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Abstract—Passengers of urban bus networks often rely on
forecasts of Estimated Times of Arrival (ETA) and live-vehicle
movements to plan their journeys. ETA predictions are unreliable
due to the lack of good quality historical data, while ‘live’
positions in mobile apps suffer from delays in data transmission.
This study uses deep neural networks to predict the next position
of a bus under various vehicle-location data-quality regimes.
Additionally, we assess the effect of the target representation
in the prediction problem by encoding it either as unconstrained
geographical coordinates, progress along known trajectory or
ETA at the next two stops. We demonstrate that without data
cleaning, model predictions give false confidence if mean errors
are used, highlighting the importance of a holistic assessment
of the results. We show that target representation affects the
prediction accuracy, by constraining the prediction space. The
literature is vague about quality issues in public transport
data. Here we show that noisy data is a problem and discuss
simple but effective approaches to address these issues. Research
generally only focuses on a single method of target representation.
Therefore, comparing several methods is a useful addition to the
literature. This gives insight into the value of addressing data
quality issues in urban transport data to enable better predictions
and improve the passenger experience. We show that ‘rephrasing’
the prediction problem by changing the target representation
can yield massively improved predictions. Our findings enable
researchers using deep learning approaches in public transport
to make more informed decisions about essential data cleaning
steps and problem representation for improved results.

Index Terms—Public transport, ETA prediction, Traffic anal-
ysis, Modeling and prediction, Machine learning, Deep learning

I. INTRODUCTION

Bus passengers increasingly rely on Real-Time Passenger
Information (RTPI) systems at bus-stops, online and in mobile
apps. Current RTPI systems attempt to account for deviations
from the timetable but are often unreliable [1]. This affects the
convenience of bus passengers and is reflected in customer
surveys as the most frequently requested area of improve-
ment [2]. This highlights the importance of accurate Estimated
Time of Arrival (ETA) predictions to improve the customer
experience [3] and increase public transport usage.

Many cities suffer from severe congestion by an increasing
number of cars [4], making travelling a challenge. In a recent
report, it was estimated that in the UK travellers spent 10%

of their driving time in gridlock costing the economy £38
billion [5]. The same report ranked Bournemouth as the 8th

most congested city in the UK. Prospective studies suggest
that the biggest environmental and societal impact can be
achieved if the public is encouraged to change from private
cars to public transport and thus reducing air pollution and
congestion [6]. This was illustrated by a study suggesting
that cancelling just 1% of daily commutes from specific
neighbourhoods in the Boston area, can reduce the delays for
all road users by as much as 18% [7].

To encourage such a shift it is important to address the
passengers’ desire for reliability. As delays in bus services are
inevitable, it is crucial to keep the passengers informed. As
many public transport apps give ‘live’ positions of vehicles,
these are often used by passengers to decide when to leave
to catch their bus without having to wait too long at a bus
stop. However, due to latency of this information caused by
delays in wireless-network infrastructure and passing through
a number of 3rd party systems, this data is delayed, suggest-
ing the vehicle is further away than it is in reality. In the
Bournemouth area, for example, the latency of the internet-
based ‘live position’ is approximately 30s and could be the
difference between a passenger catching a bus or missing it.
Therefore, a reliable short-horizon prediction to tackle this
delay would undoubtedly be useful.

The infrastructure required to allow such predictions is
already in place in the form of Automatic Vehicle Location
(AVL) systems [8]. As AVL systems stream data continuously,
in theory, they could be readily leveraged to develop better
data-driven solutions. However, the AVL data suffers from
serious quality issues. These include the lack of clear journey
identification linkable to the timetable, artefacts such as gaps
in recordings, falsely reported line numbers and directions.
The biggest positive impact for passengers can be achieved by
improving not only the delay seen in ‘live’ locations but also
the ETA predictions at bus stops. To this end, this study uses
one bus line from the city of Bournemouth (UK) as an example
and addresses: (1) the data quality issues encountered, (2) their
impact on prediction using Recurrent Neural Networks (RNN)
and measures to overcome the identified issues, and (3) the
impact of target representation on ETA prediction accuracy
where we compare the accuracy of two types of output – the
position in the next 40s, which is the equivalent to a next-step978-1-7281-2547-3/20/$31.00 ©2020 IEEE



prediction based on the sample rate of our dataset and the
arrival time at the next two bus stops.

II. RELATED WORK

Urban bus networks generate highly multidimensional data.
This not only includes the geographic and temporal aspects but
also data generated by several vehicles serving the same line
on different timetables or directions. This large data source can
easily be affected by quality issues. The importance of data
quality has been highlighted in the literature in the context of
bus travel for example for pattern analysis [9] but also to allow
general improvements of public transport services [10]. Other
authors have proposed methods to tackle these issues [11].
However, it is notable that few literature examples are directly
addressing data quality. This problem should be much more
prevalent considering the strive to include big data into urban-
transport predictions from novel data sources especially via
crowdsourcing [12; 13; 14]. The assumption that cleaner data
will allow for better predictions is examined in this paper.

The second question is how to best represent prediction
problems. Reducing the complexity of input data can have
beneficial effects on prediction tasks [15]. This is generally
applied to the input. Furthermore, the technique of represen-
tation learning suggests that there is a right way of posing
a question to a machine learning algorithm [16]. More well-
known examples highlighting the importance of target rep-
resentation come from medical image classification, where
algorithms have been found to use confounding clues such as
cables visible in an image to make a prediction [17]. Therefore,
an empirical approach will be used to compare the quality
difference of three target-representations of similar prediction
problems specific to public transport.

III. METHODS

A. Data collection

The data used was collected from one of two bus-operators
in the city of Bournemouth (UK). The vehicles transmit their
position approximately every 40 s which is collected by the
company providing the Electronic Ticketing Machines (ETMs)
with the integrated AVL-system. Due to the involvement of
several companies handling the data, only a limited amount
of information is transmitted. The available data are:

• Timestamp
• Position (latitude and longitude)
• Line number
• Direction (outbound or inbound)
It became apparent that neither the direction nor the line

numbers are reliable. The transmitted direction is often in-
correct and so are line numbers when a vehicle changes its
line during an operational run. This becomes evident when
observing data identifying as one line but serving another as
well as vehicles travelling in the opposite direction from their
transmitted data. This suggests that although coordinates are
updated continuously, the additional information is not always
updated after a vehicle starts its journey. Based on this limited
information it is typically not possible to match a vehicle to a

Fig. (1) Map showing different route patterns associated with
line 1 (Yellow Buses) in Bournemouth (UK). Overall this line
has 12 more or less distinct patterns (4 inbound and 8 in
the outbound direction). For clarity each shape was offset by
0.0005◦ northwards to prevent overlapping.

timetable corresponding to the journey it is currently serving.
A journey is a specific trip found in the timetable of a bus line
e.g. the outbound 9 AM service 1. In contrast, a route pattern
is the route as travelled on the road which can vary slightly
for each journey for the same bus service. In the example of
line 1 in Bournemouth, each line has several patterns which
can include different start-points along the route, resulting in
shorter overall journeys or slightly different routes – see Fig. 1
for examples. Matching a vehicle directly to a specific route
pattern is not possible as no specific identifiers are transmitted.

Therefore, a specific route-pattern was selected for proof of
concept. This route-pattern is line 1 in Bournemouth in the
outbound direction from the city-centre (Triangle) to the final
destination (Christchurch). The reason for this choice is that
the start-point for all inbound journeys is the same, making
these journeys indistinguishable. The inbound journeys, how-
ever, do not always have the same destination, so the outbound
direction was chosen to allow better identification of journeys.

B. Identification of individual journeys

As the data lacks an explicit indication about the progress of
the journey (e.g. bus stops already visited) it is not self-evident
when a journey ended and a subsequent journey started. An
observation made was that between two timetabled journeys,
the vehicle generally goes offline briefly. Thus, once it comes
online again a gap in the recordings can be detected. A new
journey was defined as a time gap of more than 15 min. If
such a gap is detected it is assumed a new journey has started.

C. Representation of a journey as trajectory

All buses should follow a predefined route which can be
represented as a trajectory. The trajectory is the distance a
vehicle has travelled along a route over time. This means
the trajectory will always be different for each journey. The
transmitted coordinates are simply projected onto a route
pattern by assuming that the closest point on the route to the
current coordinates represents the position of the vehicle (see
Section III-D for filtering approaches). These trajectories are
used as one target representation as well as for benchmarking
as described below. As the route is known, positions along
the trajectories can be converted back to coordinates along
the route (Fig. 2).



i.

ii.

Fig. (2) i. The trajectory representation of several journeys, where the progress along the route is represented over time. The
difference between several vehicles travelling on the same route is illustrated. As an example, one journey has been highlighted
in blue with examples of the input position in yellow and the target position in red. ii. The route of the bus line with stops
indicated as blue circles. The highlighted trajectory positions are shown as coloured circles on the route

D. Data pre-processing

As described previously the data suffered from quality
issues. The problems encountered were misreported identi-
fiers and positions resulting in physically impossible position-
changes between recordings such as vehicles travelling over
60 mph. To combat these, several filtering procedures were
applied within an ablation study, to clean the data and assess
the influence these cleaning steps have on the final results
(Table I). These data cleaning steps are referred to as ‘sets’
and correspond to the experiments described in Section IV:

• Set 1.0 – minimal processing. As the line number of a
vehicle was unreliable, all vehicles identifying themselves
as line 1 were selected. To ensure these are following
the correct route, the journeys were filtered by excluding
those with reported positions further than 2 x mean-
distance from the route. Furthermore, any vehicle which
appeared to travel faster than 62 mph (100 km/h) was
also removed as this is legally and physically not possible
within a city environment. This represents the dataset
with minimal pre-possessing and thus has the most data-
points. To ensure a fair comparison to the more heavily
processed datasets, a randomly selected subset of 1476
journeys of this dataset was used.

• Set 2.0 – filtering of direction. As the direction was found

to be reported incorrectly, the outbound direction was
filtered by ensuring that each vehicle was within 100 m
of the first outbound stop at the start of its journey. If
this was not the case such journeys were removed.

• Set 2.1 – removing repetitions from the end. In practice,
a vehicle will stop at the beginning and the end of
the journey for operational reasons. Therefore, these
positions will be repeated until the vehicle starts the next
journey. These repetitions were removed from the end of
the journey once the bus has reached the closest point to
the final destination.

• Set 2.2 – removing repetitions from the start. Stationary
repeats were removed from the start of each journey,
assuming that a vehicle has started its journey once it has
moved more than 10 m between recordings. This removes
positions where the bus has arrived at the beginning of
the route but is waiting for the timetabled journey start.

• Set 3.0 – removing all repetitions. The final set combines
all the above-described filters and is, therefore, the most
heavily processed dataset.

E. Benchmarks

The literature regarding ETA prediction in public transport
often lacks comparative benchmarks, which makes it difficult



Set Outbound
only

End
truncation

Start
truncation

1.0
2.0 X
2.1 X X
2.2 X X
3.0 X X X

TABLE (I) Ablation study setup.

to objectively compare different approaches. In other areas of
machine learning, it has become the norm to use benchmarks
and standard datasets. As there is no appropriate publicly
available benchmark dataset available for urban public buses,
this study uses benchmarks that can be easily implemented
on any dataset. This allows other researchers to compare their
solutions to this publication but also gives a threshold to assess
any results against. The benchmarks are:

1) Average speed. This method uses the average speed of
a vehicle since the start of its current journey. Thus,
it does not reflect any short-term speed variations. The
calculated speed is used to interpolate the position of
the vehicle from the trajectory of its journey pattern for
the next 40 s.

2) Current speed. This method uses the last three transmit-
ted positions of a vehicle to calculate its current speed.
The prediction is made by interpolating the position for
the next 40 s from the journey trajectory. This method
will account for temporary speed variations.

3) ETA benchmarks. To calculate the ETA benchmarks
both speed-based methods are used to interpolate the
arrival time at the next two stops for the ETA based
benchmarks. For further details see Section III-F.

F. Target representation

To investigate differences in accuracy three different target
representations were used. These all use the same data as input
but represent the prediction target differently:

1) Unconstrained coordinates. The raw data of bus loca-
tions are affected by inaccuracies due to interference of
the GPS signal. Therefore, the positions of vehicles are
not always directly on the route. This represents the raw
target where no pre-processing of the target was applied.
The only constraint used was a bounding box framing
the city. This approach predicts two normalised values
representing coordinates within the bounding box.

2) Trajectory. The raw coordinates can be projected onto
the route-pattern of a journey by simply using the
closest point on the route as position once a journey
is successfully matched to a route-pattern. This ensures
that inaccuracies locating a vehicle off-route are re-
moved. The route-matched positions can be turned into
a trajectory by plotting the distance along the route over
time as demonstrated in Fig. 2. In practice, this method
predicts a number representing the progress along the
trajectory with a max of 1, which is the final destination.

3) ETA. This approach predicts the arrival time at the
next bus stop instead of the position of a vehicle. As
the next stop could be very close to the vehicle, we
predict the next two stops instead. The prediction itself
is in seconds to the corresponding stop. As we aim
to compare different target representations, to make the
ETA predictions more comparable to the position based
approaches, the error in seconds was translated into an
approximate margin of error in meters based on the
travel speed, assuming the bus travels at a constant speed
from its current position to the two stops. The distance-
based errors are approximations for comparison only.

G. Model training and evaluation

All models were trained on an Nvidia GeForce RTX 2060
GPU using the fastai library. The experimental setup was:

1) Input features. The features included were coordinates
normalised to a bounding box, the bearing reported by
the AVL system, the time-delta between consecutive
recordings, the elapsed time from the start of the journey
and time embeddings as described below. The input fea-
tures were min-max normalised unless stated otherwise.

2) Time embeddings. The time information was split into
its components to make it possible for the algorithms to
learn seasonal patterns. To achieve this the timestamp
was translated into minute of the day, hour of the day,
day of the week, day of the month and month of the
year. These were embedded in a multidimensional space
as detailed in architecture description.

3) Architecture. Two neural network models were used with
identical architecture (Fig. 3) except for the Recurrent
Neural Network (RNN) module which was either a
Gated Recurrent Unit (GRU) or a Long Short Term
Memory (LSTM). The time embeddings were learned
by the network in a multidimensional space. The di-
mensions were chosen as half of the possible number
of values for each embedded variable. As an example,
the hour of the day was embedded in 12 dimensions as
the maximum number of hours is 24. These embeddings
with a total of 52 dimensions were fed into a linear layer
to reduce their dimensions back to the original number
of time based features. The output of the linear layer was
concatenated with the remaining input features and fed
into either a GRU or LSTM layer followed sequentially
by a 1D Batchnorm, a linear layer, a leaky ReLU, a
second Batchnorm and a final linear layer. To ensure
the outputs were bounded, a sigmoid was also applied.

4) Hyper-parameters. To allow for direct comparison be-
tween the models all training hyper-parameters were
kept constant. It is appreciated that this might not in all
cases yield the best performance but will illustrate the
influence of the modifications made on the performance.
The used variables were chosen through empirical ex-
ploration. Each model was trained for 50 epochs using
the one-cycle policy [18] with a maximum learning
rate of 10−3. Networks with unconstrained coordinate



targets used the haversine distance between target and
prediction as loss-function, while all other networks
were trained using the Mean Average Error (MAE).

DATA

Remaining features
(coordinates, cumulative time,

bearing, timedelta)

Time embeddings

Min.
(60,30)

Month
(12,6)

Hour
(24,12)

Day
(7,4)

Linear layer
in: 52
out: 5

RNN (GRU/LSTM)
in: 10

hidden nodes: 64
layer: 1
out: 192

Batchnorm 1D 

Linear layer
in: 192

out: 192

Leaky ReLU

Batchnorm 1D 

Linear layer
in: 192
out: 2

Sigmoid

Fig. (3) Network architecture for the two RNN approaches
– GRU or LSTM without any other changes to the network.

H. Evaluation

Predictions from approaches producing positional outputs
including coordinate and trajectory-based predictions were
converted to denormalised coordinates. Errors were assessed
via the haversine distance between target and prediction.

As the ETA based approach does not give any location-
based prediction, the error in meters was estimated. This was
done by using the error in seconds to calculate the number
of meters travelled in this time, based on the average speed
between the current position and the target stops. This assumes
that the vehicle travels at a constant speed and therefore was
not used as loss function but rather for comparison.

IV. RESULTS AND DISCUSSION

A. Data cleaning

The dataset spans 144 days (12-Oct-2019 to 04-Mar-2020)
with an overall number of 1,909,861 instances (bus location
records). These correspond to 4080 individual journeys as it
can be seen in Fig. 4. This excludes 0.9312% of journeys due
to speeds above 62 mph. Filtering by the direction as discussed
in Section IV-D1, leaves 1486 (36.42%) of the overall number
of journeys.

Raw Data

144 days ( 12-10-19
to 04-03-20)
1.909.861 samples 0.913% removed

due to reported
speeds of >100

km/h
Set 1.0

4080 journeys

Set 2.0
1486 journeys

Set 3.0
truncate both at start
and end of journey

63.58 % removed
by enforcing

outbound
direction

Set 2.1
4.04 % truncated at the end 
mean stationary time 116 s

Set 2.2
21.67 % truncated at the start

mean stationary time 151 s

Fig. (4) Step-wise data cleaning sequence.

B. Benchmarking

The purpose of the benchmark is to give a baseline to
interpret subsequent results. Fig. 5 (a) shows the distributions
of errors for each benchmark in meters.

The peak at 200 m stands out in the mean-speed bench-
mark. This error occurs when a vehicle remains stationary as
this method does not allow for a stationary prediction. The
average distance travelled along the trajectory corresponds
to ~200 m (the error is calculated as straight line distance,
therefore corners or loops will cause smaller errors than the
same distance along a straight part of the route). Plotting the
errors along the route gives a more detailed overview of the
performance of the benchmark as shown in Fig. 5(b). This
confirms the hypothesis that in general, the benchmark will
perform poorly at stationary positions, which is especially
evident at the start and the end of the journey when some
vehicles remain stationary for extended periods time.

Interestingly set 1.0 which is the least processed and thus
affected most by noise, had the best results. This is further
discussed in Section IV-D. The mean-speed predictions will
be used as a baseline from hereon.

C. Data quality

In addition to the aforementioned problems with the data
quality, the collected data contained characteristic circular
patterns (Fig. 6i). These occur at bus stops only and are not
explainable by artefacts from GPS interference. An empirical
investigation showed that the origin of this phenomenon is
most likely a side-effect of geofencing that the AVL-system
uses to determine if a vehicle has arrived at the stop. Unless the
bus has been very close to the stop, the AVL-system ‘snaps’
the real position of the vehicle to the geofence boundary
(Fig. 6 iii). By choosing this exclusion zone to be 10 m in
radius, it was possible to simulate data mimicking the artefact
seen in the real-life data (Fig. 6 ii). The issue requires further
investigation to verify the exact rules this artefact is following.
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(a) Benchmarks for set 2.0. The 200 m peak visible in the left
plot occurs when a vehicle stops either at traffic lights, pedestrian
crossings or a bus stop. This peak is not found in the current speed
benchmark as it naturally compensates for variations in speed. Overall
the global average does result in lower haversine mean-error.

(b) Performance evaluation of the mean-speed benchmark on set 2.0.
The average error is shown in meters as green bars (colour and height
indicate the average error along the route). The number of repeated
positions are shown in red. The bars show the points at which more
than 90% of repeated positions occur, generally at bus stops.

Fig. (5) Assessment of the benchmarks.

i.

ii.

Inner circle if a vehicle is reported in this 
circle the position stays the same. This 
gives the characterstic bulls-eye 
appearance.

Bus stop

Outer goefence

Will not be 
changed

Case where the position is 
manipulated and moved onto the 
geofence.

iii.

10m50 m

Fig. (6) i. The circular artefact recorded from real-life data.
The red circle denotes the bus stop. ii. The simulated data
generated closely resembles the artefact recorded. iii. The
underlying process used to simulate the data.

D. Effects of data cleaning

To evaluate the effect of the cleaning steps on prediction
quality, two target representations were tested: the prediction
of unconstrained coordinates and the trajectory-based pre-
diction. As the mean error of the trajectory was ~100 m
lower when compared to unconstrained coordinates, only the
trajectory-based predictions are shown for clarity.

Errors for both model types are shown in Fig. 7. The perfor-
mance for all model types is similar in general. Interestingly
the benchmark is very robust and only in set 2.2 do both
RNNs have a slight advantage over the MAE of the benchmark
(GRU: 145.86 m, mean-speed: 146.85 m) but the difference
is negligible. However, in practice mean error is not the best
metric for model evaluation, as it does not account for the
spread of the errors. To better assess the performance, the
Sharpe ratio [19] was used (Eq. 1). Widely used in finance,
it accounts for the standard deviation of the errors or their
volatility. This gives a different picture and the benchmark is
outperformed except in the case of set 2.1 (see Fig. 9).

S =
MAE − r

σ
(1)

(1) Sharpe ratio (S), where r is the risk-free rate which here
translates to the best expected error (assumed to be perfect at
0m) and σ is standard deviation of errors.

Comparing the error distributions of the network with the
lowest MAE (GRU using set 2.2) to the benchmark (Fig. 8) it
becomes apparent that the GRU’s distribution is skewed more
toward smaller errors and is not bi-modal like the benchmark.
This confirms that in practice the GRU will deliver a more
reliable prediction even though the mean error is similar.

1) Set 2.0 filter direction: The evaluation of the cleaning
steps shows interesting behaviour. The first cleaned dataset 2.0
shows an increase in the mean error of both RNNs and the
mean-speed benchmark. It would be expected that limiting the
data to a single direction should improve predictability. When
assessing the Sharpe ratio the findings are different and the
LSTM shows an improvement of 0.189% whereas the other
methods decrease in performance with large errors (Fig. 9).

2) Set 2.1 removal of end repetitions: At the end of a
journey the vehicle will in some cases repeat transmission of
the same position. This occurred in 4.04% of the journeys
with an average stationary time of 116 s. As the transmission
frequency is 40 s this represents ~3 repeated positions. This
only affects a small portion of the journeys but still did
worsen the performance compared to the raw dataset (set 1.0)
both when assessed using MAE and causing a reduction of
-12.755% of the Sharpe ratio. This suggests that both LSTM
and GRU had an advantage in those few stationary cases.When
assessing the error map of the LSTM for this dataset (Fig. 5) it
becomes apparent that the error of the set 2.0 at the final data-
points is ~90 m, whereas upon removing repetitions the error
in the same area ranges from 283-818 m. This suggests that
the LSTM became exceptionally good at predicting the final



Fig. (7) Left: Boxplot showing error in meters for GRU, LSTM and the mean-speed benchmark. Outliers have been removed.
Green triangles represent the mean and the median is represented as a horizontal black line. The best benchmark’s (based
on Sharpe ratio set 1.0) median and mean are shown as red and blue dashed lines respectively. Middle: Boxplot showing
the estimated error in meters for the ETA prediction. Both networks are shown and errors are given for the first and second
stop. Boxplots showing the errors in minutes for the ETA prediction for either network in comparison to the benchmark. The
prediction is more accurate for the immediately next stop and the error increases for the second stops. Note the difference in
error magnitude. Right: Boxplot showing the ETA loss in minutes.

Fig. (8) The error distribution for the best performing GRU
and the mean-speed benchmark. The 200 m peak caused by
stationary vehicles is apparent. The outline of the GRU errors
suggests that the model makes more reliable predictions.

positions if the vehicle remained stationary thus appearing to
improve the overall performance.

3) Set 2.2 removal of start repetitions: A large proportion
of vehicles idle at the start of a journey, which affects
21.67% of the journeys with an average idle time of 151 s
corresponding to ~4 repeated positions. This means a much
larger proportion of the vehicles will arrive early at the start of
their journey compared to those that remain stationary once the
journey is finished. However, also this cleaning step reduced
the Sharpe ratio by -4.499% for the LSTM when compared to
set 2.0. Interestingly, the GRU performed best in this scenario,
whereas in all other cleaning steps the LSTM outperformed
the GRU. In addition, under this scenario the best overall MAE
was achieved by the GRU of 145.86 m. This suggests that the
GRU suffered most from repeated starting points.

4) Set 3.0 removal of repetitions at the start and end:
The final dataset 3.0 is the most processed and reflects a
journey most closely with the lowest influence from artefacts.

Interestingly, models trained on this dataset did not achieve
the overall best performance. The LSTM lies -4.8% below the
Sharpe ratio of set 1.0. This might appear counter-intuitive.
However, on close inspection, this behaviour can be explained
by the fact that the RNNs are most accurate when a vehicle
is stationary. This causes the reduction of the Sharpe ratio
due to over 20% of the journeys having repeats at the start or
the end, making these cases easy to predict. This causes the
paradox that the cleanest dataset appears to perform worse yet
the reason for this is that the model is no longer able to predict
the artefacts of repeated positions at either end of the journey.

5) Interpretation of data cleaning results: It is important
to look at error locations and where exceptional performance
is achieved. It is obviously easier to predict the position of
a bus when it finished the journey because it will not move
again, whereas at the beginning the difficulty is to predict
when the vehicle will start moving. This could be overcome
if the timetable corresponding to a journey was known. It can
hence be concluded that although the overall metrics have not
improved after data cleaning, it is still beneficial to prevent
falsely reduced metrics due to accurate prediction of artefacts.

As mentioned before, the mean-speed benchmark fails when
a vehicle comes to a stop as it assumes that all vehicles travel
at a constant speed. Therefore, the benefit of RNNs is that it
will learn locations where this is likely to happen such as bus
stops, junctions or pedestrian crossings. This is indeed seen
in the data, in areas with the most stationary data points the
accuracy of the best RNN is lower than the average accuracy,
meaning that the neural network has learned areas where a
vehicle is most likely to stop for some time (Fig. 10).

E. The influence of target representation

The prediction of unconstrained coordinates is not an effec-
tive approach and results in large errors and therefore is not
shown here. This not a surprising finding as this approach has
a very large prediction space spanning the entire city. In reality,
the possible predictions are along the route thus making this
an unnecessarily difficult approach.



(a) The error of the networks and benchmark in meters. Using this
evaluation metric the benchmark cannot be outperformed.

set 1.0

1.0 1.2 1.4 1.6 1.8

set 2.0

1.0 1.2 1.4 1.6 1.8

set 2.1

1.0 1.2 1.4 1.6 1.8

set 2.2

1.0 1.2 1.4 1.6 1.8

set 3.0

1.0 1.2 1.4 1.6 1.8

Current speed benchmark

GRU

LSTM

sharpe-index

sharpe-index

mean speed

coordinates

trajectory

mean speed

coordinates

trajectory

mean speed

coordinates

trajectory

(b) Cleveland plot showing the Sharpe ratio (higher number =
better performance). Using this more holistic metric compared
to MAE the benchmark is generally outperformed.

Fig. (9) Comparison of different ranking approaches.

To combat this complexity issue the trajectory approach was
used with much better results. However, this requires linking
the data to a specific route pattern, which in practice can be
challenging. This again is an expected finding as limiting the
prediction space to the route which is the only possible space
the vehicle should be travelling on simplifies the problem
dramatically, reducing the errors approximately by half from
244.8 m (LSTM) to 141.3 m (LSTM).

The third approach predicting the ETA at the two subsequent
bus stops might be the most important method. To make this
approach more comparable the error given in seconds was
translated into rough estimates of a distance error.

All models trained to predict ETAs used the last 3 positions
to interpolate ETA and performed better than the benchmark
(Fig. 7). The benchmarking method using the current speed
was chosen as it performed substantially better than the
overall-speed based method (current speed MAE: 1.2 min,
mean speed MAE: 10.7 min). As would be expected the
first stop is predicted with higher accuracy compared to the
second stop. Both the GRU and LSTM perform better than
the benchmark when comparing the MAE. Both the mean and
Sharpe ratio are reduced by the data cleaning steps.

Across all sets the performance of the ETA prediction
method is ~10 fold more accurate with estimated mean-
distance errors of ~4.2 m for the first stop and 14.5 m for the
second stop for both RNNs. This is a substantial improvement
compared to the position-based method (the best scenario had
an error of 145.8 m) and could be further improved by making
additional information such as the distance to the next stops
available to the neural network. Furthermore, the networks
could easily be changed to predict the arrival times for all
following stops. The drawback of this method is that in the
data used the actual ETA is not known. Therefore, the ETA

Fig. (10) The number of repeated positions generally seen
at main bus stops, junctions and crossings shown in red. The
error of the best GRU trained on set 2.2 in turquoise. The error
is generally low if a vehicle is more likely to stop in an area.

is an approximation and might not fully represent reality.
However, to collect accurate ETA information the current
technology would need to be upgraded e.g. with proximity
sensors at each bus stop as the sample interval is insufficient.

In light of the findings representing short-term prediction-
targets as ETA problem rather than a position-based target
gives by far the best results with the caveat that the ground
truth used to compare the ETA against is an estimation.

V. CONCLUSIONS

Bus travel is a well-established mode of public transport
and the vehicles are mostly equipped with modern telemetry
systems. However, we highlighted data quality issues, which
complicate any data-driven solutions. Unreliable or omitted
information about the route and timetable a vehicle is follow-
ing, most likely inhibited the performance of the developed
prediction models. Improving the availability and quality of



such data would allow to further advance ETA predictions.
Additionally, in this study, the ambiguity of line numbers
might have resulted in the loss of some journeys. Circular
artefacts were also discovered that can be explained by use of a
geofencing method that moves vehicle positions onto geofence
boundary unless it has arrived at a stop. Such manipulation of
the data stream could hamper prediction efforts although the
assessment is difficult without ground truth.

This study used benchmarks to make the findings easily
comparable to other studies. We have shown that a simple
metric such as mean error cannot be used to objectively
compare algorithms. To make an informed decision it is crucial
to use several metrics. The Sharpe ratio used to account for
the standard deviation in addition to the mean error, proved
to be a better measure than a simple MAE. Furthermore, the
importance of assessing the error distribution was highlighted
where it was possible to see that, for example, the mean
speed benchmark performed especially poor if the vehicle was
stationary, which is impossible to deduct from simpler metrics.

The extracted journey data was affected by artefacts such as
repeated position records at either end of the journey. There-
fore, it was necessary to remove such artefacts and assess their
impact on the final prediction. Unexpectedly, the step-wise
cleaning approach did not improve the overall MAE of the
predictions compared to the raw data. This can be explained by
the fact that the RNNs perform especially well when predicting
stationary positions of buses at stops or idling at either end of
the route – over 20% of the journeys have repeated positions
at the start. This is a large number of predictions that can be
made with exceptional accuracy thus giving the appearance
that the predictions are more improved the noisier the data is.
In other words, the more stationary points a dataset contains
the better will be the overall prediction accuracy. Such a model
is naturally not very useful in an operational context where
the emphasis is on predicting vehicles in motion. Therefore,
it is crucial to assess each developed algorithm in depth by
examining errors along the route and focusing on any patterns
that might be contained in such data. Even though the overall
prediction rate did not improve, the RNNs did perform better
than the benchmark at stops along the route and with a general
better accuracy along the route while the vehicle is in motion.

Using alternative representations of the same target con-
siderable improvements in accuracy have been made (66 m
between the trajectory and unconstrained coordinates). The
intuition is that by simplifying the problem and reducing the
prediction space the models will achieve better results. In
practice, this meant that predicting unconstrained coordinates
did not perform well, whereas limiting the prediction-space to
the trajectory and subsequently transforming the problem to
an ETA prediction improved the results 10 fold. The overall
winner was the ETA prediction. Operationally, this could be
considered the most important algorithm as ETAs for example
displayed at bus stops or in mobile apps could be considered
more important than short-horizon predictions at all points
along the route. However, a short-horizon prediction compen-
sating for transmission delays in ‘live’ location representations

on the web or mobile apps, will make the user experience
better, benefiting those passengers, who rely on such features.

Overall, this study highlighted the urgency to make all avail-
able data accessible to develop the best data-driven solutions
in public transport. It furthermore illustrated the importance of
not only relying on mean-based metrics but using a selection
of different metrics in combination with geographical error
representation to objectively assess any prediction algorithms.
Additionally, even though in theory modern deep learning
methods should learn to predict a target in any format, in
practice they perform best if faced with the most simple
representation of the task. As a conclusion and suggestion
for further work, it is necessary to address the highlighted
lack of data, as well as the lack of benchmark datasets. This
will be addressed in an imminent paper. Furthermore, it is
worth to consider the development of an evaluation framework
specifically tailored to public transport prediction methods,
consisting of a collection of different metrics and a formula
to assess the geographic variation of errors.

REFERENCES

[1] M. M. Salvador, M. Budka, and T. Quay, “Automatic
Transport Network Matching Using Deep Learning,”
Transportation Research Procedia, vol. 31, no. 2016,
pp. 67–73, 2018. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S2352146518301273

[2] J. W. Grotenhuis, B. W. Wiegmans, and P. Rietveld,
“The desired quality of integrated multimodal travel
information in public transport: Customer needs for time
and effort savings,” Transport Policy, vol. 14, no. 1, pp.
27–38, 2007.

[3] R. G. Mishalani, M. M. Mccord, and J. Wirtz, “Passenger
Wait Time Perceptions at Bus Stops : Empirical Results
and Impact on Evaluating Real- Time Bus Arrival Infor-
mation,” Journal of Public Tr, vol. 9, no. 2, pp. 89–106,
2006.

[4] Department of Transport and Drivers and Vehicle
Licensing Agency, “All vehicles (VEH01),” 2018.
[Online]. Available: https://www.gov.uk/government/
statistical-data-sets/all-vehicles-veh01table-veh0101

[5] G. Cookson and B. Pishue, “INRIX Global Traffic Score-
card,” p. 44, 2017. [Online]. Available: https://media.bizj.
us/view/img/10360454/inrix2016trafficscorecarden.pdf

[6] T. Xia, M. Nitschke, Y. Zhang, P. Shah, S. Crabb,
and A. Hansen, “Traffic-related air pollution and health
co-benefits of alternative transport in Adelaide, South
Australia,” Environment International, vol. 74, pp. 281–
290, 2015.

[7] P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and
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