ[εL − L∗(b, pdes, εC , εL)]+︸ ︷︷ ︸
Penalty for violation of lifetime constraint

}.

(2)

where D∗(b, pdes, εC , εL), C∗(b, pdes, εC , εL) and L∗(b, pdes,
εC , εL) are termed as the constrained-delay, constrained-
throughput, and constrained-lifetime, respectively. When
there exists at least one path spanning from neighbor b
to the DN pdes satisfying the minimum-throughput con-
straint εC and minimum-lifetime constraint εL, then the
constrained-delay/throughput/lifetime represent the actual de-
lay/throughput/lifetime achieved by the minimal delay path
among the paths that satisfy the throughput and lifetime
constraints. By contrast, when there is no path from b to
pdes that satisfies the throughput and lifetime constraint, then
we opt for the delay/rate/lifetime achieved by the path from
b to pdes whose throughput and lifetime are closest to εC
and εL. Furthermore, λ in (2) is the penalty coefficient for
punishing the violation of the throughput or lifetime constraint,
where [x]+ = max{x, 0}. The penalty term increases with
the violation of E2E throughput or path-lifetime constraints,
and hence the neighbors that are away from satisfying those
constraints are less likely to be selected as the next hop.

In practice, the link-delay and queuing-delay as well
as the link-throughput and link-lifetime can be measured
by the neighbor and fed back to the FN. Then, the op-
timal next-hop can be determined locally based on the
optimal substructure (2), once the values of constrained-
delay/throughput/lifetime of each neighbor are available at the
FN.

Therefore, similar to SO-DNN, we use a multi-objective
deep neural network (MO-DNN) for learning the mapping
from the local geographical features to the constrained-
delay/throughput/lifetime of each neighbor. In practice, the
penalty coefficient λ is set to a limited value, because when
it is excessive (e.g., when approaching infinity) the optimal
substructure (2) becomes extremely sensitive to the estimation
error of the constrained-delay/throughput/lifetime.

The input features of the MO-DNN are designed in Fig. 3.
Compared to the SO-DNN, the speed and heading of the
current node, of its neighbors and of the DN are also included
into the features together with the node’s coordinates, because
the constrained-lifetime depends on those parameters. More-
over, the throughput and lifetime thresholds are also included
into the input feature because they affect the values of the
constrained-delay/throughput/lifetime.

Similar to the training of SO-DNN, the training procedure
of the MO-DNN is shown in Fig. 3. In contrast to SO-DNN,
we also sample different values of throughput and lifetime
thresholds when generating the training sample. The online
routing decision phase is illustrated in Fig 3(b). In contrast
to single-objective routing, by varying the value of (εC , εL),
multiple paths leading to the DN can be discovered as the
solutions of the multi-objective routing problem. Similar to
DL-aided minimum-delay routing, we can also improve the
online adaptability of DL-aided multi-objective routing by
recursively using the optimal substructure (2), which is not
detailed here for conciseness.

IV. PERFORMANCE EVALUATION

In this section, we quantify the benefits of integrating
AANET with LEO SC by simulations based on real satellite,
flight and shipping data.

A. Dataset

The satellite traces are generated based on their orbit
information (more specifically, the two-line element set) of the
Iridium-NEXT SC provided by the North American Aerospace
Defense Command. The flight data was collected over the
North Atlantic ocean on 29th of June in 2018. The status of
each flight was recorded in the format of [timestamp, latitude,
longitude, altitude, speed, heading] for every 10 s over the
complete 24 hours of the selected date. The shipping data was
also collected over the North Atlantic ocean in the same format
from marinetraffic.com.

Since we only have the true flight traces during a single
day, we have to generate multiple datasets of flight traces for
testing outside of the training set. To reflect the mismatch
between the flight traces used in training and testing, we
randomly shift each true flight trace along the timeline in order
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TABLE I
SIMULATION PARAMETERS [2, 13]

Node Satellite Airplane/Ship/GS
Transmission mode To airplane/ship/GS To satellite To airplane/ship/GS/BS To satellite

Carrier frequency
20 GHz (Downlink)

23 GHz 14 GHz
20 GHz (Downlink)

30 GHz (Uplink) 30 GHz (Uplink)
Total bandwidth 400 MHz 400 MHz 250 MHz 400 MHz

Bandwidth per link 5 MHz NA 10 MHz 5 MHz
Transmit power 21.5 dBm 30 dBm 33 dBm

Transmit antenna gain 38.5 dBi 25 dBi 43.2 dBi
Receive antenna gain 38.5 dBi 25 dBi 39.7 dBi

Antenna gain-to-noise-temperature 13 dB/K
Airplane: 1.5 dB/K Airplane: 16.2 dB/K
GS/Ship: 1.2 dB/K GS/Ship: 15.9 dB/K

to generate multiple synthetic flight datasets, respectively, used
for training and testing. Specifically, the random shift is drawn
from a Gaussian distribution with zero mean and a standard
deviation of 30 min. We further divide the training dataset
into four time windows, each having six hours, where a MO-
DNN was trained separately. In particular, for the simulations
presented in this article, the MO-DNN was trained using the
pre-planned flight traces and predicted satellite traces within
a time window of 12:00 – 18:00 UTC. Once the MO-DNN
is well-trained, the MO-DNN can be used for assisting the
routing decisions during 12:00 – 18:00 UTC in the testing
dataset. We note that the training does not rely on ship
distributions, because the MO-DNN is used for learning the
constrained-delay/throughput/lifetime of each relaying neigh-
bors that exclude the ships (i.e., packet source) as shown in
Fig. 3(a).

B. Simulation Settings

The system configurations are listed in Table I. To generate
the training labels, the queuing-delay is set to a constant
10 ms for each node during training. By contrast, to reflect
the heterogeneous traffic load of each node during testing, the
queuing-delay of each node is drawn from a [0, ∞)-truncated
Gaussian distribution with a mean of 10 ms and a standard
deviation of 5 ms. The packet size is 1 KBytes and the DN is
set as the GS located at the Port of Southampton in the U.K.
as labeled in Fig. 4.

C. Hyper-Parameters for DL-aided Routing Algorithm

Parameter sweeps are used for tuning our DL-aided routing
algorithm. The main hyper-parameters are set as follows. The
MO-DNN has three hidden layers, where the first two hidden
layers have 300 neurons and the third hidden layer is split
into three streams each having 100 neurons, for learning
the constrained-delay/throughput/lifetime, respectively. We use
ReLU as the activation function for all the hidden layers, and
employ batch normalization, since each dimension of the input
has different units. Adam optimizer with an initial learning
rate of 0.001 is used for training the MO-DNN and the mini-
batch size is 1000. The throughput threshold εC and lifetime
threshold εL are swept over [0, 70] Mbps with a step size of 5
Mbps and [0, 30] min with a step size of 5 min, respectively,
in order to discover multiple paths. The penalty coefficient λ
is set to 10.

D. Simulation Results
In the following, we first use our modified shortest-path

algorithm assuming perfect global information to find the
Pareto-optimal paths for evaluating the potential of integrating
AANET and LEO SC, and finally employ the proposed DL-
aided multi-objective routing algorithm for finding the paths by
considering a practical scenario when only local information
is available.
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Fig. 4. A snapshot of the network at 15:00 UTC, Jun. 29, 2018.

In Fig. 4, we illustrate a snapshot of the network at 15:00
UTC. The position of each satellite, airplane, ship and GS
are marked on the projected 2D map. In particular, we use
different colors to distinguish the ships that can be successfully
connected to the DN solely relying on the airplanes from those
that cannot (with legend “Ship with AC” and “Ship without
AC”, respectively). It can be observed that not all the ships
can be covered by the AANET.

Since there may exist more than one Pareto-optimal path
from the SN to the DN, in Fig. 4, we further plot the minimum-
delay path, maximum-throughput path, and maximum-lifetime
path among all the paths found by our modified shortest-
path algorithm. The SN is chosen from the north-east coast
of US for analyzing the transatlantic communication scenario.
We can see that the minimum-delay path is a two-hop path
using a satellite as the relaying node, while the maximum-
throughput path and the maximum-lifetime path are formed
by airplanes. Specifically, the maximum-throughput path has
the highest number of hops in order to reduce the distance
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(a) Average Performance v.s. Time (b) Pareto Fronts
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Fig. 5. Simulation results, 00:00 – 24:00 UTC, Jun. 29, 2018.

of each link for maximizing the throughput of the path. We
further plot the heading of the flights on the maximum-lifetime
path to understand how the path is formed. We can see that the
angle between the flight headings of adjacent nodes is small
so that the lifetime of each link is maximized.

To characterize the merits of integrating AANET and LEO
SC, we compare three systems, namely pure AANET, pure
LEO SC, and integrated AANET with LEO SC in the follow-
ing. We first plot the average performance of the path from
each ship to the GS of the three systems during a whole day
as shown in Fig. 5(a). It can be observed that the percentage
of ships that can be connected to the GS solely relying on
the AANET fluctuates during the day, because the coverage
of AANET depends on the flight density, which varies during
a whole day. The maximum coverage ratio of AANET can
be as high as 40% lasting about 8 hours. By contrast, LEO
SC alone or combining LEO SC and AANET together can
provide a 100% coverage for the entire 24 hours. As for
the E2E throughput and path-lifetime, we can see that pure
AANET achieves an average maximum E2E throughput and
path-lifetime that are similar to or even higher than that of
LEO SC, although the coverage ratio of AANET is less than
half of that of LEO SC. When integrating AANET with LEO
SC, both the maximum E2E throughput and maximum path-
lifetime can be improved up to 200% on average1.

To analyze the optimal tradeoff between multiple per-
formance metrics, we respectively consider a pair of twin-
objective routing problems for a clearer visualization. Specifi-

1When there is no path between the SN and DN, the E2E throughput and
path-lifetime are set to zeros.

cally, we first minimize the E2E delay and maximize the E2E
throughput simultaneously, and then minimize the E2E delay
and maximize the path-lifetime simultaneously. In Fig. 5(b),
we plot the corresponding Pareto-front of the paths between
the SN and DN illustrated in Fig. 4. Observe that LEO SC is
more suitable for reducing the E2E delay in the transatlantic
scenario due to its lower numbers of hops, while the AANET
is more suitable for increasing the E2E throughput and the
path-lifetime, as a benefit of its lower link distance and
longer duration of visibility. By integrating AANET and LEO
SC, the Pareto front can be improved and the route can be
selected more flexibly among the three metrics. When only
relying on the local information, our proposed DL-aided multi-
objective routing algorithm, with the legend “AANET + LEO
(DL)”, can discover paths that achieve near-Pareto-optimal
performance. By combining the E2E delay, E2E throughput
and path-lifetime, we can further obtain and visualize a 3D-
pareto front [15].

V. CONCLUDING REMARKS

In this article, we proposed a SAGIN framework that
integrates AANETs formed by commercial passenger air-
planes and LEO SC for connecting the ships in the North
Atlantic Ocean. To satisfy the requirements of heterogeneous
services and adapt to the dynamics of SAGIN, we further
proposed a DL-aided multi-objective routing algorithm, which
exploits the quasi-predictable network topology and operates
in a distributed manner. Our simulation results based on real
satellite, flight and shipping data showed that the integrated
network achieves better coverage, lower E2E delay, higher
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E2E throughput as well as higher path-lifetime, and demon-
strated that our DL-aided multi-objective routing algorithm is
capable of achieving near-Pareto-optimal performance.
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