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Abstract. In Industry 4.0 manufacturing collaborative network, product design 
processes, manufacturing processes, maintenance processes should be 
integrated across different factories and enterprises. The collaborative 
manufacturing network 4.0 allows the amalgamation of manufacturing 
resources in multiple organizations to operate processes in a collaborative 
manner for reacting to the fast changes of markets or emergencies. In this paper, 

we propose a predictive maintenance service as a part of a virtual factory, a 
form of collaborative manufacturing network. Data-driven predictive 
maintenance service is built-in FIWARE, an industry 4.0 framework. To 
optimize predictive maintenance services based on different criteria within a 
virtual factor, such as geographical locations, similar types of machinery, or 
cost/time efficiency, etc., we provide our design and implementation to deal 
with providing better maintenance services and data exchanging across different 
collaborative partners with different requirements and modularizing of related 
functions.  

Keywords: Virtual Factory, Predictive Maintenance, Maintenance Schedule, 
Industry 4.0, Collaborative Networks 4.0. 

1   Introduction 

Traditional monolithic manufacturing usually involves physical machines, buildings, 

etc., and setting the manufacturing process is generally slow and expensive [1]. Thus, 

it cannot deal with the challenges of dynamic market demands, competitions and short 

product lifecycle [2]. To overcome the challenges, modern collaborative industry is 

shifting towards the concept of Collaborative Networks 4.0 [2–4]. 
Virtual factory as one implementation of collaborative networks 4.0 and a 

foundational concept to future manufacturing, allows the flexible integration of 

manufacturing resources from different multiple organizations using emerging 

technologies such as cloud, sensors, IoT, etc. [3, 5, 6]. Traditional monolithic factory 

heavily relies on its own capabilities e.g. internal functions, physical machines, 

buildings, etc., whereas virtual factory allows the integration of diverse capabilities 

from a network of specialized domains and experts across industries collaboratively, 

flexibly and inexpensively regardless of their physical locations. [3, 5]. This enables 

the collaborative network better dealing with constant demands i.e. market, 

productivity, etc., since each partner firm focuses on what it does best within the 

network [1, 6]. To facilitate virtual factory, a flexible platform is required [3, 5]. 
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Effective maintenance is essential to the factory collaborative network as it can 

impact on the collaborative network i.e. integrated processes, value and cost 

associated with downtime, faulty products, etc. [7, 8]. Data generated by the various 

processes, systems/machine equipment tools across factories operation and production 

offer opportunities such as data-driven analytics e.g. predictive maintenance to the 

collaborative network [9–12]. Flexible collaboration with other businesses is an 

important aspect of a virtual factory [5]. In this context, a network partner, as a 
service provider can offer data-driven predictive maintenance across the collaborative 

network i.e. manufacturers, factories, etc. 

We look at how to support predictive maintenance in a collaborative network 

virtual factory complying Industry 4.0 standards using FIWARE and IDS, which 

leads to supporting flexible collaboration among different enterprises facilitating 

transparent data exchange and modularizing of related functions. The contributions of 

this work are: a) to investigate a predictive maintenance for supporting virtual factory 

networks, b) to present a predictive maintenance schedule using data-driven approach 

for virtual factory, and c) using the proposed solution to apply with a manufacturing 

case. 

The paper is structured as follows. In Section 2, we present related work in 

collaborative manufacturing network 4.0 and related technologies. In Section 3 we 
describe the design of a reference architecture for a virtual factory with predictive 

maintenance service. In Section 4 and 5, we present the scheduling approaches and 

implementation of the predictive maintenance service in a virtual factory. The future 

work and conclusion are provided in Section 6. 

2   Related Work 

In this section, the relationship between collaborative networks 4.0 and virtual factory 

is described in Section 2.1. FIWARE industry 4.0 platform is an important industry 

4.0 implementation platform. Section 2.2 presents the FIRST virtual factory reference 

architecture, which is adapted for our implementation. International data space is an 

important data storage for implementing industry 4.0 applications. IDS is introduced 

in Section 2.3. General work on predictive maintenance is evaluated in Section 2.4. 

2.1   Collaborative Networks 4.0 and Virtual Factory 

Collaborative networks 4.0 is driven by the amalgamation of different processes, 

partners, third parties, advanced analytics and machines spanning across different 

enterprises and organizations for collaborative value creations. Industry 4.0 drives the 

focus of modern manufacturing system design [2, 13]. It facilitates collaborative 

processes across different factories and enterprises for complex manufacturing 

processes. Essentially Industry 4.0 enables better control and operations to adapt in 

real time and in response to constant demands [14]. 

The concept of virtual factories derives from the expansion of virtual enterprises in 
the context of manufacturing [3]. Virtual factory can be seen as one of 

implementation of collaborative networks 4.0 in the context of Industry 4.0, and it 
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allows the flexible integration of manufacturing resources in multiple organizations to 

manage (i.e. model, simulate, test) factory layouts and processes in a virtual 

environment with the support of emerging technologies such as cloud, IoT, etc. This 

enables the simulation of a desired factory before committing to investment and 

creating the actual factory in shorter time with demand-driven product lines [3].  

2.2   FIWARE Virtual Factory 

FIWARE virtual platform reference architecture in Fig. 1 maximizes cloud 

technology to offer smart manufacturing and digital marketplaces, especially for 

virtual enterprises and cross-organizations [15]. The virtual platform promotes a 

business ecosystem framework which supports GEs (genetic enabler components), 

digital asset sharing and enterprise collaboration/interoperability. These different 

components are the foundation of a higher-level software layer. 

 

 
 

Fig. 1.  FIWARE virtual factory reference architecture [15] 

 

The collaborative assets can be managed by FITMAN CAM which supports the 

virtualization and management of digital assets as a platform. The supply chain and 

business ecosystem are supported by FITMAN SCApp. It supports digital assets such 

as scheduling and building processes. Collaborative business processes can be 

managed by FITMAN CBPM. It supports the design and execution of semantically-

annotated business processes in a web environment [15]. Data interoperability can be 

facilitated by FITMAN DIPS. It is a platform based on open standards such as 

WSMO, WSMX and supports semantic-based web service interoperability. Data 
mappings such as  metadata and ontologies semantic matching with different OWL-

based ontologies and XML schemas, can be supported by FITMAN SeMa [15]. 
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2.3   Industrial Data Space (IDS) 

The Industrial Data Space (now International data space) is a virtual data space that 

facilitates data exchange and association in business ecosystems using common 

standards and governance models [16]. Digital sovereignty of data owners is a key 

part of IDS, and it provides a basis for the creation and utilization of smart services 
and business processes [16]. It is also the important block of building a virtual factory 

or building a co-design and co-creation product platform [5]. The Reference 

Architecture Model is based on common system architecture models and standards. It 

utilizes a five-layer structure which states several stakeholders’ concerns and 

viewpoints at different levels of granularity [16]. 

2.4   Predictive Maintenance 

Predictive maintenance facilitates advance detection of pending failures and enables 

timely pre-failure interventions, using different prediction tools based on various data 

i.e. historical operation, condition, etc., and different machine/deep learning 

approaches [8, 17]. Predictive maintenance model typically involves data collection 

i.e. machine tools operation/condition, data processing and modeling i.e. predictive 

model, and maintenance analytics i.e. maintenance schedule plan and decision making 

[8]. Different Industry 4.0 predictive maintenance were proposed in the research 

community [7, 8, 11, 18, 19]. [18] proposed a 5-level CPS architecture for smart 

manufacturing solutions. A flexible FIWARE predictive maintenance platform for 

supporting modularity and transparency in a collaborative environment is proposed by 

[7]. [8] designed a flexible predictive maintenance model based on FIWARE and 
RAMI 4.0, supporting both online/offline analytics and maintenance schedule plan. 

These approaches are mostly designed for the manufacturer’s implementation in its 

own organization. Collaborative network virtual factories however involve multiple 

factories/organizations/partners operating in a collaborative network. Thus, a new 

approach is needed for the collaborative network virtual factories whereas a 

firm/company can provide predictive maintenance services in a modular manner. 

3   Predictive Maintenance Service Provider in a Virtual Factory 

In this paper, we present how a predictive maintenance service can be provided in a 

collaborative network. Predictive maintenance as a new service can collect all related 

data through the collaborative network as well as some data from IDS. In this section, 

we present a reference architecture based on FIWARE in Section 2.2, an industry 4.0 

platform, which serves a base of the virtual factory or a collaborative network. 

A reference architecture for supporting predictive maintenance service in a 

collaborative network or a virtual factory is established as presented in Fig. 2. In the 

virtual factory network, different enterprises, and partners (i.e. numbers of various 
collaborative partners such as the shopfloor, suppliers, designers, logistics, insurance, 

etc.) across the industry can join the network with their own services for common 

business objective using the FIWARE virtual factory GE components described in 
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Section 2.2. And the virtual factory network can be expanded as different needs or 

innovative services arise. 

In the reference architecture, the predictive maintenance acts as a collaborative 

network partner which provides predictive maintenance services to the network. Thus,  

it has expert knowledge and skills in big data, advanced analytics, AI, machine 

learning, etc., and has access to the required data such as machine operation, 

condition, maintenance, etc. via the network accommodated by IDS. IDS is utilized 

for data movement and access to gain data transparency, ownership as well as 

monetization. Flexibility and capabilities of big data analytics are essential aspects of 

operating predictive maintenance [7, 11]. Thus, our previous work [7] is adopted for 
flexible FIWARE predictive maintenance, related big data analytics, functions and 

data model.  

In the context of complex collaborative virtual network, predictive maintenance is 

essential to operating factories operation and assisting in creating effective 

maintenance schedule plan for decision making [7, 8, 11]. The proposed solution 

described in the next section addresses the consideration of data-driven approach for 

complex systems for optimal predictive maintenance schedule plan in virtual factories 

as it is still not addressed by most existing approaches [7, 8, 11, 18, 20–24]. 

 

 
 

Fig. 2. A reference architecture for a virtual factory with a predictive maintenance service 

4   Scheduling for the Predictive Maintenance in Collaborative 

Network 

Monitoring status of different machines and different components in a machine in a 
collaborative network or a virtual factory is a similar activity as monitoring machines 

in a factory, which the related work is reviewed in Section 2.4. In this section, we 

focus on a schedule plan of predictive maintenance service in a collaborative network 

and the detailed procedure of maintenance schedule is discussed. 

 

In general, predictive maintenance scheduling is described as an optimization process 

that is driven by data-driven predictions i.e. predictive model and related data i.e. 
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maintenance, machine component, to assign the resources over time regarding the 

maintenance activities. This must satisfy a set of constraints which reflect the 

temporal relationships between the maintenance activities and the capacity limitations 

of the shared resources in a collaborative network [25]. The objective is to find 

optimal schedule in which a timeslot on the machines or machine components that 

minimizes the defined goal, is allocated for the maintenance task(s) [25].  

To manage predictive maintenance scheduling in a complex collaborative context 
such as a maintenance service company as a part of the virtual factory, different 

important factors need to be considered. These factors are derived from the nature of 

the Industry 4.0 collaborative manufacturing setting, which includes: multiple 

organizations with similar machines, multiple machine components within an 

organization or in the collaborative network, as well as the maintenance task 

associated with cost and availability, which is especially for providing maintenance 

services within a collaborative network. The objective of data-driven optimal 

maintenance is to provide a maintenance schedule plan driven by predictive model 

incorporating with related factory maintenance data, which minimizes the overall cost 

related to conducting the required maintenance and thereby reducing downtime and 

cost. Considering the identified factors for an optimal maintenance schedule, the 

following procedure is established for assisting in maintenance decision process. 
 

 
 

Fig. 3.  (a) Algorithm 1: Optimal Maintenance Schedule (b) Procedure of Maintenance 
Schedule Process 

 

Algorithm 1 in Fig. 3 (a) illustrates the optimal maintenance schedule processing 

considering multiple machine components driven by data-driven predictive RUL 

value. The input parameter, maintenance items with RUL is provided through running 
the predictive model. The prediction of machine equipment for remaining useful life 

(RUL) is considered from our previous work [7]. The input RUL value of the machine 

component refers to specific maintenance item with a predicted value e.g. 5 days etc. 

In addition to the input maintenance items with RUL, a resource repository is used 

to support multiple machine component maintenance by getting any outstanding items 

required for maintenance within the same time window period. The resource 

repository accommodated by the data model from [7] is adopted. The resource 

repository stores the machine components and maintenance related information such 

as maintenance cost and availability, as well as collaborative data derived from IDS. 

Upon the acquisition of outstanding maintenance items, maintenance availability, 
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time and cost are processed by checking any pre/plan or existing production and 

maintenance schedule from the resource repository against the outstanding 

maintenance items. 

After the maintenance availability and cost are determined, maintenance items are 

grouped into the same time window period for optimization. Then the optimal 

maintenance schedule is computed using Python Pulp Optimization, and then an 

optimized maintenance schedule is then available for the maintenance 

operator/engineer assisting decision making. Section 5 provides the results with 

related information e.g. maintenance item, schedule, cost, in this work. 

To support the dynamic nature of collaborative networks i.e. different business 
requirements or changes, etc., the proposed solution supports handling new data i.e. 

machine, maintenance, etc. as illustrated in the Maintenance Schedule Process in Fig. 

3 (b). This is achieved by using new machine data, setting the RUL model, and 

adjusting appropriate optimization model parameters to get new RUL values. 

Subsequently, new maintenance schedule can be made. The next section presents the 

details about maintenance scenario and dataset with the corresponding results. 

5   Implementation 

In this section, a set of data are using to verify Algorithm 1 (Fig. 3 (a)). Section 5.1 

explains different data related to predictive maintenance for a flexible manufacturing 

collaborative network and Section 5.2 presents the scheduling results based on 

Algorithm 1 and a predictive maintenance case in Section 5.1. 

5.1   Maintenance Case 

A maintenance case from flexible manufacturing [7] is applied for evaluating the 

proposed algorithm for multiple machine/component schedule plan. For example, 

there are three same machines in two different factories within a collaborative 

network. In this work, we considered 21 components from one of CNC machines of 

flexible manufacturing in [7]. Sensor measurement data such as temperature, 

vibration, energy consumption and condition (health status) of machine components, 

are considered as input features for the predictions [7]. The RUL values of the 

machine component derived from the prediction are then processed for maintenance 
schedule. 

The maintenance dataset includes multiple factory machine components, resource 

index, maintenance task, timestamps, and related cost. These different data are 

currently collected from different sources, for analyzing the proposed maintenance 

schedule plan. With the proposed predictive maintenance model and maintenance 

schedule in Section 3 and Section 4, the different data can be easily integrated, 

processed, and used for different analyses after it is fully implemented. 

The scenario from the case study is described in Fig. 4 (a).  RUL values i.e. 

predicted value in day of the machine components are identified over a time window 



154 G. M. Sang at al. 

 

of 6 days period. Maintenance schedule should be planned and allocated to 6 different 

days period for the maintenance activities. In this scenario, 4 repairs and 1 

replacement maintenance are considered. The maintenance activity i.e. repair, or 

replacement can also be decided by a maintenance engineer based on the predicted 

RUL information and other related maintenance information.   

In the case of constraints, all the machine components are scheduled within their 

RUL period to avoid substantial maintenance and related costs such as downtime, 
setup, etc. The costs extracted from the case data for this model are presented in Fig. 4 

(b). RUL values of the machine components are mostly utilized for the scheduling as 

the cost of RUL is relatively less. Group maintenance i.e. time window over 6 days 

with 2 available maintenance slots per day, and optimizations such as location-based 

based on resource index i.e. factory location/dependency are applied to reduce high 

value of setup/location cost. This enables the model to minimize the number of set-

ups with associated other costs including location maintenance. 

 

 
 
Fig. 4.  (a) Machine components with RUL identified for Predictive Maintenance (b) 
Maintenance machine components with associated cost 

 

 
Fig. 5.  Maintenance schedule with group maintenance over 6 days period (a) without 

optimization (b) with optimization over 14% cost saving  (c) predicted cost comparison 
between the optimal cost and actual cost 

5.2   Scheduling Result 

The results of the proposed model are presented in Fig. 5. The subfigure (a) illustrates 

the normal maintenance schedule without optimization whereas the subfigure (b) 

represents the optimal maintenance schedule. The maintenance costs include the 

individual cost (repair or replacement) and setup cost which covers the engineer, 

downtime of each group. The optimal maintenance schedule can save over 14% of the 
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expected cost based on the 6 days period window. Moreover, the maintenance 

prediction in subfigure (c) shows cost saving can be made over the period if 

maintenance activity is performed as the optimal approach suggests. Ultimately the 

maintenance engineer or operator can make appropriate maintenance decision based 

on the business needs. 

6   Conclusion 

Most predictive maintenance research focus on monitoring and scheduling 

maintenance tasks within one organization. Collaborative Networks 4.0 such as 

virtual factories are complex, dynamic and face different challenges such as a flexible 

platform with optimal predictive maintenance. We proposed a predictive maintenance 

service  within a collaborative manufacturing network that offers flexible and modular 

components for optimizing maintenance service. A manufacturing case is used to 
demonstrate that predictive maintenance service can be integrated using a modular 

fashion into FIWARE framework and maintenance schedule plans can be created by 

accessing distributed data in the collaborative network. In the future, optimized 

models for different scenarios in different industrial sectors will be assessed. 
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