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Abstract 

The combined impacts of deforestation, forest fragmentation and climate change will 

push many mammal species towards extinction, unless appropriate long-term 

conservation measures are implemented. While most mammal conservation projects 

focus on protecting remaining primary habitat, it is also important to determine the long-

term viability of populations in human-modified landscapes. Effective conservation 

requires a detailed understanding of species’ responses to fragmentation and climate 

change, yet physiological and behavioural responses of mammals to forest edge effects 

and climatic variation remain poorly understood. This thesis combines field data and 

observations with mechanistic models of microclimate and biophysical models of animal 

bioenergetics to determine the impacts of forest edges and microclimate variation on 

mammals at a site of disturbed forest in the Sikundur region of Sumatra, Indonesia. First, 

I identify mammal-habitat associations and the impacts of edge effects on terrestrial 

mammals using occurrence data from remote camera traps and fine-scale data of climate 

and habitat structure measured from the field. Next, I implement and test the performance 

of two freely available mechanistic models of microclimate, ‘NicheMapR’ and 

‘microclimc’, and determine the effects of vegetation structure on their performance. 

Finally, I utilise an existing biophysical model ‘NicheMapR’ to predict the impact of 

forest edges on metabolism and water balance of a Critically Endangered mammal, the 

Sumatran orang-utan, Pongo abelii. Negative impacts of both forest edges and increased 

temperatures were observed. Mammal occurrence declined with increasing temperatures, 

and mammal diversity was much lower at the forest edge compared to the interior, while 

biophysical modelling suggested that orang-utans are already experiencing thermal stress 

at frequent intervals for short periods of time, with the frequency of these periods being 

higher at the forest edge. There are notable climate variations in both space and time 

which are not captured by coarse scale macroclimate data or yearly averages, and my 

study showed how useful available microclimate models can be to predict localised 

temperatures using readily available data. The results demonstrate that disturbed and edge 

forests are still of value to mammal conservation, but that this usefulness varies depending 

on the target species. This is one of only a few studies to date which has utilised 

mechanistic modelling approaches in tropical forest and for terrestrial mammals to fully 

incorporate microclimatic variation and its effects on tropical forest mammals. These 

approaches are promising tools which can be used to determine the underlying 
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mechanisms of population responses to change, identify important local-scale threats to 

populations and appropriate mitigation strategies. 

  



   

 

5 

 

Table of contents 

Abstract ............................................................................................................................. 3 

Table of contents ............................................................................................................... 5 

List of Figures ................................................................................................................... 9 

List of Tables................................................................................................................... 13 

Acknowledgements ......................................................................................................... 16 

Author’s Declaration ....................................................................................................... 18 

Publications and conferences .......................................................................................... 19 

Chapter 1 General Introduction ................................................................................. 21 

1.1 Thesis aims and general overview ............................................................ 24 

1.2 Chapter overviews ..................................................................................... 25 

1.3 Study Location & Site description ............................................................ 26 

Chapter 2 Mammals in The Anthropocene: Predicting Mammal Responses to 

Environmental Change. ................................................................................................... 30 

2.1 Introduction ............................................................................................... 30 

2.2 Tropical mammals: Current status and future threats ............................... 32 

2.2.1 Conservation of tropical mammals .................................................... 34 

2.3 Climate change & tropical mammals ........................................................ 38 

2.3.1 Predicting species ranges ................................................................... 41 

2.3.2 Limitations of existing approaches .................................................... 42 

2.3.3 Adaptations to climate change ........................................................... 44 

2.4 Microclimates and their relevance to climate change responses .............. 46 

2.4.1 Microclimate variability in forests ..................................................... 47 

2.4.2 Vertical microclimate gradients in forests ......................................... 47 

2.4.3 Thermal buffering in forests .............................................................. 48 

2.5 Measuring & modelling microclimates ..................................................... 49 

2.5.1 Direct measurements & remote sensing ............................................ 49 



   

 

6 

 

2.5.2 Modelling microclimate ..................................................................... 50 

2.6 Using microclimates in predicting species responses to climate change .. 51 

2.7 Summary and conclusions ........................................................................ 51 

Chapter 3 Forest edge effects on microclimate and mammal activity in Sikundur, 

Sumatra. 53 

Abstract ........................................................................................................................... 53 

3.1 Introduction ............................................................................................... 54 

3.2 Objectives .................................................................................................. 57 

3.3 Methods ..................................................................................................... 58 

3.3.1 Field data collection ........................................................................... 58 

3.3.2 Data analysis ...................................................................................... 62 

3.4 Results ....................................................................................................... 65 

3.4.1 Objective 1) Comparing environmental conditions at different 

distances from the edge ........................................................................................... 65 

3.4.2 Objective 2) Variation in mammal activity rates between distances . 74 

3.4.3 Objective 3) Environmental predictors of mammal activity rates ..... 77 

3.5 Discussion ................................................................................................. 82 

3.5.1 Differences in forest conditions and edge effects .............................. 82 

3.5.2 Mammal activity ................................................................................ 83 

3.5.3 Remote monitoring of wildlife populations ....................................... 87 

3.5.4 Conservation Implications ................................................................. 89 

3.6 Conclusion ................................................................................................ 89 

Chapter 4 Predicting microclimate in a heterogeneous tropical secondary forest in 

Sumatra, Indonesia .......................................................................................................... 91 

Abstract ........................................................................................................................... 91 

4.1 Introduction ............................................................................................... 93 

4.2 Aim & Objectives ..................................................................................... 97 



   

 

7 

 

4.3 Methods ..................................................................................................... 97 

4.3.1 Location ............................................................................................. 97 

4.3.2 In situ microclimate measurements ................................................... 97 

4.3.3 Vegetation & canopy structure .......................................................... 99 

4.3.4 Microclimate modelling ..................................................................... 99 

4.3.5 Effects of canopy structure on microclimate variation and microclimate 

model performance................................................................................................ 101 

4.4 Results ..................................................................................................... 102 

4.4.1 Observed microclimate .................................................................... 102 

4.4.2 Microclimate modelling ................................................................... 102 

4.4.3 Vegetation structure ......................................................................... 108 

4.4.4 Vegetation effects on observed microclimate and model performance

 108 

4.5 Discussion ............................................................................................... 116 

4.5.1 Vegetation structure & microclimate conditions ............................. 116 

4.5.2 Microclimate model performance .................................................... 117 

Chapter 5 A biophysical modelling approach to investigating edge effects on arboreal 

mammals: a case study of the Sumatran orangutan, Pongo abelii ................................ 120 

Abstract ......................................................................................................................... 120 

5.1 Introduction ............................................................................................. 122 

5.2 Aim & objectives .................................................................................... 126 

5.3 Methods ................................................................................................... 127 

5.3.1 The endotherm model ...................................................................... 127 

5.4 Results ..................................................................................................... 130 

5.5 Discussion ............................................................................................... 142 

Chapter 6 General discussion .................................................................................. 148 

6.1 Structure and microclimate in secondary forests .................................... 149 



   

 

8 

 

6.2 Edge effects on forest conditions and mammals ..................................... 150 

6.3 Microclimate modelling in secondary tropical forests ............................ 151 

6.4 Applications of mechanistic models in mammal ecology and conservation

 152 

6.5 Conclusions & recommendations for future research ............................. 154 

6.5.1 Future work ...................................................................................... 155 

References ..................................................................................................................... 160 

Appendix 3.1 R scripts to run generalized linear models and generalized linear mixed 

models of microclimate and forest structure effects on mammals ................................ 205 

Appendix 4.1 R scripts to run the NicheMapR microclimate model ............................ 226 

Appendix 4.2 R scripts to run the microclimc microclimate model ............................. 284 

Appendix 5.1 R scripts to run the NicheMapR endotherm model ................................ 289 

 

  



   

 

9 

 

List of Figures 

Unless otherwise stated, all figures and photographs contained within this document 

have been produced by the author of this thesis. All maps were created using ArcGIS® 

software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are 

used herein under license. Copyright © Esri. All rights reserved. For more information 

about Esri® software, please visit www.esri.com. 

Figure 1.1: a) Location of the Sikundur region and the Leuser ecosystem in Sumatra, 

Indonesia, and b) the Aras Napal and Sikundur region located in North Sumatra. 28 

Figure 1.2: Corrugated iron fencing surrounding an orange plantation bordering the 

National Park at Aras Napal; several plantations in this area have fencing or some 

other barrier blocking access to/from the forest, but some have no fencing at all. . 29 

Figure 1.3: A typical orange plantation close to the National Park at Aras Napal. ........ 29 

Figure 3.1: Monitoring locations close to Aras Napal in the Sikundur region of the 

Gunung Leuser National Park (GLNP), North Sumatra province, Sumatra, 

Indonesia. The dark green line represents the border of the GLNP. ....................... 59 

Figure 3.2: Typical conditions at the forest boundary. Farms and plantations adjacent to 

the forest generally extend right up to the forest edge, creating a very obvious 

boundary between the two land cover types. .......................................................... 59 

Figure 3.3: HOBO data logger used to measure microclimate conditions throughout the 

site at Aras Napal. ................................................................................................... 60 

Figure 3.4: SpyPoint Force Dark trail cameras were used to record mammal activity at 

each monitoring location. ........................................................................................ 62 

Figure 3.5: The range of microclimate conditions recorded at different distances from the 

forest edge at Aras Napal. (a) Mean temperature for the whole sampling period; (b) 

mean temperature of each day; (c) minimum temperature of each day; (d) maximum 

temperature of each day; (e) mean light intensity of each day; and (f) maximum light 

intensity of each day................................................................................................ 69 

Figure 3.6: Total height (m), bole height (m), and height:DBH ratio of trees recorded at 

different distances from the forest edge at Aras Napal. .......................................... 73 

Figure 3.7: Number of trees per plot, DBH (cm), crown area (m2), and canopy 

connectivity (%) of trees recorded at different distances from the forest edge at Aras 

Napal. ...................................................................................................................... 74 

http://www.esri.com/


   

 

10 

 

Figure 3.8: Species accumulation curve showing number of mammal families detected 

with sampling effort in Aras Napal. ........................................................................ 75 

Figure 3.9: Total number of detection events for each mammal Order detected at different 

distances from the forest edge at Aras Napal. ......................................................... 77 

Figure 3.10: GLM predictions (lines), with 95% confidence intervals (grey shading), and 

observed number of mammal detections against (a) maximum temperature, °C; (b) 

minimum temperature, °C; (c) tree height, m; and (d) DBH, cm on the total number 

of mammal detection events at Aras Napal. ........................................................... 79 

Figure 3.11: Model predictions (lines) and observed values (points) of detection rates by 

mammal Order against (a) Maximum temperature, °C; (b) Tree height, m; and (c) 

Diameter at breast height, cm.................................................................................. 81 

Figure 4.1: Random sampling locations used to measure and predict microclimate at 

Sikundur. ................................................................................................................. 98 

Figure 4.2: Hourly variation in ambient air temperatures, °C, observed from data loggers 

and predicted by NicheMapR and microclimc...................................................... 104 

Figure 4.3: Range of temperatures for each location of a) observed values recorded from 

data loggers and b) values predicted by NicheMapR. Different heights are denoted 

by (1) bottom; (2) middle; and (3) top. ................................................................. 105 

Figure 4.4: Observed and predicted values for ambient air temperature, °C, for all 

locations and heights at Sikundur (excluding points removed due to logger exposure 

to direct sunlight). (a) Observed (red) and NicheMapR predictions (black) of 

ambient temperature against day of year for the period October 2018 - October 2019; 

(b) Spearman’s correlation of NicheMapR predictions against observed values for 

temperature; (c) Observed (red) and microclimc predictions (black) of ambient 

temperature against day of year for the period October 2018 - October 2019; and (d) 

Spearman’s correlation of microclimc predictions against observed values for 

temperature. ........................................................................................................... 106 

Figure 4.5: The range of values of forest structure variables collected from vegetation 

plots at Sikundur: (a) Total tree height, m; (b) bole height, m; (c) diameter at breast 

height, cm; (d) crown area, m; (e) crown depth, m; and (f) crown connectivity, %.

 ............................................................................................................................... 110 

Figure 4.6: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of monthly mean temperature against a) 



   

 

11 

 

logger height, m; b) plot location; and c) calendar month on monthly mean 

temperatures recorded by data loggers at Sikundur. ............................................. 111 

Figure 4.7: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of daily maximum temperature against a) 

logger height, m; b) plot location; and c) calendar month on daily maximum 

temperatures recorded by data loggers at Sikundur. ............................................. 111 

Figure 4.8: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of root mean square error of NicheMapR 

temperature predictions against a) logger height, m; b) plot location; and c) calendar 

month on root mean square error of NicheMapR microclimate predictions at 

Sikundur. ............................................................................................................... 112 

Figure 4.9: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of mean absolute error of NicheMapR 

temperature predictions against a) logger height, m; b) plot location; and c) calendar 

month on mean absolute error of NicheMapR microclimate predictions at Sikundur.

 ............................................................................................................................... 112 

Figure 5.1: NicheMapR endotherm model predictions of core body temperature, dorsal 

fur temperature, metabolic rate, and water loss across a series of ambient 

temperatures for adult male, adult female, and juvenile orangutans when using 

estimates of basal metabolic rate based on the mouse-elephant curve of body mass 

against BMR. Zero values were produced when the endotherm model was unable to 

find a solution (i.e., it was not possible for the modelled organism to maintain their 

body temperature within the defined parameters for metabolic rate, panting and 

sweating). .............................................................................................................. 131 

Figure 5.2: NicheMapR endotherm model predictions of core body temperature, dorsal 

fur temperature, metabolic rate, and water loss across a series of ambient 

temperatures for adult male, adult female, and juvenile orangutans when using 

observed basal metabolic rates from Pontzer et al (2010). Zero values were produced 

when the endotherm model was unable to find a solution (i.e., it was not possible for 

the modelled organism to maintain their body temperature within the defined 

parameters for metabolic rate, panting and sweating). ......................................... 132 

Figure 5.3: Air temperatures, °C, predicted by NicheMapR and recorded from data 

loggers at 1.5m from the ground for the time period August – October 2019: (a) The 



   

 

12 

 

range of predicted and observed temperatures for each hour of the day; and (b) 

predicted temperatures against observed temperatures. ........................................ 134 

Figure 5.4: (a) The number of days per year where maximum temperature predicted by 

NicheMapR exceeds the upper critical temperature, UCT of 32°C at 4 locations at 

the edge and the interior; and (b) the proportion of total time where temperatures 

predicted by NicheMapR exceed the UCT at 4 edge and 4 interior locations. Circles 

represent actual values, while diamonds represent the group means. ................... 134 

Figure 5.5: NicheMapR predictions of metabolic rate, W, for different age/sex classes of 

orangutans at edge and interior locations at Sikundur when using inputs of basal 

metabolic rate from (a) estimates based on the mouse-elephant curve; and (b) 

observed values from Pontzer et al 2010. ............................................................. 137 

Figure 5.6: NicheMapR predictions of water loss rate, g/h, for different age/sex classes 

of orangutans at edge and interior locations at Sikundur when using inputs of basal 

metabolic rate from (a) estimates based on the mouse-elephant curve; and (b) 

observed values from Pontzer et al 2010. ............................................................. 138 

Figure 5.7: NicheMapR predictions of dorsal fur temperature, °C, for different age/sex 

classes of orangutans at edge and interior locations at Sikundur when using inputs 

of basal metabolic rate from (a) estimates based on the mouse-elephant curve; and 

(b) observed values from Pontzer et al 2010. ........................................................ 139 

Figure 5.8:Water loss rate, g/h, estimated by NicheMapR using observed values of 

metabolic rate from Pontzer et al 2010, against predicted air temperature, mid 

canopy, in °C, for (a) adult male; (b) adult female; and (c) juvenile orangutans.. 141 

 



   

 

13 

 

List of Tables 

Table 3.1: Environmental variables collected from all monitoring locations at Aras Napal.

 ................................................................................................................................. 63 

Table 3.2: Summary of microclimate variables collected at different distances from the 

forest edge at Aras Napal. N = number of cases, μ = mean, M = median, SD = 

standard deviation. .................................................................................................. 66 

Table 3.3: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of Tall (i.e., mean temperature, °C, for the whole sampling period) 

recorded at different distances from the forest edge at Aras Napal. Values which are 

significantly different following adjustment with α = 0.05 are given in bold with an 

asterisk..................................................................................................................... 67 

Table 3.4: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn’s pairwise 

comparisons of Tmax (ie., maximum temperature, °C, for each day) recorded at 

different distances from the forest edge at Aras Napal. Values which are significantly 

different following adjustment with α = 0.05 are given in bold with an asterisk. .. 67 

Table 3.5: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn’s pairwise 

comparisons of Tday (i.e., mean temperature, °C, for each day), recorded at different 

distances from the forest edge at Aras Napal. Values which are significantly different 

following adjustment with α = 0.05 are given in bold with an asterisk. ................. 67 

Table 3.6: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LIall (i.e., mean light intensity, lux, for the whole sampling period) 

recorded at different distances from the forest edge at Aras Napal. Values which are 

significantly different following adjustment with α = 0.05 are given in bold with an 

asterisk..................................................................................................................... 68 

Table 3.7: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LIday (i.e., mean light intensity, lux, for each day) recorded at 

different distances form the forest edge at Aras Napal. Values which are significantly 

different following adjustment with α = 0.05 are given in bold with an asterisk. .. 68 

Table 3.8: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LImax (i.e., maximum light intensity, lux, for each day) recorded at 

different distances form the forest edge at Aras Napal. Values which are significantly 

different following adjustment with α = 0.05 are given in bold with an asterisk. .. 68 



   

 

14 

 

Table 3.9: Summary of forest structure variables collected from plots at different 

distances from the forest edge at Aras Napal. ......................................................... 71 

Table 3.10: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's 

pairwise comparisons of mean tree height, m, recorded at different distances form 

the forest edge at Aras Napal. Values which are significantly different following 

adjustment with α = 0.05 are given in bold with an asterisk. .................................. 72 

Table 3.11: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's 

pairwise comparisons of mean bole height, m, recorded at different distances form 

the forest edge at Aras Napal. Values which are significantly different following 

adjustment with α = 0.05 are given in bold with an asterisk. .................................. 72 

Table 3.12: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's 

pairwise comparisons of the mean ratio of tree height to diameter at breast height, 

HDR, recorded at different distances form the forest edge at Aras Napal. Values 

which are significantly different following adjustment with α = 0.05 are given in 

bold with an asterisk................................................................................................ 72 

Table 3.13: Checklist of mammals detected at Aras Napal with total number of detections 

and naïve occupancy (the proportion of sites with ≥ 1 detection events). .............. 76 

Table 3.14: Exponentiated coefficient estimates with standard errors in parentheses for 

the GLM with poisson distribution and log:link function testing the effects of 

environmental variables on the number of mammal detection events at Aras Napal. 

Significant effects (α = 0.05) are highlighted in bold. ............................................ 78 

Table 3.15: Generalised linear mixed model (negative binomial) fit by the laplace 

approximation of total detection events according to environmental variables. 

Mammal Order is included as a random factor. Significant P-values (α = 0.05) are 

highlighted in bold. ................................................................................................. 80 

Table 4.1: Summary of observed temperatures from data loggers and predicted ambient 

air temperatures for each location and height sampled at Sikundur. .................... 103 

Table 4.2: Spearman's correlation, root mean square error, RMSE, and mean absolute 

difference, MAD, between temperatures, °C, recorded from data loggers and 

temperatures, °C, predicted by NicheMapR at individual sampling locations and 

heights at Sikundur. *** P<0.001 with Bonferroni adjustment. ........................... 107 

Table 4.3: Summary of forest structure variables collected from vegetation plots at 

Sikundur. ............................................................................................................... 109 



   

 

15 

 

Table 4.4: Results of the linear mixed model for effect of logger height (H) on monthly 

mean temperature recorded by data loggers at Sikundur, σ2 denotes within group 

variance, while τ00 denotes between group variance of random effects. .............. 113 

Table 4.5: Results of the linear mixed model for effect of logger height on daily maximum 

temperature recorded by data loggers at Sikundur, σ2 denotes within group variance, 

while τ00 denotes between group variance of random effects. .............................. 114 

Table 4.6: Results of the linear mixed model for effect of logger height on root mean 

square error of microclimate predictions generated by NicheMapR for individual 

locations at Sikundur, σ2 denotes within group variance, while τ00 denotes between 

group variance of random effects. ......................................................................... 115 

Table 4.7: Results of the linear mixed model for effect of logger height on mean absolute 

error of microclimate predictions generated by NicheMapR for individual locations 

at Sikundur, σ2 denotes within group variance, while τ00 denotes between group 

variance of random effects. ................................................................................... 115 

Table 5.1: Input parameters and their sources used for the NicheMapR endotherm model 

for adult male, adult female and juvenile orangutans. .......................................... 128 

Table 5.2: Summary of temperatures recorded by data loggers, temperatures predicted by 

NicheMapR, and model performance at individual locations at Sikundur. .......... 135 

Table 5.3: NicheMapR endotherm model predictions for metabolic rate, W, water loss 

rate, g/h, and dorsal fur temperature, °C of adult male, female, and juvenile 

orangutans from individual sampling locations at Sikundur. ............................... 140 



   

 

16 

 

Acknowledgements 

Firstly, I would like to thank my supervisors Professor Amanda Korstjens and Dr 

Phillipa Gillingham. Your endless support, patience and guidance has been incredible 

throughout this PhD, and I couldn’t have done this without you. I am so very grateful for 

the opportunities you have given me. I would also like to thank Professor Michael 

Kearney and Isobel Bramer for their advice and support in developing adapting the 

NicheMapR models and R scripts. Additionally, I would like to extend thanks to Professor 

Ross Hill and Harry Manley for their support and advice in spatial analysis and ArcGIS 

Pro. Thank you also to Dr. Andrew Whittington and Dr Demetra Andreou for their 

support and advice at the start of the project. 

Special thanks go to Universitas Syiah Kuala, and in particular Dr Abdullah and Dini 

from the International Affairs office for their very warm hospitality, support, and 

guidance during my time in Indonesia, and their invaluable help and support in obtaining 

my research permits and visa. Additionally, I would like to thank RISTEK and Taman 

Nasional Gunung Leuser for granting me permission to conduct research in Indonesia. I 

would also like to thank Rudi Putra, Issa and the rest of the team at Forum Konservasi 

Leuser for their additional guidance and support, and for their tireless efforts to conserve 

the forests and wildlife of Sumatra. 

My thanks also go out to the team at the Sumatran Orangutan Conservation 

Programme HQ in Medan, in particular to Dr Ian Singleton and Matt Nowak for their 

support and advice in conducting fieldwork, and for inviting me to work from the 

Sikundur research station. In particular I would like to thank Matt for his endless patience 

in helping me to solve problems with permits and field data collection, and for always 

being on hand for a chat and a beer during my time in Indonesia. I would also like to 

thank Graham Usher and Dave Dellatore for providing the UAV data. Thank you also to 

the field staff at Sikundur: Suprayudi, Riki, Ben, Winn, Argus, Ucok and Supri. Your 

knowledge and experience has been invaluable, and without you I would not have been 

able to complete my research. I would especially like to thank Supri and Ucok for going 

above and beyond in helping me collect my data and troubleshoot my methodologies. 

Also, I would like to thank Rusman, Nursal and the entire Aras Napal community for 

making me feel so incredibly welcome and at home during my time in Sumatra.  



   

 

17 

 

I would like to thank Bournemouth University for funding my research, as well as 

the BU GCRF fund and Research Impact funds which also helped to support my project 

costs. Additionally, I would like to thank the People’s Trust for Endangered Species and 

the International Primatological Society for providing additional funding which was vital 

to covering various logistical costs involved in the project. Finally, I would like to thank 

Tempcon for providing sponsorship to purchase climate data loggers. 

I would also like to thank the team at Invisible Flock for helping to bring some of my 

research to life in ways I would never be able to. In particular, I would like to thank Ben, 

Vic and Fletch for their help in developing and implementing equipment in the field, for 

helping me to set up the equipment in Sumatra, and for being lovely company for some 

of my time in the field. 

I am also forever grateful to all of my fellow researchers and students with whom I 

shared my time in Indonesia. In particular, I want to thank Emma Hankinson and Nathan 

Harrison for their unwavering support and friendship. I would also like to thank Rosanna 

Consiglio for always having my back and believing in me. Finally, I would like to thank 

James Askew, Ziva Justinek Meidina Fitriana, Chiara Ripa and Lucy Twitcher for their 

friendship and support at various times throughout my PhD. 

Thank you also to all my fellow post-graduate researchers at BU. In particular, I 

would like to thank Michelle, Hannah, Paul, Owen, Ramin, Heather & Sam for being 

wonderful officemates, who are always on hand for a silly chat over coffee and cake. 

Thank you also for continuing to support both me and each other throughout the past year, 

even though lockdowns have kept us away from campus. I am also forever grateful to my 

lovely friends Annie, Phoebe, Katie, Esraa, Georgie and Laura, who have never failed to 

support me and cheer me up even in the hardest of times. 

Last, but most definitely not least, thank you so much to my Mum and Dad, my 

brother Alex, and my partner Darryl. You have all always had my back, believed in me, 

and motivated me to keep going. I would not have got this far without you. I love you all. 

Thank you especially to Darryl for not only humouring, but also sharing my animal 

obsession, and for always offering me support, love, and snacks to keep me going 

throughout this journey. I could not have done this without you. I love you.



   

 

18 

 

Author’s Declaration 

The work for this thesis was carried out between September 2017 and May 2021 at 

the Department of Life and Environment Sciences, Faculty of Science and Technology, 

Bournemouth University. This work was conducted under the supervision of Professor 

Amanda Korstjens and Dr Phillipa Gillingham. 

I declare that while registered as a PhD candidate at Bournemouth University, I have 

not been a registered candidate or enrolled as a student for an award of any other academic 

or professional institution.  I furthermore declare that no material contained within this 

thesis has been used in any other submission for an academic award. 

I declare that the work contained within this thesis is my own work. All materials, 

data, findings, and ideas presented here which are not my own have been fully and 

appropriately acknowledged throughout the document. Maps throughout this thesis were 

created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual 

property of Esri and are used herein under license. Copyright © Esri. All rights reserved. 

For more information about Esri® software, please visit www.esri.com. 

  

http://www.esri.com/


   

 

19 

 

Publications and conferences 

Peer-reviewed publications 

Williams, K. A., Slater, H. D., Gillingham, P., and Korstjens, A. H., (accepted; in 

press). Environmental factors are stronger predictors of primate species’ distributions 

than basic biological traits. International Journal of Primatology. 

Harrison, N. J., Hill, R. A., Alexander, C., Marsh, C. D., Nowak, M. G., Abdullah, 

A., Slater, H. D., and Korstjens, A. H., 2020. Sleeping trees and sleep-related behaviours 

of the siamang (Symphalangus syndactylus) in a tropical lowland rainforest, Sumatra, 

Indonesia. Primates, 1, 3. 

Slater, H. D., and Abdullah, A., 2020, February. The importance of forests as 

microclimate refuges for mammals in Sumatra. In Journal of Physics: Conference Series 

(Vol. 1460, No. 1, p. 012051). IOP Publishing. 

https://iopscience.iop.org/article/10.1088/1742-6596/1460/1/012051/pdf 

Bramer, I., Anderson, B., Bennie, J., Bladon, A., Frenne, P. de, Hemming, D., Hill, 

R. A., Kearney, M. R., Korner, C., Korstjens, A. H., Lenoir, J., Marsh, C. D., Morecroft, 

M. D., Slater, H. D., Suggitt, A. J., Zellweger, F., and Gillingham, P. K., 2018. Advances 

in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in 

Ecological Research, 58, 101–161. 

Korstjens, A. H., Slater, H. D., and Hankinson, E., 2018. Predicting African primate 

species’ responses to climate change. In: Primatology, Biocultural Diversity and 

Sustainable Development in Tropical Forests. Mexico City: UNESCO, 186–204. 

Conference Presentations 

Slater, H. D., Gillingham, P., Abdullah, A., and Korstjens, A. H., 2020. Edge effects, 

microclimate & mammal activity in Sumatra, Indonesia. Oral presentation for the Sci-

Tech Post-Graduate Research Conference, Bournemouth University. 

https://iopscience.iop.org/article/10.1088/1742-6596/1460/1/012051/pdf


   

 

20 

 

Slater, H. D. and Abdullah, A., 2019. The importance of forests as microclimate 

refuges for mammals in Sumatra. Oral presentation for The 1st Annual International 

Conference on Mathematics, Science and Technology Education, Universitas Syiah 

Kuala. Banda Aceh, Indonesia. 

Slater, H. D., Gillingham, P., and Korstjens, A. H., 2019. Edge effects in secondary 

tropical forest: Microclimate and mammal occurrence. Poster presentation for the British 

Ecological Society Annual Meeting. Belfast. 

Slater, H. D., Gillingham, P., and Korstjens, A. H., 2019. Voices in the Jungle: Using 

remote sensing to monitor forest biodiversity. Live research and poster exhibit for the 

11th Annual Postgraduate Research Conference, Bournemouth University. 

Slater, H. D., Williams, K. A., and Korstjens, A. H., 2016. Predicting species’ 

responses to environmental change: biological traits and African primate biogeography. 

Oral presentation for the British Ecological Society Annual Meeting. Liverpool. 

Korstjens, A. H., Williams, K. A., and Slater, H. D., 2016. Predicting species’ 

responses to environmental change: the biogeography of diurnal African primates. Oral 

presentation for the Joint meeting of the International Primatological Society and the 

American Society of Primatologists. Chicago. 

Slater, H. D., 2016. Logging, forest structure and group densities of primates in 

North Sumatra, Indonesia. Poster presentation for the Primate Society of Great Britain 

Spring Meeting. University of York. 

Slater, H. D. and Consiglio, R., 2014. The importance of forest structure on primate 

distributions in Sikundur, Sumatra, Indonesia. Poster presentation for the Primate Society 

of Great Britain Winter Meeting. University of Birmingham. 



   

 

21 

 

Chapter 1   

General Introduction 

Biodiversity loss and climate change are major global challenges. Current rates of 

biodiversity loss and climate change have exceeded the maximum threshold and threaten 

to undermine ecosystem stability, function, and provisioning of vital ecosystem services. 

Climate change and biodiversity loss interact with each other in a negative feedback loop; 

climate change will result in further biodiversity loss, while loss of species reduces 

ecosystem resilience and stability, making ecological processes more vulnerable to 

changes in climate. Halting current rates of biodiversity loss and reversing trends in 

declining wildlife populations is crucial to maintaining global ecological resilience. 

Tropical forests contain the largest proportion of global terrestrial biodiversity, as well as 

playing a key role sequestering atmospheric carbon and mitigating against anthropogenic 

climate change (Posa et al. 2011; Englhart et al. 2013; Astuti and McGregor 2015). 

Protection and restoration of tropical forest biomes is therefore integral to preserving 

biodiversity and mitigating against global climate change. 

Biodiversity is now being lost rapidly; an estimated one million species are thought 

to be threatened with extinction (IPBES 2019). Current species extinction rates are around 

100 to 1,000 times higher than the historical background rate estimated from the fossil 

record; these extinctions are mainly attributed to human activities, and this rate is 

expected to increase further throughout the 21st century (Mace et al. 2005). This is well 

above the maximum planetary boundary for biodiversity loss of ten times the natural rate 

proposed by Rockström et al. (2009). Current projections of future extinction rates have 

a wide range of uncertainty, in part due to a lack of data on species ecology (particularly 

dispersal and migration rates), but also because there is the potential for effective 

interventions to reduce extinction risk, including land-use management and climate 

mitigation (Pereira et al. 2010). We do not have enough long-term data to truly understand 

the full implications of biodiversity loss, but most evidence suggests that loss of 

biodiversity will result in reduced resilience and function of ecosystems globally. 

Additionally, the loss of biodiversity will have implications for other Earth systems, 

including hydrological cycles, nutrient cycles, and climate change (Mace et al. 2014).  
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The effects of climate change are becoming increasingly evident and will further 

exacerbate biodiversity declines. The current concentration of global atmospheric Carbon 

has already well exceeded the planetary boundary and is now likely to lead to irreversible 

climate change (Rockström et al. 2009). Arctic sea ice, mountain glaciers, and sea levels 

have already changed notably from their Holocene state as a result of climate change 

(IPCC 2007). Climate affects species by determining their range, abundance at a given 

location, phenology and influencing microhabitat use and energy budgets. Climate-

related local extinctions have already been recorded in hundreds of species, with the 

tropics having a considerably higher rate of local extinctions compared with temperate 

regions (Wiens 2016). Tropical regions, including Southeast Asia and Indonesia are 

considered ‘hotspots’ of climate change vulnerability, due to the large number of species 

and taxa which are predicted to be negatively impacted (Pacifici et al. 2015). These 

regions contain a high proportion of endemic and already threatened species which can 

be considered especially vulnerable to climate change, since they are facing heightened 

ecological pressure from habitat loss and/or persecution and hunting by humans (Urban 

2015). The question of how species will respond to both future climate change and land 

use change must be addressed in order to develop forward-thinking biodiversity 

management strategies which will remain effective in the long-term (Jones et al. 2016). 

Tropical forests are vital to maintaining global biodiversity. They are among the most 

threatened ecosystems and human activities are fundamentally altering the abiotic 

conditions within them. Indonesia has one of the highest rates of forest loss globally, with 

a large proportion of this loss occurring on the island of Sumatra. Tree cover loss in 

Sumatra totalled 104,700km2 between 2001-2017, equivalent to a loss of 29.2% since 

2000 and CO2 emissions of 1.04 billion tonnes (Global Forest Watch 2018). In Sumatra, 

much of the remaining primary forest now exists within protected areas, which have 

become ‘islands’ of intact habitat in a sea of human-dominated landscapes; this is 

problematic for large mammals which exist at low densities, range over large distances, 

and require large tracts of intact, quality habitat (Nyhus and Tilson 2004b). Agricultural 

land around protected areas has negative effects on biodiversity by eroding the quality of 

matrix habitat, limiting the potential for dispersal and migration, and introducing harmful 

edge effects in remaining forest fragments (Laurance et al. 2014). In order to plan 

effective conservation strategies, we must first fully understand the synergistic effects of 

both climate change and human disturbance. 



   

 

23 

 

Microclimate refuges are areas which species can use to minimise their exposure to 

sub-optimal extremes, thereby allowing them to persist even when macroclimate 

conditions become unfavourable (Suggitt et al. 2018). Climatic conditions within primary 

forests have been shown to be decoupled from macroclimate, usually having cooler and 

more stable (i.e., higher minimum and lower maximum temperatures) conditions than 

non-forested areas (de Frenne et al. 2019). Additionally, forests are highly heterogenous 

and contain many microhabitats and microclimates which species can utilise to avoid 

extreme climate conditions, thereby reducing their extinction risk (Suggitt et al. 2018). It 

is generally assumed that disturbance and fragmentation of forests will reduce the 

decoupling effect within forests, however, there is growing evidence suggesting that 

secondary forests are still resilient to changes in macroclimate conditions and will still 

provide species with microclimate refuges (Blonder et al. 2018; Senior et al. 2018). Few 

microclimate studies to date have directly measured the extent to which species actually 

utilise microclimates to avoid unfavourable conditions (Senior 2020). Determining the 

role of microclimate refuges and identifying important refuges should be a priority of 

conservation research to inform long-term spatial planning of habitat protection and 

identify the most important features to consider when planning reforestation or restoration 

of disturbed forests. 

Mammals are a key component of tropical forest ecosystems, playing major roles in 

vegetation community structure and plant-animal interactions. Many conservation 

projects centre on large-bodied, charismatic mammals, using them as ‘umbrella’ species 

to conserve whole ecosystems, with the assumption that protecting them will, by default, 

benefit many other species with which they co-exist (Branton and Richardson 2011). 

Large mammals are generally wide-ranging, more sensitive to disturbance and require 

large expanses of intact, high quality and heterogeneous habitat, which makes them 

especially vulnerable to deforestation and climate change (Davidson et al. 2017). Larger 

bodied and more conspicuous mammals are often easier to monitor compared with other 

taxa, meaning that they can be used as indicators for ecosystem health and to measure the 

success of conservation measures in reducing declines and facilitating population 

recovery (Jones and Safi 2011). Larger bodied mammals fare particularly poorly in the 

face of environmental change, with rapid population declines and local extinctions 

reported for a large proportion of species (WWF 2018). Our understanding of mammal 

vulnerability to climate change is still very limited, and much of it based on assumptions 
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developed from studies of other taxa, which are likely to have very different relationships 

with their environment than mammals (Paniw et al. 2021). 

Most conservation research currently focusses on mitigating against immediate 

threats such as habitat loss and hunting; there are limited data on climate change impacts 

on mammals. The research which has been conducted only focusses on broad scale 

patterns in species-environment relationships (Guisan et al. 2013). This has limited value 

to locally implemented conservation plans. Most threatened mammals require immediate 

short-term conservation actions and can be difficult to justify more long-term strategies 

to combat climate change (Tulloch et al. 2016). There is little point in protecting a species 

against climate change if they will become extinct due to hunting or habitat loss before 

they are affected by climate. Most conservation strategies also focus on preserving 

‘pristine’ habitats, such as primary rainforest; however, this is no longer a realistic goal, 

and cannot be solely relied upon to maintain biodiversity (Meijaard 2017). Most of the 

Earth’s land surface is now impacted in some way by human activities. It is therefore vital 

that conservation strategies incorporate disturbed and human dominated landscapes, 

which will become increasingly important to maintaining biodiversity in the near future.  

1.1 Thesis aims and general overview 

In this thesis, I aim to investigate the potential conservation importance of an area of 

regenerating secondary forest in Sumatra, Indonesia, as a potential microclimate refuge 

from climate change for endangered mammals. I determine the impacts of forest 

disturbance and edge effects on microclimate and mammal activity by utilising 

observational measurements of microclimate conditions, mammal behaviour and habitat 

use combined with mechanistic and biophysical models to predict microclimate 

conditions and mammal bioenergetics along a gradient moving from the forest edge and 

into the interior. The thesis will comprise six chapters in total. This current chapter 

(chapter 1) serves as a general introduction to provide a background and rationale for the 

research, followed by an in-depth literature review in chapter 2, three data chapters 

(chapters 3 – 5), and, finally, a general discussion in chapter 6 to summarise the findings 

and suggest future directions in this area of research. 
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1.2  Chapter overviews 

Chapter 2: Mammals in the Anthropocene: predicting mammal responses to 

environmental change. 

This chapter provides a review of existing literature on microclimate research in 

tropical forests and how it relates to mammal responses to environmental change and 

mammal conservation. First, I review the current status of tropical forest mammals and 

efforts to conserve them. I then give an overview of existing attempts to predict how they 

might respond to future climate change and human disturbance. I also review the 

importance of forest microclimates in facilitating species responses to climate change and 

summarize existing evidence for this. Finally, I highlight the role of predictive models in 

conservation planning, identify existing barriers to their successful integration into 

management strategies, and discuss how models can be developed further to improve 

their accessibility and relevance to conservation practitioners. 

Chapter 3: Measuring edge effects on forest microclimate and mammal activity 

In this chapter I determine links between forest structure (recorded in vegetation 

plots) microclimate (recorded with data loggers), and mammal activity (recorded by 

motion-activated trail cameras), using generalized linear models. This provides insight 

into habitat characteristics which are most favourable for different types of mammals and 

determine how fragmentation and edge effects impact microclimate conditions and 

mammal activity.  

Chapter 4: Comparing mechanistic approaches to modelling microclimate 

variations in a secondary tropical forest. 

In this chapter I test and compare the performance of two mechanistic microclimate 

models: NicheMapR and microclimc. This provides empirical evidence for the accuracy 

of these newly developed models in tropical secondary forests and identify the effects of 

different aspects of vegetation structure (e.g., canopy height, canopy cover, 

connectedness) on the models’ ability to accurately predict microclimate. Few studies 

have tested these models in disturbed tropical forests, and this is the first time that they 

have been tested in lowland tropical forests in Indonesia. 
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Chapter 5: A biophysical modelling approach to investigating edge effects on 

arboreal mammals: a case study of the Sumatran orangutan, Pongo abelii 

In this chapter I use a biophysical model to predict the potential ecophysiological 

consequences of edge effects on a Critically Endangered ape, the Sumatran orangutan. I 

use the NicheMapR endotherm model to predict and compare orangutan metabolic rates 

from locations at the forest edge and in the interior. Very few studies to date have applied 

NicheMapR (or its earlier counterpart NicheMapper) to primate species, and this is the 

first instance that biophysical models have been applied to a great ape. The outputs of this 

model can be used as inputs in further mechanistic models of orangutan responses to 

fragmentation and climate change; for example, time budget models to predict fitness and 

survival, or individual-based models of habitat use and ranging behaviour. These types 

of mechanistic models will give better local scale predictions of habitat suitability under 

future scenarios for climate change and land use, since they can incorporate physiological 

and behavioural adaptations to climate change. 

Chapter 6: General discussion 

In this final chapter, I reiterate the main aim and broad questions of my research, 

summarise my main findings, and suggest ideas for future directions. I discuss the 

implications of forest edge effects and human disturbance in secondary forests for 

mammal responses to climate change. I examine how well existing models of 

microclimate and animal responses to climatic conditions can be applied for mammals in 

tropical secondary forests and suggest how they can be refined to be more generally 

applicable for locations and species which are data deficient. I also highlight how future 

ecological research can be implemented to provide quality empirical data to support long-

term conservation planning. 

1.3 Study Location & Site description 

The study was conducted in the Sikundur region, located within the Leuser 

ecosystem, at the boundary of the Gunung Leuser National Park, GLNP, in the North 

Sumatra province of Sumatra, Indonesia (Figure 1.1). This is an area of secondary 

lowland forest which was selectively logged until the area was afforded full legal 

protection with its designation as the Gunung Leuser National Park in 2004 (YOSL-OIC 
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2009).  Due to its proximity to the National Park boundary, the area is still subject to 

occurrences of illegal logging and hunting of wildlife (Roth et al. 2020). The Sikundur 

Biodiversity Monitoring Station, managed by the Sumatran Orangutan Conservation 

Programme, SOCP, is situated in this region; The Sikundur team have been carrying out 

monitoring and conservation work, mainly focussing on great apes and other primates, 

since 2013. 

Adjacent to the forest in the Sikundur region is the village of Aras Napal. This is a 

small community consisting of around 150 households. Subsistence and smallholder 

agriculture are the predominant land uses in the area outside of the protected forest, while 

the area to the North of the village comprises larger rubber and oil palm plantations. The 

larger plantations are not owned and managed by Aras Napal residents, although several 

residents from the village do work on these plantations to supplement their income from 

their own farms. Most households in Aras Napal own smallholder farms (around 1-2 

hectares usually), which is their main source of income. Many of these are located directly 

adjacent to the forest (Figure 1.2). Orange trees are the dominant crop plant (Figure 1.3). 

Unlike other areas in Sumatra, particularly to the North in the Aceh province (Abdullah 

et al. 2019), there are few reports of conflict between large mammals (especially tigers 

and elephants) and people here. Elephants are reported to come into agricultural land near 

the village, but generally cause minimal damage, and do not appear to forage in 

smallholder plantations, although they do cause notably more damage in rubber and oil 

palm, which appear to contain more favourable food items for them. The biggest problems 

caused by wildlife are from smaller mammals, mainly pigs and macaques, which are 

reported to frequent farms adjacent to the forest on a daily basis and can cause significant 

damage and loss to orange crops. Some larger farms have small patches of other crops, 

including corn and other fruits (mainly rambutan and durian). There have been reports of 

an unflanged male orangutan entering these farms during the fruiting season in order to 

forage in these patches. Attitudes towards the forest and its wildlife are generally 

favourable. During the course of this study, we discovered some evidence of hunting in 

the protected area close to the village (e.g., camera trap footage of people, snares, tracks, 

and remnants of camps in the forest), although few people reported hunting when asked 

about their activities in the forest during surveys. Currently, there is insufficient data to 

detail how often hunting takes place, who is responsible for these activities, which species 

are being harvested and to what extent, or how this is affecting populations in the area. 
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Figure 1.1: a) Location of the Sikundur region and the Leuser ecosystem in Sumatra, 

Indonesia, and b) the Aras Napal and Sikundur region located in North Sumatra. 
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Figure 1.2: Corrugated iron fencing surrounding an orange plantation bordering the 

National Park at Aras Napal; several plantations in this area have fencing or some other barrier 

blocking access to/from the forest, but some have no fencing at all. 

 

Figure 1.3: A typical orange plantation close to the National Park at Aras Napal. 
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Chapter 2   

Mammals in The Anthropocene: Predicting Mammal 

Responses to Environmental Change. 

2.1  Introduction 

Addressing the current biodiversity crisis is a major priority for ecologists and 

conservation biologists, with species being lost at an unprecedented rate; around 1 million 

species are now considered threatened with extinction (IPBES 2019). Effective long-term 

conservation of tropical species is hindered by a lack of understanding of how species can 

adapt and persist in human-modified landscapes, and limited ability to predict how 

abundance, community composition, and ecological processes will be impacted by 

environmental changes (Gardner et al. 2009a). Improvements in methods for monitoring 

and modelling wildlife population dynamics will be instrumental in reaching targets for 

biodiversity conservation and climate change mitigation in the tropics. This review 

summarises the status of tropical mammals and current conservation methods, details 

existing knowledge of their responses to environmental change, and discusses how 

predictive models of species responses can be improved to increase their relevance and 

applicability to conservation efforts on the ground. 

The tropics, and tropical forests in particular, contain a high proportion of threatened 

species (Myers et al. 2000). Tropical forests contain more than two thirds of the world’s 

terrestrial species, despite covering less than 10% of the global land surface (Gaston 2000; 

Bradshaw et al. 2009). Tropical biodiversity hotspots are predicted to be especially 

vulnerable to environmental change since a large proportion of their biodiversity 

comprises rare, endemic species with limited geographic ranges (Malcom et al. 2006). A 

larger proportion of tropical species are also habitat or dietary specialists with narrower 

thermal niches than temperate species, making them less able to adapt to the significant 

environmental changes caused by either habitat loss and conversion or climate change 

(Trew and Maclean 2021). Despite their highly threatened status, tropical biodiversity 

hotspots are still relatively underrepresented in studies of climate change impacts and 

species responses to long term environmental change (de los Ríos et al. 2018); filling in 

this knowledge gap will enhance the success of management strategies for tropical 

ecosystems. 
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Mammals comprise a significant portion of tropical biomass and their removal from 

ecosystems will have long-term implications on ecosystem functioning, many of which 

are poorly understood (Galetti and Dirzo 2013). The most important roles mammals play 

in maintaining ecosystem health in the tropics can be summarised as: 1) grazing; 2) seed 

dispersal; 3) creation of open areas and pathways; 4) influencing population densities of 

competitor and prey species. Grazing by herbivores prevents dominance of more 

competitive, generalist plants, thereby enhancing understory plant species richness 

(Camargo-Sanabria et al. 2014). Wide-ranging herbivores, such as elephants, 

rhinoceroses, and primates, feed on a diverse array of plant species and range over large 

distances, making them highly effective seed dispersers (Campos-Arceiz and Blake 2011; 

Muñoz et al. 2017). Large-bodied mammals shape ground vegetation by stripping leaves 

and bark, breaking stems, small branches and even pushing over entire trees, creating 

trails which are used by other animals (Cristoffer and Peres 2003). Carnivores influence 

population dynamics and behaviour of their prey and limit overgrazing, thereby 

enhancing understorey diversity (e.g., the reintroduction of wolves to Yellowstone 

National Park resulted in reduced grazing by elk, creating a trophic cascade which 

benefitted many other species, including beavers, bison, and birds; Ripple and Beschta 

2012). Large-bodied mammals tend to exist at low densities and range over large 

distances, meaning that they require large tracts of intact, well-connected, high-quality 

habitat. Conservation plans focussing on large mammals will therefore benefit many other 

forest dwelling species by proxy. Successful long-term management of mammals and 

their habitat will ensure the continued stability and function of tropical forest ecosystems. 

Ecologists can provide empirical evidence from field data and predictive models to 

inform conservation planning and mitigation against threats such as habitat loss and 

climate change. Currently, most conservation work aims to address the most immediate 

threats to wild populations, such as habitat loss or unsustainable hunting, however it is 

becoming increasingly important to incorporate the effects of long-term climate change 

into conservation strategies (Sutherland et al. 2018). Modelling of global patterns in 

species biogeography is a common tool in planning conservation at large spatial scales, 

e.g., by identifying global hotspots of biodiversity, threatened species, and vulnerability 

to threats such as climate change (Myers et al. 2000; Mittermeier et al. 2011). While a 

great deal of work has focussed on improving the accuracy and power of predictive 

models in determining potential species responses to environmental changes, uptake of 

these improved models by conservation planners and practitioners remains limited 
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(Tulloch et al. 2016). Much of the climate change research to date has focussed on broad 

scale patterns in species range dynamics and does not provide information at local scales, 

which is most useful to planning conservation on the ground (Serra-Diaz and Franklin 

2019). Developing models which can be downscaled to provide information on ecological 

process at smaller scales, along with improving their accessibility to decision makers and 

conservation practitioners, will enable improved evidence-based conservation strategies 

that are safeguarded against future threats to populations (Stalenberg 2019).  

2.2  Tropical mammals: Current status and future threats 

Mammals are a highly threatened taxon. Around 22% of mammals are threatened 

with extinction according to their IUCN red list status (IUCN 2014). A particularly 

important region is South East Asia, which has the highest proportion of actually & 

potentially threatened species, and one of the highest rates of deforestation and habitat 

loss globally (Sodhi et al. 2010; Davidson et al. 2017). On average, terrestrial mammals 

are directly impacted by human activities across 51% of their range; this percentage is 

much higher for species found predominantly in tropical forests (Allan et al. 2019). Their 

already threatened status, combined with relatively slow reproductive rates and 

generation times makes them particularly vulnerable to climate change, and they are 

therefore a particular focus of conservation efforts (WWF 2018). Habitat loss and 

fragmentation are the most immediate and obvious threats to tropical forest mammals 

(Tilman et al. 2017); however, hunting and the wildlife trade, human-wildlife conflict, 

non-native species, and climate change also represent significant threats to tropical 

biodiversity.  Small population sizes, low genetic diversity, and a limited ability to move 

across human dominated landscapes will make it harder, if not impossible, for many 

threatened mammals to adapt to the growing threat of climate change, by limiting their 

ability to adapt or shift their ranges as climatic conditions change. 

Most mammal species declines are attributed to habitat loss from deforestation, which 

is proportionally highest in South East Asia, where an estimated 2.5 million hectares of 

rainforest is lost each year (Bradshaw et al. 2009). Rates of forest loss in tropical countries 

are accelerating with rapid industrialisation and expansion of commercial agriculture to 

fulfil global demand for products such as palm oil, rubber, coffee, and cocoa (Laurance 

2004; Curtis et al. 2018). Agricultural expansion often further increases other pressures 

on remaining habitat by increasing hunting, timber extraction, and introduction of non-
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native species within adjacent primary forests (Gardner et al. 2009a; Barlow et al. 2016; 

Mynářová et al. 2016; Burkett-Cadena and Vittor 2017; Clark et al. 2018). Disturbed or 

selectively logged forest varies significantly from primary forest in its physical habitat 

structure and species composition, with generally lower canopy height, reduced canopy 

connectivity, lower species richness, fewer specialist species, a lack of large emergent 

trees and more canopy gaps (Kakati et al. 2009; Hamard et al. 2010; Norris et al. 2010; 

Reiners et al. 2015). These physical changes fundamentally alter the biotic and abiotic 

environment within disturbed forests, causing notable changes in climatic conditions, 

species interactions and food availability under forest canopies (Scott et al. 2005; Dent 

and Wright 2009; Blonder et al. 2018). 

Habitat loss and climate change will act synergistically to profoundly impact tropical 

ecosystems and populations (Brodie 2016). The impacts of extensive fragmentation of 

primary tropical forests on forest-dwelling mammals are numerous. Firstly, as the ratio 

of edge to interior forest increases, edge effects in remaining forest fragments will become 

more pronounced, leading to notable changes in the biophysical conditions within forests 

(Arroyo-Rodríguez et al. 2017; Pfeifer et al. 2017). Secondly, fragmented landscapes 

have variable connectivity between remaining habitat patches, and mammals often have 

limited ability to move between patches (Senior et al. 2019). Loss of connectivity and 

anthropogenic disturbance have already significantly reduced average movement by 

mammals, resulting in reduced dispersal distances and limiting the ability of mammals to 

shift their ranges as climate change alters the area of climatically suitable habitat, i.e., 

their ‘climate space’ (Tucker et al. 2018). It is estimated that even after shifting their 

ranges as much as current forest cover allows, tropical species would still experience an 

average temperature increase of 0.77-2.6°C (Senior et al. 2019). Thirdly, mammals in 

fragmented habitats are more likely to enter the human-dominated matrix. Degraded and 

fragmented forests are resource-poor, and it is harder for large bodied, wide-ranging 

mammals to locate adequate resources to survive and avoid anthropogenic landscapes 

(Kinnaird et al. 2003). The resulting human-wildlife interactions can be costly; people 

experience loss of income, increased stress and uncertainty, injury or even death, while 

wildlife often suffer from higher parasite loads, inadequate nutrition, and increased 

mortality due to persecution or attempts to protect lands. Better understanding of species 

range dynamics in the context of both fragmentation and climate change will be 

instrumental in accurately forecasting species movements, vulnerability to climate 
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change, and risks of human-wildlife conflict; information which will be invaluable to 

planning appropriate mitigation measures. 

There is still a great deal of uncertainty in long-term predictions of species future 

population and range dynamics. Currently, very little is known about the capacity for 

mammals to adapt to climate change within their present geographic ranges. Accurate 

predictions of future climate space will depend on models which can incorporate the 

impacts of both land use and climate change on the distribution of suitable habitat, as well 

as species’ adaptive capacity within their current range. A better understanding of species-

environment relationships and how these will determine their responses to both habitat 

loss and climate change will enable scientists to make accurate and powerful predictive 

models which can provide empirical evidence to support conservation planning (Dawson 

et al. 2011). 

2.2.1  Conservation of tropical mammals 

Planning appropriate conservation measures requires detailed knowledge of species’ 

current and former ranges, as well as their ecological requirements and habitat 

preferences. Conservation strategies can generally be divided into three main categories: 

protection of remaining primary habitat, restoration of degraded or converted habitat and 

reintroduction or translocation of captive bred or wild individuals (Wilson et al. 2014). 

Conservation projects are generally stretched thin on the ground and struggling to cover 

large areas with limited resources, meaning that it is essential to allocate resources where 

they are most needed and where they can be utilised most effectively (Hannah and 

Lovejoy 2007). There is growing concern that current conservation measures will not be 

adequate to prevent extinction of threatened species over the coming century, as habitat 

loss continues, and the effects of climate change become more pronounced (Iwamura et 

al. 2013; Bonebrake et al. 2018). Conservation strategies can be improved by 

incorporating information on local scale threats and ecological processes, inclusion of 

local communities and socioeconomic issues, and a better understanding of species ranges 

to improve ecological representation in protected area networks (Daily et al. 2009). 

Recent advancements in remote sensing and modelling techniques are now able to 

provide much of the required information, however these methods require further 

development and standardisation to make them more widely applicable and accessible to 

practitioners (Choi et al. 2019; Stalenberg 2019). Good quality empirical data, coupled 
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with accurate and reliable predictions of species distributions and responses to change, 

helps to identify areas which should be prioritised for protection, are most suitable for 

restoration, and are most appropriate for reintroductions. 

2.2.1.1 Habitat protection 

Protection of remaining primary habitat is one of the most important goals of any 

conservation programme. This is commonly achieved through the designation of 

protected areas, and implementation of legal restrictions on potentially damaging 

activities such as forest clearance, resource extraction and hunting. Protected area 

networks will only be effective tools for long-term conservation provided they are 

representative of the target species current and future ranges (Pringle 2017). The current 

extent of protected areas is most often based on assumptions regarding species 

distributions and habitat preferences and are biased towards areas which are relatively 

cheap and easy to protect from development (Venter et al. 2014); however, it is not 

ecologically representative and is not considered adequate to protect threatened species 

from further declines or climate change (Pimm et al. 2014). A large proportion of the 

range of many threatened mammals falls outside of current protected area networks (e.g., 

around 75% of orangutans are observed outside of protected areas; Meijaard and Wich 

2007). In many cases, current protected area networks are predicted to become defunct as 

climate space shifts (Struebig et al. 2015; Oliver et al. 2016). Additionally, it is imperative 

that connectivity is established and maintained between protected areas to allow for 

dispersal and gene flow among metapopulations, as well as facilitate range shifts 

following climate change (Wiens et al. 2011; Fung et al. 2017; Saura et al. 2018). Species 

distribution models, and their predictive power in determining future species ranges, are 

instrumental in reviewing and updating protected area networks to ensure that they cover 

an adequate area to protect biodiversity under present conditions and following future 

environmental changes (Wiens et al. 2011; Struebig et al. 2015). 

Effective management and enforcement to prevent illegal activities which negatively 

impact biodiversity are also crucial to protected area effectiveness (Poor, Frimpong, et al. 

2019). Even species which are not directly exploited are often impacted by illegal 

activities such as logging or hunting, for example, snares used to catch Least Concern 

species, such as deer or wild pigs, also result in deaths of protected species; (Bisi et al. 

2019). Unfortunately, many protected areas lack sufficient funding or resources for 
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effective management and enforcement (Bruner et al. 2004). Some protected areas cover 

large expanses or geographic borders, making effective enforcement and management 

even more challenging (Hannah and Lovejoy 2007). Legislation alone is rarely adequate 

to prevent illegal exploitation in protected areas; conservationists must include the 

communities that live there in all aspects of management, from planning to enforcement 

(Yuliani et al. 2018). Quantitative data on the extent and nature of smallholder agriculture, 

especially on illegally cleared land, will help to identify the underlying causes of illegal 

forest clearance at the edge of protected areas. Protected areas will be essential in 

providing species with refuges from anthropogenic threats; nevertheless, they alone will 

not be sufficient to preserve biodiversity (Meijaard et al. 2012). 

2.2.1.2  Forest Restoration  

Restoration of degraded or cleared forest is increasingly utilised as a conservation 

tool, particularly in landscapes which have been cleared illegally. Anthropogenic and 

secondary forest landscapes now represent a significant portion of remaining forested 

areas (Dent and Wright 2009). Previously, these areas have been dismissed as having 

limited conservation value since they contain lower abundance and species richness than 

primary forests; however, there is growing evidence that these landscapes are still 

valuable for biodiversity, provided they are well managed (e.g., Marshall et al. 2006; 

Barlow et al. 2007; Bernard and Marshall 2020). While monoculture plantations support 

relatively low numbers of species compared with primary forest, selectively logged forest 

and agroforests still maintain high levels of biodiversity (Costantini et al. 2016). 

Agroforests can be beneficial for some threatened mammals (e.g., orangutans, Ancrenaz 

et al. 2015; and elephants, Nummelin 1990; Rood et al. 2010; Collins 2018). Integrated 

approaches, which combine community managed smallholder agriculture with protection 

or restoration of forested areas, have proven to be successful in maintaining endangered 

populations and biodiversity (Abram et al. 2015; Azhar et al. 2015). Increasing and 

maintaining connectivity in fragmented forests will enable wide ranging mammals to 

move between patches, thereby facilitating dispersal and gene flow. Restoration sites in 

agroforestry mosaics can also act as effective refuges helping to facilitate species range 

driven by climate change (Braidwood et al. 2018). When implementing wildlife corridors 

and reforestation it is essential to consider the habitat requirement of the target species, 

for example, arboreal species, such as orangutans and gibbons, will require well 

connected and taller canopies for locomotion and resting sites (McGregor et al. 2014; 
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Davies et al. 2017).  With proper planning and management, reforestation and improving 

connectivity in fragmented landscapes will be an effective medium- and long-term 

strategy in conserving mammals and promoting sustainable development in tropical 

countries. 

2.2.1.3  Reintroduction & translocation 

Reintroductions or translocations are common conservation interventions in cases 

where local extinctions occur, or where an environment becomes so degraded that it can 

no longer support a viable population. Conservation NGOs allocate a great deal of 

resources to the rescue, rehabilitation, and relocation of animals from unsuitable 

environments (Pyke and Szabo 2018). This action is necessary when individuals become 

stranded in human-dominated landscapes or in forest fragments which are too small to 

support them. Orangutans, for example, will remain within their home range, even once 

the forest has been cleared, while elephants frequently utilise agricultural areas, either to 

feed on crops or move between forest patches (Russon 2002; Abdullah et al. 2019). These 

animals often become problematic through crop foraging, destruction of property or 

aggressive behaviour towards people (Nyhus and Tilson 2004a). In some cases, NGOs 

can remove individuals before they are captured or killed, however, they often require 

costly and lengthy medical care for injuries, malnutrition, or disease and cannot always 

be successfully relocated (Campbell-Smith et al. 2012). Stranded individuals may also be 

taken and kept illegally as pets in unsuitable conditions. Confiscated individuals, 

especially those who have been captive since a young age, require a great deal of 

rehabilitation before they are able to survive in the wild (Wilson et al. 2014). Releasing 

ex-captive animals can be problematic in areas with existing wild populations, especially 

in species with complex social structures, such as primates or elephants (Yeager 1997; 

Russon 2009). Safeguarding reintroduced populations against future threats requires 

reliable forecasting of future land use and climate change and their potential impacts, e.g., 

an area which is likely to become climatically unsuitable in the future is not a good 

reintroduction site. Translocation is a costly conservation strategy, which does not 

address the underlying causes of habitat loss and illegal hunting and is therefore 

ineffective without more long-term conservation actions to preserve and restore suitable 

habitat and allow populations to manage themselves (Wilson et al. 2014). Knowledge of 

past species distributions and habitat suitability assessments are vital in identifying 
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potential reintroduction sites, and real-time monitoring is essential to determine the 

success and long-term viability of reintroduced populations. 

2.3  Climate change & tropical mammals 

The impacts of climate change on mammals are going to become more pronounced 

over the coming century, and it is now a major focus of conservation research is to predict 

species’ responses to future climate change in order to develop and improve long-term 

conservation strategies. Around 7.9% of mammal species are predicted to become extinct 

as a direct result of climate change (Urban 2015), while over 80% are expected to 

experience significant range contractions (Pacifici et al. 2015). Based on existing 

literature, around 47% of terrestrial non-flying mammals have already experienced 

negative impacts of climate change in at least part of their range, and this proportion will 

most likely increase with further climate change (Pacifici et al. 2017).  Climate is a major 

factor in phenology, disease dynamics, community composition, behaviour, habitat use 

and species biogeography. Species must either shift their range to remain in climatically 

suitable areas, adapt to climate change in situ, or become extinct (Pecl et al. 2017). 

Climate change responses vary by species, with some benefitting from climate change, 

while others suffer negative impacts. Conservation planning frequently assumes that 

species distributions and habitat preferences will remain stationary, however, over the 

next century, accelerating climate change will result in dynamic changes to ecosystems 

at the community, species, and individual level (Hodgson et al. 2009). Differing responses 

of individual species makes predicting responses to environmental change challenging 

and identifying the most threatened species will require development of predictive models 

that can fully incorporate all factors that influence population dynamics and survival, 

including climatic tolerance and adaptive capacity of species, and other anthropogenic 

threats. 

The rate and extent of anthropogenic climate change will fall outside of the historic 

or natural range of variability, meaning that mass extinctions are probable (Hodgson et 

al. 2009). Much of the tropics are predicted to experience a temperature increase as much 

as 50% higher than the global average (Graham et al. 2016). The likelihood and severity 

of extreme weather events, including tropical cyclones, flooding and drought is predicted 

to increase. As well as leading to direct mortality (e.g., the Bramble Cay melonys is the 

first documented case of a mammalian extinction directly linked to climate change; 
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Waller et al., 2017), climate change will alter vegetation composition and structure in 

forests, thereby influencing canopy processes such as evapotranspiration, leaf turnover, 

and plant growth and mortality, leading to changes in climate conditions and the 

availability of food, shade, and predation cover (O’Grady et al. 2011). Climate change 

impacts are predicted to be mostly negative for mammal populations and will compound 

existing threats (Trisurat et al. 2014). For example, the potential cultivation zone for oil 

palm in South East Asia is projected to expand notably with climate change, and the 

projected resulting forest loss is 3-4 times higher than projections which do not consider 

climate change, thereby potentially reducing the range of tropical mammals by 47-67% 

(Brodie 2016). Climate also strongly influences disease dynamics, with increased 

temperatures being linked to increased transmission and prevalence of internal parasites 

(Lv et al. 2011; Haider et al. 2017). Species which are already threatened will face further 

pressure from climate change, which will likely intensify other threats. Understanding the 

impacts of climate change and how they will interact with existing threats to wildlife 

populations is therefore essential to planning appropriate mitigation. 

Most medium to large-bodied mammals in the tropics will be negatively impacted 

due to their biological traits and ecological requirements (Schloss et al. 2012; Pacifici et 

al. 2017). Species in the tropics are assumed to be less able to adapt to climate change in 

situ, since they are used to a relatively stable climate and likely have a much narrower 

fundamental niche than temperate species, making them especially vulnerable to climate 

change (Urban et al. 2012; Korstjens and Hillyer 2016). Additionally, tropical species 

already exist much closer to their maximum tolerance thresholds than temperate species 

(Deutsch et al. 2008). The nonlinear relationship between temperature and metabolic rates 

means that species in already warm climates will experience greater metabolic impacts 

and thermal stress with every degree of warming compared to those in cooler regions 

(Dillon et al. 2010; Rezende and Bozinovic 2019). Due to their limited adaptive capacity, 

notable range contractions are predicted for most mammals in the Tropics (Schloss et al. 

2012). 

Larger bodied animals tend to require larger areas of intact habitat, have complex 

nutritional requirements, lower fecundity, and slower generation times (Lister and Stuart 

2008). This results in slower recovery from population losses, e.g., from hunting or 

extreme weather events such as drought or forest fires and limits their ability to adapt to 

changing climates by shifting their phenology or geographic range (Boutin and Lane 
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2014). Around 30% of terrestrial mammals have potential spread rates which are lower 

than the global mean velocity of climate change, meaning that they will be unable to track 

climate change (Santini et al. 2016). In many cases the observed rate of phenological 

change is mismatched between mammals and plants, with many mammals unlikely to be 

able to shift their phenology as quickly as their food species, thereby reducing fitness in 

species which rely on seasonally available resources and synchronisation with plant 

phenology (Boutin and Lane 2014; Korstjens and Hillyer 2016). Range shifts have been 

observed in other vertebrate taxa (mainly birds; Thomas and Lennon 1999; Chen et al. 

2011), however there is limited direct evidence of climate driven range shifts in mammals, 

particularly in tropical lowlands (Lenoir and Svenning 2015). Even where climate space 

is predicted to expand mammals will be limited in their ability to shift their ranges at a 

pace in keeping with the velocity of climate change (Santini et al. 2016; Senior et al. 

2019). 

Differing responses of individual species to climate change will result in novel 

species assemblages and interspecific interactions with major implications for ecosystem 

functioning and species fitness (Bonebrake et al. 2018). For example, increased 

temperatures in forest canopies are predicted to increase epiphyte mortality, with knock-

on effects for canopy structure and species which utilise epiphytes (Nadkarni and Solano 

2002). Species specific differences in dispersal ability and sensitivity to environmental 

change will result in novel community assemblages, where previously allopatric species 

are brought together while sympatric species are separated (Urban et al. 2012). 

Additionally, climate change results in behavioural changes, for example shifts in 

arboreal behaviour in forests (Scheffers et al. 2013), or shifts from diurnal to nocturnal 

behaviour (Levy et al. 2019), which will have implications for community interactions. 

When determining how communities will respond to climate change, it is also important 

to consider species traits, local climate and ecological pressures (Lenoir and Svenning 

2015). 

Consistent global estimates of species extinction risk and distributions under future 

climate change are needed to highlight the most vulnerable species and areas which 

should be prioritised for protection and mitigation strategies (Urban 2015). Recently, 

much research has focussed on climate change impacts on species biogeography, 

however, there still remain significant biases in the existing literature, with tropical 

systems and endotherms both being vastly underrepresented (Urban 2015; Feeley et al. 



   

 

41 

 

2017). There is little information on the effects of climate change on community 

composition, species interactions and other ecological processes which will affect species 

survival (Urban et al. 2012; Cavaleri et al. 2015). Most work to date also does not account 

for adaptations in physiological or behavioural thermoregulation to increased 

temperatures (Reside et al. 2018).  

2.3.1  Predicting species ranges 

Species distribution models, or SDMs, are most often used to determine species-

environment relationships and project these to predict a species’ future range following 

climate change.  SDMs fall into two main categories: correlative models (or bioclimate 

envelope models) and mechanistic models. Correlative distribution models incorporate 

current or past observations of environmental conditions and species presence/absence or 

abundance data to infer habitat requirements and estimate the maximum and minimum 

extremes at which a species can survive in a given habitat. Mechanistic models, on the 

other hand, are process-based models which use information about a species’ 

ecophysiology to predict the environmental conditions under which they can survive 

(Kearney and Porter 2009). Species biogeography will undergo major shifts as the area 

of climatically suitable land (or climate space) available to species changes. Generally, 

species are expected to alter their habitat and microclimate preferences and shift into 

higher latitudes and elevations, although they will be limited in their ability to do this by 

habitat loss and dispersal limitations. To date, most published models predicting mammal 

distributions under climate change have focussed on temperate regions, however, it is 

likely that tropical mammals will be disproportionally affected by climate change, in part 

because many tropical mammals are reliant on forested habitats. The ranges of forest 

dwelling species are limited not just by their own thermal tolerances, but by the 

distribution of forest cover. When considered separately, deforestation has a greater 

impact on mammal ranges than climate change, however when both drivers are combined, 

the effect is much more severe (Trisurat et al. 2014). Based on climate change projections 

alone, 11-36% of mammal species in Borneo are predicted to lose at least 30% of their 

range by 2080, however when deforestation is also considered this proportion increases 

to 30-49% (Struebig et al. 2015). 

Increasingly, more work has focussed on investigating the underlying mechanisms 

behind species-environment relationships in order to identify environmental factors 
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influencing habitat suitability and species survival. Time budget models can be used to 

incorporate behavioural responses to climate and other factors, such as human disturbance 

and resource availability into assessments of habitat suitability, extinction risk, animal 

movement, dispersal capacity and distribution models (e.g., Lehmann et al. 2008; 

Korstjens et al. 2010; 2018; Carne et al. 2012). Individual- or agent-based models can 

also be used to investigate how species might alter their behaviour based on climate and 

can incorporate behavioural thermoregulation strategies (Bryson et al. 2007). These 

approaches can be used to determine key factors which impact survival, rather than 

simply identifying areas as suitable or unsuitable (Carne et al. 2012). Dynamic energy 

budget theory can be used to take this one step further (e.g., NicheMapR; Kearney and 

Porter 2017a), by also incorporating physiological responses to climate, and allowing the 

inclusion of thermoregulatory responses, such as sweating, panting, or seeking shade, 

which might allow species to tolerate extremes in temperature (Porter et al. 2010). 

2.3.2  Limitations of existing approaches 

To date, most climate change research is focussed on species range dynamics, relying 

on correlating current ranges with coarse-scale environmental layers, and fails to 

adequately account for other factors influencing species biogeography (Ehrlén and Morris 

2015; Reside et al. 2018). Models predicting species responses to climate change perform 

much better when considering other factors which are important in determining species 

distributions alongside climate (e.g., human activities, species traits and interspecific 

interactions), however most published studies still consider the effects of climate and land 

use separately. This is a particular issue for tropical species and forest specialists, which 

are particularly threatened by habitat loss and fragmentation due to deforestation 

(Davidson et al. 2017). Anthropogenic barriers and slow dispersal velocity will prevent 

species from shifting their ranges; however, these are often not included in climate 

envelope models (Hellmann et al. 2012). Climate change will trigger a shift in the area 

occupied by forest biomes, and this effect will be exacerbated by changes in human land 

use (Noss 2001). The area currently occupied by tropical forest biomes is predicted to be 

55-80% less by 2100 (Asner et al. 2010). Relying on range predictions from correlative 

models alone can lead to over- or under-estimation of species extinction risk, resulting in 

inadequate conservation measures (Serra-Diaz and Franklin 2019). A holistic approach, 

incorporating mechanistic and biophysical models, and knowledge of ecological 
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requirements and the effects of human disturbance, is required to develop and adapt the 

most effective conservation measures. 

Conclusions regarding climate change vulnerability are also often based on over-

simplified assumptions, which do not factor in climate variability at finer spatial and 

temporal scales (Trew and Maclean 2021). While it is true that macroclimate conditions 

in tropical forests are, on average, less variable, with narrower extremes than temperate 

zones, there are still notable fluctuations in microclimate across time and space. Mammal 

survival will be determined by the duration and frequency of their exposure to extreme 

temperatures, rather than directly by increases in macroclimate averages (Enriquez-

Urzelai et al. 2020). Most mammals will be able to tolerate exposure to sub-optimal 

conditions at least temporarily and can utilise microclimate variations to limit their 

exposure, for example by shifting their activities to a different time of day, or by utilising 

cooler parts of the forest (Jucker et al. 2018). Additionally, ambient air temperature is not 

the only important environmental variable in determining survival at a given location. 

Other variables, such as solar radiation, are often more important for mammal 

thermoregulation, however these variables are not adequately accounted for in most 

predictive models. Not accounting for fine-scale climate variation can result in over-

estimation of extinction risk and in areas which may be instrumental to species persistence 

being overlooked. 

Distribution models are limited by the quality of input used to parameterise them 

(Milling et al. 2018). Correlative approaches use climate information from large scale 

global datasets, and fine scale climate variation is not considered when determining future 

habitat suitability. Currently available climate data tend to be unrepresentative of 

conditions below forest canopies, yet this is rarely accounted for in distribution models 

(Bramer et al. 2018). These data are usually interpolated from meteorological weather 

stations, which are spread across relatively large spatial scales and are designed to limit 

the effect of local climate influences, such as vegetation or topography (Frey, Hadley, 

and Betts 2016). Weather stations also have relatively poor coverage in most tropical 

countries (World Meteorological Organization 2020). This mismatch between coarse-

grained macroclimate datasets and the scale at which organisms experience their 

environment limits the performance and applicability of species distribution models at 

smaller spatial scales (Fuller et al. 2010), resulting in inaccurate predictions of species 

ranges and extinction risk, and a potential misallocation of resources. Ignoring variations 
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in local climate will result in areas of suitable habitat being missed, and therefore not 

prioritised for protection. Accurate prediction of species responses to future change in 

tropical forest requires an understanding of micro-climate variation within the forest 

canopy, and SDMs for tropical species must incorporate fine-scale variation to effectively 

predict responses to future environmental change. 

2.3.3  Adaptations to climate change 

The underlying mechanisms of species responses to climate change and range shifts 

are poorly understood. Phenotypic changes in physiology and behaviour will be the first 

response of individual organisms to climate change, before macroevolutionary changes 

or range shifts occur (Nogués-Bravo et al. 2018). The role of thermoregulatory responses 

in facilitating species survival and determining their thermal tolerance thresholds are 

relatively understudied in climate change predictions (Fuller et al. 2010; Stalenberg 

2019). There are very few empirical data available on phenotypic plasticity or the 

energetic costs associated with climate change in wild mammals (Stalenberg 2019). 

Incorporating phenotypic plasticity in thermoregulation into models predicting species 

responses will improve their power and ability to identify key mechanisms driving 

extinction risk from climate change. 

Mammals can cope, at least temporarily, with temperature extremes through 

physiological responses, such as sweating and panting, however these can be 

energetically costly, thereby limiting their benefit in allowing animals to cope longer-

term. Physiological adaptations which can reduce the costs of thermoregulation are 

relatively unknown for mammals but have been observed in some species. Some primates 

have lower basal metabolic rates to cope with unpredictable or seasonal fluctuations in 

temperature and resource availability (Fuller et al. 2010; Turner 2020). Heterothermy, 

i.e., allowing a wider range of maximum and minimum body temperatures in warmer 

conditions, has been observed in possums and Arabian Oryx (Mitchell et al. 2002; Hetem 

et al. 2012). Selective brain cooling is another physiological adaptation which has been 

observed in even-toed ungulates and some large cats which may play a role in regulating 

body temperature and preventing water loss from evaporative cooling in arid 

environments (Schino and Troisi 1990; McFarland et al. 2015).  

Mammals can also control their exposure to extreme temperatures, or cope with the 

increased metabolic demands of thermoregulation in higher temperatures, by altering 
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their behaviour. Some mammals have been observed altering their daily activity patterns 

and switching to more nocturnal patterns of behaviour to allow for reduced activity during 

hotter parts of the day (Levy et al. 2019).  Other species have altered their social 

behaviours, vervet monkeys and long-tailed macaques, for example, change their 

preference for huddling partners in cooler temperatures, becoming less choosy when 

temperatures become dangerously low (Kelley et al. 2016); lemurs also utilise sunning 

and huddling behaviours to keep warm during low temperatures (Eppley et al. 2016). 

Habitat use and sleeping site selection have also been noted to vary with temperature. 

Bamboo lemurs were observed to sleep on the ground either in burrows or open sites, 

with site choice being more strongly linked to ambient temperatures than predation or 

parasite risk (Evans 2009). Microbats in Australia demonstrated strong preferences for 

urban bat boxes based on their microclimate properties rather than the presence of 

parasites (Takemoto 2004). Terrestrial behaviour in African great apes is linked to 

climate, with terrestrial behaviour increasing during the dry season when temperatures in 

the upper canopy are higher (Valencia et al. 2016; Harrison and Noss 2017). 

Mammals in tropical forests may also utilise microclimate refuges (areas within forest 

canopies which are offset and/or decoupled from macroclimate, which are likely to be 

less affected by climate change and often have fewer extreme fluctuations in temperature) 

to avoid suboptimal extremes. Tropical forest refugia have been instrumental in 

facilitating species survival during past climate change events, in part contributing to their 

high levels of biodiversity and endemic specialists (Suggitt et al. 2018; Enriquez-Urzelai 

et al. 2020). The availability of different microclimates in heterogenous habitats 

significantly reduces predicted extinction risks from contemporary climate change in 

some species, however this requires testing in more taxa (Morelli et al. 2016). There are 

currently no standard guidelines for identification and management of potential refuges 

(Hylander et al. 2015). Further information is needed on the ability of species to tolerate 

temperature changes within their current range, and the degree to which microclimates in 

forests will be decoupled from macroclimate changes in the future (Gillingham et al. 

2012). Identifying potential refuges for species will identify locations and key 

microhabitats which should be prioritised for protection to ensure the long-term survival 

of species under future climate change. 
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2.4  Microclimates and their relevance to climate change responses 

The spatial scale of climate data used significantly impacts the outcome of species 

distribution models predicting responses to climate change (Osborne et al. 2004). Climate 

change projections tend to be based on macroclimate data at spatial resolutions of 1km2 

or larger. Organisms will experience climate at much smaller resolutions than this. There 

are substantial variations within each grid square of these climate data layers. 

Temperatures at finer spatial scales vary by around 9°C on average (Pincebourde et al. 

2016). Broadly defined, microclimate refers to fine-scale variations in climate which are 

decoupled from the background atmosphere or macroclimate (Bramer et al. 2018). 

Organisms in heterogenous environments with high levels of spatial and temporal 

variation in microclimate will therefore have different levels of exposure and 

vulnerability to extreme temperatures than what is predicted by coarse-scale models. 

(Zellweger et al. 2019; Kearney et al. 2020) 

It is widely known that elevation, topography, and vegetation can strongly influence 

climate, hence weather stations tend to be placed away from vegetation and topographical 

features. The effects of topography and elevation are fairly well documented, however 

there is limited empirical data available on the relationship between vegetative 

characteristics and climate at finer spatial scales (Lembrechts et al. 2019). Vegetation 

mainly affects climate in tropical regions through increased evapotranspiration and 

increased latent heat flux between the Earth’s surface and atmosphere, thereby cooling 

surface temperatures and increasing humidity and precipitation (Davis et al. 2019). The 

extent of cooling exerted by vegetation is related to moisture availability and seasonality 

of precipitation, with the effect being greatest during dry seasons when water availability 

is lowest (Frey, Hadley, Johnson, et al. 2016a; de Frenne et al. 2019).  A better 

understanding of the relationship between vegetation, topography and fine-scale 

microclimate will enable modelling of the microclimate across broad spatiotemporal 

extents and at high resolutions (Nakamura et al. 2017). Collecting detailed data on 

topography, vegetation and climate over large spatial extents is not feasible for most 

ecological studies, however, developments in remote sensing and modelling methods 

have made it possible to generate accurate predictions of microclimate conditions for 

most terrestrial locations on Earth (Zellweger et al. 2019; Kearney et al. 2020). These 

datasets can now be incorporated into SDMs to improve their performance and reliability 

in predicting species responses to climate change.  
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2.4.1  Microclimate variability in forests 

Tropical forests have a complex and diverse physical vegetation structure, coupled 

with often rugged terrains, leading to highly variable microclimates. Forests have been 

shown to have lower average and maximum temperatures, and higher minimum 

temperatures than non-forested areas (Senior et al. 2018). This decoupling effect is greater 

at higher magnitudes of macroclimate temperature change (de Frenne et al. 2019). At 

finer scales, forest canopies affect the amount of solar radiation reaching the ground, 

limiting wind exposure, intercepting precipitation, and retaining humidity; this results in 

a complex set of interactions between physical vegetation characteristics (e.g., tree height, 

canopy density, large emergent trees, presence of epiphytes and lianas) and microclimate 

(Senior et al. 2018). Little is known about microclimate processes under forest canopies, 

and particularly in secondary or selectively logged forests (Scheffers et al. 2014). 

Generally, it is assumed that degradation and fragmentation will degrade the buffering 

effect of forests and reduce the availability of cooler microclimate refuges whilst 

increasing variability and extremes, however there is some evidence suggesting that 

secondary forests maintain similar climatic conditions and availability of refuges to 

primary forests (Scheffers et al. 2013).  

2.4.2  Vertical microclimate gradients in forests 

The relationship between latitudinal and altitudinal climate gradients and biodiversity 

are well known, however finer scale gradients exist which are poorly known. Within 

forests with complex strata, vertical gradients in microclimate can be much steeper than 

those across elevation and latitude. For example, observed temperature change in the 20m 

between the understorey and upper canopy in forest in the Phillipines was much greater 

than the observed change over a 200m elevation gradient (Scheffers et al. 2014). Arboreal 

species may be able to adapt to climate change through vertical shifts in the canopy or 

using buffered microhabitats as refuges from climatic extremes, for example, rainforest 

frog assemblages become increasingly dominated by arboreal species with increasing 

altitude (Scheffers et al. 2013). As the climate becomes warmer less tolerant species will 

likely be pushed towards the cooler and wetter conditions on the ground and this will 

have major implications for species interactions and community dynamics 

(Vanwalleghem and Meentemeyer 2009).  Understanding the implications of this in terms 

of long-term species survival and adaptation to climate change requires further long-term 

monitoring of species behaviour and vertical changes in structure and microclimate. A 
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great deal of forest ecology and science is biased towards the understorey, and there is 

still a major knowledge gap on upper canopy processes and biodiversity. 

2.4.3  Thermal buffering in forests 

Microhabitats within forests can be resilient to extreme variations in macro-scale 

climate, and species can exploit this to avoid climatic extremes and persist following 

climate change (Suggitt et al. 2018). Microhabitats were up to 3.9°C cooler on average 

and had reduced maximum temperatures of up to 3.5°C compared with macro-scale 

ambient temperatures, based on 36 published studies across the tropics; this buffering 

effect is strongest in the tropical lowlands where temperature is most variable (Scheffers 

et al. 2014). It is known that forest structure can significantly affect understorey climate, 

but the nature of this relationship is not understood well enough to enable accurate 

prediction of spatial and temporal microclimate variation across heterogenous forest 

landscapes (Bramer et al. 2018). Combining recent methodological developments, such 

as airborne LiDAR, with ground microclimate sensors enables robust assessment of how 

topography and vegetative structure influences climate at finer spatial scales. 

Additionally, the key mechanisms determining population tolerances to climate change 

are poorly understood, and for most species it is not known how well they will be able to 

adapt in situ or shift their range under climate change (Nogués-Bravo et al. 2018). 

Accurately predicting future extinction risk and species responses to environmental 

change requires combining fine-scale physical models of the environment with robust 

models of species responses to climate change.  

Macroclimate buffering in tropical forests will be impacted by the effects of 

disturbance and fragmentation. Reductions in canopy cover result in increased 

penetration of solar radiation and reduced evaporative water loss, which leads to hotter, 

drier average conditions, with more extreme diurnal variations (Stevens et al. 2015; 

Gaudio et al. 2017). Disturbed forests in Malaysian Borneo have more variable and 

warmer microclimates on average compared with primary forest, with maximum 

temperatures in disturbed forest exceeding those recorded at the nearest weather station 

by 5 – 10°C (Blonder et al. 2018). Another study in Borneo recorded temperatures in 

logged and plantation forests that were 2.5 – 6.5°C higher than in primary forests 

(Hardwick et al. 2015). As forests become more fragmented, edge effects will become 

more pronounced, leading to further changes in forest microclimates (Broadbent et al. 
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2008). Approximately 70% of global forested areas are now found within 1km of a forest 

edge (Haddad et al. 2015), therefore data on the direction and extent of microclimate 

changes brought on by edge effects in forests, especially secondary forests, is urgently 

needed. 

2.5  Measuring & modelling microclimates 

Recent advances have been made in studying microclimates and incorporating these 

data into ecological studies. There are now publicly available datasets of fine scale 

topography and climate (e.g., Microclim, Maclean et al. 2019), however the accuracy and 

applicability of these in certain regions, such as the tropics, are insufficiently tested. The 

increasing availability of automated and remote sensing equipment has made it more 

viable to collect microclimate data across larger temporal and spatial scales. Microclimate 

can be measured directly in situ, inferred from remote sensing data, interpolated between 

weather stations or sensors, downscaled from macroclimate measurements, or predicted 

using process-based or mechanistic models. Appropriate methods to measure 

microclimate will depend on the study organism and the temporal and spatial scale of the 

study (Bramer et al. 2018). More information is needed on the performance of 

microclimate models in different environments, including heterogenous tropical forest 

canopies. 

2.5.1  Direct measurements & remote sensing 

Automated sensors which can be left to autonomously record and store data on 

microclimatic conditions are now readily available, making it possible to measure 

microclimate at high spatial and temporal resolutions. There are now a wide range of 

sensors which can record multiple microclimate variables, and these all differ in their ease 

of use, accuracy, and price range. The most appropriate sensors and survey design will 

depend on the variable of interest, the process or organism being studied and resource 

constraints of the project (Bramer et al. 2018). Although automated sensors are relatively 

cheap per unit, it is still costly to deploy them over a large area or for long periods of 

time, meaning that most studies are carried out over short periods and/or small geographic 

extents (Zellweger et al. 2019). Due to the wide range of equipment available and the fact 

that microclimate measurements in ecological studies are relatively new, the methods 

employed are varied and usually specific to a site or case study, and it is therefore difficult 

to scale up measurements to make broader conclusions about microclimate patterns 
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(Bramer et al. 2018).  In order to understand broader scale patterns, in situ measurements 

should be carried out over the long term or combined with historical weather station data. 

Remote sensing can be used to directly measure climate, either with thermal satellite 

imagery or portable infra-red cameras attached to unmanned aerial vehicles. High 

resolution satellite data is now available for most locations, while drone technology is 

rapidly becoming more accessible and less expensive (e.g., Koh and Wich 2012). The 

advantage of remotely sensed data over gridded climate data is that each pixel in a layer 

represents a direct measurement, rather than being interpolated from weather station data 

(Lembrechts et al. 2019). There are limitations to this method; most measurements have 

limited spatial or temporal extents, and satellite data is limited by cloud cover, especially 

in tropical rainforests. Remote sensing data often do not capture climate variation at very 

fine scales which are most relevant to organisms’ responses to climate change (Choi et 

al. 2019).  

2.5.2  Modelling microclimate 

The cost and effort to set up and maintain sensor networks to directly measure 

microclimate across the large spatial and temporal extents required for species 

distribution modelling are beyond the scope of most studies. Instead, modelling 

approaches can be used to generate microclimate input data using a combination of field 

data and statistical models to predict microclimate. Previous microclimate models have 

either been indirectly downscaled from macroclimate data (e.g., Flint and Flint 2012; 

Dingman et al. 2013; Meineri and Hylander 2017), or directly interpolated from field 

measurements (e.g.,Vanwalleghem and Meentemeyer 2009c; Ashcroft and Gollan 2011; 

Slavich et al. 2014; Frey et al. 2016b). Microclimate models have the advantage of being 

able to provide long term and high-resolution climate predictions across a large area, 

however they still require good quality datasets for predictor variables which can 

accurately capture microclimate variation, such as topography or vegetation, and are also 

limited by the extent and quality of input data. Mechanistic models (e.g., Kearney, Isaac, 

et al. 2014; Kearney and Porter 2017; Maclean et al. 2019; Kearney et al. 2020) downscale 

or interpolate climate data based on physical processes, enabling them to incorporate 

effects of fine-scale topography, vegetation, and substrate on climate. Such mechanistic 

models have the potential to enable accurate predictions of microclimate conditions for 

any terrestrial location globally.  
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2.6  Using microclimates in predicting species responses to climate 

change 

To date, relatively few species distribution models have incorporated microclimate 

data, although those which do have shown a marked improvement in their ability to 

accurately map species ranges compared with those using macroclimate data (e.g., plant 

species in Northern Scandinavia, Lembrechts et al. 2019; ground beetles in the UK, 

Gillingham et al. 2012; plant species in Australia, Ashcroft et al 2008). Higher resolution 

climate data will be able to capture microclimate refuges which might otherwise be 

missed if only using macroclimate (Maclean et al. 2015; Briscoe et al. 2016). Using data 

at finer spatio-temporal resolutions also allows for better forecasting of the effects of 

temporary extremes in weather, such as heatwaves or drought, which may not be captured 

by macroclimate datasets (Briscoe et al. 2016). Using microclimate predictions can also 

help to identify and incorporate other factors, besides temperature, that might limit 

survival, such as water and energy balance (e.g., Kearney et al. 2013; 2016; Mathewson 

et al. 2017; Fitzpatrick et al. 2019). 

2.7  Summary and conclusions 

Forests will provide species with temporary refuges from climate extremes, 

potentially facilitating persistence with climate change, and identifying these refuges is a 

priority in conservation biology. The true extent of their refugial capacity is poorly 

known. More data is needed to test the direction and extent of the decoupling between 

microclimate conditions in forests and background macroclimate, and to understand how 

this effect will be affected as the macroclimate changes. The extent to which refuges can 

buffer against extreme weather events, such as heatwaves, should also be explored. 

Identifying potential refuges for protection is a priority in conservation biology. As well 

as identifying existing refuges, it will also be beneficial to identify important 

characteristics of refuges (e.g., canopy height, connectivity, or structural complexity) to 

provide guidance for restoration and reforestation. 

Microclimate research can provide valuable evidence to support conservation 

planning. Direct measurements of microclimate are valuable in providing location-

specific insight into species habitat preferences, providing evidence to support planning 

of restoration sites, wildlife corridors and agroforests (Lembrechts et al. 2019). 

Microclimate models can provide data over large geographic and temporal extents using 
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freely available datasets on topography, and without direct microclimate measurements. 

Microclimate models do however require testing in a wider variety of locations and 

environments before they can be more widely implemented. Improvements in availability 

and accessibility of autonomous monitoring equipment and mechanistic models of 

microclimate is increasing their use in ecological research. 

More work is required to encourage the uptake of SDM outputs into long term 

conservation action. This includes further development of models which can be adapted 

to the species, population, or location of interest and tailored to include impacts of other 

relevant local threats, e.g., hunting pressure, logging, agriculture etc. (Tulloch et al. 2016). 

The development of more sophisticated and complex distribution models is beneficial to 

improving understanding of processes which shape species biogeography at large scales; 

however, they do not necessarily help to inform conservation planning. Correlative 

models can be overly simplistic and do not work so well at smaller spatial scales, limiting 

their use in making management decisions at the local scale. Mechanistic approaches can 

overcome this, but many models require detailed input data on species life histories and 

physiology which is often not available for rare species, leading to high levels of 

uncertainty in predictions (Kearney et al. 2016). The complexity of mechanistic and 

biophysical models can also be off-putting for practitioners who do not have in-depth 

knowledge of bioenergetics and ecophysiology (Stalenberg 2019). Advances in remote 

sensing technologies and a better understanding of the relationship between species basic 

traits and climate can help to further improve models, while further development of 

mechanistic models to make them more widely applicable and accessible will ensure that 

conservation programmes are able to benefit from advances in modelling species 

distributions. 
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Chapter 3   

Forest edge effects on microclimate and mammal activity in 

Sikundur, Sumatra. 

Abstract 

Tropical forests are becoming increasingly fragmented, and as deforestation 

continues the proportion of edge habitat in forest-dwelling tropical mammal ranges will 

increase. Abiotic conditions at forest edges are influenced by the adjacent open human-

dominated agricultural areas, often leading to warmer and drier average conditions, and 

more extreme fluctuations in temperature; these effects can be evident as much as 2km 

into forest fragments. It is generally assumed that these changes will have negative 

impacts on forest-dwelling mammals, however there are few empirical studies which 

explicitly test this. This chapter investigates variations in microclimate and mammal 

occurrence in relation to forest structure and edge effects using remote monitoring data. 

Automated sensors were used to record temperature and light levels from locations at 

varying distances from the forest edge, moving from adjacent smallholder orange 

plantations to 2km into the interior. Forest structure was recorded within 25 x 25m plots 

at the same locations. The number of detection events by remote camera traps was used 

as a proxy to monitor occurrence of terrestrial mammals. Daily mean and maximum 

temperatures were significantly higher at the forest edge compared to the interior, with 

this effect persisting up to 1km into the forest. Mammal occurrence and diversity was 

notably lower close to the forest edge. Responses to forest edges differed between 

mammal orders, with some species preferring the edge habitat and others avoiding the 

edge together. These results suggest that abiotic changes in forests brought on by edge 

effects have negative impacts on mammals, but the extent of this effect varies by species.  
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3.1 Introduction 

Forest dwelling species in the tropics must adapt to increasingly fragmented and 

human-dominated landscapes. It is estimated that around 70% of global forested areas 

now lie within 1km of a forest edge (Haddad et al. 2015), and this proportion is likely to 

increase with continued human population growth and rising demand for natural 

resources and agricultural land. Protected areas and forest reserves often result in ‘hard’ 

edges between forest patches and the surrounding human-dominated matrix, i.e., 

farmland, road, or clear-felled areas (Ries et al. 2004). These often-contrasting 

environments exerting influence on each other creates a gradient in abiotic conditions at 

the boundary (Bolt et al. 2018). Loss of large trees and an increase in vegetation turnover 

at the boundary results in increased penetration of solar radiation, increased desiccation, 

warmer average temperatures, and higher temperature variability at forest edges; this 

effect has been observed up to 1km into forest patches (Laurance 2004; Pohlman et al. 

2007; Campbell et al. 2017), although few studies to date have investigated edge effects 

along continuous gradients, or directly linked abiotic changes to mammal habitat use. 

Edges alter habitat quality in remaining forest patches and reduce functional 

connectivity between them by limiting animal movement and dispersal, thereby 

impacting community composition, population dynamics and species persistence in 

fragmented environments (Zurita et al. 2012). Fragmented secondary forests typically 

have lower canopy cover and connectivity, and greater structural heterogeneity with more 

gaps than primary forests, meaning that the interior of fragments is less sheltered from 

external macroclimate influences, and edge effects are therefore likely to extend further 

into the forest interior (Ewers and Banks-Leite 2013), although there is little information 

available to demonstrate this. Furthermore, changes in forest microclimate will 

potentially impact on their ability to shelter animals from the effects of recent climate 

change, however very few studies to date have considered the synergistic impacts of 

habitat fragmentation and climate change on the behaviour and survival of forest-

dwelling species. 

Edge effects change both the biotic and abiotic conditions within forest fragments, 

thereby altering forest microclimates and potentially impacting on the capacity of forests 

to provide microclimate refuges for vulnerable species under future climate change 

(Gardner et al. 2009b). Identifying these refuges is a priority of conservation scientists to 
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ensure that current protected area networks will be effective in the long term to facilitate 

biodiversity conservation (Thomas and Gillingham 2015). Forest remnants have acted as 

refugia for species during past climate change events and are expected to do so throughout 

present anthropogenic climate change (Ashcroft 2010). Large areas with continuous 

forest cover have been shown to have a cooler and less variable microclimate compared 

with the background macroclimate (de Frenne et al. 2019); however, the true extent and 

direction of changes to forest microclimate conditions caused by fragmentation and 

human disturbance is poorly understood. Selective logging within forest patches usually 

targets the largest trees, resulting in canopy gaps and altering micro-climatic conditions 

through increased exposure of the understorey to light radiation, wind, and precipitation 

(Blonder et al. 2018). Additionally, forest fragments adjacent to human landscapes are 

often more exposed to further exploitation by people, such as small-scale timber 

extraction or hunting, which in turn further alters the conditions within forest patches 

(Poor, Jati, et al. 2019; Saiful and Latiff 2019). Determining how habitat fragmentation 

affects the relationship between micro- and macro-climatic conditions in tropical forests 

is an important step in identifying potential microclimate refuges, particularly in 

secondary forest, which has now replaced primary forest across a large proportion of 

tropical mammal ranges (Dent and Wright 2009; Matos et al. 2020). 

Predicting species responses to climate change requires knowledge of how the abiotic 

environment will change, as well as species habitat preferences and their fundamental 

niche. Responses of forest-dwelling mammals to edges are highly variable and depend on 

multiple factors, including taxonomic class, species traits (such as generalist/specialist, 

dietary breadth, body size, fecundity, ranging distance), matrix type and permeability, 

anthropogenic hunting pressure, fragment size, connectivity, and fragment quality (Da 

Silva et al. 2015; Estrada et al. 2016; Wittmann et al. 2016). There are many studies 

documenting edge effects on vegetation structure, composition, and microclimate, but 

information on how they impact large vertebrate communities is limited, and even fewer 

studies have considered edge effects associated with logging and other land use changes 

(Brodie et al. 2015). Large mammals have been observed to avoid the forest boundary by 

up to 3km in Sumatran forests (Kinnaird et al. 2003). In general, it is reported that habitat 

specialists are more negatively impacted by edge effects than generalists, while species 

which can exploit the matrix (e.g., by crop foraging) respond positively to forest edges 

(Pfeifer et al. 2017). Forest specialists, carnivores and larger bodied species have a lower 

probability of presence in small forest patches (Keinath et al. 2017), while wide-ranging 
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species have been shown to have a higher extinction risk in small fragments than those 

with smaller home ranges (Woodroffe and Ginsberg 1998). On the other hand, wide-

ranging species are more likely to be able to move between remaining patches, resulting 

in a lower extinction risk than species which move less (Crooks et al. 2017). The variation 

in species responses makes it challenging to accurately predict how a given species might 

respond to fragmentation and the resulting edge effects. This challenge is further 

exacerbated by the lack of robust, up to date information on species distributions and 

habitat preferences. 

A major challenge in wildlife conservation is the lack of data on the distribution, 

abundance, and habitat requirements of threatened species. Knowledge is often based on 

old surveys (i.e., more than 20 years old), educated guesses and assumptions based on 

expert knowledge and habitat suitability assessments, or simply does not exist (IUCN 

2021). Many species distribution models are prone to over- or under-estimate extinction 

risk due to inappropriately scaled environmental data, or low-quality species distribution 

data (Elith and Leathwick 2009). Furthermore, there is a tendency to group heterogeneous 

landscapes into uniform blocks of categorical land units, but this is not always 

appropriate; logging intensity in secondary forest, for example, can vary greatly 

depending on accessibility and regional management policy (Wearn et al. 2017). 

Unfortunately, quality data is lacking for most endangered species (Burivalova et al. 

2019); threatened mammal populations are challenging to monitor, particularly those 

living in remote, inaccessible regions, such as tropical forests. Large mammals tend to 

live at low population densities and range over great distances. As a result of these 

challenges, traditional field monitoring techniques which are based on direct observations 

by field researchers, such as line transects or point counts, require substantial survey effort 

to produce robust and accurate population estimates, and it is not feasible for most 

research projects to continue this in the long-term (Stephenson 2019). Long-term species 

monitoring provides valuable data for conservation planning, by highlighting priority 

species and habitats for protection, areas with high risk of human-wildlife conflict, and 

ideal locations for wildlife corridors and release of captive-bred/rehabilitated animals. 

Unfortunately, the high levels of cost and effort required for long term monitoring of 

threatened species means that wildlife monitoring projects are often short-term, and 

research is biased towards a select few locations with established field stations and/or 

habituated animals. Furthermore, research on wild animals is not necessarily concerned 

with answering questions relating to conservation (Sheil 2001). The spatial and temporal 
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extent of information required for conservation planning is often beyond the scope and 

constraints of ecological research projects, meaning they have limited applicability in 

conservation practice.  

Since conservation is all-too-often limited by severe resource constraints, it is hugely 

important to plan and allocate resources in the most efficient and cost-effective way. High 

levels of error in species distribution models can lead to areas being assigned 

inappropriate levels of protection and this therefore limits their usefulness in practical 

conservation. For example, species distribution models using coarse scale macroclimate 

data could predict local extinctions at a location and miss potential microclimate refugia, 

resulting in that area being ‘written off’ for conservation (Gillingham et al. 2012).  

Emerging remote monitoring technologies can be harnessed for wildlife research to 

answer questions relevant to species conservation. Recent advances have made these 

technologies much more feasible and affordable options in wildlife monitoring 

programmes. Autonomous networks of remote sensors can generate huge amounts of data 

on biodiversity, species richness, abundance, distribution, and behaviour, and require far 

less survey effort than traditional field survey methods (Steenweg et al. 2017). Remote 

monitoring methods can be utilised to answer questions about spatial ecology and can 

support conservation planning by providing better insight into species’ habitat 

requirements, helping to identify local-scale population threats, and enabling more 

effective management of human-wildlife interactions (Wrege et al. 2017; Stephenson 

2019). For example, real time monitoring can be used to develop automated proximity 

alerts when animals are moving towards agricultural lands to enable landowners and 

conservation practitioners to be better prepared for crop foraging events and reduce the 

likelihood of injuries or fatalities to both people and wildlife (Wall et al. 2014). As with 

all emerging technologies, care should be taken when integrating them into long term 

projects, since there are currently no standardised protocols for implementation of remote 

monitors such as camera traps. 

3.2 Objectives 

This chapter aims to record edge effects on temperatures, forest structure and 

mammal activity rates in tropical mature secondary forest. Furthermore, it will explore 

the potential of emerging remote technologies to be implemented in long term population 
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monitoring of threatened species and provide robust, up-to-date data to improve the 

accuracy and application of predictive species distribution models for conservation 

planning. This will provide a better understanding of edge effects in secondary tropical 

forest and identify habitat preferences of threatened mammals in Sumatra. These data can 

inform conservation planning by highlighting which habitat characteristics are most 

important for determining mammal occurrence.  

1. Measure and compare forest structure and microclimate conditions at 

different distances from  the forest edge. 

2. Record how mammal activity changes with distance from the forest edge.  

3. Determine which environmental variables are most important in driving 

variation in mammal activity rates. 

3.3 Methods 

3.3.1 Field data collection 

3.3.1.1 Location 

Data were collected from Aras Napal and the Sikundur region on the boundary of the 

Gunung Leuser National Park (GLNP) in the North Sumatra province of Sumatra, 

Indonesia (see chapter 1, section 2, for a full description of the site). Monitoring locations 

were set up at 500m intervals along four 2km transects starting within orange plantations 

at the park boundary and extending into the interior (see  

Figure 3.1 –  

Figure 3.2). Starting locations at the forest boundary were chosen within farms once 

landowner permission had been obtained. Transect routes, with points at 500m intervals 

were then generated in ArcGIS Pro. Where possible, monitoring locations were set up 

within 50m of these generated points. In some cases, points had to be moved further due 

to landscape features, such as streams or rivers, which could not be crossed on foot. Final 

monitoring locations are shown in Figure 3.1. Data collection took place over a 60-day 

period from August – October 2019. To avoid disturbance-related changes in animal 

behaviour, vegetation characteristics at the plots were measured at the end of the 

monitoring period. 
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Figure 3.1: Monitoring locations close to Aras Napal in the Sikundur region of the Gunung 

Leuser National Park (GLNP), North Sumatra province, Sumatra, Indonesia. The dark green line 

represents the border of the GLNP. 

 
Figure 3.2: Typical conditions at the forest boundary. Farms and plantations adjacent to the 

forest generally extend right up to the forest edge, creating a very obvious boundary between the 

two land cover types. 
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3.3.1.2 Microclimate 

At each monitoring location Onset HOBO UA-002-08 8K Pendant Waterproof 

Temperature & Light Intensity Loggers (Figure 3.3) were used to record ambient 

temperature (°C) and light intensity (lux). Sensors were secured at approximately 1.5m 

and programmed to autonomously record temperature and light intensity at 30-minute 

intervals. A software issue at the beginning of the sampling period meant that it was not 

possible to set up data loggers from the start, therefore microclimate data were only 

collected for 49 days. To prevent greenhouse effects from direct sunlight, sensors were 

placed in a well shaded location. At the end of the monitoring period sensors were 

collected and data extracted using HOBOware software. Climate variables were 

summarised into Tall (mean temperature for the whole sampling period); Tday (mean 

temperature of each day); Tmax (maximum temperature of each day); Tmin (minimum 

temperature of each day); Liall (mean light intensity for the whole period), Liday (mean 

light intensity for each day); and Limax (maximum light intensity for each day). 

 
Figure 3.3: HOBO data logger used to measure microclimate conditions throughout the site 

at Aras Napal. 
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3.3.1.3 Forest Structure 

Forest structure was recorded within 25x25m plots at all monitoring locations. Within 

each plot, the total number of trees with a diameter at breast height (DBH) of more than 

10cm was recorded, and structural data were collected from each of these trees. 

Circumference at breast height (cm) was recorded using a measuring tape around the 

trunk, and diameter was calculated using the following formula, where D = tree diameter, 

cm; and c = tree circumference, cm: 

𝐷 =
𝐶

𝜋
 

Total height (m) and bole height (m) were measured using a Haglof Vertex IV 

instrument. The height to DBH ratio (HDR) was calculated by dividing the total height 

by the DBH. Crown width (m) was measured using tape measures from the ground to the 

nearest 10cm in both North-South and East-West directions. Crown area (m2) was 

estimated using the following formula, where A = crown area, m2: 

𝐴 = 𝜋 × ((
𝑁 − 𝑆 𝑤𝑖𝑑𝑡ℎ

2
) × (

𝐸 − 𝑊 𝑤𝑖𝑑𝑡ℎ

2
)) 

Canopy connectivity was estimated as a percentage of the crown which connected 

with neighbouring crowns. 

3.3.1.4 Mammal activity 

SpyPoint Force Dark remote trail cameras (Figure 3.4) were placed at each 

monitoring location and left for at least 60 days. Cameras were secured at a height of 

approximately 50cm facing towards an animal trail, salt lick or stream bed which was 

most likely to be frequented by medium to large-bodied animals. Cameras were set to 

take one image followed by 30 seconds of video when triggered by movement. 

Monitoring locations were visited only once, approximately halfway through the 

sampling period, to replace batteries and memory cards. At the end of the monitoring 

period cameras were collected and images sorted into separate directories for each 

transect and camera location. 
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Figure 3.4: SpyPoint Force Dark trail cameras were used to record mammal activity at each 

monitoring location. 

3.3.2 Data analysis 

3.3.2.1 Comparing forest conditions 

Data from all transects were pooled and grouped by distance from the National Park 

boundary (i.e., 0km, 0.5km, 1km, 1.5km and 2km). All environmental variables show a 

non-normal distribution; therefore, non-parametric tests were used to check for 

differences between variables at each distance. A Kruskal-Wallis test was used to test for 

a significant difference between groups, followed by post-hoc Dunns multiple pairwise 

tests to identify which groups were significantly different. P-values were adjusted using 

a sequential Bonferroni correction to account for multiple comparisons and reduce the 

risk of false positives. Analyses were performed in R version 4.0.0 (R Core Team 2020). 

See Table 3.1 for a full list of environmental variables which were tested for differences 

between distances.  



   

 

63 

 

Table 3.1: Environmental variables collected from all monitoring locations at Aras Napal. 

Variable Description(units) 

Tall Mean temperature recorded for the whole sampling period (°C) 

Tday Mean temperature per day (°C) 

Tmax Maximum temperature recorded each day (°C) 

Tmin Minimum temperature recorded each day (°C) 

Liall Mean light intensity recorded for the whole sampling period (lux) 

Limax Maximum light intensity recorded each day (lux) 

Total height Total tree height for each tree (m) 

Bole height Height to the first major branch for each tree (m) 

Number of 

trees 

Total number of trees DBH>10cm per plot 

DBH Diameter at breast height for each tree (cm) 

HDR Height to DBH ratio for each tree 

Crown area Estimated crown area for each tree (m2) 

Connectivity Estimated connectivity for each tree (%) 

 

3.3.2.2 Mammal activity rates 

After being sorted into location and camera directories camera trap images were 

reviewed and recorded species were identified. Metadata tags containing the identified 

species were assigned to each image using the image management software Digikam 

(digiKam 2021). Standardised common names from the Integrated Taxonomic 

Information System database (ITIS 2021) were used to ensure long-term usability of 

image metadata in future research projects. Identifying species by metadata tagging is 
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advantageous since it facilitates exchange of data between researchers and allows for 

inter-observer comparisons where more than one observer is identifying images. The 

recordTable function from the R-package camtrapR (Niedballa et al. 2016) was used to 

extract image metadata and tabulate all detection events, excluding those of people and 

non-mammals. A minimum delta time (i.e., time difference between two subsequent 

detection events of the same species at the same location) of 1 hour was applied to ensure 

temporal independence between detection events.  

A species accumulation curve was derived to show the accumulation of species as the 

number of sampling days increases in order to check that the sampling period was long 

enough to capture all mammals in the community. The “specaccum” function from the R 

package “vegan” was used to obtain this (Oksanen et al. 2019), using the equation from 

Roeland Kindt’s exact accumulator method, as recommended within the vegan package 

documentation. 

3.3.2.3 Determining environmental drivers of mammal activity  

The total number of mammal detections was used as a proxy for overall mammal 

activity at each location. This was used as the response variable in a Generalized Linear 

Model (GLM) to test the effect of environmental variables on the number of mammal 

detections. A correlation matrix was used to check for co-linearity among the predictor 

variables. Where variables had a correlation coefficient above 0.7, only one variable was 

chosen to be included in the model. The analysis was performed using the R package 

‘MASS’ (Venables and Ripley 2002). Since the response variable comprises discrete 

count data which cannot be negative, the model was fitted with a Poisson distribution and 

log: link function. The ‘dredge’ function from the R package ‘MuMIn’ (Barton 2020) was 

then used to select which combination of variables produced the best model performance 

based on their Akaike Information Criterion (AIC). 

A Generalized Linear Mixed Model (GLMM) was then fitted to the number of 

detections of each mammal Order, with Order included as a random effect. The analysis 

was run with the R package ‘glmmTMB’ (Brooks et al. 2017). As in the GLM, 

independent variables were first selected using a correlation matrix, and the ‘dredge’ 

function was used to select the best combination of variables based on the model AIC 

criterion. The GLMM was also fitted with a negative binomial distribution since the 

response variable are counts and the data are over dispersed.  
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3.4 Results 

3.4.1 Objective 1) Comparing environmental conditions at different distances 

from the edge 

3.4.1.1 Microclimate 

Summaries of microclimate variables are shown in Table 3.2. Mean Tall across all 

locations was 25.54°C ± 2.25 (Table 3.2). Tall varied significantly between distances from 

the edge (Kruskal-Wallis χ2 = 152.71, df = 4, P <0.01; Figure 3.5 and Table 3.2). Post-

hoc comparisons indicate that Tall was highest at the National Park boundary (µ = 

26.07°C), and lowest at 1km into the forest (µ = 25.24°C). Tall was significantly higher 

at 0.5km than 1.5km and 2km, while there was no significant difference between 1.5km 

and 2km (see  

Table 3.3 for post-hoc test statistics and Bonferroni adjusted P-values). The results 

indicate a similar pattern in Tmax, which also varied significantly between distances 

(Kruskal-Wallis χ2 = 274.18, df = 4, P <0.01; Figure 3.5 and Table 3.2). Post-hoc 

comparisons indicated that Tmax was highest at the National Park boundary (µ = 31.35°C 

± 2.64), and lowest at 1km (µ = 28.05°C ± 1.15). Tmax was higher at 0.5km than 1km and 

1.5km and there was no difference between 2km and 0.5kmm or 1.5km (see Table 3.4 for 

Dunn’s test statistics and Bonferroni adjusted P-values). Tday also varied significantly 

between distances (Kruskal-Wallis χ2 = 93.37, df = 4, P <0.01; Figure 3.5 and Table 3.2), 

with post-hoc tests indicating that Tday was significantly higher at the National Park 

boundary (µ = 26.03°C ± 1.00), and significantly lower at 1km from the boundary than 

all other distances (μ = 28.05 ± 1.15°C; see Table 3.5for Dunn’s pairwise tests and 

Bonferroni corrected P-values). Tmin did not vary between distances (Kruskal-Wallis χ2 = 

6.34, df = 4, P = 0.18; Figure 3.5 and Table 3.2), therefore further post-hoc comparisons 

were not carried out. 

Mean light intensity recorded across the whole site and sampling period was 1079.88 

lux ± 2921.8 (Table 3.2). Liall, Liday and Limax varied significantly between distances 

(Kruskal-Wallis χ2 = 262.59, df = 4, P <0.01; Kruskal-Wallis χ2 = 330.30, df = 4, P <0.01; 

Kruskal-Wallis χ2 = 292.39, df = 4, P <0.01 respectively; also see Figure 3.5 and Table 

3.2). Liall, Liday and Limax were highest at the National Park boundary (μ = 2977.28 lux ± 

2197.77; µ = 2911.78 lux ± 2191.67; μ = 16034.14 lux ± 10930.88 respectively) and 

lowest at 1km (μ = 469.68 lux ± 206.35; µ = 471.55 lux ± 224.09; μ = 2565.25 lux ± 
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1127.97 respectively) into the forest. There was no difference in light intensity at 0.5km, 

1.5km and 2km (see Table 3.6 - 

Table 3.8 for all Dunn’s pairwise test statistics and Bonferroni adjusted P-values). 

 

Table 3.2: Summary of microclimate variables collected at different distances from the forest 

edge at Aras Napal. N = number of cases, μ = mean, M = median, SD = standard deviation. 

 
 

Distance from forest 

edge, km

All locations 

pooled
0 km 0.5 km 1 km 1.5 km 2 km

Mean  

Temperature, °C

N  = 42135

μ  = 25.54

M = 25.12

SD  = 2.25

N  = 8012

μ  = 26.07

M = 25.90

SD  = 0.48

N  = 8529

μ  = 25.38

M  = 25.30

SD  = 0.31

N  = 8538

μ  = 25.24

M  = 25.27

SD  = 0.22

N  = 8546

μ  = 25.55

M  =  25.56

SD  = 0.14

N  = 8510

μ  = 25.48

M  = 25.48

SD  = 0.10

Daily mean 

temperature,  °C

N = 908

μ  = 25.53

M = 25.60

SD =  0.68

N = 181

μ  = 26.03

M = 26.01

SD =  1.00

N  = 182

μ  = 25.37

M = 25.43

SD  = 0.75

N  = 182

μ  = 25.23

M =  25.31

SD  = 0.67

N  = 182

μ  = 25.55

M = 25.58

SD  = 0.69

N  = 182

μ  = 25.49

M = 25.54

SD  = 0.68

Daily maximum 

temperature, °C

N = 908

μ  = 34.30

M = 34.69

SD =  2 .26

N = 181

μ  = 31.35

M = 31.88

SD =  2.64

N  = 182

μ  = 28.77

M = 28.36

SD  = 1.80

N  = 182

μ  = 28.05

M =  27.96

SD  = 1.15

N  = 182

μ  = 29.06

M = 29.15

SD  = 1.20

N  = 182

μ  = 29.00

M = 29.05

SD  = 1.26

Daily minimum 

temperature, °C

N = 908

μ  = 22.70

M = 22.72

SD = 0.76

N = 181

μ  = 23.07

M = 23.10

SD = 0.80

N  = 182

μ   = 23.08

M = 23.10

SD  = 0.79

N  = 182

μ  = 23.17

M = 23.20

SD  = 0.74

N  = 182

μ  = 23.24

M = 23.20

SD  = 0.74

N  = 182

μ  = 23.19

M = 23.20

SD  = 0.73

Light intensity, lux N = 42135

μ  = 1079.88

M = 0.00

SD = 2921.80

N = 8012

μ  = 2977.28

M = 2750.28

SD = 2197.77

N  = 8529

μ  = 752.71

M = 597.18

SD  = 512.47

N  = 8538

μ  = 469.68

M = 422.60

SD  = 206.35

N  = 8546

μ  = 660.94

M = 646.00

SD  = 110.11

N  = 8510

μ  = 728.91

M = 707.49

SD  = 204.36

Daily mean light 

intensity, lux

N = 42135

μ  = 1077.65

M = 1082.72

SD = 264.58

N = 181

μ = 2911.78

M = 2215.94

SD = 2191.67

N  = 182

μ = 749.39

M = 574.64

SD = 504.32

N  = 182

μ = 471.55

M = 439.53

SD = 224.09

N  = 182

μ = 662.19

M = 645.28

SD = 221.38

N  = 182

μ = 733.32

M = 708.41

SD = 269.98

Daily maximum 

light intensity, lux

N = 908

μ  =  27139.23

M = 28933.50

SD = 6145.11

N = 181

μ  = 16034.14

M = 15155.70

SD = 10930.88

N  = 182

μ  = 4218.77

M = 3100.00

SD  = 2931.08

N  = 182

μ  = 2565.25

M = 2411.10

SD  = 1127.97

N  = 182

μ  = 3671.46

M = 3444.50

SD  = 1339.68

N  = 182

μ  = 4052.96

M = 3788.90

SD  = 1811.38
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Table 3.3: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of Tall (i.e., mean temperature, °C, for the whole sampling period) recorded at 

different distances from the forest edge at Aras Napal. Values which are significantly different 

following adjustment with α = 0.05 are given in bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -9.31 

P <0.01* 

Z = 11.11 

P <0.01* 

Z = 4.18 

P <0.01* 

 Z = 6.05 

P <0.01* 

0.5km   
Z = 1.83 

P = 0.68 

Z = -5.22 

P <0.01* 

 Z = -3.30 

P = 0.01* 

1km     
Z = 7.04 

P <0.01* 

Z = -5.12 

P <0.01* 

1.5km       
Z = 1.91 

P = 0.56 

Table 3.4: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn’s pairwise 

comparisons of Tmax (ie., maximum temperature, °C, for each day) recorded at different distances 

from the forest edge at Aras Napal. Values which are significantly different following adjustment 

with α = 0.05 are given in bold with an asterisk. 
 

0.5km 1km 1.5km 2km 

0km Z = -12.11 

 P <0.01* 

Z = 15.84 

P <0.01* 

Z = 9.17 

P <0.01* 

Z = 9.58 

P <0.01* 

0.5km 
 

Z = 3.73 

P <0.01* 

Z = -2.94 

P = 0.03* 

Z = -2.52 

P = 0.12 

1km 
  

Z = 6.67 

P <0.01* 

Z = -6.24 

P <0.01* 

1.5km 
   

Z = 0.42 

P = 1.00 

 

Table 3.5: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn’s pairwise 

comparisons of Tday (i.e., mean temperature, °C, for each day), recorded at different distances 

from the forest edge at Aras Napal. Values which are significantly different following adjustment 

with α = 0.05 are given in bold with an asterisk. 

 0.5km 1km 1.5km 2km 

0km 
Z = -7.28 

P <0.01* 

Z = 9.09 

P <0.01* 

Z = 4.89 

P <0.01* 

Z = 5.77 

P <0.01* 

0.5km  Z = 1.82 

P = 0.69 

Z = -2.39 

P = 0.17 

Z = -1.50 

P = 1.00 

1km   Z = 4.21 

P <0.01* 

Z = -3.31 

P <0.01* 

1.5km    Z = 0.89 

P = 1.00 
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Table 3.6: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LIall (i.e., mean light intensity, lux, for the whole sampling period) recorded at 

different distances from the forest edge at Aras Napal. Values which are significantly different 

following adjustment with α = 0.05 are given in bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -10.91 

P <0.01* 

Z = 15.80 

P <0.01* 

Z = 10.36 

P <0.01* 

Z = 9.21 

P <0.01* 

0.5km 
 

Z = 4.96 

P <0.01* 

Z = -0.57 

P = 1.00 

Z = -1.72 

P = 0.85 

1km  

 

Z = 5.54 

P <0.01* 

Z = -6.68 

P <0.01* 

1.5km   

 

Z = -1.15 

P = 1.00 

Table 3.7: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LIday (i.e., mean light intensity, lux, for each day) recorded at different distances 

form the forest edge at Aras Napal. Values which are significantly different following adjustment 

with α = 0.05 are given in bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -12.24 

P <0.01* 

Z = 17.64 

P <0.01* 

Z = 11.42 

P <0.01* 

Z = 9.71 

P <0.01* 

0.5km  Z = 5.41 

P <0.01* 

Z = -0.82 

P = 1.00 

Z = -2.52 

P = 0.12 

1km   Z = 6.23 

P <0.01* 

Z = -7.92 

P <0.01* 

1.5km    Z = -1.70 

P = 0.90 

 

Table 3.8: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of LImax (i.e., maximum light intensity, lux, for each day) recorded at different 

distances form the forest edge at Aras Napal. Values which are significantly different following 

adjustment with α = 0.05 are given in bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -11.28 

P <0.01* 

Z = 16.71 

P <0.01* 

Z = 10.26 

P <0.01* 

Z = 8.95 

P <0.01* 

0.5km  Z = 5.44 

P <0.01* 

Z = -1.02 

P = 1.00 

Z = -2.31 

P = 0.21 

1km   Z = 6.46 

P = <0.01* 

Z = -7.75 

P <0.01* 

1.5km    Z = -1.30 

P = 1.00 
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Figure 3.5: The range of microclimate conditions recorded at different distances from the 

forest edge at Aras Napal. (a) Mean temperature for the whole sampling period; (b) mean 

temperature of each day; (c) minimum temperature of each day; (d) maximum temperature of 

each day; (e) mean light intensity of each day; and (f) maximum light intensity of each day 

3.4.1.2 Forest Structure 

Forest structure variables are summarised in Table 3.9. Trees were generally smaller, 

with relatively low total height (μ = 19.45m ± 8.27) and DBH (μ = 33.45cm ± 13.58), 
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compared with what would be expected in primary tropical forest; DBH did not vary 

between distances (Kruskal-Wallis χ2 = 4.0188, df = 4, P = 0.40). There was a significant 

difference in tree height between distances (Kruskal-Wallis χ2 = 11.59, df = 4, P = 0.02), 

however post-hoc tests only indicated a marginally significant difference between 0.5km 

and 1km after adjusting for multiple comparisons with Bonferroni correction (see Table 

3.10 for all pairwise comparisons), with 0.5km having lower tree height (μ = 17.44m ±  

6.79) than 1km (μ = 21.83m ± 8.51). The mean HDR across the whole site was 61.03 ± 

42.01. HDR varied significantly between distances (Kruskal-Wallis χ2 = 26.52, df = 4, P 

<0.01), with post-hoc tests indicating that the HDR was significantly lower at the National 

Park boundary (μ = 24.25 ± 13.71) compared with all other distances, apart from 0.5km 

(µ = 31.76 ± 16.62). There were no further significant differences between any other 

distances (see  

Table 3.11 for all pairwise comparisons).  

Average bole height across the whole site was 10.71m ± 6.03. Bole height varied 

significantly between distances (Kruskal-Wallis χ2 = 23.941, df = 4, P <0.01). Trees 

measured at the National Park boundary had a lower bole height (μ = 8.06m ± 4.61) than 

those measured at all other distances. Additionally, trees at 0.5km had a lower bole height 

(μ = 9.13m ± 4.90) than trees at 1km (μ = 12.68m ± 6.85). There was no difference in 

bole heights recorded at 1km, 1.5km and 2km (see  

Table 3.12 for all pairwise comparisons). 

The average crown area across the whole site was 44.86 m2 ± 36.74, and there was 

no evidence of any significant variation between distances (Kruskal-Wallis χ2 = 6.6232, 

df = 4, P = 0.16). The average number of trees per plot was 10.85 ± 3.41. The number of 

trees within a plot did not vary between distances (Kruskal-Wallis χ2= 3.74, df = 4, P = 

0.44). Canopy connectivity was generally low (μ = 45.00% ± 23.33), with average 

connectivity estimates being below 50% at all distances, there was no evidence for a 

significant difference in canopy connectivity between distances (Kruskal-Wallis χ2 = 

1.44, df = 4.00, P = 0.84).  
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Table 3.9: Summary of forest structure variables collected from plots at different distances from 

the forest edge at Aras Napal. 

 
 

Distance 

from forest 

edge

All locations 

pooled
0 km 0.5 km 1 km 1.5 km 2 km

Number of 

trees

N  = 20

μ  = 10.85

M = 11.5

SD  = 3.41

N  = 5

μ  = 12.13

M = 13.00

SD  = 1.18

N  = 5

μ  = 13.50

M  = 14.00

SD  = 2.38

N  = 5

μ  = 11.23

M  = 12.00

SD  = 1.58

N  = 5

μ  = 10.71

M  =  11.00

SD  = 2.70

N  = 5

μ  = 11.11

M  = 10.00

SD  = 3.61

Tree height, 

m

N = 217

μ  = 19.45

M = 17.70

SD =  8.27

N = 48

μ  = 17.48

M = 16.35

SD =  6.34

N  = 52

μ  = 17.44

M = 16.30

SD  = 6.79

N  = 44

μ  = 21.83

M =  18.65

SD  = 8.51

N  = 35

μ  = 21.43

M = 18.20

SD  = 10.37

N  = 38

μ  = 20.08

M = 19.30

SD  = 8.98

Bole height, 

m

N = 217

μ  = 10.71

M = 10.10

SD =  6.08

N = 48

μ  = 8.06

M = 7.30

SD =  4.61

N  = 52

μ  = 9.13

M = 8.70

SD  = 4.90

N  = 44

μ  = 12.68

M =  12.10

SD  = 6.85

N  = 35

μ  = 12.24

M = 11.00

SD  = 6.84

N  = 38

μ  = 12.51

M = 13.2

SD  = 5.67

Diameter at 

breast 

height, cm

N = 217

μ  = 33.45

M = 38.20

SD = 13.58

N = 48

μ  = 34.62

M = 29.60

SD = 13.26

N  = 52

μ   = 30.11

M = 26.10

SD  = 9.98

N  = 44

μ  = 38.69

M = 28.64

SD  = 33.28

N  = 35

μ  = 32.49

M = 27.06

SD  = 14.55

N  = 38

μ  = 31.36

M = 28.65

SD  = 11.40

Height:DBH 

ratio

N = 217

μ  = 61.03

M = 62.07

SD = 42.01

N = 48

μ  = 24.25

M = 22.28

SD = 13.71

N  = 52

μ  = 31.76

M = 30.79

SD  = 16.62

N  = 44

μ  = 66.14

M = 63.78

SD  = 17.71

N  = 35

μ  = 38.03

M = 38.03

SD  = 14.83

N  = 38

μ  = 40.64

M = 41.43

SD  = 15.25

Crown area, 

m2

N = 217

μ  = 44.86

M = 33.93

SD = 36.74

N = 48

μ = 24.25

M = 22.28

SD = 13.71

N  = 52

μ = 38.09

M = 28.88

SD = 29.37

N  = 44

μ = 53.76

M = 38.57

SD = 45.83

N  = 35

μ = 50.76

M = 37.48

SD = 42.74

N  = 38

μ = 37.31

M = 29.32

SD = 29.26

Canopy 

connectivity, 

%

N = 217

μ  =  45.00

M = 45.00

SD = 25.33

N = 48

μ  = 44.27

M = 40.00

SD = 20.68

N  = 52

μ  = 44.23

M = 40.00

SD  = 24.22

N  = 44

μ  = 44.43

M = 45.00

SD  = 23.33

N  = 35

μ  = 43.86

M = 45.00

SD  = 20.37

N  = 38

μ  = 48.68

M = 52.50

SD  = 28.18
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Table 3.10: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of mean tree height, m, recorded at different distances form the forest edge at Aras 

Napal. Values which are significantly different following adjustment with α = 0.05 are given in 

bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = 0.17 

P = 1.00 

Z = -2.52 

P = 0.12 

Z = -1.76 

P = 0.78 

Z = 6.05 

P = 0.98 

0.5km  Z = 2.73 

P = 0.06 

Z = 1.95 

P =0.51 

Z = 1.86 

P = 0.63 

1km   Z = 0.59 

P = 1.00 

Z = 0.74 

P = 1.00 

1.5km    Z = 0.13 

P = 1.00 

 

Table 3.11: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of mean bole height, m, recorded at different distances form the forest edge at Aras 

Napal. Values which are significantly different following adjustment with α = 0.05 are given in 

bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -1.13 

P = 1.00 

Z = -3.81 

P <0.01* 

Z = -2.98 

P = 0.03* 

Z = -3.71 

P <0.01* 

0.5km  Z = 2.78 

P = 0.05* 

Z = 2.00 

P = 0.46 

Z = 2.71 

P = 0.07 

1km   Z = 0.59 

P = 1.00 

Z = -0.04 

P = 1.00 

1.5km    Z = -0.61 

P = 1.00 

 

Table 3.12: Test statistics and Bonferroni adjusted P-values from post-hoc Dunn's pairwise 

comparisons of the mean ratio of tree height to diameter at breast height, HDR, recorded at 

different distances form the forest edge at Aras Napal. Values which are significantly different 

following adjustment with α = 0.05 are given in bold with an asterisk. 

  0.5km 1km 1.5km 2km 

0km 
Z = -2.33 

P = 0.20 

Z = -4.13 

P <0.01* 

Z = -4.21 

P <0.01* 

Z = -3.67 

P <0.01* 

0.5km  Z = 1.92 

P = 0.54 

Z = -2.14 

P = 0.32 

Z = -1.55 

P = 1.00 

1km   Z = 0.33 

P = 1.00 

Z = 0.29 

P = 1.00 

1.5km    Z = 0.59 

P = 1.00 
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Figure 3.6: Total height (m), bole height (m), and height:DBH ratio of trees recorded at 

different distances from the forest edge at Aras Napal. 



   

 

74 

 

 
Figure 3.7: Number of trees per plot, DBH (cm), crown area (m2), and canopy connectivity 

(%) of trees recorded at different distances from the forest edge at Aras Napal. 

3.4.2 Objective 2) Variation in mammal activity rates between distances  

Out of 20 camera traps deployed, one malfunctioned and recorded incorrect 

timestamps on images meaning that they could not be included in the analysis. The 

remaining 19 cameras yielded a total of 1079 sampling days (mean of 56.8 days per 

camera), 1384 images, and 300 mammal detection events. 16 mammal species were 

identified across 14 families and six orders (see Table 3.13). It was not possible to identify 

animals in the families Muridae (mice and rats) and Sciuridae (squirrels) to species level. 

The number of families detected at each location ranged from 1-10. Three families had 

fewer than five detections, while five had more than 20. The species accumulation curve 

(Figure 3.8) shows that by around 200 total sampling days, 12 out of 14 families had been 

detected, indicating that the sampling effort was adequate to capture all present and 
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detectable species. To increase sample sizes, all further analyses were performed at the 

Order level. 

A Pearson’s chi-squared test was used to test the hypothesis that there was a 

significant association between mammal Order occurrence and distance from the forest 

edge. The number of detection events of each mammal Order were not equal between 

distances (χ2 = 75.324, df = 20, p < 0.01; see Figure 3.9). Primate detections were higher 

towards the National Park boundary, and elephants were detected only within 1km from 

the edge and not further into the forest. Moonrats were only detected at distances greater 

than 1000m and carnivores were not detected at 0m. Ungulates and rodents were detected 

at all distances but had a much higher detection rate at 1000m than any other distance. 

 

 
Figure 3.8: Species accumulation curve showing number of mammal families detected with 

sampling effort in Aras Napal. 
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Table 3.13: Checklist of mammals detected at Aras Napal with total number of detections and naïve occupancy (the proportion of sites with ≥ 1 detection 

events). 

 

Class Order Family Species Scientific name IUCN status Population  trend Detection events Naïve occupancy

Mammalia Erinaceomorpha Erinaceidae Moonrat Echinosorex gymnura LC unknown 16 0.21

Primates Cercopithecidae Long-tailed macaque Macaca fascicularis LC decreasing 1 0.05

Cercopithecidae Pig-tailed macaque Macaca nemestrina VU decreasing 83 0.79

Cercopithecidae Thomas's langur Presbytis thomasi VU decreasing 2 0.05

Carnivora Ursidae Sun bear Helarctos malayanus VU decreasing 2 0.11

Mustelidae Oriental short-clawed otter Amblonyx cinereus VU decreasing 1 0.05

Herpestidae Collared mongoose Herpestes semitorquatus NT decreasing 1 0.05

Herpestidae Short-tailed mongoose Herpestes brachyurus NT decreasing 5 0.11

Prionodontidae Banded linsang Prionodon linsang LC decreasing 5 0.16

Felidae Sumatran tiger Panthera tigris ssp. sumatrae CR decreasing 1 0.05

Proboscidea Elephantidae Sumatran elephant Elephas maximus ssp. sumatranus CR decreasing 11 0.21

Artiodactyla Suidae Wild boar Sus scrofa LC Unknown 23 0.53

Tragulidae Lesser oriental chevrotain Tragulas kanchil LC unknown 48 0.47

Cervidae Sambar Rusa unicolor VU decreasing 3 0.16

Cervidae Southern red muntjac Muntiacus muntjack LC decreasing 37 0.26

Rodentia Muridae Rat -- -- -- 9 0.26

Muridae Mouse -- -- -- 44 0.16

Hystricidae Malayan porcupine Hystirx brachyura LC decreasing 16 0.37

Sciuridae Squirrel -- -- -- 17 0.37



   

 

77 

 

 

Figure 3.9: Total number of detection events for each mammal Order detected at different 

distances from the forest edge at Aras Napal. 

3.4.3 Objective 3) Environmental predictors of mammal activity rates 

3.4.3.1 Overall mammal detections 

All microclimate variables except for Tmin were very highly correlated, accordingly 

only Tmax and Tmin were used in the models. Tmax was selected since it was shown to be 

the most variable between locations and is likely to be a more important constraint to 

diurnal terrestrial mammals then mean temperature. Total height and bole height were 

also strongly correlated; consequently, only total height was used in the analysis. There 

were no correlations between other forest structure variables, therefore these were all 

included in the model. The best model performance was obtained with the variables Tmax, 

Tmin, tree height and DBH (see Table 3.14 for model outputs). The deviance in mammal 

detection rates explained by this model was 27.72%. Model predictions and raw data of 

the detection rate against predictor variables are shown in Figure 3.10. The number of 

detections decreased with maximum and minimum temperatures, with a decrease in 

detection events of 0.88 and 0.32 for every 1°C increase. Number of detections also 

decreased with tree height, with a reduction of 0.90 for every 1m increase in height. DBH 

increased the number of detections by 1.20 for every 1cm increase in diameter. 
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Table 3.14: Exponentiated coefficient estimates with standard errors in parentheses for the GLM 

with poisson distribution and log:link function testing the effects of environmental variables on 

the number of mammal detection events at Aras Napal. Significant effects (α = 0.05) are 

highlighted in bold. 

 Model 1 

(Intercept) 851952702838.02 *   

 (10.72)    

Maximum temperature, °C -0.88 *** 

 (0.03)    

Minimum temperature, °C -0.32 *   

 (0.48)    

Tree height, m -0.90 *** 

 (0.02)    

Diameter at breast height, cm 1.20 *** 

 (0.03)    

N 19        

AIC 172.43     

BIC 177.15     

Pseudo R2 0.92     

 *** p < 0.001; ** p < 0.01;  * p < 0.05. 
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Figure 3.10: GLM predictions (lines), with 95% confidence intervals (grey shading), and 

observed number of mammal detections against (a) maximum temperature, °C; (b) minimum 

temperature, °C; (c) tree height, m; and (d) DBH, cm on the total number of mammal detection 

events at Aras Napal.  

3.4.3.2 Number of detections for each mammal Order 

The best model performance was obtained using Tmax, tree height, and DBH. Model 

outputs are given in Table 3.15 and model predictions with raw data of the detection rate 

for each Order against predictor variables are shown in Figure 3.11. Tmax and tree height 

were negatively correlated with the number of detections (Figure 3.11a & b). DBH was 

positively correlated to the number of detections (Figure 3.11c). 
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Table 3.15: Generalised linear mixed model (negative binomial) fit by the laplace approximation 

of total detection events according to environmental variables. Mammal Order is included as a 

random factor. Significant P-values (α = 0.05) are highlighted in bold. 

 Number of detections 

Predictors 
Incidence Rate 

Ratios 
CI p 

(Intercept) 0.55 0.02 – 17.79 0.738 

Maximum temperature, 

°C 

0.87 0.78 – 0.96 0.006 

Tree height, m 0.85 0.77 – 0.95 0.004 

Diameter at breast height, 

cm 

1.31 1.14 – 1.50 <0.001 

Random Effects 

σ2 1.13 

τ00 order 0.94 

ICC 0.45 

N order 6 

Observations 114 

Marginal R2 / Conditional 

R2 

0.194 / 0.560 
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Figure 3.11: Model predictions (lines) and observed values (points) of detection rates by 

mammal Order against (a) Maximum temperature, °C; (b) Tree height, m; and (c) Diameter at 

breast height, cm. 
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3.5 Discussion 

3.5.1 Differences in forest conditions and edge effects 

Overall, temperatures and solar radiation were notably higher at the forest edge. In 

particular the daily maximum temperature was much higher at the edge compared with 

all other monitoring locations in the forest interior. This result indicates that increased 

temperature is driven by an increase in the penetration of light radiation into the canopy 

from the adjacent orange plantations, which have substantially lower vegetation cover. 

The fact that there was no variation in daily minimum temperature between distances 

further supports this since night-time temperatures were not affected by proximity to the 

forest edge. Forests are expected overall to dampen heat loss but considering the 

continued relatively high temperatures at night in this region, such an effect is not as 

pronounced as expected in, for example higher altitude forests. Although there was some 

statistically significant variation within the forest interior, these differences were far less 

pronounced than those between the edge and interior. Temperatures were also generally 

higher at 0.5km than those recorded further into the forest, demonstrating that edge effects 

are influencing conditions up to 0.5 -1km into the forest. These results are consistent with 

other data from tropical forests (e.g., Broadbent et al. 2008), although research in this area 

is limited given that most studies use discrete categories such as forest and non-forest 

(Zurita et al. 2012). Further measurements at a finer spatial scale are needed to identify 

exactly how far edge effects continue to influence understorey conditions and determine 

how closely temperature is correlated with proximity to the edge. 

Vegetation structure did not seem to vary much along transects. Total height was 

uniformly low, even 2km into the protected forest. This is most likely a result of historic 

logging at the site, during which time most of the large emergent trees were removed 

(Priatna et al. 2000). HDR was lowest at the edge, indicating that trees at the edge have a 

wider girth in relation to their top height. There are a number of potential explanations 

for this and given that tree species data are not available and the relationship between 

height and DBH varies greatly both within and between tree species (Mugasha et al. 

2013), it is difficult to draw conclusions.  Generally, younger trees would be expected to 

have a higher HDR, since it is expected that young trees would favour upwards growth 

in order to reach the top of the canopy (Sumida et al. 2013). Historic logging would have 

targeted tall, wide trees with a lower HDR; presently there are few large emergent trees 

found throughout the site, and in particular there are virtually none located close to the 
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forest boundary. As a result, there is possibly a bias towards tree species with relatively 

low HDR, since these would not be favourable for harvesting.  

These levels of variation in both structure and climate at relatively small spatial scales 

highlight the importance of considering local scale climate when modelling species’ 

habitat preferences. Significant differences in temperature and light radiation were 

detected within less than one km, and these differences are potentially ecologically 

significant for forest dwelling animal species. Open access climate datasets are usually 

only available at scales much larger than an animal’s body size or even their average 

home range. The highest available resolution for WorldClim (Hijmans et al. 2015), for 

example, is 30 seconds (or roughly 1km2 at the equator), if climate for this study had been 

inferred from the WorldClim database rather than being directly measured, the small-

scale differences noted here would not have been detected. 

3.5.2 Mammal activity 

The proportions of each mammal Order detected varied with distance from the 

National Park edge. This is unsurprising, given that some species will be better able to 

cope with forest edge conditions, and are known to utilise the adjacent human dominated 

landscape (Segan et al. 2016). Other species will be less tolerant of human disturbance 

and changes to forest conditions. The number of species detected was lower at the forest 

edge, with only five species (pigs, long and pig-tailed macaques, elephants, and squirrels) 

being detected compared with 8-13 species elsewhere. Most of the species detected at the 

edge are known to utilise agricultural lands (Love et al. 2017; Castillo-Contreras et al. 

2018; Ruppert et al. 2018), while those which did not occur at the edge, such as carnivores 

and moonrats, are reportedly less able to exploit human dominated land (Michalski and 

Peres 2005; Brodie et al. 2015; Farris et al. 2017; Brozovic et al. 2018; Wynn-Grant et al. 

2018). The results indicate that human influence plays a significant role in the species 

richness, abundance, and composition of the mammal community in this area. For many 

species, forest edges have a notable negative impact, and forest reserves or conservation 

set asides will need to be large enough to ensure species are able to avoid them. Large 

carnivores, such as tigers and sun bears, for example, will need a buffer area of at least 

1.5km, and corridors will have to be wider than this to ensure that these species will use 

them. Many reserves in agricultural landscapes are not large enough to provide this and 

are therefore unable to support these species in the long-term. This highlights that while 
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set asides and remnants in agricultural mosaics can be valuable for biodiversity, they 

cannot replace continuous primary forests in conserving many large mammals (Barlow 

et al. 2007; Gibson et al. 2011). 

Monkeys and pigs had the highest naïve occupancy, with both families being detected 

at 79% and 53% of all sites respectively. This will be due in part to pigs and the terrestrial 

pig-tailed macaque being more readily detected by camera traps, however both species 

are habitat generalists, and also known to utilise agricultural lands (Linkie et al. 2007). 

Conversion to agriculture is frequently reported to favour these species, since it provides 

them with a competitive advantage over forest specialists through enhanced foraging 

opportunities in croplands (Hill 2017; Castillo-Contreras et al. 2018). Daily crop foraging 

events by both pigs and monkeys have been reported within all plantations close to the 

National Park in Aras Napal, and the detection rate was higher for both species close to 

the Park boundary. Both monkeys and pigs appear to be relatively abundant throughout 

the whole area, and do not seem to be suffering a negative impact of human activities in 

this region. Despite clear evidence (on camera traps, K. Hodder & A. Korstjens 2020 

unpublished) of near daily human hunting activity in the areas near the forest edge (mostly 

within 1km). 

Elephants were only detected within 1km of the forest edge. All detection events were 

also associated with incidents involving elephants moving into the adjacent plantations, 

as reported by landowners from Aras Napal. Little is known regarding the abundance and 

demographics of the elephant population in the region, although recent unpublished data 

estimates that there is a population of around 78 individuals in the region and that they 

are also observed further inwards from the edge (Collins 2018). Additionally, interviews 

with Aras Napal residents suggest that there are at least one or two family-groups 

consisting of 10-15 individuals, and several solitary male bulls regularly utilising the 

forest and adjacent oil palm plantations. The camera trap data from this study confirms 

the presence of at least one family group in the area, since all detection events showed a 

group of individuals, including at least one juvenile (additional camera trap evidence in 

January 2020 also confirmed the presence of a young solitary bull, K. Hodder and AHK 

unpublished). All detection events occurred at camera locations where the camera was 

situated on a large trail, which usually led towards the forest edge. This suggests that the 

elephants in this area will generally avoid forest close to the edge, except to utilise the 

adjacent plantation land. Collins (2018) reported similar findings in this area based on 
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dung distribution, with elephants occurring more frequently close to human-dominated 

areas. This situation requires further monitoring, since it has the potential to turn into a 

conflict between plantation owners and elephants, although currently the reported levels 

of elephant crop foraging remain relatively low. More extensive monitoring which 

focusses on this population and extends further into the protected forest is needed to 

provide detailed information on how many groups/individuals are present in the area, 

whether they are connected to other elephant populations and the extent to which they are 

reliant on crop foraging to survive in the region.  

Deer were detected most frequently at 1km from the edge, and at relatively low 

numbers elsewhere. Inspection of the raw data shows that this result is biased due to an 

outlier, where there were 16 detection events for Red Muntjac deer at one location at 1km, 

even after the data had been pruned to include only one observation per species per hour. 

This is likely due to this camera location being situated close to either a sleeping site or 

foraging site. Due to the low detection rate, it is difficult to identify a trend in deer 

occurrence; however, they appear to demonstrate a preference for interior over the forest 

edge, where hunters are more common. Other studies have reported similar findings, with 

deer in Borneo demonstrating a preference for interior forest (Brodie et al 2015).   

Detection rates of carnivores, particularly large-bodied carnivores, were uniformly 

low, and no carnivores were detected at the National Park edge. This result is expected, 

large carnivores are generally found at low density and range over great distances, 

therefore their probability of detection at a given location is very low. Reports of 

carnivore incursions into the neighbouring plantations and village are rare; most 

plantations near the edge are fenced and patrolled regularly by either people or dogs, 

which will deter most wild carnivores. The results here indicate that carnivores respond 

negatively to forest edges, although this should be interpreted with caution due to the 

overall low detection rate across the site. Mammalian carnivores, particularly those with 

larger body sizes, are considered especially sensitive to disturbance (Crooks 2002; Heim 

2011; Gerber et al. 2012; Farris et al. 2017). A camera trap study of large mammals in 

Borneo found that mammalian carnivores avoided the forest edge and demonstrated a 

strong preference for primary forest (Brodie et al. 2015).  

The results found here suggest that mammals are more likely to be detected in cooler 

locations in the forest. The mean temperature, daily maximum temperature and amount 
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of light radiation were significantly lower at 1km compared with all other locations. 

Locations at this distance also had, on average, a much higher mammal detection rate. 

Both the GLM and GLMM indicated that higher maximum and minimum temperatures 

lead to a reduction in mammal detection rate, and this negative relationship remained 

consistent across mammal Orders. This could either be because mammals are less active 

in warmer temperatures (Korstjens et al. 2010) and therefore less likely to be detected by 

camera traps, or because they are actively avoiding warmer regions in the forest. The only 

way to test this would be through real time monitoring of animal movement and 

microclimate as experienced by the animal. It would not be possible to do this non-

invasively, and my research permit in Indonesia only covered non-invasive, observational 

research; additionally, I did not have sufficient resources to safely sedate and tag 

potentially dangerous wild mammals. 

Total tree height was negatively associated with mammal detections, while DBH was 

positively associated. The model considers these variables together, so more trees with a 

taller height and lower DBH result in a lower detection rate, while more trees with a lower 

height, but larger DBH would result in a higher detection rate. A plot with a high average 

HDR (i.e. a small DBH relative to the average height) would suggest a higher proportion 

of young trees, since younger trees tend to favour upwards growth to reach a competitive 

height, before switching to favour trunk growth. This result suggests that mammals do 

not favour areas with a high proportion of very young trees. These results are comparable 

with those reported from a camera trap study from the Udzungwa Mountains in Tanzania, 

which found a negative association between the stem density of small trees (DBH 5-

10cm) and the abundance of several medium sized mammals, while the stem density of 

large trees (DBH >10cm) had a positive effect on several medium sized mammals (Martin 

et al. 2015). While it is well documented that mammal species richness is reduced in 

secondary compared with primary forest, very few studies have examined the relationship 

between vegetation structure and large mammals in detail. 

While clear relationships between temperature, tree height and tree diameter and 

mammal detections were found, the observed effect sizes were relatively small. There are 

other edge-related factors, besides temperature and light, which are also likely to be 

important drivers of mammal detections. For example, the level of human activity in the 

forest could influence both the density and detectability of animals. Mammals in areas 

with high levels of human disturbance have been observed to exhibit more vigilant 
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behaviour and spend less time in areas with high human footprint (e.g., wolverines, 

Stewart et al 2016), thereby reducing their detection probability in these areas. 

Differences in species composition and therefore food availability at the edge will also 

influence the distribution of species, and the effects of abiotic changes at the forest edge 

could therefore be indirect. Carnivores, for example, will be influenced by the distribution 

of prey species, such as deer, which are preferred prey for tigers (Allen, Sibarani and 

Krofel 2020) and were detected less at locations near the forest edge. Further work is 

necessary to fully identify which edge-related changes are most important for different 

mammal species. To fully understand the role of abiotic edge effects in determining 

mammal abundance across the site, it will be necessary to conduct further monitoring to 

increase the number of samples for each mammal species detected and allow for 

interspecies comparisons, as well as incorporate data on other factors which may vary 

with distance from the edge, such as measures of human activity (e.g., foot traffic or 

distance to settlements/main trails/roads) and food availability. Unfortunately, the sample 

numbers in this study are too low to perform more detailed analysis, such as occupancy 

modelling or other inferential approaches, which would allow for interspecies 

comparisons by accounting for imperfect detection, and differences in detection 

probability between species (Martin et al. 2015). This would give more detailed insights 

into how each species is impacted by environmental disturbance and how disturbance will 

influence the community structure and functional diversity of forests. This study does 

provide a useful baseline for which species are using the forest, and those which appear 

to be more affected by environmental changes brought on by edge effects at the park 

boundary.  

3.5.3 Remote monitoring of wildlife populations 

Camera traps are widely utilised to remotely monitor elusive animals in challenging 

conditions, such as tropical forest. Several other studies have demonstrated the usefulness 

of camera trapping in monitoring terrestrial forest mammals (Ahumada et al. 2013; 

Brodie et al. 2015; Martin et al. 2015; Rovero et al. 2017). The species accumulation 

curve indicates that the sampling effort of this study was adequate to capture most of the 

present and detectable species in the area. Gathering data using traditional field surveys 

would have required substantially more survey effort, with separate survey designs likely 

being required for each species of interest; for example, surveying elephant populations 

involves monitoring dung along line transects over a minimum of several months (Walsh 
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et al. 2001). Camera traps are limited in that they have a small effective detection area 

and can only capture a snapshot of a forest community; however, they are a hugely 

beneficial addition to monitoring programmes as they are still more likely than a human 

to detect elusive and nocturnal species (Caravaggi et al. 2017; Stephenson 2019). It is 

also important to separate observational processes, such as differential detection 

probabilities across animal guilds and habitat types, from ecological ones, to allow 

comparisons between studies and determine patterns at the landscape scale (Wearn et al 

2017). With further development of standardised protocols for data collection, storage 

and sharing, remote camera technologies can be utilised to develop a global network of 

biodiversity monitoring with high spatial and temporal resolution, which will be 

instrumental in achieving targets for biodiversity conservation (Steenweg et al. 2017).  

If implemented effectively, remote sensing methods can help fill knowledge gaps in 

high biodiversity tropical regions and for elusive and rare species. Most conservation 

actions aim to mitigate threats, reduce population declines and facilitate population 

recovery. Wildlife monitoring is a necessary step in assessing the outcomes of these 

actions. While remote monitoring offers many opportunities for wildlife research and 

conservation by facilitating collection of these data, it is most effective when integrated 

into a well-structured plan with clear goals, standardized protocols and should be 

complemented by data collected by people on the ground (Stephenson 2019). The lack of 

a standard methodological framework for the collection and analysis of remote 

monitoring data makes it difficult for practitioners who are unfamiliar with the 

technologies to properly implement them, and for researchers to scale up conclusions or 

draw comparisons between studies, locations or populations (Steenweg et al. 2017). 

Effective biodiversity monitoring programmes require clear protocols for survey design, 

data collection, storage and sharing, as well as consideration of the target species and 

actual project objectives, which indicators are appropriate to determine success, as well 

as the practicalities of the project, including the feasibility of beneficiaries to continue 

applying these methods for long term monitoring (Stephenson 2019). If appropriate care 

is taken to ensure that monitoring projects and equipment are suitable for the local 

conditions, focal species and research questions, remote monitoring technologies are 

promising tools which can provide long-term, high-quality datasets on wildlife 

populations. 
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3.5.4 Conservation Implications 

The Sikundur region represents key habitat to many species of conservation concern. 

A total of 17 mammal species were detected, seven of which are threatened with 

extinction (i.e. listed as Vulnerable, Endangered or Critically Endangered on the IUCN 

red list), with a further three species being listed as Near Threatened (IUCN 2014). Apart 

from three species (with unknown population trends), all identified species have a 

decreasing population trend (IUCN 2014). This demonstrates that, despite the history of 

degradation, this area is still supporting a number of species of conservation importance; 

this includes the Critically Endangered and endemic Sumatran elephant and Sumatran 

tiger. This further supports a growing body of evidence showing that secondary forests 

are essential to conserving tropical biodiversity (Dent and Wright 2009). Other secondary 

forest sites with a similar disturbance history to Sikundur, i.e. selectively logged and 

connected to primary forest, have a species richness and composition which closely 

resembles that in old growth forest, and recover rapidly following abandonment (Dunn 

2004). While curbing deforestation and protecting remaining primary forest must remain 

a key aim of conservation, the reality is that up to 60% of the world’s remaining forest 

cover comprises degraded or secondary forest, with 42 tropical countries now having a 

greater area of secondary forest than old growth forest; therefore, degraded, or secondary 

forests are critical to maintaining biodiversity in the future (Dent and Wright 2009). 

3.6 Conclusion 

This chapter aimed to test the hypotheses that forest structure and microclimate would 

vary significantly with distance from the forest edge, and that this variation would be 

associated with changes in mammal activity. Temperature and levels of light radiation in 

the understorey were significantly higher at the forest edge, and this effect is significant 

at least 500m from the boundary. Canopy structure did not appear to change much with 

distance from the edge; this is likely a result of historical selective logging, which would 

have removed most of the large emergent trees. Implementing long term monitoring of 

the forest conditions along this ecotone would provide a better insight into how edge 

effects and the resulting microclimatic changes influence forest regeneration in the area. 

Species richness, composition, and abundance of medium to large-bodied terrestrial 

mammals varied notably with distance to the forest edge. Monkeys, pigs, and elephants 

seemed to show a preference for edge habitat, while deer, moonrats and carnivores appear 

to suffer negative impacts from forest edges. These results highlight the importance of 
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considering the spatial extent of edge effects on target conservation species, and the 

individual ecological requirements of different species. Reserves and corridors designed 

to provide refuges and connectivity between patches for mammals must provide a buffer 

which is large enough to protect them from harmful edge effects, this will need to be more 

than 1km for some species. 

The results also highlight the potential of remote camera traps for monitoring elusive 

forest fauna; however, care should be taken when incorporating remote sensors into 

conservation monitoring programmes, and when scaling up camera trap data to larger 

spatial and temporal extents. The major limitation with the data collected here is that it is 

not possible to use inferential statistics, such as occupancy modelling or mark-recapture, 

which account for differences in detection probability. This would be possible with 

further sampling effort in the future, enabling us to determine the landscape scale 

ecological processes which drive mammal distribution and habitat use within tropical 

secondary forest in Sumatra. Future work should focus on continued monitoring of the 

mammal populations identified here following standardised protocols to enable collation 

of data between studies, and further monitoring at a finer spatial scale of the microclimatic 

gradient between the forest and adjacent plantations.  
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Chapter 4   

Predicting microclimate in a heterogeneous tropical secondary 

forest in Sumatra, Indonesia 

Abstract 

Ecological studies are increasingly incorporating fine-scale climate data to better 

understand species-environment relationships; however, collecting such data over large 

geographic and temporal extents in the field is costly, time-consuming, and often 

constrained by resource and funding limitations. Climatic conditions in tropical forests 

are on average cooler and less variable than the ambient macroclimate. However, the 

complex physical structure of forest canopies results in notable fine-scale variations in 

temperature. Fine-scale microclimate variations are not captured by macroclimate data 

which are interpolated from weather stations and are most commonly used in climate-

envelope models of species’ distributions. There have been increasing efforts to develop 

mechanistic models which use a process-based approach to predict microclimate by 

downscaling from macroclimate data measured by weather stations based on vegetation 

and topography. These models can provide data at more relevant ecological scales for 

modelling species-environment relationships. While they have been tested extensively in 

the temperate forests in the US and UK, and arid regions of Australia, they have yet to be 

tested in a tropical rainforest setting. This chapter tests the performance of two available 

microclimate models, NicheMapR and microclimc, in predicting below-canopy 

temperatures within a disturbed forest in the Sikundur region of Sumatra, Indonesia. 

Predictions of air temperature at hourly intervals over 365 days were generated for 3 

different heights from the top of the canopy at 15 random locations. Predictions were then 

tested against observed values recorded by automated data loggers, which were 

programmed to record temperature and light intensity at hourly intervals for 365 days 

continuously from October 2018 – October 2019. Temperatures varied significantly 

across the sites, and between heights, with temperatures increasing with increasing height 

above ground (i.e., lower distance to the top of the canopy). Both microclimate models 

performed well at predicting temperatures with similar errors to those found by previous 

studies in other environments, although NicheMapR produced lower error values. Model 

errors increased with increasing height above ground, suggesting that the models require 
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further parameterisation to fully capture vertical canopy gradients in tropical forests. 

These results demonstrate that existing mechanistic models perform well at predicting 

below-canopy conditions in tropical forests. These models are promising tools which can 

be used to provide detailed climate inputs to provide a better understanding of species-

environment relationships at finer scales.   
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4.1 Introduction 

Correlative species distribution models (SDMs) are commonly used to determine 

species extinction risks and potential future ranges under different climate change 

scenarios, but these are limited by the quality of input data. Correlative approaches are 

useful for answering questions about broad-scale species biogeography, but they have 

limited applicability at smaller spatial scales, where most conservation planning and 

action takes place. Typically, SDMs use open-access coarse scale climate datasets which 

have been downscaled from data grids collected from meteorological weather stations, 

such as WorldClim (Faye et al. 2014). This is potentially problematic, particularly in the 

case of tropical forest species. Firstly, there is limited weather station coverage across 

much of the Tropics compared with temperate regions, meaning that the accuracy and 

reliability of these datasets is limited in these regions (Daly 2006; World Meteorological 

Organization 2020). Secondly, weather stations are spread across spatial scales which are 

far larger than those at which organisms are experiencing climate (Bramer et al. 2018). 

Finally, traditional weather stations measure free air temperature following standard 

meteorological recording guidelines. As such, they are situated 1-2m above ground in 

open areas away from climate forcing factors, such as vegetation and topographical 

features which are not representative of the environments experienced by forest species 

(Bramer et al. 2018). Global climate predictions which have been interpolated from 

weather stations have been shown to differ markedly from locally recorded temperatures, 

particularly in heterogeneous tropical landscapes (Faye et al. 2014). Therefore, for most 

published SDMs, the input data used do not accurately reflect the actual conditions 

experienced by forest dwelling organisms, and, as a result, important patterns and 

processes which are occurring on smaller spatial scales are mostly overlooked (Gardner 

et al. 2019). More ecological studies need to consider the scale of the environmental data 

they use, and how relevant it is to the organism, system, or process in question. 

Tropical forests will play a key role in facilitating mammal responses to climate 

change, by providing refuges allowing them to avoid the increases in extreme climate 

conditions predicted for the tropics (Blonder et al. 2018). Canopy-climate interactions in 

dense tropical forests result in higher rainfall and local climatic conditions which are 

decoupled from the macroclimate. Tropical forests are, on average, cooler, wetter, and 

less variable compared with those recorded by meteorological weather stations (Fauset et 

al. 2020). This means that forests will function as buffers against future climate change 
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(de Frenne et al. 2019). Additionally, mature forests are highly complex, heterogeneous 

environments with substantial fine-scale spatial variation in topography and vegetation 

structure, both of which result in highly variable climatic conditions within the forests, 

thereby providing microclimate refuges that species can utilise to avoid sub-optimal 

extremes (Scheffers et al. 2014). These microclimate refuges are arguably more important 

for larger bodied endotherms, where extinction risk due to climate change will be 

determined mainly by the frequency and duration of their exposure to extreme 

temperatures, rather than overall changes in average conditions (Rezende et al. 2014). 

Conservationists often emphasise preserving remaining primary forest habitat to 

maintain biodiversity; however, the importance of secondary and regenerating forests is 

becoming increasingly evident (Dent and Wright 2009). A large proportion of threatened 

species’ ranges now comprise secondary forests, although the long-term viability of 

populations in these landscapes is poorly known. Climate buffering and availability of 

microclimate refuges in secondary forests could be compromised, compared to those in 

primary forests, as a result of reduced canopy cover and edge effects in fragmented 

landscapes (Bramer et al. 2020), however there are data to suggest that microclimate 

conditions within secondary forests remain comparable to those in primary forests, 

meaning that they are equally buffered from macroclimate changes, and still maintain 

sufficient heterogeneity to support high levels of biodiversity (Senior et al. 2018). 

Determining the relationship between canopy structure, microclimate and background 

macroclimate in secondary forests will enable identification of potential microclimate 

refuges which will facilitate mammal responses to climate change. 

Microclimates influence species physiology, behaviour, and ecological interactions. 

They can act as a buffer for organisms against long-term changes, as well as provide 

refuges for species, enabling them to avoid sub-optimal extremes (Suggitt et al. 2018). 

Microclimates are defined generally as fine scale variations in climate at spatial 

resolutions below 100m which are, at least temporarily, decoupled from mean 

macroclimate (Bramer et al. 2018). This is particularly important for species in the 

tropics, where most organisms have narrower thermal tolerances and exist closer to their 

maximum tolerance threshold than temperate species (Khaliq et al. 2014). While 

microclimates have been of interest to ecologists for some time (Geiger 1971; Oke 1987), 

there are still relatively few studies which incorporate fine-scale habitat and climate data 

when determining species-environment relationships and/or predicting species responses 
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to climate change. A review by Suggitt et al. (2011) found that only two out of 48 studies 

related to climate envelope modelling published between 2004 and 2008 used habitat data 

with a resolution of under 1km. This is particularly true for the tropics, where the 

geographic bias in high-resolution climate data towards temperate regions has impeded 

studies of microclimate ecology (Jucker et al. 2020). For example, none of the published 

species distribution models for large Sumatran mammals (e.g., Hedges et al. 2005; Wich 

et al. 2016; Poor et al. 2019) include fine-scale habitat or climate data. Identifying 

potential microclimate refuges for mammals is key to generating robust and reliable 

predictions of their extinction risk and future distributions with climate change. 

Measuring and modelling microclimates is becoming increasingly easier with 

technological advances that allow for relatively low-cost equipment and easy storage and 

sharing of large datasets (e.g., Lembrechts et al. 2020). Autonomous sensors in the field 

or remote sensing technologies can be harnessed to directly measure climate conditions 

at high resolutions across large spatial and temporal extents with relatively little survey 

effort (e.g., Ashcroft and Gollan 2011a; Still et al. 2019). Much microclimate research to 

date has focussed on specific regions, such as the UK, US, and parts of Australia, which 

have high weather station and satellite coverage, and are relatively easily accessible to 

establish and maintain sensor networks (Bramer et al. 2018). There is still, however, a 

relative lack of data from the tropics. Despite the increased accessibility of microclimate 

monitoring, lack of funding and accessibility are major limiting factors of ecological 

research projects in the tropics (Jucker et al. 2020). Establishing sensor networks over 

large spatial extents and maintaining them long-term in order to adequately interpolate 

microclimate in tropical forests will likely remain unfeasible for some time, therefore it 

is essential to develop models which can reliably generate microclimate predictions from 

existing coarse-scale datasets. 

Studies using microclimate variables either directly interpolate microclimate from in 

situ measurements (e.g., Dobrowski et al. 2009; Fridley 2009; Vanwalleghem and 

Meentemeyer 2009; Ashcroft and Gollan 2011; Ashcroft et al. 2012; Slavich et al. 2014; 

Frey, Hadley, and Betts 2016) or predict indirectly through downscaling of coarse-

grained macroclimate data grids (e.g., Flint and Flint 2012; Dingman et al. 2013; 

McCullough et al. 2016; Meineri and Hylander 2017). Attempts to interpolate between 

field data or downscale global macroclimate data both typically rely on assumptions 

based on the predictor variables used and how they influence microclimate, such as 
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topography, soil conditions and vegetation structure and cover. Although, global data on 

the first two variables is available, quality data on vegetation structure and its influence 

on microclimate is limited, and local climate processes beneath tropical forest canopies 

in particular are poorly understood (Bramer et al. 2018). Low weather station coverage, 

resource constraints and poor accessibility in these regions results in low quality 

macroclimate data for downscaling, and limited ability to collect in situ data for 

interpolation. 

There are now several mechanistic models available which can generate microclimate 

predictions for any location globally by downscaling macroclimate data using a process-

based approach, which considers the effects of topography and vegetation structure (e.g., 

Kearney et al. 2014; Kearney and Porter 2017; Maclean et al. 2019; Kearney et al. 2020). 

Process-based, or mechanistic, microclimate models, which use input data on topography 

and vegetation obtained from remote sensing (i.e., satellite imagery, aerial 

photogrammetry, or LiDAR) are likely to produce more reliable estimates of 

microclimate conditions, since they consider processes which drive local climate 

variations, such as the effects of topography, vegetation, and shading (Kearney et al. 

2014).  Combined with the increasing accessibility of remote sensing technology to 

collect detailed data on 3D landscape structure over large areas, mechanistic models are 

a promising tool for predicting fine-scale variations in climate. These models are being 

increasingly utilised in studies of species-climate relationships since they can perform 

well without requiring extensive data collection to provide input parameters (e.g., 

Kearney and Porter 2009; Kearney et al. 2016). Mechanistic models have been applied 

and tested in a number of contexts, including mapping microclimate in the UK, the US 

and Australia (Kearney et al. 2014; Maclean et al. 2017; Fitzpatrick et al. 2019; Kearney 

2019), and predicting distributions of both ectotherms  (Kearney and Porter 2004; 

Enriquez-Urzelai et al. 2019) and endotherms (e.g., Porter and Kearney 2009; Mathewson 

et al. 2017), but have yet to be tested in a tropical rainforest setting, or be applied in 

predicting climate space for large tropical mammals. Given the limitations of ecological 

studies in the tropics, the ability to generate microclimate predictions with high spatial 

and temporal resolutions across large areas will vastly improve our ability to identify 

current species-environment relationships and make inferences on how these might 

change in the future. 



   

 

97 

 

4.2 Aim & Objectives 

This chapter tests the performance of remote sensing and mechanistic modelling 

approaches to determine microclimate conditions underneath forest canopies in 

secondary tropical forest. The ability to model climate conditions at fine scales will 

improve our ability to identify potential microclimate refuges within tropical forests, 

without the need for costly and time-consuming field surveys on the ground. 

1. Determine temperature variation in time and over 3D space in a secondary tropical 

forest by recording temperature and light intensity at hourly intervals using 

autonomous data loggers deployed at 15 randomly generated points throughout 

the study site over a continuous 1-year period. 

2. Determine the reliability of temperatures predicted by the mechanistic 

microclimate models by comparing predictions of hourly microclimate conditions 

for each of these points to the in situ observed temperature measurements. 

3. Compare the performance of two different mechanistic models in predicting 

below canopy temperature variations. 

4. Determine whether vegetation characteristics affect the ability of mechanistic 

models to predict below canopy temperatures. 

4.3 Methods 

4.3.1 Location 

Fifteen sampling points were randomly generated using ArcGIS Pro software (ESRI 

2010), with a minimum distance of 100m between them to prevent spatial autocorrelation 

between points. A location within 50m (to account for accessibility) of each of these 

points was then chosen to sample microclimate and vegetation structure. Final sampling 

locations are shown in Figure 4.1. 

4.3.2 In situ microclimate measurements 

Temperature, °C and light intensity recorded from each sampling location using 

automated HOBO Onset temperature and light pendant loggers, placed at different 

heights in the tree canopy. HOBO pendant loggers are able to record temperatures and 

relative light levels between -20 and 70°C and 0 – 320,000 lux respectively, with an 

accuracy of ± 0.53°C from 0 – 50°C. A catapult was used to launch a weighted rope into 

the canopy. Three sensors were secured to this rope at 5m intervals and raised into the 
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canopy until the first sensor was as close to the top of the tree as possible. The actual 

height above ground of the logger was then measured in metres using a Haglof Vertex IV 

ultrasound laser range finder (Haglöf Sweden AB [haglofsweden.com]). Loggers were 

programmed to record temperature (⁰C) and light intensity (lux) at hourly intervals 

starting at 5pm on the day of deployment and were left to record for a 12-month period, 

providing coverage of both the wet and dry seasons. Loggers were revisited once during 

the sampling period to replace any which had failed, and once at the end of the period to 

collect them and remove the ropes from the forest. Once collected, climate data were 

cleaned to remove false highs where increased temperatures were recorded due to the 

logger being exposed to direct sunlight. Instances where the recorded light intensity 

exceeded 32,000 lux, or where temperature increased by more than 5°C between 

consecutive hourly recordings were removed along with the two datapoints immediately 

following them. A Kruskal-Wallis test was performed using R version 4.0.0 (R Core 

Team 2020) to compare temperatures recorded at each location. 

 
Figure 4.1: Random sampling locations used to measure and predict microclimate at 

Sikundur. 

https://haglofsweden.com/project/vertex-5/
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4.3.3 Vegetation & canopy structure 

Canopy structure was recorded using 25 x 25m vegetation plots. Using the tree in 

which data loggers were placed as the origin, all trees within a 12.5m radius with a 

diameter at breast height (DBH) of more than 10cm were recorded. For each tree with a 

DBH of more than 10cm the following data was recorded: DBH (cm), calculated from 

the circumference of the trunk using a measuring tape at 1.3m (or above any large roots 

or buttresses); total height (m) and height to first major bole (m), measured using a Haglof 

vortex laser range finder; crown area (m2), estimated by measuring the crown along the 

N-S and E-W axes with a measuring tape on the ground; estimated percentage canopy 

connectivity. DBH was used to calculate basal area (m2) for individual trees, using the 

formula: 

𝐵𝐴 =
𝜋 × 𝐷𝐵𝐻2

40000
 

Variables were summarised per plot as follows: unweighted mean height; mean bole 

height; mean DBH; mean basal area; mean crown area; mean crown depth; mean canopy 

connectivity; and total number of trees with DBH >10cm. In addition to the unweighted 

mean height, Lorey’s height (the mean height of trees weighted by their basal area) was 

calculated using the lorey.height function in the ‘sitreeE’ package in R (Antón Fernández 

2019). Lorey’s height is frequently used in uneven-aged forest stands since it is less 

affected by loss of smaller trees than the unweighted mean height (Pourrahmati et al. 

2018).  

4.3.4 Microclimate modelling 

Microclimate predictions were generated for all sampling locations and heights using 

two different packages for mechanistic microclimate modelling in R version 4.0.0 (R 

Core Team 2020); firstly, the microclimate model from NicheMapR (Kearney and Porter 

2017), and secondly, microclimc (Maclean and Klinges 2021). Unlike NicheMapR, 

which is more general purpose, microclimc has been specifically designed to model below 

canopy microclimate, by incorporating more detailed input parameters for vegetation 

structure, including plant-area index, vegetation thickness and canopy height. 
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4.3.4.1 NicheMapR 

Input variables on terrain and vegetation shading were manually included in the 

model to account for local climate forcing effects at each location. Terrain variables were 

obtained from the Shuttle Radar Topography Mission digital elevation model (SRTM 

DEM), with a 30m (1 arc-second) resolution. To reduce processing times, the SRTM 

DEM raster was first clipped to the study region in ArcGIS. Continuous data layers on 

slope (°) and aspect (°) for the whole site were generated from the SRTM DEM in SAGA-

GIS (Conrad et al. 2015) using the ‘Slope, Aspect, Curvature’ function, found within the 

‘Terrain Analysis’ toolbox under ‘Morphometry’. Vegetation shading was calculated 

using a digital surface model, DSM, with a resolution of 25.7 cm2 per cell, developed 

from overlapping images taken over pre-programmed routes by unmanned aerial 

vehicles, UAVs, in 2015-2016 by Marsh (2019). The ‘Potential Incoming Solar 

Radiation’ function in SAGA-GIS (found within the ‘Terrain Analysis’ library, under 

‘Lighting, Visibility’) was used to create a continuous data layer of total insolation 

(kWh/m2) across the whole site based on shading by neighbouring trees from the UAV 

DSM. The resulting data layer was overlaid with the SRTM DEM in ArcGIS and the 

‘Point Sampling’ tool was used to extract values for elevation (m), slope (°), aspect (°), 

and total insolation (kWh/m2) for each sampling location. Total insolation was converted 

into a percentage of the insolation recorded at areas with no vegetation cover, this 

percentage was then subtracted from 100 to give the percentage shading to be used as the 

maximum shade in NicheMapR. The ‘micro_global’ function in NicheMapR was then 

used to generate hourly predictions of microclimate conditions over 365 days for all 

logger locations (15 points, with three heights per point, to give 45 sampling locations in 

total). 

4.3.4.2 Microclimc 

The climate forcing data required to run the microclimc model were interpolated to 

hourly intervals from the National Centers for Environmental Predictions global 

reanalysis dataset (NOAA Physical Sciences Laboratory 2021), which provides 

macroclimate data at 6-hourly intervals on a ~200km x 200km grid, using the function 

‘hourlyNCEP’ from the ‘microclima’ R package (Maclean et al. 2019). These data were 

then reformatted to be used with microclimc using the ‘hourlyNCEP_convert’ function. 

Daily precipitation data were obtained from NCEP using the microclima function 

‘dailyprecipNCEP’. Vegetation geometry parameters (plant-area index, vegetation 
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thickness, proportion of dead and live leaves, relative turbulence intensity) were derived 

based on habitat type (evergreen broadleaf forest) using the ‘habitatvars’ function in 

microclimc. The function outputs for canopy height were overwritten to include the 

recorded average tree height from each sampling location. The microclimate model was 

then run in steady-state mode using the function ‘runwithNMR’ to predict below canopy 

microclimate predictions at hourly time intervals for all sampling locations and heights. 

4.3.4.3 Microclimate model validation 

Model outputs were compared against logger data. Firstly, the ‘metrics’ R-package 

(Hamner and Frasco 2018) was used to calculate the root mean square error, RMSE, and 

mean absolute error, MAE, between model predictions and observed values of ambient 

air temperature, °C, for all data points pooled and at each individual location and height. 

RMSE and MAE were also calculated for each month of data collection for all individual 

locations and heights. The base R package ‘stats’ was then used to perform a Spearman’s 

rank correlation on predicted and observed values of ambient temperature at each 

location. RMSE, MAE and correlation coefficients were used to determine which model 

performs best at predicting hourly microclimate. 

4.3.5 Effects of canopy structure on microclimate variation and microclimate 

model performance 

Linear Mixed Models, LMMs (Harrison et al. 2018) were used to analyse the 

relationship between forest structure and observed monthly mean temperatures, observed 

daily maximum temperatures and model errors produced by NicheMapR. The models 

included plot-level canopy structure variables (number of trees with DBH >10cm per plot; 

mean DBH, cm; Lorey’s height, m; unweighted mean tree height, m; mean bole height, 

m; mean basal area, m2; mean crown depth, m; mean crown area, m2; and mean canopy 

connectivity, %) and logger height, m, as fixed effects; and month and sampling location 

as random intercepts. Vegetation variables were first checked for co-linearity using 

Pearson’s correlations. Variables which were significantly highly correlated (r > 0.6; P < 

0.05) were not included in the LMM. The ‘dredge’ function from the MuMin R-package 

(Barton 2020) was used to determine which combination of fixed effects produced the 

best performing models based on their second order Akaike Information Criterion, AICc. 
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4.4 Results 

4.4.1 Observed microclimate 

Out of a total of 45 deployed data loggers at 15 locations, 3 were either lost or failed, 

resulting in no data. Of the remaining loggers, 18 failed partway through the sampling 

period due to either a hardware fault, low battery, or lightning strike, thereby only yielding 

data for a partial year; 23 loggers successfully recorded for a full year. Data loggers 

collected a total of 273,343 data points for temperature and light intensity at hourly 

intervals from October 2018 - October 2019, excluding points which were filtered out 

due to sunlight exposure. After filtering out values where the logger was exposed to direct 

sunlight, observed temperatures ranged from 17.47°C to 44.46°C, with a median of 

25.02°C and a mean of 26.27°C (Figure 4.2 and Table 4.1). Observed temperatures were 

found to vary significantly between all 45 locations (KW X2 = 4758.7, df = 14, P<0.01; 

Figure 4.3a). 

4.4.2 Microclimate modelling 

Both microclimate model was run successfully for hourly intervals over 365 days at 

45 points (3 heights across 15 locations) resulting in 394,200 data points for each model. 

NicheMapR Predictions of ambient temperatures ranged from 20.68°C to 33.50°C, with 

a median of 23.61°C and a mean of 25.28°C (Figure 4.2 and Table 4.1). Predicted 

temperatures varied significantly between sampling locations (KW X2 = 951.03, df = 14, 

P<0.01; Figure 4.3b). Microclimc predictions of ambient temperature was 24.92°C, with 

a median of 24.48°C and a range of 19.28 – 36.74°C (Figure 4.2 and Table 4.1). Predicted 

temperatures varied significantly between locations (KW X2 = 1742.7, df = 14, P<0.01; 

figure 4.3c). After accounting for points which were lost due to either failure, loss or sun 

exposure of the data logger, there were a total of 261,360 data points with both observed 

and predicted values for air temperature from both models. 
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Table 4.1: Summary of observed temperatures from data loggers and predicted ambient air 

temperatures for each location and height sampled at Sikundur. 

 

n Mean Max Min SD n Mean Max Min SD n Mean Max Min SD

25 03/10/18 - 15/02/19 2656 25.47 40.07 20.14 3.30 8760 25.49 32.84 21.29 3.49 9432 25.12 35.63 20.33 1.88

30 03/10/18 - 06/10/19 7881 26.16 39.96 17.48 3.68 8760 25.33 32.74 21.09 3.52 9432 25.17 36.12 20.38 1.92

35 03/10/18 - 06/10/19 2760 25.53 39.50 17.67 3.20 8760 25.20 32.65 20.91 3.55 9432 25.21 36.45 20.42 1.94

18 01/10/18 - 06/10/19 8285 26.70 43.12 18.33 3.98 8760 25.47 32.71 21.34 3.43 9432 25.04 35.01 20.17 1.85

23 Failed/lost * * * * * 8760 25.25 32.58 21.05 3.48 9432 25.11 35.76 20.23 1.89

28 01/10/18 - 06/10/19 8736 26.00 36.40 18.24 2.88 8760 25.07 32.47 20.82 3.52 9432 25.16 36.23 20.29 1.93

24 14/09/18 - 08/10/19 8786 26.41 43.72 18.24 3.69 8760 25.70 33.32 21.36 3.63 9432 25.11 35.56 20.33 1.88

29 14/09/18 - 08/10/19 8528 26.62 41.23 18.43 3.90 8760 25.44 32.97 21.13 3.59 9432 25.16 36.07 20.38 1.91

34 14/09/18 - 08/10/19 9197 26.96 38.16 19.47 3.72 8760 25.22 32.68 20.93 3.56 9432 25.20 36.42 20.43 1.94

22 Failed/lost * * * * * 8760 25.66 33.25 21.33 3.62 9432 25.09 35.40 20.27 1.87

27 02/10/18 - 07/10/19 8764 26.58 38.27 19.38 3.23 8760 25.37 32.87 21.08 3.57 9432 25.14 35.98 20.32 1.91

32 10/02/18 - 07/10/19 5721 26.78 35.12 20.04 3.07 8760 25.13 32.56 20.87 3.54 9432 25.19 36.37 20.37 1.94

20 30/09/18 - 10/02/19 3186 25.26 31.98 20.52 2.31 8760 25.56 32.88 21.39 3.47 9432 25.06 35.22 20.22 1.86

25 30/09/18 - 07/10/19 8852 26.14 36.40 18.43 2.92 8760 25.36 32.76 21.13 3.52 9432 25.13 35.88 20.27 1.90

30 30/09/18 - 23/05/19 5604 26.01 35.86 18.43 2.92 8760 25.20 32.66 20.92 3.55 9432 25.18 36.30 20.33 1.94

24 14/09/18 - 06/10/19 9276 25.89 34.59 18.33 2.70 8760 25.66 33.27 21.33 3.62 9432 25.11 35.56 20.31 1.88

29 14/09/18 - 06/10/19 9228 26.21 37.94 18.05 3.25 8760 25.40 32.92 21.10 3.58 9432 25.16 36.08 20.36 1.91

34 14/09/18 - 06/10/19 9069 26.40 40.88 18.05 3.55 8760 25.18 32.63 20.90 3.55 9432 25.20 36.42 20.41 1.94

22 03/10/18 - 10/02/19 3021 26.03 36.19 20.71 3.23 8760 25.51 32.82 21.33 3.47 9432 25.09 35.40 20.27 1.87

27 03/10/18 - 07/10/19 7885 26.32 44.09 19.00 3.53 8760 25.32 32.71 21.09 3.51 9432 25.14 35.98 20.32 1.91

32 03/10/18 - 10/02/19 2436 25.30 36.51 20.90 2.65 8760 25.18 32.62 20.90 3.55 9432 25.19 36.37 20.37 1.94

25 30/09/18 - 07/10/19 8649 26.74 38.27 18.62 3.35 8760 25.42 32.73 21.24 3.47 9432 25.12 35.63 20.33 1.88

30 30/09/18 - 07/10/19 3244 26.17 34.48 19.19 3.08 8760 25.26 32.64 21.04 3.50 9432 25.17 36.12 20.38 1.92

35 30/09/18 - 07/10/19 7478 26.63 37.49 21.28 3.35 8760 25.13 32.55 20.86 3.53 9432 25.21 36.45 20.42 1.94

28 02/10/18 - 07/10/19 8857 25.27 35.44 18.14 2.16 8760 25.40 32.73 21.21 3.48 9432 25.15 35.81 20.39 1.89

33 02/10/18 - 15/02/19 3233 25.32 36.95 18.24 2.44 8760 25.26 32.64 21.03 3.51 9432 25.19 36.23 20.43 1.92

38 02/10/18 - 07/06/19 5799 26.02 39.05 18.05 3.20 8760 25.14 32.57 20.87 3.54 9432 25.23 36.52 20.48 1.95

23 01/10/18 - 06/10/19 8472 26.77 43.00 19.47 3.74 8760 25.36 32.62 21.21 3.44 9432 25.10 35.48 20.29 1.87

28 01/10/18 - 30/07/19 6945 26.29 39.39 19.09 3.28 8760 25.18 32.51 20.98 3.48 9432 25.15 36.03 20.34 1.91

33 Failed/lost * * * * * 8760 25.04 32.42 20.80 3.51 9432 25.20 36.40 20.39 1.94

10 02/10/18 - 08/10/19 8833 25.90 35.22 18.24 2.61 8760 26.03 33.29 21.93 3.44 9432 24.88 34.24 20.00 1.77

15 02/10/18 - 08/10/19 8686 26.55 38.27 17.95 3.57 8760 25.63 33.05 21.40 3.52 9432 25.00 35.85 20.09 1.85

20 02/10/18 - 08/10/19 8053 26.78 42.64 17.86 4.26 8760 25.35 32.88 21.03 3.59 9432 25.09 36.74 20.17 1.91

15 01/10/18 - 06/10/19 8841 26.54 39.96 18.71 3.61 8760 25.60 32.83 21.48 3.43 9432 24.99 35.07 20.07 1.82

20 01/10/18 - 06/07/19 4580 26.61 37.17 18.52 3.43 8760 25.33 32.67 21.13 3.49 9432 25.07 36.11 20.14 1.88

25 01/10/18 - 06/10/19 8664 26.23 37.60 18.33 3.16 8760 25.12 32.55 20.86 3.53 9432 25.14 36.74 20.21 1.92

25 30/09/18 - 14/02/19 3283 25.35 33.12 18.33 2.39 8760 25.52 32.93 21.30 3.52 9432 25.12 35.63 20.33 1.88

30 30/09/18 - 14/02/19 3236 25.71 34.16 18.33 2.80 8760 25.34 32.77 21.09 3.53 9432 25.17 36.12 20.38 1.92

35 10/02/19 - 07/10/19 5734 26.49 34.59 18.52 3.00 8760 25.19 32.64 20.91 3.55 9432 25.21 36.45 20.42 1.94

24 14/09/18 - 12/02/19 3618 25.43 32.81 18.43 2.45 8760 25.65 33.06 21.42 3.52 9432 25.11 35.56 20.33 1.88

29 14/09/18 - 12/02/19 3620 25.73 33.33 18.24 2.86 8760 25.48 32.96 21.21 3.56 9432 25.16 36.07 20.38 1.91

34 14/09/18 - 12/02/19 3548 25.70 35.01 18.14 2.98 8760 25.34 32.87 21.02 3.59 9432 25.20 36.42 20.43 1.94

21 03/10/18 - 06/10/19 8636 26.51 37.06 18.14 3.53 8760 25.50 32.80 21.33 3.46 9432 25.08 35.32 20.24 1.86

26 03/10/18 - 06/10/19 8465 26.63 37.06 18.43 3.63 8760 25.31 32.68 21.08 3.50 9432 25.14 35.93 20.29 1.90

31 03/10/18 - 09/02/19 2998 26.27 36.30 20.42 3.48 8760 25.15 32.58 20.88 3.54 9432 25.18 36.34 20.35 1.94
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Figure 4.2: Hourly variation in ambient air temperatures, °C, observed from data loggers 

and predicted by NicheMapR and microclimc. 

4.4.2.1 Model performance 

There was a significant positive correlation between observed and predicted values 

for ambient temperature for both NicheMapR (Spearman’s Rho= 0.81; P<0.001, n = 

267,466; Figure 4.4a and b) and microclimc (Spearman’s Rho= 0.78; P<0.001, n = 

267,466; Figure 4.4c and d). Root mean square error, RMSE, and mean absolute error, 

MAE, were 2.25°C and 1.79°C, respectively for NicheMapR and 2.53°C and 1.79°C, 

respectively for microclimc. Predicted and observed temperatures at all individual 

locations and heights were significantly positively correlated (P<0.01) for both models, 

with correlation coefficients ranging from 0.69 – 0.86 for NicheMapR, and 0.67-0.82 for 

microclimc; RMSE and MAE were between 1.83°C – 2.71°C and 1.40°C – 2.17°C 

respectively for NicheMapR and 1.44 – 3.47°C and 1.07 – 2.31°C respectively for 

microclimc (see Table 4.2 for correlation coefficients, RMSE and MAE for both models 

at individual locations and heights).  
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Figure 4.3: Range of temperatures for each location of a) observed values recorded from 

data loggers and b) values predicted by NicheMapR. Different heights are denoted by (1) bottom; 

(2) middle; and (3) top. 
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Figure 4.4: Observed and predicted values for ambient air temperature, °C, for all locations 

and heights at Sikundur (excluding points removed due to logger exposure to direct sunlight). (a) 

Observed (red) and NicheMapR predictions (black) of ambient temperature against day of year 

for the period October 2018 - October 2019; (b) Spearman’s correlation of NicheMapR 

predictions against observed values for temperature; (c) Observed (red) and microclimc 

predictions (black) of ambient temperature against day of year for the period October 2018 - 

October 2019; and (d) Spearman’s correlation of microclimc predictions against observed values 

for temperature. 
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Table 4.2: Spearman's correlation, root mean square error, RMSE, and mean absolute difference, 

MAD, between temperatures, °C, recorded from data loggers and temperatures, °C, predicted by 

NicheMapR at individual sampling locations and heights at Sikundur. *** P<0.001 with 

Bonferroni adjustment. 

 

Spearman's rho RMSE MAE Spearman's rho RMSE MAE

25 2656 0.80*** 2.00 1.55 0.79*** 2.57 1.58

30 7751 0.83*** 2.16 1.72 0.79*** 2.77 1.85

35 2760 0.80*** 2.31 1.91 0.78*** 2.49 1.63

18 8156 0.83*** 2.45 1.90 0.78*** 3.30 2.30

23 * - - - - - -

28 8606 0.81*** 2.15 1.77 0.79*** 2.00 1.50

24 8274 0.82*** 2.22 1.69 0.78*** 2.93 2.02

29 7987 0.83*** 2.36 1.91 0.78*** 3.18 2.22

34 8656 0.83*** 2.64 2.17 0.79*** 3.08 2.28

22 * - - - - - -

27 8607 0.81*** 2.31 1.87 0.78*** 2.54 1.93

32 5561 0.78*** 2.51 2.05 0.75*** 2.48 1.95

20 3179 0.78*** 2.05 1.59 0.80*** 1.45 1.12

25 8693 0.81*** 2.10 1.69 0.79*** 2.10 1.59

30 5597 0.80*** 2.20 1.78 0.80*** 2.04 1.54

24 8756 0.80*** 2.05 1.63 0.78*** 1.87 1.45

29 8709 0.82*** 2.02 1.60 0.79*** 2.35 1.75

34 8549 0.83*** 2.24 1.83 0.79*** 2.70 1.94

22 3021 0.81*** 2.05 1.62 0.80*** 2.54 1.81

27 7727 0.80*** 2.46 1.95 0.75*** 2.86 1.99

32 2436 0.69*** 2.57 2.15 0.67*** 2.17 1.49

25 8487 0.81*** 2.36 1.93 0.77*** 2.74 2.06

30 3237 0.80*** 2.30 1.90 0.79*** 2.42 1.79

35 7316 0.80*** 2.49 2.05 0.76*** 2.62 1.96

28 8698 0.78*** 2.19 1.77 0.77*** 1.44 1.07

33 3233 0.78*** 2.13 1.74 0.8*** 1.52 1.11

38 5799 0.83*** 2.20 1.76 0.81*** 2.25 1.59

23 8348 0.82*** 2.42 1.94 0.78*** 3.08 2.21

28 6945 0.81*** 2.24 1.81 0.77*** 2.49 1.83

33 * - - - - - -

10 8651 0.83*** 1.83 1.40 0.80*** 1.90 1.41

15 8502 0.86*** 1.96 1.57 0.82*** 2.84 1.99

20 7890 0.85*** 2.71 2.15 0.81*** 3.47 2.31

15 8709 0.82*** 2.19 1.69 0.79*** 2.86 2.00

20 4580 0.81*** 2.19 1.71 0.78*** 2.61 1.91

25 8543 0.82*** 2.17 1.77 0.79*** 2.36 1.73

25 3276 0.79*** 2.05 1.62 0.81*** 1.49 1.15

20 3229 0.81*** 2.03 1.64 0.82*** 1.94 1.42

35 5575 0.80*** 2.27 1.84 0.77*** 2.23 1.73

24 3229 0.78*** 2.05 1.61 0.80*** 1.61 1.21

29 3229 0.81*** 1.99 1.56 0.81*** 2.01 1.49

34 3181 0.80*** 2.07 1.64 0.81*** 2.11 1.55

21 8505 0.84*** 2.09 1.66 0.80*** 2.73 1.94

26 8332 0.84*** 2.29 1.86 0.79*** 2.83 2.05

31 2998 0.82*** 2.37 1.97 0.81*** 2.77 1.94

NicheMapR microclimc
Location Height, m N

1

2

3

4

15

9

10

11

12

13

5

6

7

8

14
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4.4.3 Vegetation structure 

A total of 223 trees were measured over the 15 plots. Total number of trees per plot 

ranged from 7 to 20. Tree height and bole height ranged from 5.9 – 56.7m and 0.5 – 44m, 

respectively. Crown depth ranged from 1 – 25.15m and crown area from 1.06 – 430.02m2. 

DBH and basal area ranged from 10.19 – 220.59cm and 0.008 – 3.82m2, respectively. 

Lorey’s mean height of plots ranged from 18.44 – 47.75m. The summary variables used 

in the MEM for each location are shown in Table 4.3 and Figure 4.5. Overall, canopy 

height and DBH were generally low, with relatively few tall emergent trees. Total tree 

height, bole height and crown connectivity varied significantly between plots (Total 

height: Kruskal-Wallis X2 = 24.95, df = 14, P= 0.03; Bole height, Kruskal-Wallis X2 = 

25.14, df = 14, P = 0.03; connectivity: Kruskal-Wallis X2 = 42.03, df = 14, P <0.01), while 

DBH, crown area and crown depth did not (DBH: Kruskal-Wallis X2 = 19.30, df = 14, P 

= 0.15; crown area: Kruskal-Wallis X2 = 10.84, df = 14, P = 0.70; crown depth: Kruskal-

Wallis X2 = 18.56, df = 14, P = 0.18). 

4.4.4 Vegetation effects on observed microclimate and model performance 

Lorey’s mean height was found to be significantly correlated with unweighted mean 

height, maximum tree height, mean bole height, mean DBH, mean basal area and mean 

crown area (r > 0.6, P < 0.05). Therefore, only Lorey’s mean height, number of trees, 

canopy connectivity and logger height were used as explanatory variables in the LMMs. 

After performing a dredge on the models, the only significant explanatory variable in all 

cases was logger height, which had a small, but statistically significant positive effect on 

recorded monthly mean temperature (estimate ± SE: 0.01 ± 0.003; 95% CI: 0.01-0.02; 

P<0.01; Table 4.4 and Figure 4.6), daily maximum temperature (estimate ± SE:  0.06 ± 

0.004; 95% CI: 0.06-0.07; P <0.01; Table 4.5 and Figure 4.7), RMSE (estimate ± SE; 

0.02 ± 0.003; 95% CI; 0.01-0.02; P<0.01, Table 4.6 and Figure 4.8), and MAE (estimate 

± SE: 0.02 ± 0.003; 95% CI: 0.02-0.03; P<0.01; Table 4.7 and Figure 4.9). 



   

 

109 

 

Table 4.3: Summary of forest structure variables collected from vegetation plots at Sikundur. 

 

   

Mean Max Min SD Mean Max Min SD Mean Max Min SD Mean Max Min SD Mean Max Min SD Mean Max Min SD

1 18 36.30 16.98 42.9 9.3 8.19 10.41 20.6 6.1 3.92 30.66 168.7 10.19 35.58 6.57 22.3 1.2 5.35 50.9 430.02 1.29 95.42 40.56 80 5 22.94

2 17 21.70 18 31.9 9.9 6.95 11.13 24.2 1.6 5.85 32.52 57.93 11.46 14.83 6.87 21.2 2.2 5.25 33.63 113.47 7.88 27.27 36.47 70 10 18.09

3 6 38.08 21.85 42.1 14.7 10.39 10.9 22 6.5 5.58 40.11 121.28 16.55 40.25 10.95 20.1 5.1 5.49 62.29 178.37 22.16 58.98 19.17 30 0 10.21

4 19 34.64 22.43 42.4 12.8 9.14 13.68 22.9 7.4 4.64 27.41 80.53 11.78 20.93 8.75 22.2 2.6 5.57 35.02 101.44 6.97 28.45 50.53 80 20 18.4

5 17 23.30 19.25 35.1 5.9 7.93 9.57 18.9 0.5 4.54 26.64 51.88 10.5 13.81 9.68 22.7 1.7 6.03 36.9 86.24 4.14 25.84 49.12 85 5 22.1

6 13 24.14 17.92 41.9 7.2 8.59 9.62 19.2 5.5 4.31 22.23 47.75 10.82 13.05 8.29 22.7 1 5.37 28.29 76.18 5.06 22.52 58.46 95 5 21.35

7 15 29.61 21.54 39.9 9 7.76 12.49 20.8 5.9 4.29 28.2 77.35 11.46 17.59 9.05 19.1 2.1 4.55 30.44 103.18 9.05 26.4 34.67 70 5 19.5

8 14 30.44 20.82 43.1 8.7 9.03 12.84 27.8 4 6.68 27.22 73.21 10.5 19.69 7.99 15.3 3.9 3.49 39.68 132.54 14.93 36.88 47.86 100 0 27.01

9 16 47.75 24.22 56.7 14.5 12.2 16.38 44 3 10.36 46 220.59 10.5 63.03 7.84 25.15 1.7 5.82 65.98 419.8 7.26 114.93 30.31 60 5 15.76

10 13 30.84 22.65 37.4 12.1 7.11 14.15 23.2 5.5 4.48 25.44 75.12 10.82 18.33 8.49 18.2 3.6 3.85 41.84 163.04 5.7 44.04 27.31 50 10 13.79

11 14 18.43 15.86 24.3 7.8 5.12 8.36 15.4 0.9 4.53 27.24 66.53 11.46 16.7 7.49 13.8 2.5 4.2 36.08 163.76 7.98 40.59 37.5 60 15 14.77

12 12 31.42 20.73 41.6 11.8 8.74 12.74 24.6 2.1 6.15 44.7 117.46 17.83 35.81 7.98 17 2.2 4.22 52.24 168.28 8.2 50.12 52.92 95 15 23.4

13 18 26.51 19.92 38.5 12.2 6.75 12.04 18.8 4.5 4.73 28.45 88.49 11.46 23.15 7.87 19.9 1.5 4.53 37.09 165.78 1.06 39.84 43.06 80 15 19.03

14 12 32.05 26.03 38.3 11.9 7.29 14.13 19.8 7.8 4.89 41.14 120 17.19 28.59 11.89 20 1.7 5.81 62.36 278.16 5.9 73.26 49.58 75 25 14.69

15 19 31.50 20.48 39.8 8 9.33 13.71 29.3 3 7.99 43.63 157.56 11.78 41.41 6.77 12.5 3.4 2.64 54.67 209.72 2.14 61.16 39.74 70 0 20.91

Loreys mean 

height, m

Number of 

trees, n
Location

Crown connectivity, %Crown area, m2Crown depth, mDiameter at breast height, cmBole height, mTotal height, m
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Figure 4.5: The range of values of forest structure variables collected from vegetation plots 

at Sikundur: (a) Total tree height, m; (b) bole height, m; (c) diameter at breast height, cm; (d) 

crown area, m; (e) crown depth, m; and (f) crown connectivity, %. 
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Figure 4.6: Linear mixed model predictions (line) with 95% confidence intervals (grey shading) 

and observed values (points) of monthly mean temperature against a) logger height, m; b) plot 

location; and c) calendar month on monthly mean temperatures recorded by data loggers at 

Sikundur. 

 
Figure 4.7: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of daily maximum temperature against a) logger height, 

m; b) plot location; and c) calendar month on daily maximum temperatures recorded by data 

loggers at Sikundur. 
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Figure 4.8: Linear mixed model predictions (line) with 95% confidence intervals (grey shading) 

and observed values (points) of root mean square error of NicheMapR temperature predictions 

against a) logger height, m; b) plot location; and c) calendar month on root mean square error 

of NicheMapR microclimate predictions at Sikundur. 

 
Figure 4.9: Linear mixed model predictions (line) with 95% confidence intervals (grey 

shading) and observed values (points) of mean absolute error of NicheMapR temperature 

predictions against a) logger height, m; b) plot location; and c) calendar month on mean absolute 

error of NicheMapR microclimate predictions at Sikundur. 
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Table 4.4: Results of the linear mixed model for effect of logger height (H) on monthly mean 

temperature recorded by data loggers at Sikundur, σ2 denotes within group variance, while τ00 

denotes between group variance of random effects. 

 

 

 

  Monthly mean temperature  

Predictors Estimates CI t p 

(Intercept) 25.95 25.56 – 26.35 128.11 <0.001* 

Height, m 0.01 0.01 – 0.02 3.54 <0.001* 

Random Effects  

σ2 0.10  

τ00 Location 0.10  

τ00 Month 0.27  

ICC 0.79  

N Location 15  

N Month 12  

Observations 386  

Marginal R2 / Conditional R2 0.016 / 0  
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Table 4.5: Results of the linear mixed model for effect of logger height on daily maximum 

temperature recorded by data loggers at Sikundur, σ2 denotes within group variance, while τ00 

denotes between group variance of random effects. 

 

 

  Daily maximum temperature   

Predictors Estimates CI t p  

(Intercept) 30.87 29.97 – 31.76 67.67 <0.001*  

H 0.06 0.06 – 0.07 16.85 <0.001*  

Random Effects   

σ2 2.47   

τ00 date 2.38   

τ00 Location 1.45   

τ00 month 1.14   

ICC 0.67   

N Location 15   

N month 12   

N date 365   

Observations 11391   

Marginal R2 / Conditional R2 0.020 / 0.674   
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Table 4.6: Results of the linear mixed model for effect of logger height on root mean square error 

of microclimate predictions generated by NicheMapR for individual locations at Sikundur, σ2 

denotes within group variance, while τ00 denotes between group variance of random effects. 

 

 

Table 4.7: Results of the linear mixed model for effect of logger height on mean absolute error of 

microclimate predictions generated by NicheMapR for individual locations at Sikundur, σ2 

denotes within group variance, while τ00 denotes between group variance of random effects. 

 

  Root mean square error 

Predictors Estimates CI t p 

(Intercept) 1.75 1.52 – 1.98 14.96 <0.001* 

Height, m 0.02 0.01 – 0.02 6.27 <0.001* 

Random Effects 

σ2 0.06 

τ00 Location 0.02 

τ00 Month 0.08 

ICC 0.64 

N Location 15 

N Month 12 

Observations 386 

Marginal R2 / Conditional R2 0.073 / 0.667 

 

  Mean absolute error  

Predictors Estimates CI t p 

(Intercept) 1.22 1.00 – 1.44 10.89 <0.001* 

Height, m 0.02 0.02 – 0.03 9.34 <0.001* 

Random Effects  

σ2 0.04  

τ00 Location 0.02  

τ00 Month 0.09  

ICC 0.75  

N Location 15  

N Month 12  

Observations 386  

Marginal R2 / Conditional R2 0.115 / 0.776  
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4.5 Discussion 

The aim of this study was to determine the applicability of a mechanistic approach to 

predicting microclimate in heterogenous secondary tropical lowland forest and to 

compare two available modelling approaches, NicheMapR and microclimc. Both 

microclimate models generally performed well, producing relatively small RMSEs and 

MAEs (less than 3°C) across both the whole site and at individual sampling locations. 

This is despite the significant variation noted in some attributes of canopy structure and 

observed climate conditions between locations (Mean tree height ranged from 15.86 – 

26.03m; Lorey’s mean height ranged from 18.44 – 47.75m; mean bole height ranged from 

8.36 – 16.38m; crown connectivity ranged from 19.17-58.46%; mean temperature ranged 

from 25.26-26.96°C; and maximum temperature ranged from 31.98-44.09°C). These 

results demonstrate that these mechanistic models can be applied in secondary tropical 

forest and provide reliable estimates of below canopy climate conditions. Global datasets 

of macroclimate and topography are now freely available for most terrestrial locations, 

and the microclimate models performed well using only those inputs, with limited data 

collected directly from the field. 

4.5.1 Vegetation structure & microclimate conditions 

Forest structure recorded at Sikundur is characterised by low canopy height, DBH 

and connectivity between crowns. There are very few large, emergent trees. This is 

consistent with results reported previously from Sikundur, and other areas of secondary 

tropical forest (e.g., Priatna et al. 2000; Hankinson et al. 2021). The vegetation structure 

is also different compared to that recorded in primary forests in Indonesia/Asia (e.g., 

Manduell et al. 2012). Total tree height, bole height and crown connectivity were 

significantly different between plots, highlighting that there are considerable fine-scale 

variations in forest structure throughout the site.  There are also significant fine-scale 

variations in temperature, which would not be accounted for in global climate datasets 

with coarser resolutions. Despite the extensive historical disturbance in the area, there are 

still a variety of microhabitats available for species to utilise, and the area is therefore an 

important haven for biodiversity. 

Daily and monthly average temperatures throughout the site do not go above what 

would be considered a maximum threshold for most species, however, there are times 

(usually between 12:00 and 15:00pm) when daily maximums do reach extremes which 
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would be likely to result in physiological stress. This highlights the importance of 

considering both spatial and temporal variations at finer scales. Ignoring this could result 

in an under-estimation of species extinction risks by overlooking the effects of extreme 

temperature highs during the afternoon, such as those observed in this study. Repeated 

and prolonged exposure to sub-optimal high temperatures are likely to have a detrimental 

impact on endotherms, due to cumulative physiological stress and elevated metabolic 

costs of maintaining their body temperature during these periods (Rezende et al. 2014). 

Additionally, animals may be unable to carry out behaviours such as socialisation and 

foraging during times of extreme high temperatures, thereby affecting their activity 

budgets and potentially lowering fitness (Kearney 2013). Climatic conditions during the 

hottest parts of the day and year are likely to be a much stronger driver of species 

extinction risks from climate change than macroclimate averages (Rezende et al. 2014). 

It is generally assumed that the buffering effect on microclimates will be lessened in 

secondary versus primary forests, however there is little empirical evidence to confirm 

this (Ewers and Banks-Leite 2013; Hardwick et al. 2015). Recent work has suggested that 

secondary forest microclimates are still cooler than macroclimate, and still offer valuable 

microclimate refuges for species (Blonder et al. 2018; Senior et al. 2018). The results here 

also suggest that temperatures in Sikundur are buffered compared with macroclimate 

temperatures. Canopy structure variables did not significantly affect temperatures, 

although there were no data form non-forested areas to compare against in this study, and 

so the effect of vegetation may not be apparent. There was a significant effect of height 

in the canopy on temperature, with cooler temperatures lower in the canopy. In particular, 

daily maximum temperatures were lower closer to the ground, and further from the top 

of the canopy. This effect was captured by both modelling approaches. This would 

suggest that fine-scale variations in vegetation structure do not significantly alter the 

microclimate processes under forest canopies. Arboreal species could minimise their 

thermoregulatory costs and risks of overheating by utilising the lower canopy during the 

hottest parts of the day, when temperatures in the higher strata may be sub-optimal. 

4.5.2 Microclimate model performance 

Both models performed generally well, producing errors which are comparable with 

other studies (e.g., Fitzpatrick et al. 2019; Bentley et al. 2020; Kearney 2020), however 

NicheMapR produced lower error values and predicted maximum temperatures better 
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compared with microclimc. The microclimc model is still under development and 

requires further testing and calibrating for tropical and secondary forest types. The current 

habitat classes included in the ‘habitatvars’ function are fairly broad, and there are limited 

data available for detailed forest structure in tropical forests, particularly secondary 

forests. Canopy height and connectivity recorded at Sikundur are lower than what is 

generally reported for primary forests in Sumatra (Knop 2004; Manduell et al. 2012), it 

is also likely that vegetation thickness and leaf area index differ, although there is not 

currently data available for this. Further work to obtain more detailed habitat structure 

variables, such as vegetation thickness profiles and leaf area index, for secondary forests 

would likely improve the model performance. 

Both models tend to underestimate maximum temperatures, although NicheMapR 

generally performed better than microclimc at predicting midday temperatures. It is 

important to note that recorded temperatures could still be elevated due to the greenhouse 

effect of the logger housing, although steps have been taken to reduce the effects of this. 

It is, however, more likely that both models are not able to properly account for vertical 

gradients in forest canopies and perform less well higher up in the canopy. This is 

confirmed by the LMM results, which show that logger height has a significant effect on 

model errors, with increasing height leading to increasing error, although the observed 

effect is small. Very little is known about vertical microclimate variation in forest 

canopies, especially disturbed canopies (Marsh 2019). The lower canopy height and 

connectivity at the site most likely contributes to more pronounced gradients in 

temperature increase compared with less disturbed forest types. The majority of 

ecological studies which investigate microclimate or utilise microclimate models have 

focussed on ground-dwelling species (e.g., lizards: Kearney and Porter 2004; Strangas et 

al. 2019; insects: Gillingham et al. 2012; small mammals: Mathewson et al. 2017). There 

are far fewer studies which fully investigate vertical temperature variation in forests. 

Future work should focus on improving the available empirical data on the nature of 

vertical gradients in forest temperature and incorporating these into microclimate models 

to better predict conditions higher up in forest canopies. Studies which use these 

modelling approaches should focus on acquiring more detailed input data than what is 

currently available from global databases for their specific habitat type, especially those 

being conducted in secondary forests.  This will be invaluable to microclimate studies for 

arboreal species, for whom vertical climate variations are the most relevant. 
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In general, the range of temperatures predicted by NicheMapR for mid-afternoon 

(i.e., the hottest parts of the day) were much closer to the observed temperatures than 

microclimc. In the tropics, it is maximum temperatures, rather than mean or minimum 

temperatures, which are most significant in limiting species fitness and survival. The 

predictions produced by NicheMapR are therefore more likely to produce realistic results 

about climate effects on animals. Other work has already shown that using the 

NicheMapR microclimate model to predict species responses highlights that climate 

change will negatively impact species through increased physiological stress and water 

loss during times of higher temperatures (Kearney et al. 2013). Utilising the NicheMapR 

microclimate model in combination with other mechanistic models of species responses 

to climate change will provide more insight into the potential impacts of climate change 

for organisms in secondary forests, and the capacity of these organisms to adapt, beyond 

simply looking at species range dynamics.  

The results from this study demonstrate that mechanistic microclimate models can be 

applied in tropical secondary forest and produce predictions of forest microclimate 

conditions with high spatial and temporal resolutions with a reasonable accuracy. The 

increased availability of global high-resolution datasets of topography and elevation mean 

that these models are a promising tool which can be applied across wide areas at very low 

cost. With further development, and a focus on gathering data for a range of different 

forest types, mechanistic models have the potential to accurately compute high resolution 

microclimate datasets, even in locations where direct measurements from the field are 

limited. Accurate predictions and mapping of microclimate variation in forests are vital 

steps in understanding the underlying mechanisms behind species responses and 

vulnerability to climate change. Incorporating fine-scale microclimate variations into 

studies of species responses will improve the reliability of predictions of exposure and 

vulnerability to climate change, produce better predictions of species future ranges, and 

identify microclimate refuges which should be prioritised for protection.  
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Chapter 5   

A biophysical modelling approach to investigating edge effects 

on arboreal mammals: a case study of the Sumatran 

orangutan, Pongo abelii 

Abstract 

Models of species-environment relationships can provide a useful empirical basis for 

conservation, but they must include information on the local-scale processes which drive 

population changes to provide meaningful information to conservation planners.  

Correlative modelling approaches, which are most commonly used, work well for species 

with large geographic ranges and comprehensive distribution data, however, they have 

more uncertainty for species which are rare, have limited ranges or do not have 

widespread population data. They also provide limited insight into the underlying 

mechanisms behind population declines and local scale threats. Biophysical models use 

a theoretical approach to determine an individual organism’s response to climatic 

variations; this can then be scaled up to predict population level changes. Although they 

require more detailed inputs on species physiology than correlative approaches, they can 

be utilised with estimates derived from captive individuals, similar species, or expert 

opinions. This chapter uses a freely available biophysical model, the NicheMapR 

endotherm model, to predict orangutan energetics and water loss at a forest edge and 2km 

into the forest in North Sumatra, Indonesia. The NicheMapR model has been used for a 

number of small ground-dwelling terrestrial ectotherms, but applications in larger bodied 

terrestrial mammals are limited to a handful of species, and only two primates (sportive 

lemurs and vervet monkeys), both of which occur mainly in open, dry forests or savannah. 

This is the first use of this model for an ape species in disturbed tropical rainforest. The 

results suggest that orang-utans will begin to experience thermal stress at temperatures 

above 32°C and are already exposed to these temperatures at frequent intervals, although 

only for short periods of time. These potentially stressful periods occur more frequently 

at the forest boundary compared to the interior. This mechanism would be missed by 

models which only use macroclimate averages of temperature, potentially resulting in 

under-estimations of extinction risk from climate change. Metabolic rates and water loss 

were also higher at the edge, and these differences were more pronounced for an adult 
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male, which has a larger mass and higher basal metabolic rate than females and juveniles. 

These results suggest that the availability of cooler refuges during hotter parts of the day, 

and the ability to replenish lost water from canopy reservoirs or fruit will be important in 

facilitating orang-utan survival in fragmented forest following climate change. The study 

also showed that the relatively low basal metabolic rates typical of great apes, are helping 

orangutans survive in the canopies under these warm conditions. 
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5.1 Introduction 

Research into species-environment relationships is needed to inform predictive 

models of species responses to change, which can provide conservation planners with 

empirical evidence to support decision making when prioritising species, locations and 

habitats for protection and restoration. Correlative species distribution models (SDMs) 

are most frequently used to predict species responses; however, they do not incorporate 

physiological mechanisms and fine-scale interactions which drive species-environment 

relationships (chapter 2). While they perform well for species with large geographic 

ranges and comprehensive distribution data, they are harder to apply for species with very 

small ranges or with limited data, as is often the case with rare or endangered species 

(Stalenberg 2019). Individual populations are influenced by their own unique 

combination of biotic and abiotic factors (e.g., species traits, climate, topography, 

competition, human activities; Bogoni et al. 2020) and there is no one-size-fits-all 

management solution which will be applicable to all species and/or populations. 

Therefore, SDMs are not always able to provide conservation planners with relevant 

information to manage the wider range of processes and threats for their site at the right 

scale. Instead, more informative models would be those that study species-environment 

relationships from the bottom up because changes at the population level are driven by 

behaviour and physical characteristics of the individuals that make up the population 

(Foden et al. 2018).  Research into responses to climate change should therefore focus on 

more than simply projecting species potential geographical ranges, and instead work to 

identify the underlying mechanisms behind species responses and vulnerability to climate 

change (Serra-Diaz and Franklin 2019). 

Our current understanding of mammal vulnerability to climate change is hindered by 

a lack of knowledge on the underlying mechanisms of mammal biogeography and 

demographics. Mammal-climate relationships remain poorly understood, with only a 

small proportion of current literature explicitly investigating mammal-climate 

interactions (Paniw et al. 2021). There is increasing recognition of the complexity of 

species-climate relationships and the limitations of simplistic correlative approaches to 

projecting responses to climate change (Norberg et al. 2019). A meta-analysis of climate 

change literature by Paniw et al. (2021) found that only 106 studies, covering 87 mammal 

species, have investigated responses of more than one demographic indicator (e.g., 

survival, growth, or reproduction) to climate; of these, very few were conducted in 
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biodiverse regions or on species which are currently considered to be vulnerable to 

climate change. Most study species included in this meta-analysis are not considered 

climate sensitive based on IUCN classifications, however many of the studies it was based 

on still reported negative impacts, such as population declines or lowered reproductive 

rates.  This highlights an inadequacy in the way in which species vulnerability is currently 

assessed (Foden et al. 2019). Species’ persistence is determined by multiple demographic 

variables, biotic and abiotic factors, which often interact with each other and may not 

respond to climate change in a uniform way (Pacifici et al. 2015). Future climate change 

research needs to incorporate a mechanistic understanding of how climate affects 

survival, development, and reproduction, in order to provide more reliable projections of 

species responses and a strong evidence base for long term conservation planning. 

Staying cool and hydrated is the main challenge posed by climate change for tropical 

animals (Kearney, Shine & Porter 2009). Thermoregulation is critical for animals to 

survive when ambient temperatures are outside their thermal neutral zone, however, there 

is an upper limit to what they can tolerate, and regulatory strategies can be costly. In the 

tropics, species’ thermal tolerances are expected to be lower, and many species are 

already living closer to their maximum temperature limit (Carvalho et al. 2019). 

Prolonged exposure to extreme high temperatures will result in increased heat stress and 

water loss, and reduced fitness from climate change for many organisms (Kearney et al. 

2013). Animals can regulate their body temperature through evaporative cooling by 

wetting surfaces (e.g., licking, sweating, or panting), which leads to water loss; they can 

also alter their posture or lose heat through radiative transfer through contact with cooler 

surfaces (e.g., tree-hugging by koalas, Briscoe et al. 2014). Heterothermy (i.e., allowing 

core body temperature to increase or decrease in order to reduce metabolic costs) is 

another potential strategy which is understudied in large-bodied mammals which do not 

hibernate or go into torpor (Mitchell et al. 2002). Primates may also alter their social 

behaviour to aid in thermoregulation; for example, baboons are less selective about which 

partners they huddle with in colder conditions (MacLarnon et al., 2014). Finally, animals 

can avoid extremes by sheltering in cooler microhabitats. To date, there is little 

information on the energetic costs of thermoregulation for free-living mammals. 

Although thermoregulatory strategies will play a key role in mammal responses to climate 

change, the lack of ecophysiological data for most species means that thermoregulation 

is not accounted for in most models of species’ responses to climate change. 
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Biophysical models use a theoretical approach to determine species’ ecophysiology 

and can therefore be used to fill in the gaps when modelling species’ responses to 

environmental change at smaller scales when field data are limited (Kearney, Porter & 

Murphy 2016). These models have been successfully applied for many terrestrial 

ectotherms, mostly lizards (e.g., Kearney et al. 2018; Malishev et al. 2018), as well as 

turtles (e.g., Cavallo et al. 2015; Mitchell et al. 2016), and amphibians (e.g., Kearney et 

al. 2008; Enriquez-Urzelai et al. 2019; Fitzpatrick et al. 2019). Implementations of 

biophysical models for terrestrial endotherms are fewer. Examples include the Australian 

night parrot (Kearney et al. 2010; 2016; Mathewson and Porter 2013; Mathewson et al. 

2020), Australian marsupials (Kearney et al. 2010; Mathewson and Porter 2013; 

Stalenberg 2019), polar bears (Mathewson and Porter 2013), and primates (Stalenberg 

2019; Mathewson et al. 2020). These models can be adapted to incorporate behavioural 

and physiological responses to climatic variations to predict the potential metabolic costs 

of climate change and thermoregulation at the individual level. These predictions can then 

be scaled up to determine climate change impacts on fitness and survival at population 

and species levels without the need for detailed and extensive distribution data 

(Mathewson et al. 2017). Although they have not yet been applied to apes, they have been 

tested and shown to work well for other wild primates, including sportive lemurs 

(Stalenberg 2019) and vervet monkeys (Mathewson et al. 2020). 

Primates are particularly vulnerable to climate change and understanding their 

potential responses is now a major priority for ecologists and conservationists (Korstjens 

and Hillyer 2016; Carvalho et al. 2019; Bernard and Marshall 2020). Over two thirds of 

primate species are threatened with extinction (i.e., Vulnerable, Endangered or Critically 

Endangered) according to their IUCN status (Estrada et al. 2017). A large proportion of 

these are threatened even before incorporating climate change by threats such as habitat 

loss, fragmentation, and hunting (Estrada et al. 2017). These species are then particularly 

vulnerable to climate change due to small population sizes, low densities, limited 

geographic ranges, slow life histories and relatively high dependence on forest cover, 

which is dwindling fast (Bernard and Marshall 2020). Additionally, primate exposure to 

climate change is high compared to other taxa. Mean temperature increases in primate 

ranges are estimated to be 10% greater than the global average (Graham et al. 2016), 

while maximum temperatures are predicted to increase by as much as 7°C (Carvalho et 

al. 2019). Their location in the warm tropics means that primates already exist closer to 

their maximum tolerance thresholds than temperate species, and these increases are very 
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likely to push them beyond their physiological limits (Khaliq et al. 2014). Therefore, 

although many primates have relatively high plasticity in their behaviour and ecology, 

are able to exploit a wide range of food sources, and their phenology is rarely strongly 

linked to seasonal climatic changes, physiological stress may still limit their ability to 

persist in situ. To improve our ability to predict primate responses to climate change, it is 

thus essential to incorporate physiological constraints to studying their flexibility to adapt 

to changes. 

Another limitation in predicting responses to change is the limited data available on 

microclimate variation within tropical forests, which approximately 90% of primate 

species are dependent on (IUCN 2008). The importance of microclimate to terrestrial 

mammals has been relatively overlooked; however, it is likely to play a key role in their 

responses to climate change. Primates within tropical forests experience high levels of 

climatic variations which are influenced by vegetation type and cover, presence and size 

of canopy gaps, forest edges, and distance from the ground (Vanwalleghem and 

Meentemeyer 2009; Marsh 2019). Dense forest canopies have lower radiation penetration 

and are sheltered from wind, air currents and precipitation, while gaps and forest edges 

have increased radiation penetration and are more exposed to wind and rain (Heithecker 

and Halpern 2007; Bramer et al. 2020). This means that dense, continuous forest canopies 

experience fewer temperature extremes or changes than more open forests, such as those 

found near the edges of forest patches (de Frenne et al. 2019). As habitat degradation and 

modification increases in forest environments, the physical landscape of forest canopies 

will be altered, and as such this will cause changes in microclimate variation. Fine-scale 

climate variations in forests are not captured by the macro-climate data typically used to 

predict species distributions, and this can result in inaccurate predictions. Incorporating 

microclimate and fine scale climate data is therefore necessary to accurately predict 

species responses to future climate change scenarios. It is also necessary to include the 

non-climate related impacts of anthropogenic land use, and habitat 

degradation/fragmentation, as this too will determine if a species can survive in a location.  

The Sumatran orangutan, Pongo abelii, is a Critically Endangered arboreal great ape, 

which is endemic to Sumatra and found predominantly in tropical lowland dipterocarp 

forest. The most recent published population estimate is ~13,500 individuals in the wild 

in Sumatra (Wich et al. 2016). Deforestation and fragmentation are the biggest threats to 

orangutan populations, although human-wildlife conflict and the illegal wildlife trade 
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have also contributed to declines (Wich 2009; Singleton et al. 2017). Unlike other great 

apes, orangutans are mainly solitary, apart from females with infants, although larger 

parties do occur for short time periods (Wich et al. 2006; Roth et al. 2020). Orangutans 

have a lower metabolic rate compared to other mammals of their size and primates in 

general (Pontzer et al. 2010); this is possibly an adaptation to unpredictable food 

availability and relatively large size for a purely arboreal species. Despite being a 

relatively well-studied species, which receives a great deal of conservation attention, 

relatively little is known about orangutan biogeography beyond simple correlations 

between their current ranges, landscape data, and macroclimate data (e.g., Marshall et al. 

2006; Husson et al. 2008; Carne et al. 2012; Gregory et al. 2012). No studies to date have 

utilised microclimate data or adopted a mechanistic approach to determine how climate 

change and human disturbance will impact orangutans. 

5.2 Aim & objectives 

This chapter will determine how distance to forest edge influences the energetic costs 

and water loss of thermoregulation in Sumatran orang-utans in secondary tropical forest 

at Sikundur in Sumatra, Indonesia. Understanding the impact of forest fragmentation and 

edge effects is important as the percentage of edge forest increases, potentially reducing 

availability of microclimate refuges, which are essential for animals to persist in situ 

within tropical forests following climate change. 

1. Determine the relationship between ambient air temperature and body 

temperature, metabolic rate and water loss for juvenile, adult female, and 

adult male orangutans under typical conditions for Sikundur, based on an 

endotherm model. 

2. Predict orangutan metabolic rate and water loss based on microclimate 

conditions for specific locations at Sikundur, using the NicheMapR 

endotherm model. 

3. Determine the impact of edge-related microclimate variations on orangutan 

metabolism and water balance by comparing model outputs of metabolic rates 

and water loss between the forest edge and interior for each of the age-sex 

categories. 
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5.3 Methods 

The study was conducted in the Sikundur region of North Sumatra, Indonesia, within 

the Gunung Leuser National Park (see chapter 1 for a full description of the site). Eight 

of the 20 sampling points used in chapter 3 were chosen: four at the boundary between 

the forest and adjacent smallholder orange farms, and four in the forest interior, 2km from 

the edge (locations are shown in figure 3.1 in chapter 3). For all of these points, ground 

measurements (~1.5m) of temperature, °C, and light intensity, lux, are available at hourly 

intervals for the period Aug – Oct 2019 using HOBO pendant data loggers, as well as 

data on canopy structure, including tree height, bole height, tree density and canopy 

connectivity from vegetation plots (see chapter 3 for full data collection methods).  All 

data analyses were conducted using R version 4.0.0 (R Core Team 2020). 

5.3.1 The endotherm model 

The endotherm model is included as part of the ‘NicheMapR’ R-package (Kearney 

2020). A full description of the endotherm model and its subroutines is provided by 

Kearney and Porter (n.d.; under review). 

The model was used to simulate metabolic rate, body temperature and water loss for 

a typical adult male, adult female, and juvenile orangutan. 

5.3.1.1 Input parameters 

Orangutans were modelled as an ellipsoid, with parameter values for body mass, hair 

density, hair diameter, fur thickness, fur reflectivity, oxygen extraction efficiency and 

basal metabolic rates being defined for an adult male, adult female, and juvenile (~4 years 

old). Inputs were taken from published literature (Table 1). Where data for Sumatran 

orangutans were not available, parameters were either taken for phylogenetically similar 

species or estimated based on expert opinion. 

 Two measures of BMR were used (Table 5.1), the first was estimated based on the 

mouse-elephant curve using the equation (Smil 2004):  

𝐵𝑀𝑅 (𝑤𝑎𝑡𝑡𝑠) = 3.4 × 𝑀0.75 



   

 

128 

 

Secondly, values for BMR were taken from observed resting metabolic rates 

(kcal/day) of captive orangutans reported by Pontzer et al. (2010). 

Table 5.1: Input parameters and their sources used for the NicheMapR endotherm model for adult 

male, adult female and juvenile orangutans. 

Variable Explanation 
Adult 

male 

Adult 

Female 
Juvenile References 

AMASS Body mass (kg) 116.00 55.00 25.50 Pontzer et al 

2010 

DHAIR hair diameter 

(m) 

1.50E-04 1.50E-04 1.50E-04 Chernova 2014 

LHAIRV Hair length, 

ventral (m) 

0.05 0.05 0.05 Amaral 2008, 

Schultz 1931 

LHAIRD Hair length, 

dorsal (m) 

0.15 0.10 0.05 Amaral 2008, 

Schultz 1931 

RHOD Hair density, 

dorsal 

(hairs/m2) 

1.76E+06 1.76E+06 1.76E+06 Sandel 2013 

RHOV Hair density, 

ventral 

(hairs/m2) 

9.00E+05 9.00E+05 9.00E+05 Schultz 1931 

REFL Fur reflectivity 

(%) 

0.20 0.20 0.20 Average for 

mammals: 

from 

Stalenberg 

2019 

QBASAL1 Basal heat 

generation (W) 

- observed 

77.39 63.77 49.96 Pontzer et al 

2010 

QBASAL2 Basal heat 

generation (W) 

– estimated 

based on body 

mass from 

mouse-elephant 

curve 

120.18 68.67 38.58 Smil 2004 
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5.3.1.2 Relationship between air temperature and metabolism 

Simulations were run for a series of ambient temperatures from 0-50°C in 1° steps, 

with a wind speed of 1 m/s and a relative humidity of 90% (to reflect typical conditions 

at the site, based on an average of microclimate predictions generated by NicheMapR, 

since no other data were available). The upper critical temperature, UCT, was determined 

by the point at which the model can no longer find a solution (i.e., it is no longer possible 

for the animal to maintain their body temperature based on the current parameters). 

5.3.1.3 Modelling energetics for specific locations 

Hourly climate conditions at each location were modelled over 365 days for the year 

2019 using the NicheMapR microclimate model. Full descriptions of the microclimate 

model and its required inputs are provided in chapter 4. The NicheMapR model generates 

hourly predictions at user-defined heights of air temperature, relative humidity, wind 

speed and solar radiation based on site-specific variables. Information on local 

topography and vegetation can either be user-defined, or, where data are not available, 

derived from remotely sensed global data, such as SRTM. Unlike in chapter 4, UAV data 

were not available for these locations, therefore inputs for canopy height and shading 

were estimated from plot measurements on the ground (taken in chapter 3), and values 

for elevation, slope and aspect were extracted from SRTM 1 Arc-second global digital 

elevation (NASA 2002) using ArcGIS Pro version 2.8.0 (ESRI 2010). The microclimate 

model was first validated at the eight locations by comparing temperatures predicted by 

NicheMapR, with a defined height of 1.5m, against observed temperatures from the data 

loggers for a two-month period from August – October 2019. A Spearman’s rank 

correlation, the root mean square error, RMSE, and mean absolute error, MAE, for both 

the whole data set pooled and each individual location were used to evaluate the model 

performance. RMSE and MAE were calculated in R using the package ‘metrics’ (Hamner 

and Frasco 2018). 

Following validation, the microclimate model was then used to generate hourly 

climate predictions for the estimated mid-point of the canopy (determined as the mid-

point between the average bole height and average tree height in metres measured within 

the vegetation plots) for each of the eight locations. The number of days in which air 

temperature exceeded the UCT identified by the endotherm model and the total 

proportion of time when temperatures were above the UCT were calculated for each point 



   

 

130 

 

to enable comparisons of potential heat stress between edge and interior locations. 

Microclimate model outputs for wind speed, m/s, relative humidity, %, air temperature, 

°C (at mid canopy height), soil temperature, °C, and solar radiation, W/m2, were extracted 

and used as climate inputs for the endotherm model for each age-sex class of orangutan. 

A linear regression was used to determine and compare the relationship between 

predicted air temperature, °C, and predicted water loss, g/h, for each age-sex class. All 

modelled microclimate variables were found to be significantly correlated with each other 

(R>0.8, P<0.01), therefore only temperature was used in the regression analyses. The 

analyses were run using the base-R ‘lm’ function. 

5.4 Results 

5.4.1.1 Air temperature effects on body temperature, metabolism, and water loss 

When BMR is estimated based on the mouse-elephant curve, the model is unable to 

find a solution (i.e., it is not possible for an animal to maintain their body temperature) at 

air temperatures at mid-canopy height of 12°C and above for an adult male, 30°C and 

above for an adult female, and 34°C and above for a juvenile (Figure 5.1). Male and 

female body temperature reaches the maximum allowed value (38°C) at modelled air 

temperatures of 1-2°C, while juvenile body temperature starts to increase at 16°C and 

reaches the maximum allowed temperature by 19°C. Water loss rates for males are 

already increasing rapidly at 0°C, while females start to lose water at faster rates at 4°C, 

and juveniles begin to rapidly lose water at 19°C. Metabolic rates remain constant with 

increasing air temperatures until the point where the model fails. 

When using observed BMR, the model is no longer able to find a solution at air 

temperatures of 32°C and above for all age/sex classes (Figure 5.2). Body temperature 

starts to increase at 7°C for adult females, and reaches maximum allowed temperature at 

9°C, while core temperature in adult males and juveniles begins to increase at 9°C, 

reaching maximum allowed temperature at 12°C. Metabolic rate remains relatively 

constant until the point where the model fails. Water loss rates start to increase rapidly 

for adult females roughly 2°C before adult males and juveniles (10°C for females, 

compared to 12°C for males and juveniles). 
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Figure 5.1: NicheMapR endotherm model predictions of core body temperature, dorsal fur 

temperature, metabolic rate, and water loss across a series of ambient temperatures for adult 

male, adult female, and juvenile orangutans when using estimates of basal metabolic rate based 

on the mouse-elephant curve of body mass against BMR. Zero values were produced when the 

endotherm model was unable to find a solution (i.e., it was not possible for the modelled organism 

to maintain their body temperature within the defined parameters for metabolic rate, panting and 

sweating). 
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Figure 5.2: NicheMapR endotherm model predictions of core body temperature, dorsal fur 

temperature, metabolic rate, and water loss across a series of ambient temperatures for adult 

male, adult female, and juvenile orangutans when using observed basal metabolic rates from 

Pontzer et al (2010). Zero values were produced when the endotherm model was unable to find a 

solution (i.e., it was not possible for the modelled organism to maintain their body temperature 

within the defined parameters for metabolic rate, panting and sweating). 

5.4.1.2 Microclimate predictions 

Predicted temperatures at plot locations ranged between 20.84°C and 32.97°C. The 

mean predicted temperature during the study period across the whole site was 25.27°C. 

Mean predicted temperatures across the time period at individual locations ranged from 

25.10°C to 25.41°C (Figure 5.3a). Maximum predicted temperatures at individual 

locations ranged between 32.51°C and 32.97°C, while minimum temperatures ranged 

from 20.84°C to 21.07°C. Observed temperatures ranged between 21.09°C and 37.50°C. 

The mean observed temperature across the whole site during the study period was 
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25.54°C. Mean observed temperatures across the study period at individual locations 

ranged from 24.97°C to 26.73°C (Figure 5.3a). Maximum observed temperatures at 

individual locations ranged between 29.35°C and 37.50°C, while minimum temperatures 

ranged from 21.09°C to 21.86°C. A full summary of observed and predicted temperatures 

is given in Table 5.2. 

The microclimate model performed well in predicting temperatures at ~1.5m above 

the ground, with the root mean square error and mean absolute error for the whole dataset 

(n=8261) of 2.16°C and 1.74°C, respectively. Observed and predicted temperatures were 

significantly correlated with each other (rho = 0.82; P < 0.001; Figure 5.3b). RMSE and 

MAE at individual locations ranged from 1.75 – 2.28°C and 1.41-1.87°C, respectively. 

Observed and predicted temperatures were significantly correlated at all locations (rho: 

0.78 – 0.88; P < 0.001). A summary of model errors and Spearman’s correlation between 

observed and predicted values is given in Table 5.2. 

Predicted temperatures at 1.5m exceeded the upper critical threshold of 32°C on more 

days per year and for higher proportions of time at edge locations compared with interior 

locations (Figure 5.4a & b). Temperatures exceeded 32°C on an average of 325.5 days 

and 0.07% of the time for edge locations, and an average of 224 days per year and for 

0.04% of the time for interior locations. 
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Figure 5.3: Air temperatures, °C, predicted by NicheMapR and recorded from data loggers 

at 1.5m from the ground for the time period August – October 2019: (a) The range of predicted 

and observed temperatures for each hour of the day; and (b) predicted temperatures against 

observed temperatures. 

 
Figure 5.4: (a) The number of days per year where maximum temperature predicted by 

NicheMapR exceeds the upper critical temperature, UCT of 32°C at 4 locations at the edge and 

the interior; and (b) the proportion of total time where temperatures predicted by NicheMapR 

exceed the UCT at 4 edge and 4 interior locations. Circles represent actual values, while 

diamonds represent the group means. 
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Table 5.2: Summary of temperatures recorded by data loggers, temperatures predicted by NicheMapR, and model performance at individual locations at 

Sikundur. 

Location 

Forest 

type  

Observed temperatures, °C Predicted temperatures, °C Model errors 

n mean SD max min n mean SD max min n 

1.1 edge 994 37.49 3.73 21.38 26.73 8760 32.97 3.60 21.07 25.41 994 

1.5 interior 1058 31.78 2.19 21.86 25.58 8760 32.51 3.53 20.84 25.10 1058 

2.1 edge 894 35.54 3.07 21.09 25.71 8760 32.91 3.60 21.05 25.37 894 

2.5 interior 1058 31.17 2.13 21.57 25.56 8760 32.63 3.55 20.90 25.18 1058 

3.1 edge 1040 33.85 2.78 21.38 26.08 8760 32.87 3.59 21.02 25.34 1040 

3.5 interior 1082 31.06 1.92 21.66 25.39 8760 32.66 3.55 20.92 25.20 1082 

4.1 edge 1077 32.09 2.20 21.76 25.73 8760 32.82 3.58 21.00 25.31 1077 

4.5 interior 1058 32.19 2.02 21.38 25.41 8760 32.68 3.56 20.93 25.21 1058 
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5.4.1.3 Modelled energetics at Sikundur 

When using an estimated input value for basal metabolic rate based on the mouse-

elephant curve, the overall mean predicted metabolic rate was 145.05W for adult males, 

82.38W for adult females and 45.77W for juveniles (Figure 5.5a) Core body temperature 

was 38°C for all three classes. Adult males had the highest water loss rates (ranging from 

136.04 – 199.26g/h, with a mean of 156.60g/h), while juveniles had the lowest (ranging 

from 18.41 – 57.43g/h, with a mean of 30.35g/h). Female water loss rates ranged between 

61.54 – 110.05g/h, with a mean of 77.22g/h (Figure 5.6a). Estimated dorsal fur 

temperatures ranged from 20.35 – 33.18°C, with mean of 25.06°C for males; 20.85 – 

33.29°C, with mean of 25.33°C for females; and 21.59 – 33.42°C, with mean of 25.69°C 

for juveniles (Figure 5.7a). 

NicheMapR predictions of metabolic rate and water loss rate were lower when using 

input BMR values taken from Pontzer et al. (2010) for males and females, although they 

were higher for juveniles (Figure 5.5 & Figure 5.6). The overall mean predicted BMR 

was 93.81W for adult males, 76.59W for adult females and 59.25W for juveniles (Figure 

5.5b). Core temperature was 38°C (the maximum allowed value) for all three classes. 

Adult males had the highest water loss rates (ranging from 59.16 – 120.42g/h, with a 

mean of 79.04g/h), while juveniles had the lowest (ranging from 38.23 – 78.36g/h, with 

a mean of 50.59g/h; Figure 5.6b)). Female water loss rates ranged between 52.82 – 

101.09g/h, with a mean of 68.44g/h. Predicted fur temperature ranged from 20.42 – 

33.18°C, with a mean of 25.08°C for males; 20.86 – 33.29°C, with mean of 25.33°C for 

females; and 21.55 – 33.42°C with a mean of 25.69°C for juveniles (Figure 7b). 

Estimated metabolic rates are at their highest around midday (between 10am and 

2pm) and are similar between edge and interior locations for adults, while juveniles have 

a higher estimated metabolic rate in the afternoon at edge locations (Table 5.3 & Figure 

5.5). Mean estimated water loss rates and dorsal fur temperatures were higher at edge 

locations than interior locations with both BMR inputs for all age/sex classes (see Table 

5.3 & Figure 5.56 - Figure 5.7). The model predicts a higher rate of increase in water loss 

with increasing temperature for males compared with females and juveniles (Figure 5.8). 

For every 1°C increase in air temperature, estimated water loss increases by 4.74g/h for 

males, 3.70g/h for females, and 2.94g/h for juveniles. Summaries of the endotherm model 

outputs at individual locations for each age/sex class are given in Table 5.3. 
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Figure 5.5: NicheMapR predictions of metabolic rate, W, for different age/sex classes of 

orangutans at edge and interior locations at Sikundur when using inputs of basal metabolic rate 

from (a) estimates based on the mouse-elephant curve; and (b) observed values from Pontzer et 

al 2010. 
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Figure 5.6: NicheMapR predictions of water loss rate, g/h, for different age/sex classes of 

orangutans at edge and interior locations at Sikundur when using inputs of basal metabolic rate 

from (a) estimates based on the mouse-elephant curve; and (b) observed values from Pontzer et 

al 2010. 
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Figure 5.7: NicheMapR predictions of dorsal fur temperature, °C, for different age/sex 

classes of orangutans at edge and interior locations at Sikundur when using inputs of basal 

metabolic rate from (a) estimates based on the mouse-elephant curve; and (b) observed values 

from Pontzer et al 2010. 
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Table 5.3: NicheMapR endotherm model predictions for metabolic rate, W, water loss rate, g/h, 

and dorsal fur temperature, °C of adult male, female, and juvenile orangutans from individual 

sampling locations at Sikundur. 

 

 

 

Location Forest type Age/sex class Basal metabolic rate input min max mean min max mean min max mean

1.1 Edge Adult male Mouse-elephant curve 141.94 147.30 145.09 137.69 193.96 156.81 20.67 32.62 25.16

Pontzer et al 2010 92.56 94.86 93.88 60.40 115.00 79.29 20.74 32.62 25.18

Adult female Mouse-elephant curve 81.11 84.17 82.38 62.40 106.14 77.36 21.16 32.73 25.42

Pontzer et al 2010 75.32 78.16 76.61 53.88 97.04 68.62 21.17 32.73 25.42

Juvenile Mouse-elephant curve 45.57 47.29 45.77 19.18 54.11 30.49 21.89 32.87 25.79

Pontzer et al 2010 58.64 61.24 59.26 39.08 75.01 50.74 21.85 32.87 25.78

1.5 Interior Adult male Mouse-elephant curve 141.94 147.30 145.02 137.01 196.60 157.18 20.35 32.73 25.03

Pontzer et al 2010 92.56 94.86 93.80 59.46 117.58 79.64 20.42 32.73 25.05

Adult female Mouse-elephant curve 81.11 84.17 82.40 61.75 107.97 77.69 20.85 32.84 25.30

Pontzer et al 2010 75.32 78.16 76.63 53.12 99.01 68.92 20.86 32.84 25.30

Juvenile Mouse-elephant curve 45.57 47.29 45.78 18.52 55.58 30.69 21.59 32.97 25.67

Pontzer et al 2010 58.64 61.24 59.28 38.26 76.53 50.96 21.55 32.97 25.66

2.1 Edge Adult male Mouse-elephant curve 141.94 147.30 145.12 137.78 193.72 156.83 20.67 32.58 25.15

Pontzer et al 2010 92.56 94.86 93.86 60.35 114.85 79.27 20.74 32.58 25.17

Adult female Mouse-elephant curve 81.11 84.17 82.38 62.47 105.97 77.36 21.16 32.70 25.41

Pontzer et al 2010 75.32 78.16 76.60 53.75 97.01 68.61 21.17 32.70 25.41

Juvenile Mouse-elephant curve 45.57 47.29 45.77 19.22 53.94 30.49 21.89 32.84 25.78

Pontzer et al 2010 58.64 61.24 59.25 39.14 74.93 50.72 21.85 32.84 25.78

2.5 Interior Adult male Mouse-elephant curve 141.94 147.30 144.96 136.04 192.09 155.38 20.46 32.27 24.88

Pontzer et al 2010 92.56 94.86 93.72 59.16 113.14 77.81 20.53 32.27 24.90

Adult female Mouse-elephant curve 81.11 84.17 82.33 61.64 104.67 76.30 20.95 32.38 25.14

Pontzer et al 2010 75.32 78.16 76.52 52.82 95.68 67.49 20.96 32.38 25.14

Juvenile Mouse-elephant curve 45.57 47.29 45.74 18.44 52.82 29.58 21.67 32.52 25.51

Pontzer et al 2010 58.64 61.24 59.22 38.23 73.74 49.83 21.63 32.52 25.50

3.1 Edge Adult male Mouse-elephant curve 141.94 147.30 145.09 137.51 193.52 156.58 20.64 32.53 25.11

Pontzer et al 2010 92.56 94.86 93.86 60.27 114.60 79.06 20.71 32.53 25.13

Adult female Mouse-elephant curve 81.11 84.17 82.38 62.29 105.77 77.20 21.13 32.65 25.37

Pontzer et al 2010 75.32 78.16 76.60 53.79 96.76 68.43 21.14 32.65 25.38

Juvenile Mouse-elephant curve 45.57 47.29 45.76 19.12 53.85 30.35 21.86 32.79 25.74

Pontzer et al 2010 58.64 61.24 59.24 39.14 74.70 50.58 21.82 32.79 25.74

3.5 Interior Adult male Mouse-elephant curve 141.94 147.30 145.00 137.14 192.44 155.92 20.52 32.32 24.95

Pontzer et al 2010 92.56 94.86 93.78 59.79 113.63 78.36 20.59 32.32 24.97

Adult female Mouse-elephant curve 81.11 84.17 82.35 61.97 105.06 76.70 21.01 32.44 25.21

Pontzer et al 2010 75.32 78.16 76.55 53.31 95.96 67.89 21.02 32.44 25.22

Juvenile Mouse-elephant curve 45.57 47.29 45.75 18.78 53.12 29.92 21.74 32.58 25.58

Pontzer et al 2010 58.64 61.24 59.23 38.67 74.05 50.16 21.70 32.58 25.58

4.1 Edge Adult male Mouse-elephant curve 141.94 147.30 145.13 137.53 199.26 158.72 20.49 33.18 25.30

Pontzer et al 2010 92.56 94.86 93.86 60.13 120.42 81.13 20.56 33.18 25.32

Adult female Mouse-elephant curve 81.11 84.17 82.47 62.36 110.05 78.85 20.98 33.29 25.56

Pontzer et al 2010 75.32 78.16 76.67 53.60 101.09 70.06 20.99 33.29 25.56

Juvenile Mouse-elephant curve 45.57 47.29 45.82 19.07 57.43 31.65 21.72 33.42 25.92

Pontzer et al 2010 58.64 61.24 59.33 38.84 78.36 51.92 21.68 33.42 25.92

4.5 Interior Adult male Mouse-elephant curve 141.94 147.30 145.00 136.62 192.32 155.38 20.50 32.32 24.93

Pontzer et al 2010 92.56 94.86 93.73 59.21 113.37 77.79 20.57 32.32 24.95

Adult female Mouse-elephant curve 81.11 84.17 82.32 61.54 104.90 76.28 20.99 32.43 25.19

Pontzer et al 2010 75.32 78.16 76.55 52.85 95.75 67.51 21.00 32.43 25.19

Juvenile Mouse-elephant curve 45.57 47.29 45.74 18.41 52.96 29.60 21.72 32.58 25.56

Pontzer et al 2010 58.64 61.24 59.22 38.36 73.94 49.83 21.68 32.58 25.55

Metabolic rate, W Water loss rate, g/h Dorsal fur temperature
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Figure 5.8:Water loss rate, g/h, estimated by NicheMapR using observed values of metabolic 

rate from Pontzer et al 2010, against predicted air temperature, mid canopy, in °C, for (a) adult 

male; (b) adult female; and (c) juvenile orangutans. 
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5.5 Discussion 

This chapter tested how energetic costs and thermal stress in the Critically 

Endangered Sumatran orangutan differed at a forest edge compared with the interior using 

a biophysical model. Using the biophysical model, I have identified that thermal stress is 

higher at forest edges, and that water balance is an important mechanism which underlies 

orangutan relationships with climate. Fur temperatures and water loss rates were higher 

at the forest edge compared with the interior for all age-sex classes, while estimated 

metabolic rate was highest at the edge for juveniles only. Estimated differences in 

metabolic rate and water loss were more pronounced for an adult male compared with 

both adult female and juvenile orangutans (mean difference of 0.11W and 1.27 g/h for 

MR and water loss respectively in males, compared with 0.06W and 0.96 g/h in females 

and 0.03W and 0.8g/h in juveniles). This means that physiological stress is higher at the 

forest edge, and that adult males are more vulnerable to this thermal stress than females 

or juveniles and will therefore be disproportionately affected by climate change. This will 

have implications for reproductive success and population structure. 

Using the model, I identified 32°C as the upper threshold air temperature above which 

orangutans were likely to be experiencing notable thermal stress. When temperatures 

exceed this threshold, animals cannot maintain their body temperature within the allowed 

ranges through physiological thermoregulation alone (i.e., through increased metabolism, 

sweating, or panting). Although the upper threshold is exceeded less in the forest interior 

compared with the edge, it is still exceeded on average 225 days per year, meaning that 

orangutans are exposed to potentially stressful conditions at least once on many days of 

the year. Based on these results, it appears that orangutans are currently tolerating 

extremely warm temperatures for short periods regularly, however it is unclear to what 

extent and for how long they can endure these conditions before they begin to suffer 

reduced individual fitness resulting in population declines. It is possible that they are 

already declining, but we do not currently have sufficient long-term climate and 

population data for the area to determine this. Answering this question will be 

instrumental in determining the impacts of climate change, which will result in the upper 

threshold being exceeded for a larger proportion of time and potentially for longer 

periods. 
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Orangutans are likely to avoid edges during hotter periods. Conditions were notably 

warmer at the forest edge and the upper threshold of 32°C was exceeded on more days 

and for longer periods of time per day compared with the interior. In addition, the canopy 

height at these edge forests was lower than in the interior. The higher canopy would 

provide a clearer negative vertical temperature gradient, allowing more cooler locations 

inside taller interior areas. In Chapter 4 I showed the positive effect of height in the 

canopy on temperature, meaning that lower areas within closed canopy forests may be a 

last refuge during the hottest time of day. It would be interesting to see whether orang-

utans would even come to the ground more regularly as temperatures increase. 

Availability of cool locations is an important consideration in forest management. 

Increased fragmentation and a higher prevalence of forest edges will decrease the amount 

of climatically suitable habitat available to orangutans. Additionally, forest corridors or 

remnant forests in plantations may not be able to support orangutans in the long-term if 

they do not sufficiently shelter them from temperature extremes. Changes in climate 

conditions brought on by edge effects can occur up to 2km into forests (Broadbent et al. 

2008; also see chapter 3), therefore corridors and forest remnants would have to include 

a buffer larger than this in order to be useful for orangutan conservation, but few forest 

fragments will have a diameter of more than 4km. 

Temporal, as well as spatial, variation in climate is important in determining climate 

change impacts. This has been overlooked in previous climate change work on 

orangutans, which has only incorporated mean annual temperatures from WorldClim data 

(Carne et al. 2012; Gregory et al. 2012; Condro et al. 2019). Average annual temperatures 

recorded in Sikundur are well below the upper threshold of 32°C (ranging from 24.97 – 

27.52°C), however maximum temperatures frequently exceed it (Figure 5.4). These 

extremes are not captured by annual temperature averages, and previous models are 

therefore likely to underestimate orangutan exposure to the most severe effects of climate 

change and its resulting impacts. Microclimate models can be used to overcome this and 

incorporate temporal climate variation into predictive models. The NicheMapR 

microclimate model has already been validated for the site and shown to work well at 

predicting microclimate conditions (see chapter 4). Error values produced by the 

microclimate model in this chapter were still comparable with those which used more 

site-specific UAV data in chapter 4, despite only using field data on mean canopy height; 

all other input parameters were derived from satellite data which is freely available. It can 

therefore be used to generate climate data quickly and cheaply with high temporal and 
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spatial resolution for other locations in Sumatra, and potentially other tropical forests, for 

improved distribution modelling and local-scale climate change projections. Biophysical 

models can be combined with dynamic energy budget and time budget models to produce 

more dynamic and physiologically grounded predictions of extinction risk from 

disturbance and climate change. 

Increased thermal stress in individuals results in reduced fitness by increasing 

enforced resting time, with knock-on effects for activity budgets. Increased enforced 

resting time will reduce the amount of time available for movement and foraging activities 

(Korstjens et al. 2010). This will have negative effects at the population level through 

reduced individual fitness. Conversely, orangutans will have to move and forage more to 

locate adequate resources and meet their energy requirements due to lower quality food 

resources in disturbed and fragmented forests and the increased costs of thermoregulation 

following climate change (Carne et al. 2012). This means that the combined effects of 

forest disturbance and climate change on orangutan energy budgets will limit their future 

ability to survive in Sikundur and other human-modified forests. 

As well as maintaining their body temperature, organisms must maintain water 

balance, and this too will limit their activity budgets and ability to survive following 

climate change (Kearney et al. 2016). An understanding of water exchange is also 

necessary for making predictions of climate change responses which are physiologically 

grounded. Water loss is strongly affected by ambient temperature, and this effect is 

strongest for adult males with their larger body size and higher metabolic rate. Water loss 

is likely to be particularly problematic for orangutans, since they rely mostly on obtaining 

water from their food, or from canopy ‘reservoirs’ in epiphytes on mature trees (Sharma 

et al. 2016). This means that orangutans in disturbed forests will have fewer opportunities 

to replenish lost water. Hotter and drier conditions in disturbed forests and near forest 

edges will result in smaller canopy reservoirs, while the reduced density of mature trees 

in selectively logged forest will also mean that there are fewer epiphytes in the canopy 

(Parra-Sanchez and Banks-Leite 2020; Richards et al. 2020). 

Adult orangutans have a lower metabolic rate than expected based on their body size 

(Pontzer et al. 2010), and the model results suggest that this helps them to maintain energy 

balance in the hot and humid conditions of Sumatran rainforests. When using estimates 

of metabolic rate calculated based on body size, simulated orangutans are unable to 
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maintain homeostasis in conditions which are typical of their habitat, however they 

perform much better when modelled with the lower metabolic rates observed by Pontzer 

et al. (2010), with the model predicting much lower rates of water loss. It has previously 

been suggested that reduced energy expenditure in orangutans is a physiological 

adaptation to minimise the risk of starvation during periods of low food availability, since 

fruit availability in Sumatra and Borneo is highly variable and unpredictable, and 

orangutans often undergo long periods of scarcity (Pontzer et al. 2010). This study 

suggests that lowered metabolic rates may also help orangutans to maintain their body 

temperature and energy balance in warmer temperatures.  

Although it was not possible within the constraints of this study to fully validate the 

predictions of the model, it has been shown to perform well in other endotherms, 

including primates. The NicheMapR ellipsoid model predicted field metabolic rate with 

higher accuracy than more simplified models for Lepilemur species (root mean square 

error = 34.1 – 35.6 for the ellipsoid model, compared with 244.8 for an allometric model 

based on mass alone; Stalenberg 2019). Predictions of body temperature and metabolic 

rates have corresponded well with observed field measurements for both vervet monkeys 

(Mathewson et al 2020) and polar bears (Mathewson and Porter 2013). A mechanistic 

model of habitat loss for American Pika produced higher confidence intervals than 

correlative approaches (Mathewson et al 2017). Before the model can be more generally 

applied, it will be necessary to complete further validation and sensitivity testing to 

determine the model’s accuracy in predicting orangutan energetics and to highlight which 

variables are most important in parameterising the model and determine potential sources 

of error. 

The model used here does have several limitations. Firstly, it is a very simplified 

mechanistic model which currently does not incorporate activity costs of movement, 

feeding and reproduction, and also does not account for potential behavioural 

thermoregulatory strategies which may be employed by orangutans in the wild. The 

differences in results produced from different measures of metabolic rate highlights the 

importance of using the correct input parameters. Values for metabolic rate taken from 

Pontzer et al. (2010) were measured from three captive individuals which were hybrids 

of the two Pongo spp., P. pygmaeus and P. abelii. Actual values for metabolic rate are 

likely to vary between the two species, it would therefore be preferable to obtain values 

from a larger number of individuals from P. abelii. Here, only default values were used 
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for options allowing organisms to sweat and pant in order to cool down since no data on 

this were available for orangutans. Improving the quality of input data used to 

parameterise the model would improve the quality of predictions and the general 

applicability of the model to answer questions relating to the biophysical ecology of 

Sumatran orangutans.  

Bioenergetics studies for other species have highlighted important mechanisms 

through which organisms respond and adapt to changing temperatures. For example, 

biophysical models were used to determine the importance of tree-hugging behaviours by 

koalas in maintaining their body temperature during periods of extreme heat in Tasmania 

(Briscoe et al 2016), while Stalenberg (2019) identified fur licking as an important 

thermoregulatory response to higher temperatures in Lepilemur species in Madagascar. 

Predictions of metabolic rates from the NicheMapper biophysical model (an earlier, more 

complex iteration of NicheMapR) were used to predict weight loss and mortality of polar 

bears during periods of low food availability in the ice-free season in Hudson Bay 

(Mathewson and Porter 2013). Similarly, the model used here could be expanded and 

applied to other apes in order to explore questions related to hominid evolution, 

adaptations to climate change, historical landscape use and thermoregulatory behaviours. 

Certain behaviours exhibited by apes are thought to have a thermoregulatory component 

(e.g., see Stelzner and Hausfater 1986; Stelzner 1988; Carvalho et al. 2015), and 

biophysical models could be used to test this. For example, the function of nest building 

by great apes is not well understood, with various theories invoking the role of comfort 

and sleep quality, protection from predators and parasites, and thermoregulation (Fruth 

2017). Climate change may also have played a role in landscape use and terrestrial 

behaviour by early hominins (Takemoto 2017; van Leeuwen 2019). There is evidence 

that terrestrial behaviour by chimpanzees is linked to microclimate variation (Takemoto 

2004), while morphological adaptations to bipedalism and increasing dietary breadth may 

have allowed early hominins to persist in more open savannah habitats, despite highly 

elevated costs of maintaining homeostasis compared to forests (van Leeuwen 2019). 

Empirical evidence for thermoregulatory behaviours exhibited by hominids is limited, 

however this could be provided using a combination of mechanistic models of 

microclimate and animal physiology. 

The advantage of mechanistic models is that once the relevant input parameters have 

been obtained for a species they can be applied in any location, even where there are no 
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reliable distribution data. The most important next step for research is to collect data to 

validate the model outputs with observed physiological data. Collecting this data would 

be far easier and safer with captive individuals, where it would be possible to conduct 

metabolic chamber experiments, or collect samples, for example using labelled water 

methods to measure energy expenditure (as used by Pontzer et al. 2010). It was not 

possible to collect such data for this study since I did not have access to captive 

individuals, or the relevant permissions and resources required to collect and analyse 

biological samples in Indonesia. Once the model has been validated and shown to produce 

reliable predictions of orangutan energetics, it will be a powerful tool which can be used 

to identify individual physiological responses to climatic conditions, which can then be 

scaled up to determine population level effects of climate change. 

This is the first test of a biophysical model of physiological responses to climate for 

an ape species. Although the model requires further validation to ensure it is producing 

accurate predictions, the results here highlight that biophysical models can provide useful 

insights into individual responses to forest disturbance and climate change by identifying 

the physiological drivers of population declines. Outputs from this model can be used to 

predict the fundamental niche of orangutans under different climate and land use 

scenarios. These models can be implemented with other spatial distribution models to 

provide more detailed understanding of future orangutan distributions and habitat 

requirements and highlight areas where conservation efforts should be focussed. This has 

been achieved for other primates; for example, Stalenberg (2019) used the NicheMapR 

model to identify the thermal neutral zone and predict water loss and physiological stress 

of sportive lemurs (Lepilemur spp.), these results were then used to create interactive, 

high-resolution maps of current and future extinction risk which can be utilised by 

conservation planners to identify priority areas for conservation. This enabled the 

identification of areas in the Northern part in Madagascar as important microclimate 

refuges, where higher rainfall and more moderate temperatures results in lowered water 

loss rates for individuals, thereby reducing climate-related mortality. As well as exploring 

questions relating to climate change responses, the model can also be used to highlight 

physiological responses to changes brought about by human disturbance, such as the 

physiological differences caused by forest edges identified here. Mechanistic and 

biophysical models can be used to simultaneously predict consequences of both climate 

change and human activities for wild populations. This is particularly important for 

orangutans, which are subject to both threats simultaneously (Gregory et al. 2012).  
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Chapter 6   

General discussion 

In this final chapter I will summarise and discuss the main findings and wider 

implications of my research within the context of existing literature on ecology and 

conservation of tropical forest mammals. Many key points have already been discussed 

in the relevant chapters, and so I will focus mainly on additional points which have not 

been previously covered in detail. Finally, I will conclude by providing recommendations 

for future research. 

The aim of this thesis was to determine the long-term value of an area of regenerating 

selectively logged forest to conserve threatened mammals in Sumatra, Indonesia, and to 

identify its potential to provide microclimate refuges for these mammals to persist 

following climate change. The results indicate that this area is still an important habitat 

for many mammals, despite its history of disturbance and proximity to agricultural land. 

While the physical structure of the forest does differ from those typical of primary forest 

in the same region (i.e., lower canopy height and connectivity), the results indicate that 

there are still significant microclimate variations underneath the canopy and that 

conditions are cooler, and less variable compared with non-forested areas. This indicates 

that, although this area of forest is not considered ideal or ‘pristine’ habitat for most 

species, it will still be of fundamental importance in allowing forest-dependent mammals 

to persist in the long-term. 

I also tested mechanistic approaches to modelling microclimates and mammal 

responses at small spatial and temporal scales. These models were developed and initially 

tested for microclimates in the USA and Australia and have rarely been applied in tropical 

forest environments. This is the first study to test these models for a disturbed forest 

location in Indonesia, and the first time that the biophysical models have been tested for 

a great ape species. The models all performed well, producing results which were 

congruent with observed or expected data. Differences from observed values for the 

microclimate models was fairly low, and comparable with published studies in other 

locations with different macroclimatic conditions. This was true both when model inputs 

for vegetation and topographical parameters were taken directly from photographs taken 

of the canopy using an Unmanned Aerial Vehicle (UAV) (as in chapter 4), and when data 
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were derived exclusively from global Shuttle Radar Topography Mission (SRTM) data, 

which are freely available elevation data for terrestrial areas +/- 60 degrees latitude, 

remotely sensed from space (as in chapter 5). This demonstrates that these models are 

appropriate for use in tropical and/or disturbed forests, even for locations which lack high-

resolution data on local-scale topography and vegetation. 

6.1 Structure and microclimate in secondary forests 

Most studies have established that human-modified and secondary forests are, on 

average, warmer, drier, and brighter than primary forests, however, few studies to date 

have measured spatial and temporal variations in secondary forests at fine scales (Marsh 

2019; Jucker et al. 2020). The reduction in canopy cover often leads to an increase in the 

density of understorey vegetation, and results in more spatially and temporally 

heterogenous microclimate conditions. This could actually increase the availability of 

microclimate refuges for some species. There is evidence for this heterogeneity in 

secondary forests (e.g., Blonder et al. 2018; Senior et al. 2018), although it is still not 

known the extent to which these microclimates are decoupled from the macroclimate. My 

study, combined with previous research in the region, provides further evidence for fine-

scale climate variations in secondary forests. Previous work at Sikundur noted differences 

of up to 14 °C between simultaneous recordings from different locations in the forest 

interior (Marsh 2019). Senior et al. (2018) found that conditions in tree holes, deadwood 

and leaf litter in selectively logged forests were equally buffered against macroclimate 

warming compared with those in primary forests, highlighting that secondary forests still 

maintain various microhabitats for organisms to utilise during extremely hot weather. On 

the other hand, Blonder et al. (2018) noted that, as well as increased variability in climate 

conditions, selectively logged forests had much higher extremes in temperature compared 

with primary forests, thereby increasing the exposure of organisms to potentially harmful 

extremes. My results from chapters 3 and 5 confirm this observation. It is currently 

unclear what the impact of increased spatial variation is on forest-dwelling or climate-

sensitive species. Here, I did not compare conditions against primary forest but did still 

note significant spatial and temporal variations across Sikundur. Having validated 

NicheMapR for my study area and shown that it performs well, the model can be used to 

further explore this variation, and to identify the extent and direction in which conditions 

within disturbed forests are decoupled from macroclimate and buffered against climate 

warming. 
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Microclimate ecology research to date has been heavily biased towards conditions 

near the ground and this has limited applicability to arboreal organisms. Here, I provide 

further evidence of significant microclimate variations in the upper canopy and highlight 

the potential importance of these variations for behavioural thermoregulation and ultimate 

survival of arboreal species. There was some evidence of vertical temperature gradients 

in the forest, as was also found by Marsh (2019). Recorded mean temperatures were 

warmer in the higher parts of the canopy, although the noted effect was overshadowed by 

seasonal and daily temperature fluctuations (chapter 4). All of the plots measured in this 

study had relatively lower canopy heights than would normally be expected in tropical 

forests, and this may affect the steepness of the gradients. The lower canopy height in this 

region has potentially reduced microclimate variability in the upper canopy, which could 

result in a negative impact on the ability of arboreal animals to avoid extreme 

temperatures. As the forest regenerates and average canopy height increases, vertical 

temperature gradients may also become more pronounced, providing more opportunities 

for organisms to shelter from warmer conditions in lower parts of the canopy. This is an 

important consideration when managing stands of secondary forest in human-modified 

landscapes as a means to conserve arboreal species; areas with taller canopies are 

preferable, since they will have higher availability of cooler microclimates in the upper 

canopy. 

6.2 Edge effects on forest conditions and mammals 

Edge effects on abiotic forest conditions were evident at the site, as shown in chapters 

3 and 5. Conditions were significantly warmer and brighter at locations up to 500m from 

the forest than those in the interior. Simultaneous temperature recordings taken at the 

same height differed as much as 8.83°C between locations at the edge and those 2km into 

the interior. Other research from tropical forests has highlighted that edge effects are 

evident between 500m-1km; the effect distance is thought to be greater in secondary 

forests, however few studies have implicitly tested this (Broadbent et al. 2008). To date 

there is little evidence of the extent to which abiotic edge effects impact forest-dwelling 

species, although it is generally assumed that these abiotic changes will have negative 

consequences. In chapter 3, I explored how different species have differing responses to 

forest edge effects and demonstrated that some species are less affected by negative 

effects of increased temperatures than others. This could be the result of those species 

being able to exploit increased foraging opportunities in farmland (e.g., pigs and 
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macaques are dietary generalists), while others may be excluded from locations closer to 

the edge, either due to conflict or specializations (e.g., lack of prey for carnivores). I also 

showed that higher temperatures resulted in decreased mammal occurrence, and this 

relationship was consistent across mammal orders. Accordingly, in chapter 5, I showed 

that orangutans have a higher exposure to potentially harmful climatic conditions at the 

forest edge, compared to locations 2km into the interior. Abiotic changes in forest 

conditions negatively impact species, although for many mammals it is unclear how these 

impacts will affect population dynamics in the long-term. 

When designating areas for conservation, it is important to take the spatial extent of 

edge effects into consideration. For example, the establishment of conservation set asides 

within oil palm plantations are a requirement for plantations to be certified as sustainable 

by the Roundtable on Sustainable Palm Oil (RSPO). However, in a recent analysis, 

Morgans et al. (2019) showed that RSPO plantations were not more effective in 

supporting orangutans than non-RSPO plantations. For these set-asides to be effective, 

they must include a buffer which is large enough to protect the core from edge effects. 

The minimum size of this buffer will depend on the target organism and the quality of the 

forest patch in question. For example, based on results from chapter 3, large carnivores 

will need a buffer of 1-1.5km, whereas ungulates and small carnivores would only require 

around 500m. Wildlife corridors will also need to be wide enough that they will actually 

be utilised by their target species. Larger carnivores that avoid edge habitats would be 

unlikely to move through corridors which are less than 2km wide. If the aim is to maintain 

high levels of diversity within these patches, then they will need to be sufficiently large 

to accommodate this and provide suitable corridors and pathways to maintain patch 

connectivity and protect species long-term. However, RSPO plantations are typically 

smaller than this. In Borneo, the average high conservation area is 1.2km2, with only 21% 

of these being forested (Scriven et al. 2019). 

6.3 Microclimate modelling in secondary tropical forests 

Both the NicheMapR and microclimc microclimate models performed well in 

predicting microclimate variation, with values for root mean square error and mean 

absolute difference being comparable with reported values from other published 

microclimate studies in temperate areas. NicheMapR outperformed microclimc, 

producing slightly lower error values. NicheMapR performed well, even for locations 
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where drone data were not available, and could therefore be used to model microclimate 

conditions in other tropical locations with limited field data. It is still preferable to collect 

in situ measurements to validate the model predictions at specific locations, however the 

sampling effort required for this is substantially less than relying on direct measurements 

alone. Model validation only needs to be caried out once; once the model has been shown 

to perform effectively it can be used without requiring further field data inputs. 

Mechanistic models therefore provide many advantages to studies in tropical forest 

ecology, since they can provide accurate and detailed climate data at more ecologically 

relevant scales than global climate datasets with coarser resolutions, with fairly minimal 

requirements for sampling effort and fieldwork costs. 

6.4 Applications of mechanistic models in mammal ecology and 

conservation 

Conservation is implemented at a local scale. Global or regional scale models do not 

provide detailed enough information to be of much use to practitioners outside of 

highlighting general areas, species or populations which should be prioritised for 

protection. Mechanistic models, i.e., models that predict habitat suitability and species 

responses based on understanding of the organisms’ behavioural and physiological 

flexibility in response to ecological conditions, can be used to identify local-scale 

mechanisms which will shape species responses to climate change and future population 

trends. This is much more useful to conservationists since it can identify the underlying 

causes of population declines and signpost the most appropriate interventions (such as 

active restoration of forests through planting; assisted translocation into areas which are 

more climatically suitable; establishing connectivity between patches to maintain genetic 

diversity of metapopulations; facilitating range shifts etc). 

As well as providing valuable information about species’ ecology, biogeography, and 

evolution, mechanistic models can be used to provide valuable empirical evidence and 

justification for conservation planning and decision making. Gathering the appropriate 

and relevant input data for mechanistic models can be difficult for lesser-known species; 

however, it is also difficult to gather widespread population or abundance data that is 

required for correlative models to work effectively. As long as mechanistic models are 

used with caution, and users are aware of the limitations of their input data, they can be 

effectively applied, even for data-deficient species by using estimated values based on 



   

 

153 

 

similar species or expert opinions (Stalenberg 2019). While predictive models will never 

be able to replace field data, in practice many conservation projects do not have resources 

to conduct regular extensive field surveys. A great deal of conservation work and species 

assessments are based on expert assessments and assumptions with limited empirical 

backing. This is often due to the difficult nature of gathering data on rare or cryptic species 

in the wild. Most predictions about species’ responses to climate change are based on 

correlative distribution models, which require detailed distribution and/or abundance data 

and tend to perform better for species with large geographic ranges that cover a variety 

of climate conditions (Stalenberg 2019). It is harder to infer species-climate relationships 

with this approach for rare and range-restricted species since they have limited data 

available, and often have not fully realised their fundamental climatic niche (i.e., all 

climatic conditions they can persist in). Mechanistic and biophysical approaches are 

advantageous for these species since they are based on an understanding of the underlying 

physiological and ecological processes involved in species biogeography, rather than 

relying on present distributions. They can be used in scenario testing enabling researchers 

and conservationists to simulate the outcomes of different management, land use and 

climate change scenarios (e.g., Kearney et al. 2016; Mathewson et al. 2017). This will be 

highly advantageous to conservation planning, helping to ensure that resources are 

allocated in the most effective and efficient way and ensure the best possible conservation 

outcomes. 

Many primates are generalist species which are able to exist in a wide variety of 

habitats, and their fundamental thermal niche (i.e., the range of climatic conditions in 

which they could theoretically survive) is most likely wider than their current realized 

niche (i.e., the actual conditions in which they currently exist). This can make it difficult 

to infer relationships based on their current distributions alone. Despite this limitation, 

there have been very few attempts to apply mechanistic models to primates. Biophysical 

models have only been applied to a small number of primate species (vervet monkeys, 

Mathewson et al. 2020; and sportive lemurs, Stalenberg 2019). The majority of published 

models that predict future orangutan distributions have focussed on the effects of habitat 

loss and land use change, which are currently the most important drivers of population 

declines (Husson et al. 2008; Wich et al. 2016; Milne et al. 2021). Those studies that have 

investigated climate change predict a negative impact and potential range reductions of 

up to 15% (Carne et al. 2012; Condro et al. 2019), and conclude that climate change 

mitigation, as well as habitat restoration and protection will be important for orangutan 
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conservation in the near future (Gregory et al. 2012). Applications of mechanistic models 

to orangutan distributions have been limited to time-budget models of their potential 

responses to climate and land use change (Carne et al. 2012). This study is the first attempt 

to apply biophysical models to orangutans and great apes in general. In chapter 5, I 

identified water loss as being an important limiting factor and demonstrated that 

orangutans are already likely to be experiencing physiological stress due to hotter 

conditions for at least a short period of time on many days of the year (ranging from 110-

283 days), with this period of stress being longer at forest edges compared to the interior. 

Therefore, it will be important to focus on protecting forest patches which contain large 

trees with epiphytes that can act as canopy reservoirs to provide drinking water and reduce 

dehydration. This effect would not be captured using a correlative approach which ignores 

temporal and spatial climate variation. These results highlight the potential value of 

mechanistic modelling approaches to provide more detailed information regarding animal 

responses to changing climates at finer scales. They can also signpost potential 

conservation actions. 

Additionally, mechanistic models can be used to project future population trends and 

accurately determine population viability in the long-term. A common critique of existing 

conservation strategies is that they are primarily ‘reactionary’, meaning that most 

interventions take place only once populations have already become dangerously low. 

Most vulnerability assessments (e.g., the IUCN red list) rely on using past population data 

and trends to determine which species are currently threatened (Rodrigues et al. 2006). 

This means that threatened species are not identified as such until major population 

declines have already occurred. Areas which have been identified as hotspots of 

extinction debt do not correlate well with areas which have been highlighted as high 

extinction-risk based on IUCN classifications (Chen and Peng 2017). Relying solely on 

current conditions and species status is therefore inadequate for long-term conservation 

planning. Combining mechanistic population modelling with traditional methods of 

monitoring and research will enable us to identify population threats before they result in 

serious declines. 

6.5 Conclusions & recommendations for future research 

The structure of the forest at Sikundur is characteristic of heavily disturbed forest 

and, being close to the national park boundary and adjacent to agricultural lands, is subject 
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to extensive edge effects up to 500m – 1 km away from the boundary. Despite this, the 

area is still important habitat which supports a wide range of mammals, including several 

Critically Endangered species. Conditions in the forest interior are still buffered against 

temperature extremes, having lower maximum temperatures than the forest edge. The site 

is also highly heterogenous, with significant spatial and temporal variation in 

microclimate and physical vegetation structure. This spatial heterogeneity helps to 

support a diverse range of different mammal species, ranging from generalist and 

disturbance-tolerant species, such as macaques and pigs, to more specialised large 

carnivores, such as sun bears and tigers, which are more sensitive to human activities. 

The microclimatic variation exhibited across the site provides opportunities for animals 

to avoid prolonged exposure to sub-optimal extremes and thereby reduce the potential 

fitness costs of climate change. These results highlight the importance of considering 

fine-scale variation in ecological research at smaller scales. The variations observed 

across Sikundur would be missed by coarser resolution global models of climate and 

topography. This variation impacts the physiology of forest-dwelling organisms and will 

have subsequent implications for population-level dynamics. 

Finally, these results add to the growing body of existing evidence that secondary and 

disturbed forests are valuable conservation areas which should be prioritised for 

protection and restoration, along with preservation of primary forest (Barlow et al. 2007; 

Meijaard 2017; Senior et al. 2018). That being said, it will still be necessary to focus 

efforts on restoring and regenerating forests to increase the extent of forest cover, and the 

overall habitat quality of forested areas. Knowledge of the abiotic conditions which are 

most important to threatened species can guide these efforts by highlighting which 

characteristics (e.g., canopy height, canopy cover, connectedness, forest patch size, 

distance between patches) should be focussed on. Secondary forests, as well as primary 

forests, will be highly valuable in providing mammals with microclimate refuges which 

will allow them to persist following climate change. 

6.5.1 Future work 

6.5.1.1 Improving model performance 

Microclimate models require further testing and validation in a wider variety of 

habitats. To date, the NicheMapR microclimate model has mainly been applied in 

relatively simple terrains, such as arid grasslands and scrublands in Australia (Kearney et 
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al. 2020). This is the first test of the model for tropical lowland forest in Indonesia. 

Although they perform well enough to capture most horizontal variations in climate, the 

model does not appear to perform as well in capturing vertical gradients in forest 

canopies, since the error of the model increased with height above ground. Both models 

could be further improved by collecting further data on below canopy processes in 

tropical forests. Microclimc currently has the option to generate habitat structure variables 

based on habitat type, which was utilised in this study since the required parameters were 

unknown for the site, however the options for this remain very broad. More detailed 

habitat data to characterise different forest types, including secondary forest and tropical 

lowland forest, would help to further improve the model performance and make it easier 

to tailor it for specific locations. Further work to validate and improve the performance 

of these models will make their use in forest ecology and conservation planning far more 

accessible. Another current limitation in microclimate modelling is the steep learning 

curve involved in the implementation of the models, which can make their use 

intimidating and overly-complex for those without background knowledge of mechanistic 

models and microclimate ecology. Gathering a database of standardised input parameters 

for different habitat types and developing a more user-friendly interface would enable 

practitioners who are not familiar with R or Python programming languages to implement 

these models for their specific sites. This has been done for sportive lemurs in Madagascar 

(Stalenberg 2019) and can provide a useful tool for conservation planners to incorporate 

into their decision-making process. 

A major barrier to more widespread use of mechanistic modelling approaches is their 

complex requirements for input parameters in order to work effectively. The ellipsoid 

model of NicheMapR has been developed partly in responses to this. This is a simplified 

version of the earlier NicheMapper endotherm model which only requires inputs on 

animal mass, body temperature ranges, fur properties, basal metabolic rate, and 

respiratory rate. These inputs can be extrapolated from phylogenetically similar species 

if there are no data available. Care should be taken when using estimates instead of direct 

measurements, however, as demonstrated by the substantial differences between 

predictions that were produced by NicheMapR when using estimates of basal metabolic 

rate (BMR) derived from the mouse-elephant curve compared with direct measurements 

of BMR from captive orangutans in chapter 5. The ability to integrate microclimate 

predictions using the microclimate module also means that it can be applied for any 

location. Further work on testing the sensitivity of these models to uncertainties in their 
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inputs and efforts to fill on knowledge gaps for species physiology will help to improve 

the accessibility and general applicability of biophysical models. Although they do 

require a number of detailed inputs for their initial setup, once they have been tested and 

validated, mechanistic models are powerful tools which can provide detailed data to 

support conservation. 

6.5.1.2 Utilising models to understand climate change impacts 

The forest at Sikundur is thermally buffered, with lower maximum temperatures 

compared to the edge, however it remains unclear to what extent this effect will persist 

with macroclimate warming. An important next step in determining if the area will serve 

as a microclimate refuge in the future is to predict the microclimate using macroclimate 

predictions from different climate change scenarios. This would help to identify how 

many degrees of warming in the macroclimate can be tolerated before the conditions 

underneath the forest canopy will be affected beyond what the species living there can 

cope with. Given the buffering effect of dense forest cover, it is likely that climate 

warming and subsequent exposure of forest mammals to warmer temperatures will be less 

severe than predicted in this region. Now that the microclimate models have been 

validated and shown to perform well, they can be used for scenario testing to determine 

how climate change might impact the microclimate conditions in the forest. 

Scenario testing of the endotherm model can also be used to better understand the 

potential implications of climate change for orangutan bioenergetics. I identified that 

orangutans are likely to be experiencing some degree of thermal stress even under current 

conditions. It is likely that they are able to tolerate this stress since it is short-lived (less 

than 0.05% of the time). Running the endotherm model for a variety of different climate 

scenarios will help to identify the maximum thresholds of local warming that orangutans 

are able to tolerate, and also the maximum amount of time outside of their ‘comfort zone’ 

they are able to endure. Further data is also needed on orangutan thermoregulatory 

strategies, such as sweating and panting. Currently, the default values were used as inputs 

for these since there were no other data available for orangutans. Including these will 

provide more accurate predictions of metabolic rate and water loss. 

Further information is also needed for different types of behavioural 

thermoregulation which may be employed by mammals. Investigating this is challenging 

with wild and unhabituated animals. It may be possible to test this in captive settings, 
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where animals have access to a range of different microclimates, by tracking animal 

movement and activity patterns in relation to temperature. It would also be possible to 

utilise thermal imaging to non-invasively monitor mammal habitat use in relation to 

climate (Cilulko et al. 2013), however, currently the technology required for this is costly 

and challenging to implement in humid, dense forest canopies, with animals that are often 

10-30 meters away from the observer and obscured by vegetation. 

Outputs from biophysical models can be fed into other modelling approaches, such 

as time budget models or individual based models, to predict potential species responses 

to climate change. NicheMapR has already been used to predict water and energy budgets 

and map potential distributions for a variety of species, including reptiles (e.g.,Mitchell 

et al. 2013; Malishev et al. 2018), birds (e.g., Kearney et al. 2016) and mammals 

(Mathewson and Porter 2013; Stalenberg 2019). In many cases, the use of biophysical 

models improved the performance of distribution models, and identified important 

mechanisms for species declines, such as dehydration/desiccation, which would 

otherwise have been missed. When modelling climate change responses, particularly for 

species which are already threatened, it is vital to consider climate change together with 

other threats, such as habitat loss or hunting. Biophysical models are valuable tools which 

can be used to complement and improve predictions from traditional approaches, such as 

correlative SDMs, however they do not provide enough information to identify 

population threats or predict climate change responses on their own. 

6.5.1.3 Biodiversity responses to edges and human disturbance  

This study has focussed on conspicuous, larger bodied mammals; however, the forest 

at Sikundur is important habitat for many other taxa, for which camera trap surveys are 

not effective. Other monitoring techniques, such as acoustic monitoring, can be used to 

sample a wider range of species and providing better estimates of biodiversity for the 

region. Acoustic monitoring has already been utilised to monitor habitat use by forest 

elephants, and to carry out rapid biodiversity assessments in forest (Sueur et al. 2008; 

Wrege et al. 2017). Acoustic recorders cover a wider area than camera traps, which can 

only detect animals directly in front of them, and it is now possible to obtain recorders 

that can record a wide range of frequencies with battery power that can last from days to 

months depending on the settings used (Sugai et al. 2019). As the technology is further 

developed, equipment costs are decreasing, making it more accessible to conservationists. 
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There are now several open-source software’s available for analysing recordings and 

identifying species (e.g., Arbimon, Rainforest Connection 2021; Audacity, Audacity 

Team 2021; and Raven, The Cornell Lab 2021) and as more data are collected and 

analysed, the performance of these algorithms will be improved as more species sounds 

are identified and added to their databases. This method can be used to identify changes 

in biodiversity levels and community composition along the gradient moving from the 

edge to interior, providing more in-depth information about the ecological consequences 

of forest edge effects. 

Forest edges are likely to be linked to other forms of anthropogenic disturbance. 

During this study evidence was found of people entering the forest for resource extraction, 

including fishing, hunting of birds and mammals, and removal of tree sap. Almost all of 

this was observed less than one km from the forest boundary, or close to the larger old 

logging trails. All instances of non-researchers being recorded on camera traps were either 

at the edge or at 500m. This demonstrates that the impacts of edge effects on mammals 

are numerous, complex, and interlinked. Further work on human disturbances within the 

protected forest at Sikundur is needed to quantify the levels of hunting within the area, 

identify which species are being harvested and at what levels, and determine what the 

effect of this is on populations in the area. 
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Appendix 3.1 

R scripts to run generalized linear models and generalized 

linear mixed models of microclimate and forest structure 

effects on mammals 

This document includes the R code required to run generalized linear model and 
generalized linear mixed models to test the effects of microclimate and habitat 
characteristics on mammal occurrence at Sikundur, Sumatra. 

library(dplyr) 
library(car) 
library(MASS) 
library(ggplot2) 
library(ggfortify) 
library(lme4) 
library(glmmTMB) 
library(sjPlot) 
library(sjmisc) 
library(ggsci) 
library(parameters) 
library(sjstats) 
library(jtools) 
library(egg) 
library(lemon) 
library(modEvA) 
library(colorspace) 
library(ggeffects) 
library(corrplot) 
library(Hmisc) 
library(sitreeE) 
library(MuMIn) 
 
#Load data 
transect <- read.csv("transects.csv") 
camtraps <- read.csv("detectionsbyorder.csv") 

1) GLM of total mammal occurrence 

poisson <- glm(data = transect, 
              detections_total ~ dist + Tmax + Tmin +   
                Theightmean + no_trees + CA_mean + DBH_mean + conn_mea
n, 
              family = "poisson",na.action=na.fail) 
dredge(poisson) 

## Global model call: glm(formula = detections_total ~ dist + Tmax + T
min + Theightmean +  
##     no_trees + CA_mean + DBH_mean + conn_mean, family = "poisson",  
##     data = transect, na.action = na.fail) 
## --- 
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## Model selection table  
##         (Int)     CA_men    cnn_men DBH_men       dst     no_trs       
Thg 
## 229 27.470000                       0.18030                      -0
.106600 
## 237 35.090000                       0.20820  0.224100            -0
.116500 
## 101  2.176000                       0.16200                      -0
.113900 
## 230 27.660000  1.023e-02            0.17110                      -0
.112800 
## 231 27.390000            -0.0032440 0.18140                      -0
.101600 
## 102  2.345000  1.028e-02            0.15140                      -0
.119300 
## 245 27.660000                       0.17990           -0.0009018 -0
.105900 
## 117  2.192000                       0.17450            0.0242600 -0
.130000 
## 103  2.260000            -0.0035770 0.16310                      -0
.107800 
## 109  1.772000                       0.17180  0.084660            -0
.119100 
## 238 34.500000  8.650e-03            0.19750  0.207800            -0
.120100 
## 253 32.280000                       0.22260  0.263500  0.0206700 -0
.133200 
## 119  2.445000            -0.0096900 0.19380            0.0536400 -0
.133800 
## 239 34.880000            -0.0005340 0.20770  0.219000            -0
.115400 
## 118  2.388000  1.205e-02            0.16670            0.0306300 -0
.141600 
## 125  1.382000                       0.20250  0.170000  0.0396600 -0
.150600 
## 232 27.630000  9.507e-03 -0.0020940 0.17230                      -0
.108800 
## 246 26.510000  1.055e-02            0.17330            0.0056020 -0
.117200 
## 110  1.997000  9.822e-03            0.15970  0.071280            -0
.122900 
## 104  2.385000  9.388e-03 -0.0023740 0.15270                      -0
.114400 
## 247 22.880000            -0.0056970 0.19100            0.0212100 -0
.113200 
## 127  1.554000            -0.0102900 0.22670  0.191600  0.0744000 -0
.158100 
## 111  1.932000            -0.0028350 0.17030  0.065480            -0
.113000 
## 120  2.570000  1.027e-02 -0.0086040 0.18470            0.0556000 -0
.142600 
## 126  1.567000  1.214e-02            0.19450  0.170800  0.0464500 -0
.161800 
## 254 30.810000  1.001e-02            0.21500  0.257400  0.0267100 -0
.142700 
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## 255 27.620000            -0.0050740 0.23210  0.257900  0.0406800 -0
.139800 
## 240 34.660000  8.791e-03  0.0004559 0.19780  0.211900            -0
.121100 
## 112  2.080000  9.236e-03 -0.0016970 0.15930  0.060250            -0
.118900 
## 248 22.760000  9.903e-03 -0.0047420 0.18270            0.0234200 -0
.122000 
## 128  1.682000  1.012e-02 -0.0091830 0.21710  0.188800  0.0760700 -0
.165800 
## 213 46.040000                       0.09881           -0.0664900           
## 37   0.632900                       0.10030                      -0
.068800 
## 45  -0.040160                       0.12460  0.173900            -0
.084290 
## 256 27.190000  9.452e-03 -0.0042000 0.22330  0.253400  0.0428100 -0
.147300 
## 165 -8.645000                       0.11040                      -0
.083970 
## 53   0.762700                       0.09988           -0.0242300 -0
.061430 
## 221 44.750000                       0.09671 -0.040350 -0.0680700           
## 214 46.170000  2.190e-03            0.09528           -0.0670700           
## 215 46.880000             0.0011690 0.09806           -0.0701300           
## 38   0.665000  2.079e-03            0.09669                      -0
.069180 
## 39   0.634900            -0.0001641 0.10020                      -0
.068470 
## 173 -5.784000                       0.12620  0.136500            -0
.090510 
## 61   0.127300                       0.12040  0.144900 -0.0105000 -0
.078470 
## 46  -0.007054  2.198e-03            0.12070  0.174300            -0
.084530 
## 47  -0.074100             0.0011150 0.12570  0.178600            -0
.086990 
## 197 34.350000                       0.08525                                
## 199 32.610000            -0.0084300 0.09386                                
## 166 -9.328000  4.393e-03            0.10370                      -0
.085960 
## 181 -5.997000                       0.10720           -0.0124200 -0
.075780 
## 167 -8.953000            -0.0012480 0.11040                      -0
.081890 
## 55   0.761400             0.0024400 0.10040           -0.0287100 -0
.064990 
## 54   0.802500  2.572e-03            0.09542           -0.0245500 -0
.061720 
## 40   0.664300  2.116e-03  0.0001019 0.09665                      -0
.069400 
## 222 44.710000  2.662e-03            0.09210 -0.047190 -0.0690600           
## 216 47.210000  2.445e-03  0.0014300 0.09395           -0.0716000           
## 223 45.370000             0.0007119 0.09644 -0.036500 -0.0701200           
## 174 -6.431000  3.622e-03            0.12000  0.132000            -0
.091680 
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## 205 35.650000                       0.08713  0.031350                      
## 198 34.340000 -7.827e-04            0.08658                                
## 189 -5.357000                       0.12510  0.132600 -0.0024090 -0
.088740 
## 175 -5.699000             0.0002068 0.12640  0.138000            -0
.090920 
## 63   0.130900             0.0023460 0.12070  0.142700 -0.0153000 -0
.081590 
## 62   0.166900  2.320e-03            0.11610  0.144200 -0.0107700 -0
.078550 
## 48  -0.044070  2.809e-03  0.0014900 0.12110  0.180700            -0
.088250 
## 21   1.333000                       0.05388           -0.0472100           
## 182 -6.889000  4.010e-03            0.10150           -0.0111200 -0
.078360 
## 207 31.200000            -0.0088360 0.09237 -0.034020                      
## 200 32.590000 -1.018e-03 -0.0084350 0.09561                                
## 168 -9.465000  4.125e-03 -0.0007651 0.10410                      -0
.084510 
## 183 -5.598000             0.0003893 0.10690           -0.0138400 -0
.075500 
## 149 12.540000                       0.05985           -0.0575200           
## 56   0.817600  3.794e-03  0.0030810 0.09403           -0.0303300 -0
.066460 
## 71   2.241000            -0.0100300 0.06670                                
## 29   1.726000                       0.04839 -0.129700 -0.0550300           
## 85   1.938000                       0.05767           -0.0430500           
## 79   3.009000            -0.0114800 0.06402 -0.171900                      
## 93   2.791000                       0.05157 -0.192300 -0.0523400           
## 5    1.087000                       0.04604                                
## 69   1.830000                       0.05274                                
## 7    1.128000            -0.0067680 0.05337                                
## 23   1.303000            -0.0026040 0.05600           -0.0407900           
## 22   1.343000  5.924e-04            0.05282           -0.0474000           
## 206 35.700000 -9.924e-04            0.08891  0.032750                      
## 87   2.168000            -0.0070200 0.06556           -0.0235600           
## 151 15.590000             0.0035860 0.05843           -0.0690400           
## 98   3.817000  2.509e-02                                         -0
.048350 
## 157 10.840000                       0.05654 -0.058390 -0.0595200           
## 150 12.550000 -3.165e-04            0.06044           -0.0574500           
## 176 -6.215000  3.834e-03  0.0006406 0.12020  0.136300            -0
.093060 
## 190 -6.173000  3.582e-03            0.11950  0.129700 -0.0014140 -0
.090620 
## 77   2.358000                       0.04895 -0.128100                      
## 133  6.869000                       0.04823                                
## 64   0.189600  3.558e-03  0.0029540 0.11450  0.141400 -0.0168800 -0
.082650 
## 191 -4.494000             0.0008219 0.12450  0.133700 -0.0053710 -0
.088210 
## 72   2.220000 -1.046e-03 -0.0100400 0.06857                                
## 95   3.058000            -0.0075400 0.06090 -0.200500 -0.0326500           
## 224 45.530000  2.780e-03  0.0009381 0.09153 -0.042460 -0.0718200           
## 13   1.229000                       0.04339 -0.054590                      
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## 184 -5.963000  4.225e-03  0.0009663 0.10030           -0.0145500 -0
.077860 
## 6    1.055000 -1.948e-03            0.04970                                
## 31   1.688000            -0.0016890 0.05012 -0.124300 -0.0506800           
## 208 31.240000 -7.917e-04 -0.0088240 0.09377 -0.032710                      
## 30   1.754000  1.371e-03            0.04588 -0.131400 -0.0555900           
## 86   1.967000  1.411e-03            0.05523           -0.0434800           
## 106  4.357000  2.366e-02                    -0.150800            -0
.047730 
## 210 27.810000  1.991e-02                              -0.0494300           
## 34   2.396000  1.908e-02                                         -0
.034710 
## 15   1.260000            -0.0067490 0.05088 -0.050620                      
## 135  3.761000            -0.0061200 0.05359                                
## 8    1.081000 -2.766e-03 -0.0068450 0.05870                                
## 70   1.816000 -6.747e-04            0.05393                                
## 26   2.803000  1.225e-02                    -0.188600 -0.0539700           
## 18   2.408000  1.366e-02                              -0.0407800           
## 80   3.011000  7.344e-05 -0.0114800 0.06389 -0.172100                      
## 94   2.883000  3.164e-03            0.04600 -0.199000 -0.0537100           
## 90   3.963000  1.351e-02                    -0.258800 -0.0534400           
## 226 12.990000  2.523e-02                                         -0
.042210 
## 24   1.301000 -8.202e-05 -0.0026120 0.05615           -0.0407400           
## 218 23.660000  1.829e-02                    -0.207700 -0.0605200           
## 50   2.516000  1.905e-02                              -0.0279800 -0
.025400 
## 114  3.732000  2.427e-02                              -0.0133500 -0
.041980 
## 25   3.262000                               -0.217600 -0.0433300           
## 100  3.826000  2.505e-02 -0.0004667                              -0
.047350 
## 134  7.032000 -2.702e-03            0.05341                                
## 2    2.118000  1.046e-02                                                   
## 141  6.721000                       0.04796 -0.004327                      
## 159 13.850000             0.0031250 0.05595 -0.046210 -0.0690900           
## 146 10.140000  1.470e-02                              -0.0464700           
## 88   2.171000  1.651e-04 -0.0070080 0.06526           -0.0236500           
## 152 15.620000  4.348e-04  0.0036390 0.05760           -0.0693100           
## 78   2.358000  8.247e-06            0.04893 -0.128100                      
## 14   1.197000 -1.882e-03            0.04693 -0.054170                      
## 158 10.820000  1.827e-04            0.05618 -0.058750 -0.0595800           
## 122  4.376000  2.117e-02                    -0.210900 -0.0309400 -0
.032780 
## 194 20.500000  1.538e-02                                                   
## 82   2.977000  1.445e-02                              -0.0380400           
## 89   4.310000                               -0.273700 -0.0425900           
## 162 -2.529000  2.038e-02                                         -0
.041270 
## 42   2.463000  1.791e-02                    -0.049140            -0
.032880 
## 1    2.581000                                                              
## 66   2.832000  1.185e-02                                                   
## 212 33.560000  1.937e-02  0.0064090                   -0.0708100           
## 36   2.391000  1.920e-02  0.0007672                              -0
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.036410 
## 58   2.792000  1.567e-02                    -0.150500 -0.0435400 -0
.015290 
## 9    2.717000                               -0.132700                      
## 242 21.690000  2.334e-02                              -0.0342600 -0
.020610 
## 17   2.855000                                         -0.0259100           
## 74   3.443000  1.076e-02                    -0.171500                      
## 10   2.274000  9.234e-03                    -0.099730                      
## 20   2.405000  1.355e-02  0.0006501                   -0.0425500           
## 16   1.212000 -2.694e-03 -0.0068260 0.05609 -0.050020                      
## 4    2.222000  1.189e-02 -0.0040550                                        
## 136  3.915000 -3.063e-03 -0.0061600 0.05952                                
## 143  2.105000            -0.0065380 0.05133 -0.042930                      
## 73   3.796000                               -0.192900                      
## 154  5.618000  1.277e-02                    -0.169900 -0.0549200           
## 28   2.801000  1.193e-02  0.0017450         -0.192700 -0.0588300           
## 32   1.709000  9.242e-04 -0.0015900 0.04832 -0.125700 -0.0513100           
## 108  4.458000  2.328e-02 -0.0024730         -0.165500            -0
.042350 
## 234  8.821000  2.393e-02                    -0.132700            -0
.044710 
## 96   3.112000  2.037e-03 -0.0073950 0.05715 -0.204700 -0.0338700           
## 76   4.108000  1.393e-02 -0.0079890         -0.212200                      
## 68   3.222000  1.448e-02 -0.0060780                                        
## 52   2.528000  1.972e-02  0.0044840                   -0.0366000 -0
.032460 
## 130  5.708000  1.073e-02                                                   
## 27   3.235000             0.0032010         -0.222700 -0.0527500           
## 57   3.184000                               -0.233700 -0.0512100  0
.009370 
## 192 -4.844000  3.890e-03  0.0013520 0.11800  0.131300 -0.0061670 -0
.089980 
## 65   3.141000                                                              
## 148 16.190000  1.431e-02  0.0067970                   -0.0694300           
## 153  2.128000                               -0.224000 -0.0431200           
## 92   4.117000  1.416e-02 -0.0024890         -0.263800 -0.0467400           
## 178  3.998000  1.869e-02                              -0.0304400 -0
.022730 
## 33   2.714000                                                    -0
.007020 
## 196 18.770000  1.697e-02 -0.0045150                                        
## 228 12.970000  2.520e-02 -0.0002892                              -0
.041620 
## 202 16.940000  1.396e-02                    -0.112400                      
## 3    2.648000            -0.0016240                                        
## 129  4.999000                                                              
## 142  6.989000 -2.695e-03            0.05332 -0.001232                      
## 170 -6.191000  1.890e-02                    -0.107900            -0
.042750 
## 217 11.770000                               -0.256500 -0.0440100           
## 116  3.684000  2.422e-02  0.0014250                   -0.0166700 -0
.043480 
## 75   4.260000            -0.0046610         -0.221500                      
## 12   2.390000  1.061e-02 -0.0042270         -0.102700                      
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## 81   3.279000                                         -0.0239300           
## 145  7.514000                                         -0.0283900           
## 11   2.817000            -0.0022960         -0.138500                      
## 220 27.640000  1.810e-02  0.0041170         -0.187800 -0.0730300           
## 41   2.838000                               -0.130500            -0
.006506 
## 250 19.540000  2.072e-02                    -0.194800 -0.0486400 -0
.014730 
## 19   2.833000             0.0022820                   -0.0326800           
## 137  0.226800                               -0.149900                      
## 193 13.250000                                                              
## 84   3.070000  1.487e-02 -0.0017570                   -0.0328700           
## 121  4.224000                               -0.278200 -0.0461500  0
.004292 
## 91   4.278000             0.0004468         -0.272700 -0.0438800           
## 49   2.840000                                         -0.0268700  0
.001348 
## 105  4.119000                               -0.195900            -0
.010980 
## 164 -2.465000  2.043e-02  0.0003922                              -0
.042070 
## 44   2.459000  1.800e-02  0.0003456         -0.047830            -0
.033690 
## 201  8.901000                               -0.174200                      
## 138  2.435000  9.261e-03                    -0.098430                      
## 132  3.710000  1.187e-02 -0.0036940                                        
## 97   3.408000                                                    -0
.009406 
## 60   2.792000  1.648e-02  0.0042880         -0.145600 -0.0507600 -0
.022700 
## 67   3.335000            -0.0024920                                        
## 209 15.740000                                         -0.0273000           
## 160 13.850000  7.448e-04  0.0032050 0.05448 -0.047390 -0.0695700           
## 156 10.660000  1.274e-02  0.0050910         -0.149100 -0.0709400           
## 244 27.490000  2.265e-02  0.0062640                   -0.0557200 -0
.019910 
## 147 14.650000             0.0074870                   -0.0544700           
## 124  4.363000  2.117e-02  0.0003035         -0.210000 -0.0315100 -0
.033160 
## 186  1.160000  1.598e-02                    -0.155100 -0.0411500 -0
.018020 
## 204 12.920000  1.558e-02 -0.0066810         -0.167800                      
## 144  2.379000 -2.837e-03 -0.0065390 0.05700 -0.039420                      
## 155  7.175000             0.0048990         -0.203600 -0.0585500           
## 35   2.717000            -0.0006395                              -0
.005809 
## 161  3.599000                                                    -0
.006162 
## 59   3.191000             0.0023710         -0.231200 -0.0552800  0
.005990 
## 131  4.233000            -0.0012570                                        
## 185  6.270000                               -0.223800 -0.0553900  0
.013570 
## 180 10.080000  1.820e-02  0.0067370                   -0.0534300 -0
.022440 
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## 177 11.770000                                         -0.0405400  0
.013680 
## 139 -3.114000            -0.0039720         -0.183800                      
## 169 -3.071000                               -0.169500            -0
.012440 
## 249 20.330000                               -0.262500 -0.0645100  0
.022270 
## 236  8.265000  2.357e-02 -0.0021930         -0.148500            -0
.040430 
## 83   3.206000             0.0012220                   -0.0278300           
## 113  3.315000                                         -0.0227800 -0
.001511 
## 43   2.852000            -0.0017470         -0.136000            -0
.003180 
## 140 -1.595000  1.026e-02 -0.0053040         -0.136300                      
## 51   2.852000             0.0025480                   -0.0321200 -0
.001912 
## 211 23.220000             0.0075120                   -0.0533900           
## 195 12.520000            -0.0011560                                        
## 225 12.400000                                                    -0
.002895 
## 107  4.307000            -0.0040050         -0.218600            -0
.003766 
## 219 16.240000             0.0043590         -0.235900 -0.0575100           
## 203  5.423000            -0.0044310         -0.215900                      
## 241 23.650000                                         -0.0449900  0
.020050 
## 172 -6.548000  1.868e-02 -0.0009796         -0.114200            -0
.040810 
## 233  5.950000                               -0.188800            -0
.009507 
## 99   3.443000            -0.0013350                              -0
.006944 
## 123  4.230000            -0.0001357         -0.278600 -0.0459000  0
.004457 
## 179 18.810000             0.0074290                   -0.0664100  0
.013800 
## 163  3.460000            -0.0005652                              -0
.005232 
## 252 23.480000  2.059e-02  0.0042570         -0.175100 -0.0612700 -0
.015280 
## 187 11.100000             0.0047850         -0.202900 -0.0700600  0
.013290 
## 188  6.172000  1.605e-02  0.0053000         -0.134600 -0.0573800 -0
.018820 
## 171 -4.424000            -0.0029500         -0.188000            -0
.008100 
## 243 31.280000             0.0074980                   -0.0713400  0
.020580 
## 115  3.258000             0.0016050                   -0.0266300 -0
.003173 
## 227 12.260000            -0.0009938                              -0
.001228 
## 251 24.460000             0.0041370         -0.241000 -0.0767700  0
.021940 
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## 235  4.669000            -0.0039720         -0.217000            -0
.003539 
##          Tmx       Tmn df   logLik  AICc delta weight 
## 229 -0.12890 -1.143000  5  -81.214 177.0  0.00  0.303 
## 237 -0.13560 -1.532000  6  -79.581 178.2  1.12  0.173 
## 101 -0.08382            4  -84.042 178.9  1.90  0.117 
## 230 -0.13510 -1.145000  6  -80.367 179.7  2.69  0.079 
## 231 -0.13140 -1.136000  6  -80.958 180.9  3.87  0.044 
## 102 -0.08939            5  -83.195 181.0  3.96  0.042 
## 245 -0.12880 -1.152000  6  -81.213 181.4  4.38  0.034 
## 117 -0.09555            5  -83.516 181.6  4.60  0.030 
## 103 -0.08659            5  -83.730 182.1  5.03  0.024 
## 109 -0.08081            5  -83.763 182.1  5.10  0.024 
## 238 -0.13960 -1.496000  7  -78.997 182.2  5.13  0.023 
## 253 -0.13980 -1.414000  7  -79.290 182.8  5.72  0.017 
## 119 -0.11800            6  -82.035 183.1  6.03  0.015 
## 239 -0.13580 -1.521000  7  -79.575 183.3  6.29  0.013 
## 118 -0.10570            6  -82.403 183.8  6.76  0.010 
## 125 -0.09697            6  -82.579 184.2  7.11  0.009 
## 232 -0.13610 -1.142000  7  -80.267 184.7  7.67  0.007 
## 246 -0.13600 -1.093000  7  -80.346 184.9  7.83  0.006 
## 110 -0.08644            6  -83.001 185.0  7.96  0.006 
## 104 -0.09059            6  -83.067 185.1  8.09  0.005 
## 247 -0.13590 -0.929200  7  -80.779 185.7  8.70  0.004 
## 127 -0.12150            7  -80.905 186.0  8.95  0.003 
## 111 -0.08363            6  -83.577 186.2  9.11  0.003 
## 120 -0.12380            7  -81.292 186.8  9.72  0.002 
## 126 -0.10710            7  -81.482 187.1 10.10  0.002 
## 254 -0.14590 -1.340000  8  -78.543 187.5 10.44  0.002 
## 255 -0.14570 -1.197000  8  -78.950 188.3 11.26  0.001 
## 240 -0.13950 -1.505000  8  -78.992 188.4 11.34  0.001 
## 112 -0.08772            7  -82.940 190.1 13.02  0.000 
## 248 -0.14150 -0.918400  8  -80.054 190.5 13.46  0.000 
## 128 -0.12700            8  -80.214 190.8 13.79  0.000 
## 213 -0.10220 -1.985000  5  -88.692 192.0 14.96  0.000 
## 37                      3  -93.004 193.6 16.57  0.000 
## 45                      4  -91.798 194.5 17.41  0.000 
## 256 -0.15050 -1.172000  9  -78.315 194.6 17.59  0.000 
## 165           0.429600  4  -92.141 195.1 18.10  0.000 
## 53                      4  -92.307 195.5 18.43  0.000 
## 221 -0.10190 -1.920000  6  -88.635 196.3 19.23  0.000 
## 214 -0.10280 -1.989000  6  -88.652 196.3 19.26  0.000 
## 215 -0.10150 -2.024000  6  -88.671 196.3 19.30  0.000 
## 38                      4  -92.971 196.8 19.76  0.000 
## 39                      4  -93.004 196.9 19.82  0.000 
## 173           0.272000  5  -91.513 197.6 20.60  0.000 
## 61                      5  -91.697 198.0 20.97  0.000 
## 46                      5  -91.762 198.1 21.10  0.000 
## 47                      5  -91.768 198.2 21.11  0.000 
## 197 -0.09134 -1.470000  4  -93.697 198.3 21.21  0.000 
## 199 -0.09918 -1.374000  5  -91.973 198.6 21.52  0.000 
## 166           0.464100  5  -91.997 198.6 21.57  0.000 
## 181           0.310100  5  -92.026 198.7 21.62  0.000 
## 167           0.444500  5  -92.105 198.8 21.78  0.000 
## 55                      5  -92.190 199.0 21.95  0.000 
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## 54                      5  -92.256 199.1 22.08  0.000 
## 40                      5  -92.971 200.6 23.51  0.000 
## 222 -0.10260 -1.915000  7  -88.577 201.3 24.29  0.000 
## 216 -0.10200 -2.038000  7  -88.622 201.4 24.38  0.000 
## 223 -0.10150 -1.950000  7  -88.628 201.4 24.40  0.000 
## 174           0.305100  6  -91.418 201.8 24.79  0.000 
## 205 -0.09188 -1.534000  5  -93.662 201.9 24.90  0.000 
## 198 -0.09117 -1.470000  5  -93.692 202.0 24.96  0.000 
## 189           0.253600  6  -91.509 202.0 24.98  0.000 
## 175           0.267700  6  -91.512 202.0 24.98  0.000 
## 63                      6  -91.587 202.2 25.13  0.000 
## 62                      6  -91.656 202.3 25.27  0.000 
## 48                      6  -91.712 202.4 25.38  0.000 
## 21                      3  -97.582 202.8 25.72  0.000 
## 182           0.353700  6  -91.906 202.8 25.77  0.000 
## 207 -0.09919 -1.304000  6  -91.934 202.9 25.83  0.000 
## 200 -0.09897 -1.374000  6  -91.965 202.9 25.89  0.000 
## 168           0.470700  6  -91.984 203.0 25.92  0.000 
## 183           0.291800  6  -92.024 203.0 26.00  0.000 
## 149          -0.525000  4  -96.109 203.1 26.03  0.000 
## 56                      6  -92.083 203.2 26.12  0.000 
## 71  -0.04398            4  -96.364 203.6 26.54  0.000 
## 29                      4  -96.762 204.4 27.34  0.000 
## 85  -0.02409            4  -96.765 204.4 27.34  0.000 
## 79  -0.05790            5  -95.038 204.7 27.65  0.000 
## 93  -0.03529            5  -95.144 204.9 27.86  0.000 
## 5                       2 -100.230 205.2 28.17  0.000 
## 69  -0.02994            3  -98.915 205.4 28.39  0.000 
## 7                       3  -98.966 205.5 28.49  0.000 
## 23                      4  -97.435 205.7 28.68  0.000 
## 22                      4  -97.580 206.0 28.97  0.000 
## 206 -0.09170 -1.537000  6  -93.654 206.3 29.26  0.000 
## 87  -0.03666            5  -95.922 206.5 29.42  0.000 
## 151          -0.666200  5  -95.928 206.5 29.43  0.000 
## 98  -0.04453            4  -97.828 206.5 29.47  0.000 
## 157          -0.437300  5  -95.987 206.6 29.55  0.000 
## 150          -0.526000  5  -96.108 206.8 29.79  0.000 
## 176           0.294100  7  -91.409 207.0 29.96  0.000 
## 190           0.294000  7  -91.417 207.0 29.97  0.000 
## 77  -0.03850            4  -98.132 207.1 30.08  0.000 
## 133          -0.272200  3  -99.781 207.2 30.12  0.000 
## 64                      7  -91.496 207.2 30.13  0.000 
## 191           0.213800  7  -91.501 207.2 30.14  0.000 
## 72  -0.04378            5  -96.356 207.3 30.28  0.000 
## 95  -0.04965            6  -94.198 207.4 30.35  0.000 
## 224 -0.10210 -1.953000  8  -88.565 207.5 30.49  0.000 
## 13                      3 -100.066 207.7 30.69  0.000 
## 184           0.311300  7  -91.894 208.0 30.93  0.000 
## 6                       3 -100.200 208.0 30.96  0.000 
## 31                      5  -96.701 208.0 30.97  0.000 
## 208 -0.09902 -1.307000  7  -91.929 208.0 31.00  0.000 
## 30                      5  -96.747 208.1 31.07  0.000 
## 86  -0.02434            5  -96.749 208.1 31.07  0.000 
## 106 -0.05496            5  -96.827 208.3 31.23  0.000 
## 210 -0.06104 -1.099000  5  -96.879 208.4 31.33  0.000 
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## 34                      3 -100.425 208.4 31.41  0.000 
## 15                      4  -98.825 208.5 31.46  0.000 
## 135          -0.124000  4  -98.883 208.6 31.58  0.000 
## 8                       4  -98.908 208.7 31.63  0.000 
## 70  -0.02980            4  -98.912 208.7 31.64  0.000 
## 26                      4  -98.947 208.8 31.71  0.000 
## 18                      3 -100.641 208.9 31.84  0.000 
## 80  -0.05792            6  -95.038 209.1 32.03  0.000 
## 94  -0.03624            6  -95.061 209.1 32.08  0.000 
## 90  -0.03584            5  -97.320 209.3 32.21  0.000 
## 226 -0.05822 -0.411900  5  -97.387 209.4 32.35  0.000 
## 24                      5  -97.435 209.5 32.44  0.000 
## 218 -0.06550 -0.880600  6  -95.374 209.7 32.71  0.000 
## 50                      4  -99.485 209.8 32.78  0.000 
## 114 -0.04011            5  -97.636 209.9 32.84  0.000 
## 25                      3 -101.291 210.2 33.14  0.000 
## 100 -0.04474            5  -97.823 210.3 33.22  0.000 
## 134          -0.282100  4  -99.724 210.3 33.26  0.000 
## 2                       2 -102.802 210.4 33.31  0.000 
## 141          -0.264700  4  -99.780 210.4 33.37  0.000 
## 159          -0.578200  6  -95.855 210.7 33.67  0.000 
## 146          -0.358900  4  -99.958 210.8 33.73  0.000 
## 88  -0.03666            6  -95.922 210.8 33.80  0.000 
## 152          -0.666900  6  -95.927 210.9 33.81  0.000 
## 78  -0.03850            5  -98.132 210.9 33.84  0.000 
## 14                      4 -100.038 210.9 33.89  0.000 
## 158          -0.436200  6  -95.986 211.0 33.93  0.000 
## 122 -0.04883            6  -95.989 211.0 33.93  0.000 
## 194 -0.05479 -0.783500  4 -100.086 211.0 33.99  0.000 
## 82  -0.01971            4 -100.106 211.1 34.03  0.000 
## 89  -0.03112            4 -100.121 211.1 34.06  0.000 
## 162           0.232200  4 -100.190 211.2 34.19  0.000 
## 42                      4 -100.302 211.5 34.42  0.000 
## 1                       1 -104.643 211.5 34.48  0.000 
## 66  -0.02417            3 -101.970 211.5 34.50  0.000 
## 212 -0.06008 -1.368000  6  -96.314 211.6 34.59  0.000 
## 36                      4 -100.412 211.7 34.64  0.000 
## 58                      5  -98.605 211.8 34.78  0.000 
## 9                       2 -103.600 211.9 34.91  0.000 
## 242 -0.06035 -0.811600  6  -96.475 212.0 34.91  0.000 
## 17                      2 -103.632 212.0 34.97  0.000 
## 74  -0.03625            4 -100.589 212.0 34.99  0.000 
## 10                      3 -102.253 212.1 35.06  0.000 
## 20                      4 -100.632 212.1 35.08  0.000 
## 16                      5  -98.770 212.2 35.11  0.000 
## 4                       3 -102.313 212.2 35.18  0.000 
## 136          -0.133800  5  -98.813 212.2 35.20  0.000 
## 143          -0.040750  5  -98.819 212.3 35.21  0.000 
## 73  -0.03172            3 -102.366 212.3 35.29  0.000 
## 154          -0.132400  5  -98.870 212.4 35.31  0.000 
## 28                      5  -98.879 212.4 35.33  0.000 
## 32                      6  -96.694 212.4 35.35  0.000 
## 108 -0.05712            6  -96.710 212.4 35.38  0.000 
## 234 -0.06043 -0.203500  6  -96.732 212.5 35.42  0.000 
## 96  -0.04998            7  -94.166 212.5 35.47  0.000 
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## 76  -0.04982            5  -98.994 212.6 35.56  0.000 
## 68  -0.03217            4 -100.947 212.8 35.71  0.000 
## 52                      5  -99.126 212.9 35.82  0.000 
## 130          -0.167500  3 -102.637 212.9 35.83  0.000 
## 27                      4 -101.047 213.0 35.91  0.000 
## 57                      4 -101.089 213.0 35.99  0.000 
## 192           0.232800  8  -91.394 213.2 36.14  0.000 
## 65  -0.01745            2 -104.232 213.2 36.17  0.000 
## 148          -0.641100  5  -99.335 213.3 36.24  0.000 
## 153           0.052930  4 -101.279 213.4 36.37  0.000 
## 92  -0.04040            6  -97.208 213.4 36.37  0.000 
## 178          -0.069290  5  -99.472 213.6 36.52  0.000 
## 33                      2 -104.488 213.7 36.68  0.000 
## 196 -0.05731 -0.693800  5  -99.557 213.7 36.69  0.000 
## 228 -0.05832 -0.410900  6  -97.385 213.8 36.73  0.000 
## 202 -0.05579 -0.607800  5  -99.608 213.8 36.79  0.000 
## 3                       2 -104.552 213.9 36.81  0.000 
## 129          -0.112500  2 -104.572 213.9 36.85  0.000 
## 142          -0.279900  5  -99.724 214.1 37.02  0.000 
## 170           0.411900  5  -99.730 214.1 37.03  0.000 
## 217 -0.04176 -0.331100  5  -99.780 214.2 37.13  0.000 
## 116 -0.03836            6  -97.603 214.2 37.16  0.000 
## 75  -0.03931            4 -101.732 214.3 37.28  0.000 
## 12                      4 -101.735 214.3 37.28  0.000 
## 81  -0.01386            3 -103.386 214.4 37.33  0.000 
## 145          -0.215400  3 -103.390 214.4 37.34  0.000 
## 11                      3 -103.430 214.5 37.42  0.000 
## 220 -0.06419 -1.070000  7  -95.153 214.5 37.44  0.000 
## 41                      3 -103.477 214.6 37.51  0.000 
## 250 -0.06476 -0.688300  7  -95.188 214.6 37.52  0.000 
## 19                      3 -103.509 214.6 37.57  0.000 
## 137           0.116600  3 -103.538 214.7 37.63  0.000 
## 193 -0.03391 -0.445700  3 -103.548 214.7 37.65  0.000 
## 84  -0.02264            5 -100.050 214.7 37.67  0.000 
## 121 -0.02967            5 -100.081 214.8 37.73  0.000 
## 91  -0.03032            5 -100.117 214.8 37.81  0.000 
## 49                      3 -103.627 214.9 37.81  0.000 
## 105 -0.03522            4 -102.033 214.9 37.88  0.000 
## 164           0.229000  5 -100.186 215.0 37.94  0.000 
## 44                      5 -100.299 215.2 38.17  0.000 
## 201 -0.03867 -0.228000  4 -102.201 215.3 38.22  0.000 
## 138          -0.007612  4 -102.253 215.4 38.32  0.000 
## 132          -0.069870  4 -102.288 215.4 38.39  0.000 
## 97  -0.02022            3 -103.961 215.5 38.48  0.000 
## 60                      6  -98.278 215.6 38.51  0.000 
## 67  -0.02032            3 -104.025 215.6 38.61  0.000 
## 209 -0.03365 -0.548400  4 -102.412 215.7 38.64  0.000 
## 160          -0.577300  7  -95.851 215.9 38.84  0.000 
## 156          -0.369700  6  -98.534 216.1 39.02  0.000 
## 244 -0.05931 -1.083000  7  -95.949 216.1 39.04  0.000 
## 147          -0.548800  4 -102.618 216.1 39.05  0.000 
## 124 -0.04843            7  -95.987 216.2 39.11  0.000 
## 186           0.076730  6  -98.590 216.2 39.14  0.000 
## 204 -0.06062 -0.401700  6  -98.605 216.2 39.17  0.000 
## 144          -0.056380  6  -98.759 216.5 39.47  0.000 
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## 155          -0.184600  5 -100.962 216.5 39.50  0.000 
## 35                      3 -104.479 216.6 39.51  0.000 
## 161          -0.041890  3 -104.481 216.6 39.52  0.000 
## 59                      5 -100.982 216.6 39.54  0.000 
## 131          -0.074410  3 -104.525 216.7 39.61  0.000 
## 185          -0.145700  5 -101.033 216.7 39.64  0.000 
## 180          -0.353000  6  -98.875 216.7 39.71  0.000 
## 177          -0.419700  4 -103.112 217.1 40.04  0.000 
## 139           0.281200  4 -103.157 217.2 40.13  0.000 
## 169           0.281900  4 -103.217 217.3 40.25  0.000 
## 249 -0.04715 -0.730700  6  -99.166 217.3 40.29  0.000 
## 236 -0.06158 -0.174100  7  -96.641 217.5 40.42  0.000 
## 83  -0.01185            4 -103.356 217.6 40.53  0.000 
## 113 -0.01447            4 -103.381 217.6 40.58  0.000 
## 43                      4 -103.410 217.7 40.63  0.000 
## 140           0.189700  5 -101.610 217.8 40.79  0.000 
## 51                      4 -103.501 217.9 40.82  0.000 
## 211 -0.03361 -0.897800  5 -101.624 217.9 40.82  0.000 
## 195 -0.03393 -0.409500  4 -103.508 217.9 40.83  0.000 
## 225 -0.03326 -0.404500  4 -103.529 217.9 40.87  0.000 
## 107 -0.03948            5 -101.704 218.0 40.98  0.000 
## 219 -0.04066 -0.543700  6  -99.527 218.1 41.01  0.000 
## 203 -0.04057 -0.052930  5 -101.725 218.1 41.02  0.000 
## 241 -0.03869 -0.917500  5 -101.843 218.3 41.26  0.000 
## 172           0.429400  6  -99.711 218.4 41.38  0.000 
## 233 -0.03732 -0.083660  5 -102.016 218.6 41.60  0.000 
## 99  -0.02105            4 -103.919 218.7 41.65  0.000 
## 123 -0.02986            6 -100.081 219.2 42.12  0.000 
## 179          -0.748500  5 -102.342 219.3 42.26  0.000 
## 163          -0.035200  4 -104.473 219.8 42.76  0.000 
## 252 -0.06337 -0.875900  8  -94.954 220.3 43.27  0.000 
## 187          -0.372900  6 -100.729 220.5 43.41  0.000 
## 188          -0.158900  7  -98.232 220.6 43.60  0.000 
## 171           0.347500  5 -103.042 220.7 43.66  0.000 
## 243 -0.03890 -1.274000  6 -101.042 221.1 44.04  0.000 
## 115 -0.01249            5 -103.335 221.3 44.24  0.000 
## 227 -0.03365 -0.396900  5 -103.505 221.6 44.58  0.000 
## 251 -0.04605 -0.926800  7  -98.935 222.1 45.01  0.000 
## 235 -0.03986 -0.016630  6 -101.703 222.4 45.36  0.000 
## Models ranked by AICc(x) 

poisson2 <- glm(data = transect, 
                detections_total ~ Tmax + Tmin +   
                  Theightmean + DBH_mean, 
                family = "poisson",na.action=na.fail) 
summary(poisson2) 

##  
## Call: 
## glm(formula = detections_total ~ Tmax + Tmin + Theightmean +  
##     DBH_mean, family = "poisson", data = transect, na.action = na.f
ail) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -3.8094  -1.8068   0.2687   0.9008   3.5766   



   

 

218 

 

##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) 27.47080   10.72075   2.562   0.0104 *   
## Tmax        -0.12895    0.02852  -4.522 6.14e-06 *** 
## Tmin        -1.14335    0.48416  -2.362   0.0182 *   
## Theightmean -0.10656    0.02084  -5.113 3.16e-07 *** 
## DBH_mean     0.18028    0.02867   6.288 3.22e-10 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for poisson family taken to be 1) 
##  
##     Null deviance: 134.116  on 18  degrees of freedom 
## Residual deviance:  87.258  on 14  degrees of freedom 
## AIC: 172.43 
##  
## Number of Fisher Scoring iterations: 5 

autoplot(poisson2) 
 
##Summarise model outputs 
 
summ(poisson2) 

## MODEL INFO: 
## Observations: 19 
## Dependent Variable: detections_total 
## Type: Generalized linear model 
##   Family: poisson  
##   Link function: log  
##  
## MODEL FIT: 
## <U+03C7>²(4) = 46.86, p = 0.00 
## Pseudo-R² (Cragg-Uhler) = 0.92 
## Pseudo-R² (McFadden) = 0.22 
## AIC = 172.43, BIC = 177.15  
##  
## Standard errors: MLE 
## ------------------------------------------------- 
##                      Est.    S.E.   z val.      p 
## ----------------- ------- ------- -------- ------ 
## (Intercept)         27.47   10.72     2.56   0.01 
## Tmax                -0.13    0.03    -4.52   0.00 
## Tmin                -1.14    0.48    -2.36   0.02 
## Theightmean         -0.11    0.02    -5.11   0.00 
## DBH_mean             0.18    0.03     6.29   0.00 
## ------------------------------------------------- 

#export_summs(poisson2, to.file = "docx", file.name = "GLMall.docx",ex
p=TRUE) 
#Dsquared(poisson2) 
 
 
tmax <- effect_plot(poisson2, pred = Tmax, interval = TRUE, plot.point
s = TRUE, x.label = "Maximum temperature,  °C", y.label = "Total mamma
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l detections") 
tmin <- effect_plot(poisson2, pred = Tmin, interval = TRUE, plot.point
s = TRUE, x.label = "Minimum temperature,  °C", y.label = "Total mamma
l detections") 
height <- effect_plot(poisson2, pred = Theightmean, interval = TRUE, p
lot.points = TRUE, x.label = "Total tree height, m", y.label = "Total 
mammal detections") 
dbh <- effect_plot(poisson2, pred = DBH_mean, interval = TRUE, plot.po
ints = TRUE, x.label = "Diameter at Breast Height, cm", y.label = "Tot
al mammal detections") 
 
tmax <- tmax + theme_classic() + ggtitle("(a)") 
tmin <- tmin + theme_classic() + ggtitle("(b)") 
height <- height + theme_classic() + ggtitle("(c)") 
dbh <- dbh + theme_classic() + ggtitle("(d)") 
 
plots <- grid.arrange(tmax, tmin, height, dbh, ncol = 2) 

 

#ggsave("GLMs.jpg", plot = plots, height = 200, width = 176, units = "
mm") 

2) GLMM of mammal occurence, with Order included as a random 

factor 

mem <- glmmTMB(detections ~ 
               Tmax+height+dbh+crown+conn+n+ 
               (1|order), 
               data = camtraps,family=nbinom2,na.action="na.fail") 
summary(mem) 
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##  Family: nbinom2  ( log ) 
## Formula:           
## detections ~ Tmax + height + dbh + crown + conn + n + (1 | order) 
## Data: camtraps 
##  
##      AIC      BIC   logLik deviance df.resid  
##    433.6    458.2   -207.8    415.6      105  
##  
## Random effects: 
##  
## Conditional model: 
##  Groups Name        Variance Std.Dev. 
##  order  (Intercept) 0.9792   0.9895   
## Number of obs: 114, groups:  order, 6 
##  
## Overdispersion parameter for nbinom2 family (): 0.686  
##  
## Conditional model: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -0.161818   1.886360  -0.086 0.931639     
## Tmax        -0.181397   0.062508  -2.902 0.003708 **  
## height      -0.207831   0.063883  -3.253 0.001141 **  
## dbh          0.268027   0.078328   3.422 0.000622 *** 
## crown        0.026142   0.017650   1.481 0.138573     
## conn        -0.002326   0.012918  -0.180 0.857097     
## n            0.062564   0.068749   0.910 0.362807     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

dredge(mem) 

## Global model call: glmmTMB(formula = detections ~ Tmax + height + d
bh + crown +  
##     conn + n + (1 | order), data = camtraps, family = nbinom2,  
##     na.action = "na.fail", ziformula = ~0, dispformula = ~1) 
## --- 
## Model selection table  
##    cnd((Int)) dsp((Int))   cnd(cnn) cnd(crw) cnd(dbh)  cnd(hgh)    
cnd(n) 
## 45   -0.59310          +                      0.26760 -0.158000           
## 47   -0.04987          +             0.02522  0.24010 -0.180600           
## 61   -0.72080          +                      0.29160 -0.184100  0.
049210 
## 63   -0.24620          +             0.02630  0.26560 -0.208200  0.
055360 
## 46   -0.75770          +  0.0036770           0.26960 -0.164600           
## 48   -0.26770          +  0.0045410  0.02574  0.24150 -0.188100           
## 62   -0.61020          + -0.0030660           0.29440 -0.183400  0.
058660 
## 64   -0.16180          + -0.0023260  0.02614  0.26800 -0.207800  0.
062560 
## 13   -3.86000          +                      0.19050 -0.092440           
## 15   -3.72000          +             0.01969  0.16660 -0.106000           
## 5    -2.65800          +                      0.09937                     
## 37   -0.91360          +                      0.10820                     
## 14   -4.06200          +  0.0072330           0.19700 -0.108800           
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## 29   -3.71900          +                      0.18690 -0.087860 -0.
010610 
## 21   -2.39100          +                      0.10560           -0.
044340 
## 16   -3.95100          +  0.0083820  0.02129  0.17180 -0.125000           
## 3    -0.67860          +             0.02784                              
## 7    -2.48300          +             0.01189  0.07739                     
## 38   -0.62070          + -0.0081170           0.12250                     
## 31   -3.62600          +             0.01953  0.16440 -0.103100 -0.
006781 
## 53   -0.88550          +                      0.11260           -0.
034940 
## 6    -2.68800          + -0.0030360           0.10420                     
## 39   -0.71360          +             0.01189  0.08582                     
## 30   -3.68400          +  0.0111800           0.18840 -0.101600 -0.
037670 
## 35    0.97190          +             0.02990                              
## 23   -2.20300          +             0.01161  0.08353           -0.
044210 
## 1     0.59370          +                                                  
## 19   -0.30560          +             0.02862                    -0.
038570 
## 32   -3.56000          +  0.0120500  0.02112  0.16310 -0.118000 -0.
036360 
## 43    2.00400          +             0.04211          -0.050070           
## 11   -0.43410          +             0.03440          -0.028300           
## 22   -2.29900          +  0.0039850           0.10130           -0.
055570 
## 4    -0.71980          +  0.0012530  0.02760                              
## 40   -0.43680          + -0.0077920  0.01106  0.10080                     
## 55   -0.68130          +             0.01161  0.09029           -0.
034660 
## 8    -2.51300          + -0.0027670  0.01161  0.08223                     
## 54   -0.70190          + -0.0053540           0.11980           -0.
018020 
## 51    1.07600          +             0.03033                    -0.
028670 
## 33    1.86500          +                                                  
## 36    1.11800          + -0.0019450  0.03038                              
## 17    0.93520          +                                        -0.
032240 
## 20   -0.35580          +  0.0080960  0.02759                    -0.
061350 
## 9     0.30950          +                               0.014800           
## 2     0.44230          +  0.0036400                                       
## 27   -0.19810          +             0.03314          -0.020250 -0.
031440 
## 24   -2.10100          +  0.0041880  0.01188  0.07847           -0.
055980 
## 12   -0.53130          +  0.0060950  0.03628          -0.040950           
## 44    1.85300          +  0.0037480  0.04292          -0.056640           
## 59    1.98500          +             0.04164          -0.047660 -0.
008013 
## 56   -0.51790          + -0.0048780  0.01124  0.09751           -0.
019270 
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## 18    0.80730          +  0.0104100                             -0.
061130 
## 49    1.96500          +                                        -0.
023490 
## 28   -0.18810          +  0.0119600  0.03574          -0.037770 -0.
058920 
## 52    0.87560          +  0.0031340  0.02972                    -0.
038790 
## 25    0.56110          +                               0.025570 -0.
043320 
## 41    1.61600          +                               0.009198           
## 34    1.74300          +  0.0015380                                       
## 10    0.29650          +  0.0020660                    0.011000           
## 60    1.66700          +  0.0067310  0.04195          -0.053570 -0.
027010 
## 50    1.44200          +  0.0078910                             -0.
049040 
## 26    0.61260          +  0.0085900                    0.014910 -0.
062640 
## 57    1.49600          +                               0.018630 -0.
033380 
## 42    1.60300          +  0.0003773                    0.008559           
## 58    1.19900          +  0.0066050                    0.012910 -0.
051790 
##    cnd(Tmx) df   logLik  AICc delta weight 
## 45 -0.14190  6 -209.303 431.4  0.00  0.223 
## 47 -0.15330  7 -208.297 431.7  0.26  0.195 
## 61 -0.16330  7 -208.909 432.9  1.48  0.106 
## 63 -0.17690  8 -207.801 433.0  1.58  0.101 
## 46 -0.13960  7 -209.244 433.5  2.15  0.076 
## 48 -0.15020  8 -208.204 433.8  2.39  0.067 
## 62 -0.16910  8 -208.882 435.1  3.75  0.034 
## 64 -0.18140  9 -207.785 435.3  3.91  0.032 
## 13           5 -212.696 435.9  4.56  0.023 
## 15           6 -212.107 437.0  5.61  0.013 
## 5            4 -214.468 437.3  5.91  0.012 
## 37 -0.06371  5 -213.544 437.6  6.25  0.010 
## 14           6 -212.473 437.7  6.34  0.009 
## 29           6 -212.675 438.1  6.75  0.008 
## 21           5 -213.998 438.6  7.16  0.006 
## 16           7 -211.797 438.6  7.26  0.006 
## 3            4 -215.274 438.9  7.52  0.005 
## 7            5 -214.254 439.1  7.67  0.005 
## 38 -0.07685  6 -213.219 439.2  7.83  0.004 
## 31           7 -212.098 439.3  7.86  0.004 
## 53 -0.05749  6 -213.253 439.3  7.90  0.004 
## 6            5 -214.418 439.4  8.00  0.004 
## 39 -0.06408  6 -213.330 439.4  8.05  0.004 
## 30           7 -212.275 439.6  8.22  0.004 
## 35 -0.05461  5 -214.582 439.7  8.33  0.003 
## 23           6 -213.790 440.4  8.97  0.003 
## 1            3 -217.079 440.4  8.99  0.002 
## 19           5 -214.954 440.5  9.07  0.002 
## 32           8 -211.613 440.6  9.21  0.002 
## 43 -0.07420  6 -213.909 440.6  9.21  0.002 
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## 11           5 -215.029 440.6  9.22  0.002 
## 22           6 -213.942 440.7  9.28  0.002 
## 4            5 -215.265 441.1  9.69  0.002 
## 40 -0.07670  7 -213.029 441.1  9.72  0.002 
## 55 -0.05777  7 -213.045 441.1  9.76  0.002 
## 8            6 -214.212 441.2  9.82  0.002 
## 54 -0.06916  7 -213.180 441.4 10.03  0.001 
## 51 -0.04897  6 -214.409 441.6 10.21  0.001 
## 33 -0.03981  4 -216.676 441.7 10.33  0.001 
## 36 -0.05732  6 -214.562 441.9 10.52  0.001 
## 17           4 -216.874 442.1 10.72  0.001 
## 20           6 -214.696 442.2 10.79  0.001 
## 9            4 -216.985 442.3 10.95  0.001 
## 2            4 -217.007 442.4 10.99  0.001 
## 27           6 -214.845 442.5 11.09  0.001 
## 24           7 -213.727 442.5 11.12  0.001 
## 12           6 -214.867 442.5 11.13  0.001 
## 44 -0.07160  7 -213.848 442.8 11.36  0.001 
## 59 -0.07174  7 -213.898 442.9 11.46  0.001 
## 56 -0.06847  8 -212.984 443.3 11.95  0.001 
## 18           5 -216.473 443.5 12.11  0.001 
## 49 -0.03514  5 -216.571 443.7 12.31  0.000 
## 28           7 -214.361 443.8 12.39  0.000 
## 52 -0.04259  7 -214.379 443.8 12.42  0.000 
## 25           5 -216.634 443.8 12.43  0.000 
## 41 -0.03753  5 -216.641 443.8 12.45  0.000 
## 34 -0.03800  5 -216.664 443.9 12.49  0.000 
## 10           5 -216.967 444.5 13.10  0.000 
## 60 -0.06115  8 -213.763 444.9 13.51  0.000 
## 50 -0.02058  6 -216.392 445.6 14.18  0.000 
## 26           6 -216.400 445.6 14.20  0.000 
## 57 -0.02839  6 -216.453 445.7 14.30  0.000 
## 42 -0.03724  6 -216.640 446.1 14.68  0.000 
## 58 -0.01817  7 -216.339 447.7 16.34  0.000 
## Models ranked by AICc(x)  
## Random terms (all models):  
## 'cond(1 | order)' 

mem2 <- glmmTMB(detections ~ 
                  Tmax+height+dbh+ 
                  (1|order), 
                data = camtraps,family=nbinom2,na.action="na.fail") 
 
 
##Plot model effects 
 
temp <- plot_model(mem2, type = "pred", terms = c("Tmax", "order"), 
                   pred.type="re",show.data = TRUE, title = "(a)") 
height <- plot_model(mem2, type = "pred", terms = c("height", "order")
, 
                     pred.type="re",show.data = TRUE, title = "(b)") 
dbh <- plot_model(mem2, type = "pred", terms = c("dbh", "order"), 
                  pred.type="re",show.data = TRUE, title = "(c)") 
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temp <- temp + theme_classic() + scale_color_lancet(name= "Mammal Orde
r") + 
  theme(legend.background = element_blank()) + geom_line(alpha = 1) +  
  xlab("Mean temperature, °C") + ylab("Total detection events")  
height <- height + theme_classic() +  scale_color_lancet(name= "Mammal 
Order") + 
  theme(legend.background = element_blank()) + geom_line(alpha = 1) +  
  xlab("Total tree height, m") + ylab("Total detection events") 
dbh <- dbh + theme_classic() +  scale_color_lancet(name= "Mammal Order
") + 
  theme(legend.background = element_blank()) + geom_line(alpha = 1) +  
  xlab("Diameter at breast height, cm") + ylab("Total detection events
") 
 
plots <- grid_arrange_shared_legend(temp, height, dbh, 
                                    ncol = 1, nrow = 3, position = c("
bottom")) 

 

#ggsave("memplots.jpg", plot = plots, height = 220, width = 130, units 
= "mm") 
 
tab_model(mem2) 
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0.55 

0.02 – 17.79 

0.738 

Tmax 

0.87 

0.78 – 0.96 

0.006 

height 

0.85 

0.77 – 0.95 

0.004 

dbh 

1.31 

1.14 – 1.50 

<0.001 

Random Effects 

σ2 

1.13 

τ00 order 

0.94 

ICC 

0.45 

N order 

6 

Observations 

114 

Marginal R2 / Conditional R2 

0.194 / 0.560 
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Appendix 4.1 

R scripts to run the NicheMapR microclimate model 

Overview 

This document includes the R code, required inputs and model outputs of the 
NicheMapR microclimate model for the Sikundur site in North Sumatra, Indonesia, and 
compares the model output with observed temperatures taken from data loggers for 
the period October 2018 - October 2019. 

Setup for the model 

First load the required packages and set the working directory. 

library(NicheMapR) 
library(ggplot2) 
library(dplyr) 
library(reshape2) 
library(lubridate) 
library(ggpubr) 
library(gridExtra) 
library(Metrics) 
library(ggfortify) 
library(ggforce) 
library(ggeffects) 
library(sjPlot) 
library(corrplot) 
library(MuMIn) 
library(lme4) 
library(Hmisc) 
library(tidyverse) 
library(sitreeE) 
library(ggpointdensity) 
library(viridis) 
 
# setwd("~/PhD/Data/NicheMapR/") 
 
# Next, download the global climate data set and unzip into working di
rectory, so that it can be called by NicheMapR(this only needs to be d
one once) 
# get.global.climate(folder = "~/PhD/Data/NicheMapR/globalclimate") 
 
# Load in site data containing parameters to be included in the model. 
Slope, aspect and elevation are taken from global SRTM data, percentag
e shade was calculated from a DSM generated by UAVs in 2017 using Pote
ntial Incoming Solar Radiation (PISR) in SAGA-GIS. 
control <- read.csv("control.csv") 
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Run the microclimate model 

# Create empty data frames where models outputs will be stored. 
 
M <- vector("list", length = nrow(control)) 
shadmet <- data.frame() 
metout <- data.frame() 
 
 
# Run the model using data from the control data frame as parameters. 
Also, add columns to outputs for both max shade (shadmet) and no shade 
(metout) for height, date, month and hour. The loop will run the model 
for each row in the control data frame, and automatically add the outp
ut to the dataframes created in the previous step. 
 
for(l in 1:nrow(control)) { 
        M[[l]]  <- micro_global(loc = c(control$long[l],control$lat[l]
), runmoist = 0, runshade = 1, minshade = 0, maxshade = control$shade1
[l], timeinterval = 365, REFL = 0.10, elev = control$SRTM_elev[l], slo
pe = control$SRTM_slope[l], ZH= control$ZH, aspect = control$SRTM_aspe
c[l], writecsv = 1, message = 0, Refhyt = control$refhyt[l], Usrhyt = 
control$usrhyt[l]) 
        shad <- data.frame(M[[l]][["shadmet"]]) 
        shad['LocID'] = control$LocID[l] 
        shad['height'] = control$height[l] 
        shad['H'] = control$usrhyt[l] 
        shad['date'] <- if_else(shad$DOY > 273, as.Date(shad$DOY, orig
in = "2017-12-31"), as.Date(shad$DOY, origin = "2018-12-31")) 
        shad['month'] = month(shad$date) 
        shad['hour'] = shad$TIME/60 
        shadmet <- rbind(shadmet,shad) 
        met <- data.frame(M[[l]][["metout"]]) 
        met['LocID'] = control$LocID[l] 
        met['height'] = control$height[l] 
        met['H'] = control$usrhyt[l] 
        met['date'] <- if_else(met$DOY > 273, as.Date(met$DOY, format 
= "%j", origin = "2017-12-31"), as.Date(met$DOY, format = "%j", origin 
= "2018-12-31")) 
        met['month'] = month(met$date) 
        met['hour'] = met$TIME/60 
        metout <- rbind(metout,met) 
} 
 
# Reorder output dataframes to put Loc and height and date columns fir
st 
metout <- metout[, c(20:25,1:19)] 
shadmet <- shadmet[, c(20:25,1:19)] 
 
# Write output files to .csv in source directory 
write.csv(metout, "metout_SRTM.csv") 
write.csv(shadmet, "shadmet_SRTM.csv") 
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Create a summary of the model outputs and observed values 

Generate summary statistics for the air temperature output from the maximum shade 
model, and create a boxplot showing the range of predicted temperatures for each 
hour. 

# Create datetime column in POSIXct format 
model <- shadmet 
dates <- as.character(model$date) 
times <- as.character(model$hour) 
datetime <- paste(dates, times) 
datetime <- parse_date_time(datetime, "ymd H") 
model <- cbind(model, datetime) 
# Summarise model outputs for all data pooled 
max(model$TALOC) 

## [1] 33.27852 

min(model$TALOC) 

## [1] 20.7976 

median(model$TALOC) 

## [1] 23.68269 

mean(model$TALOC) 

## [1] 25.35264 

# Read in logger data, and clean by removing rows of data where lux >3
2,000, or where temp increased by >5, plus the following two data poin
ts (to remove obs where logger was exposed to direct sunlight resultin
g in high temp recoridngs). Records to remove are highlighted in the c
sv with the value FALSE in the 'keep' column (value is generated using 
'IF(AND())' rules in MS Excel). 
 
loggers <- read.csv("log_hourly.csv") 
loggers <- filter(loggers, keep != "FALSE") 
# Create datetime column in POSIXct format and remove duplicate column
s 
dates <- as.character(loggers$date) 
times <- as.character(loggers$time) 
datetime <- paste(dates, times) 
datetime <- parse_date_time(datetime, "dmy HMS") 
loggers <- cbind(loggers,datetime) 
loggers$LocID <- factor(loggers$LocID, levels = c("1","2","3","4","5",
"6","7","8", 
                                                  "9","10","11","12","
13","14","15")) 
loggers$height <- factor(loggers$height, levels = c("1","2","3")) 
model$LocID <- factor(model$LocID, levels = c("1","2","3","4","5","6",
"7","8", 
                                                  "9","10","11","12","
13","14","15")) 
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model$height <- factor(model$height, levels = c("1","2","3")) 
 
#Summarise logger data 
max(loggers$temp) 

## [1] 44.089 

min(loggers$temp) 

## [1] 17.475 

median(loggers$temp) 

## [1] 25.028 

mean(loggers$temp) 

## [1] 26.26837 

# Summary table of predictions for each loc and height 
npred <- model %>% count(LocID,height) 
modsum <- model %>% 
  group_by(LocID, height) %>% 
  summarise (Tmax=max(TALOC), Tmin=min(TALOC), Tmean=mean(TALOC), sdte
mp=sd(TALOC)) 

## `summarise()` has grouped output by 'LocID'. You can override using 
the `.groups` argument. 

modsum <- merge (npred,modsum) 
#write.csv(modsum, "model_tempsummaries.csv") 
 
# Summary table of observed data for each location and height 
nlog <- loggers %>% count(LocID,height) 
logsum <- loggers %>% 
  group_by(LocID, height) %>% 
  summarise (Tmax=max(temp), Tmin=min(temp), Tmean=mean(temp), sdtemp=
sd(temp)) 

## `summarise()` has grouped output by 'LocID'. You can override using 
the `.groups` argument. 

logsum <- merge(logsum, nlog) 
#write.csv(logsum, "locsummary.csv") 
 
# Clean model data by removing unnecessary columns 
model <- select(model, LocID, height, H, DOY, datetime, month, hour, T
ALOC) 
 
# Create boxplots for all predicted and observed temps by hour as two 
plots with parts a) and b). 
# Model boxplot 
(boxplot2 <- ggplot(model, aes(group=hour, x=hour, y=TALOC)) + 
  geom_boxplot(fill = 'lightgrey') + 
  xlab('Time, hours') + 
  ylab('Temperature, °C') + 
  scale_x_continuous(breaks=seq(0,23,1)) + 
  scale_y_continuous(limits = c(15,45)) + 
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  theme_bw() + 
  theme(panel.grid = element_blank()) + 
  theme(legend.title = element_blank()) + 
  ggtitle("(b)") + 
  theme(plot.title = element_text(hjust = 0.01, vjust = - 6))) 

 

# Boxplot of observed values 
(boxplot1 <- ggplot(loggers, aes(group=hour, x=hour, y=temp)) + 
  geom_boxplot(fill = 'lightgrey') + 
  xlab('Time, hours') + 
  ylab('Temperature, °C') + 
  scale_x_continuous(breaks=seq(0,23,1)) + 
  scale_y_continuous(limits = c(15,45)) + 
  theme_bw() + 
  theme(panel.grid = element_blank()) + 
  theme(legend.title = element_blank()) + 
  ggtitle("(a)") + 
  theme(plot.title = element_text(hjust = 0.01, vjust = - 6))) 
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#Combine into one plot with parts a) and b) and save as .jpg file 
(boxplots <- grid.arrange(boxplot1,boxplot2, nrow=2)) 

 

## TableGrob (2 x 1) "arrange": 2 grobs 
##   z     cells    name           grob 
## 1 1 (1-1,1-1) arrange gtable[layout] 
## 2 2 (2-2,1-1) arrange gtable[layout] 
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#ggsave("obs_pred_boxplots.jpg", plot = boxplots, height = 297, width 
= 210, units = "mm") 
 
 
# Plots daily obs and pred values as lines with SE on one plot 
dayobs <- select(loggers, LocID, height, hour, temp) 
daypred <- select(model, LocID, height, hour, TALOC) 
daypred <- rename(daypred, "temp"=TALOC) 
dayobs['type']="observed" 
daypred['type']="predicted" 
days <- rbind(dayobs,daypred) 
 
(dayline <- ggplot(days, aes(group= type, x=hour, y=temp, color=type)) 
+ 
    geom_smooth(se=TRUE,level=0.5) + 
    xlab('Time, hours') + 
    ylab('Temperature, °C') + 
    scale_x_continuous(breaks=seq(0,23,1)) + 
    scale_y_continuous(limits = c(15,45)) + 
    theme_bw() + 
    theme(panel.grid = element_blank()) + 
    theme(legend.title = element_blank()) 
  ) 

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs
")' 

 

Test for differences between points 

# Create variables in original dataframes with explicit nesting for lo
cations and heights 
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loggers <- within(loggers, logID <- factor(LocID:height)) 
model <- within(model, logID <- factor(LocID:height)) 
 
##Test for differences between locations and heights 
kruskal.test(temp ~ logID, data = loggers) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  temp by logID 
## Kruskal-Wallis chi-squared = 3660.4, df = 41, p-value < 2.2e-16 

kruskal.test(TALOC ~ logID, data = model) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  TALOC by logID 
## Kruskal-Wallis chi-squared = 3280.5, df = 44, p-value < 2.2e-16 

##Daily min, max and mean 
obs <- loggers %>% 
  group_by(logID,month) %>% 
  summarise (meanObs = mean(temp), maxObs = max(temp), minObs = min(te
mp)) 

## `summarise()` has grouped output by 'logID'. You can override using 
the `.groups` argument. 

pred <- model %>% 
  group_by(logID,month) %>% 
  summarise (meanPred = mean(TALOC), maxPred = max(TALOC), minPred = m
in(TALOC)) 

## `summarise()` has grouped output by 'logID'. You can override using 
the `.groups` argument. 

kruskal.test(minPred ~ logID, data=pred) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  minPred by logID 
## Kruskal-Wallis chi-squared = 76.14, df = 44, p-value = 0.001878 

kruskal.test(maxPred~logID,data=pred) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  maxPred by logID 
## Kruskal-Wallis chi-squared = 167.6, df = 44, p-value = 2.561e-16 

kruskal.test(meanPred~logID,data=pred) 

##  
##  Kruskal-Wallis rank sum test 
##  
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## data:  meanPred by logID 
## Kruskal-Wallis chi-squared = 79.771, df = 44, p-value = 0.000777 

kruskal.test(minObs~logID,data=obs) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  minObs by logID 
## Kruskal-Wallis chi-squared = 20.172, df = 41, p-value = 0.9974 

kruskal.test(maxObs~logID,data=obs) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  maxObs by logID 
## Kruskal-Wallis chi-squared = 259.43, df = 41, p-value < 2.2e-16 

kruskal.test(meanObs~logID,data=obs) 

##  
##  Kruskal-Wallis rank sum test 
##  
## data:  meanObs by logID 
## Kruskal-Wallis chi-squared = 172.52, df = 41, p-value < 2.2e-16 

Compare model outputs to logger data 

Calculate and summarise model residuals (i.e. the difference between observed and 
expected values) 

# Merge into on data frame and add column for observed - expected 
all <- merge(loggers, model) 
all <- select(all,LocID,height,H,DOY,datetime,month,hour,temp,TALOC) 
all['diff'] = all$temp - all$TALOC 
 
# write.csv(all, "diff.csv") 
 
# Calculate root mean square error (RMSE), average absolute difference 
(MAD), and Spearman's rho correlation  
rms <- rmse(all$temp, all$TALOC) 
mad <- mae(all$temp, all$TALOC) 
corr <- cor.test(all$temp, all$TALOC, method = "spearman") 
rho <- corr$estimate 
stat <- cbind(rho,rms,mad) 
stat 

##           rho      rms      mad 
## rho 0.8073995 2.253268 1.801031 

## Plot data 
ggscatter(all, x = "temp", y = "TALOC",  
          add = "reg.line", conf.int = TRUE,  
          cor.coef = TRUE, cor.method = "spearman", 
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          xlab = "Observed temperature, °C", ylab = "Predicted tempera
ture, °C") 

## `geom_smooth()` using formula 'y ~ x' 

 

Next, create ribbon plots of the range of both predicted and observed values for each 
day of the year (part a), and combine with scatter plot of predicted ~ observed values 
(part b). 

# Generate daily summaries and combine into one data frame 
pred <- model %>% 
  group_by(DOY) %>% 
  summarise(TmaxPred = max(TALOC), TminPred = min(TALOC), TmeanPred = 
mean(TALOC)) 
obs <- loggers %>% 
  group_by(DOY) %>% 
  summarise(TmaxObs = max(temp), TminObs = min(temp), TmeanObs = mean(
temp)) 
daily <- merge(obs,pred) 
 
### ribbon plots of ranges of observed vs predicted values for each DO
Y. 
(modplot <- ggplot(daily, aes(x=DOY)) + 
  geom_ribbon(aes(ymin = TminObs, ymax = TmaxObs), fill = 'red', alpha 
= 0.7) + 
  geom_ribbon (aes(ymin= TminPred, ymax = TmaxPred), fill = 'black', a
lpha = 0.5) + 
  xlab('Day of year') + 
  ylab('Temperature, °C') + 
  scale_x_continuous(breaks=seq(0,365,30)) + 
  theme_bw() + 
  theme(panel.grid = element_blank()) + 
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  ggtitle("(a)") + 
  theme(plot.title = element_text(hjust = 0.01, vjust = - 6))) 

 

##Scatter plot (with points coloured by density) of predicted ~ observ
ed values 
 
dat <- merge(loggers, model) 
dat <- select(dat, temp, TALOC) 
 
(densplot <- ggplot(dat, aes(x=temp,y=TALOC))+ 
    geom_pointdensity(alpha=0.7,shape=16) + 
    scale_color_viridis("Point density") + 
    geom_smooth(aes(x=temp,y=TALOC),method="lm",se=TRUE,colour="black"
) + 
    stat_cor(method="spearman",label.y=35) + 
    xlab("Observed temperature, °C") + 
    ylab("Predicted temperature, °C") + 
    ggtitle("(b)") + 
    theme_bw()  + 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 6))+ 
    theme(panel.grid = element_blank()) ) 

## `geom_smooth()` using formula 'y ~ x' 
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(plots <- grid.arrange(modplot,densplot, nrow = 2)) 

## `geom_smooth()` using formula 'y ~ x' 

 

## TableGrob (2 x 1) "arrange": 2 grobs 
##   z     cells    name           grob 
## 1 1 (1-1,1-1) arrange gtable[layout] 
## 2 2 (2-2,1-1) arrange gtable[layout] 
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#ggsave("modelcorrelation.jpg", plot = plots, height = 297, width = 21
0, units = "mm") 

Calculate residuals for each individual location and height separately (mutliple for 
loops are used due to missing data in some locations) 

# Empty data frame to store outputs in 
stats <- data.frame(loc=vector(),h=vector(),rho=vector(),rms=vector(),
mad=vector()) 
# vectors for Loc and height IDs 
l <- c(1,3,5,6,7,8,9,11,12,13,14,15) 
ht <- c(1,2,3) 
for (i in l) { 
  log <- filter(loggers, LocID == i) 
  mod <- filter(model, LocID == i) 
  loc <- i 
  for (h in ht) { 
    obs <- filter(log, height == h) 
    pred <- filter(mod, height == h) 
    height <- h 
    H <- obs$H[h] 
    data <- merge(obs,pred, by="datetime") 
    data <- rename(data, 'obs'= temp, 'pred' = TALOC) 
    data <- select(data, obs, pred) 
    n <- count(data) 
    rms <- round(rmse(data$obs, data$pred),2) 
    mad <- round(mae(data$obs, data$pred),2) 
    corr <- cor.test(data$obs, data$pred, method = "spearman") 
    rho <- round(corr$estimate,2) 
    P <- round(p.adjust(corr$p.value,"bonferroni"),3) 
    stats <- rbind(stats, cbind (loc,height,H,n,rho,rms,mad,P)) 
     }  }   
 
ht <- c(1,3) 
  loc <- 2 
  log <- filter(loggers, LocID == loc) 
  mod <- filter(model, LocID == loc) 
  for (h in ht) { 
    obs <- filter(log, height == h) 
    pred <- filter(mod, height == h) 
    height <- h 
    H <- obs$H[h] 
    data <- merge(obs,pred, by="datetime") 
    data <- rename(data, 'obs'= temp, 'pred' = TALOC) 
    data <- select(data, obs, pred) 
    n <- count(data) 
    rms <- round(rmse(data$obs, data$pred),2) 
    mad <- round(mae(data$obs, data$pred),2) 
    corr <- cor.test(data$obs, data$pred, method = "spearman") 
    rho <- round(corr$estimate,2) 
    P <- round(p.adjust(corr$p.value,"bonferroni"),3) 
    stats <- rbind(stats, cbind (loc,height,H,n,rho,rms,mad,P)) 
  }     
 
ht <- c(2,3) 
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loc <- 4 
log <- filter(loggers, LocID == loc) 
mod <- filter(model, LocID == loc) 
for (h in ht) { 
  obs <- filter(log, height == h) 
  pred <- filter(mod, height == h) 
  height <- h 
  H <- obs$H[h] 
  data <- merge(obs,pred, by="datetime") 
  data <- rename(data, 'obs'= temp, 'pred' = TALOC) 
  data <- select(data, obs, pred) 
  n <- count(data) 
  rms <- round(rmse(data$obs, data$pred),2) 
  mad <- round(mae(data$obs, data$pred),2) 
  corr <- cor.test(data$obs, data$pred, method = "spearman") 
  rho <- round(corr$estimate,2) 
  P <- round(p.adjust(corr$p.value,"bonferroni"),3) 
  stats <- rbind(stats, cbind (loc,height,H,n,rho,rms,mad,P)) 
}  
 
ht <- c(1,2) 
loc <- 10 
log <- filter(loggers, LocID == loc) 
mod <- filter(model, LocID == loc) 
for (h in ht) { 
  obs <- filter(log, height == h) 
  pred <- filter(mod, height == h) 
  height <- h 
  H <- obs$H[h] 
  data <- merge(obs,pred, by="datetime") 
  data <- rename(data, 'obs'= temp, 'pred' = TALOC) 
  data <- select(data, obs, pred) 
  n <- count(data) 
  rms <- round(rmse(data$obs, data$pred),2) 
  mad <- round(mae(data$obs, data$pred),2) 
  corr <- cor.test(data$obs, data$pred, method = "spearman") 
  rho <- round(corr$estimate,2) 
  P <- round(p.adjust(corr$p.value,"bonferroni"),3) 
  stats <- rbind(stats, cbind (loc,height,H,n,rho,rms,mad,P)) 
}  
#write.csv(stats, "residuals.csv") 
 
## Summary of residuals for individual sampling points 
# Spearmans rho 
max(stats$rho) 

## [1] 0.86 

min(stats$rho) 

## [1] 0.69 

# Root mean sqaure error 
max(stats$rms) 

## [1] 2.71 
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min(stats$rms) 

## [1] 1.84 

# Mean absolute error 
max(stats$mad) 

## [1] 2.17 

min(stats$mad) 

## [1] 1.41 

Test for effects of vegetation on model performance 

# Load in plot vegetation data, and create a data frame of summary var
iables for each plot. 
rawveg <- read.csv("veg.csv") 
# Calculate basal area for all indvl trees 
basal.area.fn <- function(x){ (pi*(x)^2)/40000 } # calculate basal are
a in m^2 
rawveg["ba"] = basal.area.fn(rawveg$dbh) 
# Calculate Lorey's mean height for each plot (mean tree height weight
ed by basal area) 
loreys <- lorey.height(rawveg$ba,rawveg$height,group.id=rawveg$LocID) 
loreys <- rename(loreys, "LocID" = group.id, "lorey" = lorey.height) 
# Count number of trees per plot 
n <- rawveg %>% count(LocID) 
# Calculate mean, max and min for tree variables 
veg <- rawveg %>% 
  group_by(LocID) %>% 
  summarise(meanDbh = mean(dbh), meanheight = mean(height), maxheight 
= max(height),  
            meanbole = mean(bole), meandepth = mean(depth), meanCA = m
ean (CA), meanconn = mean(conn)) 
# Combine data into one data frame 
veg <- merge(veg,n) 
veg <- merge(veg,loreys) 
 
# Check for correlations between vegetation variables. 
veg.cor <- cor(veg, method = c("pearson")) 
round(veg.cor, 2) 

##            LocID meanDbh meanheight maxheight meanbole meandepth me
anCA 
## LocID       1.00    0.36       0.34     -0.07     0.39      0.06   
0.26 
## meanDbh     0.36    1.00       0.48      0.43     0.53      0.12   
0.87 
## meanheight  0.34    0.48       1.00      0.54     0.84      0.62   
0.55 
## maxheight  -0.07    0.43       0.54      1.00     0.66      0.03   
0.50 
## meanbole    0.39    0.53       0.84      0.66     1.00      0.10   
0.51 
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## meandepth   0.06    0.12       0.62      0.03     0.10      1.00   
0.28 
## meanCA      0.26    0.87       0.55      0.50     0.51      0.28   
1.00 
## meanconn    0.15   -0.24      -0.15     -0.06    -0.16     -0.04  -
0.36 
## n           0.00   -0.20      -0.25      0.00     0.11     -0.61  -
0.33 
## lorey      -0.06    0.59       0.63      0.88     0.71      0.14   
0.74 
##            meanconn     n lorey 
## LocID          0.15  0.00 -0.06 
## meanDbh       -0.24 -0.20  0.59 
## meanheight    -0.15 -0.25  0.63 
## maxheight     -0.06  0.00  0.88 
## meanbole      -0.16  0.11  0.71 
## meandepth     -0.04 -0.61  0.14 
## meanCA        -0.36 -0.33  0.74 
## meanconn       1.00  0.31 -0.36 
## n              0.31  1.00 -0.11 
## lorey         -0.36 -0.11  1.00 

veg.cor 

##                   LocID    meanDbh meanheight    maxheight    meanb
ole 
## LocID       1.000000000  0.3581285  0.3399996 -0.067683019  0.39022
123 
## meanDbh     0.358128483  1.0000000  0.4784851  0.426097522  0.52769
019 
## meanheight  0.339999623  0.4784851  1.0000000  0.537621494  0.84032
876 
## maxheight  -0.067683019  0.4260975  0.5376215  1.000000000  0.66075
217 
## meanbole    0.390221227  0.5276902  0.8403288  0.660752171  1.00000
000 
## meandepth   0.060906206  0.1167054  0.6227871  0.033208018  0.09922
945 
## meanCA      0.258131116  0.8677214  0.5516407  0.502263809  0.50541
028 
## meanconn    0.150944623 -0.2372800 -0.1525567 -0.056740642 -0.16498
367 
## n           0.004614358 -0.1984556 -0.2457070 -0.004347349  0.11045
939 
## lorey      -0.055515786  0.5928437  0.6332287  0.882982694  0.70766
636 
##              meandepth     meanCA    meanconn            n       lo
rey 
## LocID       0.06090621  0.2581311  0.15094462  0.004614358 -0.05551
579 
## meanDbh     0.11670543  0.8677214 -0.23727998 -0.198455633  0.59284
369 
## meanheight  0.62278707  0.5516407 -0.15255673 -0.245707004  0.63322
874 
## maxheight   0.03320802  0.5022638 -0.05674064 -0.004347349  0.88298
269 
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## meanbole    0.09922945  0.5054103 -0.16498367  0.110459386  0.70766
636 
## meandepth   1.00000000  0.2831507 -0.04191655 -0.610460787  0.14099
735 
## meanCA      0.28315071  1.0000000 -0.35912708 -0.333290445  0.74211
953 
## meanconn   -0.04191655 -0.3591271  1.00000000  0.308307216 -0.35541
085 
## n          -0.61046079 -0.3332904  0.30830722  1.000000000 -0.11439
050 
## lorey       0.14099735  0.7421195 -0.35541085 -0.114390496  1.00000
000 

cor2 <- rcorr(as.matrix(veg)) 
cor2$P 

##                LocID      meanDbh   meanheight    maxheight     mea
nbole 
## LocID             NA 1.899644e-01 2.150022e-01 8.105879e-01 1.50445
2e-01 
## meanDbh    0.1899644           NA 7.118908e-02 1.132632e-01 4.32089
7e-02 
## meanheight 0.2150022 7.118908e-02           NA 3.873604e-02 8.78157
4e-05 
## maxheight  0.8105879 1.132632e-01 3.873604e-02           NA 7.32601
3e-03 
## meanbole   0.1504452 4.320897e-02 8.781574e-05 7.326013e-03           
NA 
## meandepth  0.8292814 6.787234e-01 1.314224e-02 9.064738e-01 7.24955
8e-01 
## meanCA     0.3529488 2.769282e-05 3.302148e-02 5.639677e-02 5.46228
4e-02 
## meanconn   0.5912799 3.944834e-01 5.872776e-01 8.408149e-01 5.56804
0e-01 
## n          0.9869785 4.783020e-01 3.773948e-01 9.877319e-01 6.95134
9e-01 
## lorey      0.8442120 1.984993e-02 1.127345e-02 1.296959e-05 3.16298
7e-03 
##             meandepth       meanCA  meanconn          n        lore
y 
## LocID      0.82928141 3.529488e-01 0.5912799 0.98697846 8.442120e-0
1 
## meanDbh    0.67872335 2.769282e-05 0.3944834 0.47830197 1.984993e-0
2 
## meanheight 0.01314224 3.302148e-02 0.5872776 0.37739480 1.127345e-0
2 
## maxheight  0.90647377 5.639677e-02 0.8408149 0.98773189 1.296959e-0
5 
## meanbole   0.72495582 5.462284e-02 0.5568040 0.69513492 3.162987e-0
3 
## meandepth          NA 3.064852e-01 0.8820886 0.01564781 6.162150e-0
1 
## meanCA     0.30648523           NA 0.1886428 0.22477305 1.534853e-0
3 
## meanconn   0.88208861 1.886428e-01        NA 0.26357149 1.935915e-0
1 
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## n          0.01564781 2.247731e-01 0.2635715         NA 6.847907e-0
1 
## lorey      0.61621496 1.534853e-03 0.1935915 0.68479071           N
A 

corrplot(cor2$r, type="upper", order="hclust",  
         p.mat = cor2$P, sig.level = 0.05, insig = "blank") 

 

# Rename model error data, remove unnecessary columns and then merge w
ith vegetation data. 
rawmod <- select(all, -height) 
# Calculate monthly mean, max and min temp and rmse and mae per month 
per point 
mod <- rawmod%>% 
  group_by(LocID,H,month)%>% 
  summarise(rms=rmse(temp,TALOC), mad=mae(temp,TALOC), 
            meandiff=mean(diff),maxdiff=max(diff),mindiff=min(diff), 
            Tmean=mean(temp),Tmax=max(temp),Tmin=min(temp), 
            TALOCmean=mean(TALOC),maxTALOC=max(TALOC),minTALOC=min(TAL
OC)) 

## `summarise()` has grouped output by 'LocID', 'H'. You can override 
using the `.groups` argument. 

# Tidy data to remove unnecessary columns, set location and month as f
actors and then merge with vegetation data 
vars <- merge(mod, veg) 
vars$LocID_f <- factor(vars$LocID, levels = c("1","2","3","4","5","6",
"7","8","9","10", 
                                              "11","12","13","14","15"
)) 
vars$month_f <- factor(vars$month, levels = c("1","2","3","4","5","6",
"7", 
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                                              "8","9","10","11","12")) 
 
# Check response vairable distribution and visualise data. 
# Model error 
ggdensity(vars$rms) 

 

ggqqplot(vars$rms) 
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# Temperature 
ggdensity(vars$Tmean) 

 

ggqqplot(vars$Tmean) 

 

(prelim_plot <- ggplot(vars, aes(x = H, y = rms)) + 
    geom_point() + 
    geom_smooth(method = "lm")) 
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## `geom_smooth()` using formula 'y ~ x' 

 

(prelim_plot2 <- ggplot(vars, aes(x = lorey, y = rms)) + 
    geom_point() + 
    geom_smooth(method = "lm")) 

## `geom_smooth()` using formula 'y ~ x' 

 

First, build a standard linear model. 
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lm <- lm(rms~H+n+lorey+meanconn+meandepth+month+LocID,data=vars) 
lm 

##  
## Call: 
## lm(formula = rms ~ H + n + lorey + meanconn + meandepth + month +  
##     LocID, data = vars) 
##  
## Coefficients: 
## (Intercept)            H            n        lorey     meanconn    
meandepth   
##    37.99594      0.01884     -0.76226     -0.14093     -0.36971     
-0.36041   
##       month       LocID2       LocID3       LocID4       LocID5       
LocID6   
##    -0.03053     -3.96933    -14.99030      5.22753      1.71095      
1.66169   
##      LocID7       LocID8       LocID9      LocID10      LocID11      
LocID12   
##    -4.20990     -0.40832     -3.28737     -8.53713     -6.08994           
NA   
##     LocID13      LocID14      LocID15   
##          NA           NA           NA 

summary(lm) 

##  
## Call: 
## lm(formula = rms ~ H + n + lorey + meanconn + meandepth + month +  
##     LocID, data = vars) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.76978 -0.22946 -0.01966  0.21516  1.06774  
##  
## Coefficients: (4 not defined because of singularities) 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  37.995935  21.486572   1.768   0.0778 .   
## H             0.018838   0.004454   4.229 2.96e-05 *** 
## n            -0.762257   0.455444  -1.674   0.0950 .   
## lorey        -0.140932   0.081306  -1.733   0.0839 .   
## meanconn     -0.369711   0.227707  -1.624   0.1053     
## meandepth    -0.360414   0.185871  -1.939   0.0533 .   
## month        -0.030530   0.004838  -6.311 7.96e-10 *** 
## LocID2       -3.969332   2.466353  -1.609   0.1084     
## LocID3      -14.990296   9.352997  -1.603   0.1099     
## LocID4        5.227531   3.027728   1.727   0.0851 .   
## LocID5        1.710949   1.068486   1.601   0.1102     
## LocID6        1.661694   1.181175   1.407   0.1603     
## LocID7       -4.209895   2.752792  -1.529   0.1270     
## LocID8       -0.408324   0.346733  -1.178   0.2397     
## LocID9       -3.287366   2.071704  -1.587   0.1134     
## LocID10      -8.537134   5.340501  -1.599   0.1108     
## LocID11      -6.089938   3.734522  -1.631   0.1038     
## LocID12             NA         NA      NA       NA     
## LocID13             NA         NA      NA       NA     
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## LocID14             NA         NA      NA       NA     
## LocID15             NA         NA      NA       NA     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.3479 on 369 degrees of freedom 
## Multiple R-squared:  0.2184, Adjusted R-squared:  0.1845  
## F-statistic: 6.443 on 16 and 369 DF,  p-value: 8.33e-13 

autoplot(lm, smooth.colour = NA) 

 

#Use dredge for model selection 
lmdredge <- dredge(lm, evaluate = TRUE, trace = FALSE) 

Now, build a mixed effects model, with hour, month and location as ‘random’ effects. 

For Root mean square error ~ veg data 

mixed.lmer <- lmer(rms~H+n+lorey+meanconn+meandepth+ 
                     (1|LocID_f)+(1|month_f), data=vars,na.action="na.
fail") 
summary(mixed.lmer) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: rms ~ H + n + lorey + meanconn + meandepth + (1 | LocID_f) 
+   
##     (1 | month_f) 
##    Data: vars 
##  
## REML criterion at convergence: 87.2 
##  
## Scaled residuals:  
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##     Min      1Q  Median      3Q     Max  
## -3.3309 -0.6443 -0.0873  0.4987  3.7393  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.01608  0.1268   
##  month_f  (Intercept) 0.08249  0.2872   
##  Residual             0.05468  0.2338   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept)  2.578718   0.450297   5.727 
## H            0.017741   0.002895   6.129 
## n           -0.009657   0.014201  -0.680 
## lorey       -0.007014   0.005503  -1.275 
## meanconn    -0.006099   0.003886  -1.569 
## meandepth   -0.025819   0.032236  -0.801 
##  
## Correlation of Fixed Effects: 
##           (Intr) H      n      lorey  mencnn 
## H          0.030                             
## n         -0.678 -0.092                      
## lorey     -0.343 -0.218 -0.081               
## meanconn  -0.187 -0.042 -0.357  0.368        
## meandepth -0.754 -0.103  0.636 -0.140 -0.216 

tab_model(mixed.lmer) 

  

rms 

Predictors 

Estimates 

CI 

p 

(Intercept) 

2.58 

1.70 – 3.46 

<0.001 

H 

0.02 

0.01 – 0.02 

<0.001 

n 

-0.01 

-0.04 – 0.02 

0.496 

lorey 

-0.01 

-0.02 – 0.00 
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0.202 

meanconn 

-0.01 

-0.01 – 0.00 

0.117 

meandepth 

-0.03 

-0.09 – 0.04 

0.423 

Random Effects 

σ2 

0.05 

τ00 LocID_f 

0.02 

τ00 month_f 

0.08 

ICC 

0.64 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 

0.070 / 0.668 

dredge(mixed.lmer) 

## Global model call: lmer(formula = rms ~ H + n + lorey + meanconn + 
meandepth + (1 |  
##     LocID_f) + (1 | month_f), data = vars, na.action = "na.fail") 
## --- 
## Model selection table  
##    (Intrc)       H      lorey     mncnn     mndpt          n df  lo
gLik  AICc 
## 2    1.783 0.01664                                            5 -30
.890  71.9 
## 10   1.892 0.01687                      -0.013600             6 -33
.496  79.2 
## 18   1.884 0.01677                                -0.0070240  6 -34
.289  80.8 
## 6    2.001 0.01641            -0.005141                       6 -34
.496  81.2 
## 4    1.885 0.01717 -0.0037880                                 6 -34
.963  82.1 
## 26   2.347 0.01718                      -0.038580 -0.0171000  7 -36
.095  86.5 
## 14   2.131 0.01668            -0.005276 -0.015670             7 -37



   

 

251 

 

.087  88.5 
## 12   1.969 0.01732 -0.0035180           -0.011510             7 -37
.581  89.5 
## 8    2.283 0.01734 -0.0075540 -0.006996                       7 -37
.776  89.8 
## 22   2.020 0.01659            -0.004915           -0.0022610  7 -38
.079  90.5 
## 20   2.016 0.01733 -0.0042990                     -0.0081230  7 -38
.277  90.9 
## 1    2.226                                                    4 -42
.454  93.0 
## 30   2.382 0.01700            -0.004270 -0.031700 -0.0111700  8 -40
.112  96.6 
## 28   2.449 0.01767 -0.0038820           -0.037090 -0.0177100  8 -40
.142  96.7 
## 16   2.371 0.01750 -0.0072940 -0.007036 -0.011800             8 -40
.476  97.3 
## 24   2.307 0.01746 -0.0076100 -0.006766           -0.0024200  8 -41
.389  99.2 
## 9    2.228                              -0.000183             5 -45
.317 100.8 
## 5    2.444                    -0.005292                       5 -45
.731 101.6 
## 17   2.305                                        -0.0052920  5 -46
.033 102.2 
## 3    2.135          0.0030050                                 5 -46
.713 103.6 
## 32   2.579 0.01774 -0.0070140 -0.006099 -0.025820 -0.0096570  9 -43
.589 105.7 
## 25   2.461                              -0.012800 -0.0085820  6 -48
.543 109.3 
## 13   2.466                    -0.005318 -0.002519             6 -48
.668 109.6 
## 21   2.446                    -0.005273           -0.0002024  6 -49
.492 111.2 
## 11   2.154          0.0030680           -0.002520             6 -49
.539 111.3 
## 7    2.434          0.0002342 -0.005236                       6 -50
.217 112.7 
## 19   2.211          0.0027430                     -0.0046000  6 -50
.307 112.8 
## 29   2.502                    -0.005188 -0.004784 -0.0014970  7 -52
.130 118.6 
## 27   2.383          0.0029570           -0.014680 -0.0083290  7 -52
.764 119.8 
## 15   2.457          0.0003031 -0.005248 -0.002848             7 -53
.103 120.5 
## 23   2.437          0.0002231 -0.005224           -0.0001659  7 -53
.935 122.2 
## 31   2.493          0.0003601 -0.005094 -0.005297 -0.0016050  8 -56
.512 129.4 
##    delta weight 
## 2   0.00  0.948 
## 10  7.28  0.025 
## 18  8.86  0.011 
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## 6   9.28  0.009 
## 4  10.21  0.006 
## 26 14.55  0.001 
## 14 16.53  0.000 
## 12 17.52  0.000 
## 8  17.91  0.000 
## 22 18.52  0.000 
## 20 18.91  0.000 
## 1  21.08  0.000 
## 30 24.67  0.000 
## 28 24.73  0.000 
## 16 25.40  0.000 
## 24 27.22  0.000 
## 9  28.85  0.000 
## 5  29.68  0.000 
## 17 30.29  0.000 
## 3  31.65  0.000 
## 32 33.72  0.000 
## 25 37.37  0.000 
## 13 37.62  0.000 
## 21 39.27  0.000 
## 11 39.36  0.000 
## 7  40.72  0.000 
## 19 40.90  0.000 
## 29 46.62  0.000 
## 27 47.89  0.000 
## 15 48.57  0.000 
## 23 50.23  0.000 
## 31 57.47  0.000 
## Models ranked by AICc(x)  
## Random terms (all models):  
## '1 | LocID_f', '1 | month_f' 

mixed.lmer2 <- lmer(rms~H+(1|LocID_f)+(1|month_f), data=vars,na.action
="na.fail") 
summary(mixed.lmer2) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: rms ~ H + (1 | LocID_f) + (1 | month_f) 
##    Data: vars 
##  
## REML criterion at convergence: 61.8 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.3125 -0.6415 -0.1151  0.4808  3.8013  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.01692  0.1301   
##  month_f  (Intercept) 0.08248  0.2872   
##  Residual             0.05473  0.2339   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
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## (Intercept) 1.783368   0.117172  15.220 
## H           0.016643   0.002805   5.932 
##  
## Correlation of Fixed Effects: 
##   (Intr) 
## H -0.637 

tab_model(mixed.lmer2) 

  

rms 

Predictors 

Estimates 

CI 

p 

(Intercept) 

1.78 

1.55 – 2.01 

<0.001 

H 

0.02 

0.01 – 0.02 

<0.001 

Random Effects 

σ2 

0.05 

τ00 LocID_f 

0.02 

τ00 month_f 

0.08 

ICC 

0.64 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 

0.066 / 0.668 

plot(mixed.lmer2) 
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qqnorm(resid(mixed.lmer2)) 
qqline(resid(mixed.lmer2)) 

 

## Plots showing model predictions by location 
pred.mm <- ggpredict(mixed.lmer2, terms = c("H"))  # this gives overal
l predictions for the model 
 
# Plot the predictions  
(lmer.pred <- ggplot(pred.mm) +  
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    geom_line(aes(x = x, y = predicted)) +          # slope 
    geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predic
ted + std.error),  
                fill = "lightgrey", alpha = 0.5) +  # error band 
    geom_point(data = vars,                    # adding the raw data (
scaled values) 
               aes(x = H, y = rms, colour = LocID_f)) +  
    labs(x = "Height, m", y = "Root mean square error",  
         title = NULL,col="Location") +  
    theme(axis.title=element_text(size=22), 
          legend.title=element_text(size=22), 
          legend.text=element_text(size=16)) + 
    theme_pubr() + 
    theme(legend.position = "left") + 
    ggtitle("(a)") + 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 5)) 
)  

 

set_theme(base=theme_bw()) 
(re.effects <- plot_model(mixed.lmer2,type="re",show.values=FALSE)) 

## [[1]] 
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##  
## [[2]] 

 

(re.effects[[1]]<- re.effects[[1]] + labs(title="(b)",x="Location")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 
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(re.effects[[2]]<- re.effects[[2]] + labs(title="(c)",x="Calendar mont
h")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 

 

(rms.plots <- arrangeGrob(arrangeGrob(lmer.pred),arrangeGrob(re.effect
s[[1]],re.effects[[2]],ncol=1), 
                           ncol=2,widths=c(3,1.5))  ) 
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## TableGrob (1 x 2) "arrange": 2 grobs 
##   z     cells    name            grob 
## 1 1 (1-1,1-1) arrange gtable[arrange] 
## 2 2 (1-1,2-2) arrange gtable[arrange] 

##ggsave("RMSlmerplots.jpg", plot = rms.plots, height = 200, width = 3
00, units = "mm") 
##ggsave("lmerplot.jpg",plot=lmer.pred,height = 150, width = 180, unit
s = "mm") 

LMM for Mean Absolute Error ~ veg data 

mixed.mad <- lmer(mad~H+n+lorey+meanconn+ 
                     (1|LocID_f)+(1|month_f), data=vars,na.action="na.
fail") 
summary(mixed.mad) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: mad ~ H + n + lorey + meanconn + (1 | LocID_f) + (1 | mont
h_f) 
##    Data: vars 
##  
## REML criterion at convergence: -68.2 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.3198 -0.6640 -0.1010  0.5332  3.2374  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.01716  0.1310   
##  month_f  (Intercept) 0.08968  0.2995   
##  Residual             0.03578  0.1891   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept)  1.766332   0.299632   5.895 
## H            0.021141   0.002362   8.952 
## n           -0.001421   0.011061  -0.128 
## lorey       -0.008308   0.005449  -1.525 
## meanconn    -0.006028   0.003830  -1.574 
##  
## Correlation of Fixed Effects: 
##          (Intr) H      n      lorey  
## H        -0.059                      
## n        -0.394 -0.029               
## lorey    -0.700 -0.193  0.009        
## meanconn -0.547 -0.053 -0.290  0.346 

tab_model(mixed.mad) 

  

mad 

Predictors 
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Estimates 

CI 

p 

(Intercept) 

1.77 

1.18 – 2.35 

<0.001 

H 

0.02 

0.02 – 0.03 

<0.001 

n 

-0.00 

-0.02 – 0.02 

0.898 

lorey 

-0.01 

-0.02 – 0.00 

0.127 

meanconn 

-0.01 

-0.01 – 0.00 

0.116 

Random Effects 

σ2 

0.04 

τ00 LocID_f 

0.02 

τ00 month_f 

0.09 

ICC 

0.75 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 

0.096 / 0.773 

dredge(mixed.mad) 

## Global model call: lmer(formula = mad ~ H + n + lorey + meanconn + 
(1 | LocID_f) +  
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##     (1 | month_f), data = vars, na.action = "na.fail") 
## --- 
## Model selection table  
##    (Intrc)       H     lorey     mncnn         n df logLik  AICc de
lta weight 
## 2    1.261 0.02051                                5 44.839 -79.5  0
.00  0.976 
## 10   1.334 0.02062                     -0.005133  6 41.349 -70.5  9
.04  0.011 
## 4    1.402 0.02094 -0.004985                      6 40.958 -69.7  9
.83  0.007 
## 6    1.433 0.02045           -0.004137            6 40.807 -69.4 10
.13  0.006 
## 8    1.752 0.02105 -0.008267 -0.006159            7 37.697 -61.1 18
.42  0.000 
## 12   1.507 0.02105 -0.005386           -0.006484  7 37.543 -60.8 18
.73  0.000 
## 14   1.443 0.02058           -0.004011 -0.001280  7 37.253 -60.2 19
.31  0.000 
## 16   1.766 0.02114 -0.008308 -0.006028 -0.001421  8 34.097 -51.8 27
.71  0.000 
## 1    1.808                                        4 15.295 -22.5 57
.04  0.000 
## 9    1.851                             -0.002916  5 11.569 -13.0 66
.54  0.000 
## 5    1.985                   -0.004295            5 11.493 -12.8 66
.69  0.000 
## 3    1.708          0.003268                      5 11.053 -11.9 67
.57  0.000 
## 13   1.970                   -0.004437  0.001360  6  7.733  -3.2 76
.28  0.000 
## 11   1.744          0.003142           -0.002140  6  7.326  -2.4 77
.09  0.000 
## 7    1.938          0.001148 -0.004014            6  7.028  -1.8 77
.69  0.000 
## 15   1.924          0.001139 -0.004162  0.001391  7  3.308   7.7 87
.20  0.000 
## Models ranked by AICc(x)  
## Random terms (all models):  
## '1 | LocID_f', '1 | month_f' 

mixed.mad2 <- lmer(mad~H+(1|LocID_f)+(1|month_f), data=vars,na.action=
"na.fail") 
summary(mixed.mad2) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: mad ~ H + (1 | LocID_f) + (1 | month_f) 
##    Data: vars 
##  
## REML criterion at convergence: -89.7 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.3054 -0.6636 -0.1208  0.5194  3.2835  
##  
## Random effects: 
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##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.01792  0.1339   
##  month_f  (Intercept) 0.08969  0.2995   
##  Residual             0.03580  0.1892   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept) 1.261289   0.112218  11.240 
## H           0.020511   0.002321   8.837 
##  
## Correlation of Fixed Effects: 
##   (Intr) 
## H -0.551 

tab_model(mixed.mad2) 

  

mad 

Predictors 

Estimates 

CI 

p 

(Intercept) 

1.26 

1.04 – 1.48 

<0.001 

H 

0.02 

0.02 – 0.03 

<0.001 

Random Effects 

σ2 

0.04 

τ00 LocID_f 

0.02 

τ00 month_f 

0.09 

ICC 

0.75 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 
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0.103 / 0.776 

plot(mixed.mad2) 

 

qqnorm(resid(mixed.mad2)) 
qqline(resid(mixed.mad2)) 

 

## Plots showing model predictions by location 
mad.mm <- ggpredict(mixed.mad2, terms = c("H"))  # this gives overall 
predictions for the model 
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# Plot the predictions  
(mad.pred <- ggplot(mad.mm) +  
    geom_line(aes(x = x, y = predicted)) +          # slope 
    geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predic
ted + std.error),  
                fill = "lightgrey", alpha = 0.5) +  # error band 
    geom_point(data = vars,                    # adding the raw data (
scaled values) 
               aes(x = H, y = mad, colour = LocID_f)) +  
    labs(x = "Height, m", y = "Mean absolute error",  
         title = NULL,col="Location") +  
    theme(axis.title=element_text(size=22), 
          legend.title=element_text(size=22), 
          legend.text=element_text(size=16)) + 
    theme_pubr() + 
    theme(legend.position = "left") + 
    ggtitle("(a)") + 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 5)) 
)  

 

set_theme(base=theme_bw()) 
(mad.effects <- plot_model(mixed.mad2,type="re",show.values=FALSE)) 

## [[1]] 
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##  
## [[2]] 

 

(mad.effects[[1]]<- mad.effects[[1]] + labs(title="(b)",x="Location")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 
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(mad.effects[[2]]<- mad.effects[[2]] + labs(title="(c)",x="Calendar mo
nth")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 

 

(mad.plots <- arrangeGrob(arrangeGrob(mad.pred),arrangeGrob(mad.effect
s[[1]],mad.effects[[2]],ncol=1), 
                          ncol=2,widths=c(3,1.5))  ) 
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## TableGrob (1 x 2) "arrange": 2 grobs 
##   z     cells    name            grob 
## 1 1 (1-1,1-1) arrange gtable[arrange] 
## 2 2 (1-1,2-2) arrange gtable[arrange] 

##ggsave("MAElmerplots.jpg", plot = mad.plots, height = 200, width = 3
00, units = "mm") 
##ggsave("madplot.jpg",plot=mad.pred,height = 150, width = 180, units 
= "mm") 

LMM for monthly mean temp ~ veg data 

mixed.temp <- lmer(Tmean~H+n+lorey+meanconn+ 
                     (1|LocID_f)+(1|month_f), data=vars,na.action="na.
fail") 
summary(mixed.temp) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: Tmean ~ H + n + lorey + meanconn + (1 | LocID_f) + (1 | mo
nth_f) 
##    Data: vars 
##  
## REML criterion at convergence: 337.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.7937 -0.5991  0.0290  0.6302  2.7348  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.09407  0.3067   
##  month_f  (Intercept) 0.27387  0.5233   
##  Residual             0.10176  0.3190   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept) 27.126088   0.676589  40.092 
## H            0.015036   0.004030   3.731 
## n           -0.028990   0.025422  -1.140 
## lorey       -0.019025   0.012422  -1.532 
## meanconn    -0.004572   0.008801  -0.519 
##  
## Correlation of Fixed Effects: 
##          (Intr) H      n      lorey  
## H        -0.045                      
## n        -0.404 -0.022               
## lorey    -0.723 -0.144  0.007        
## meanconn -0.559 -0.040 -0.289  0.343 

tab_model(mixed.temp) 

  

Tmean 

Predictors 
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Estimates 

CI 

p 

(Intercept) 

27.13 

25.80 – 28.45 

<0.001 

H 

0.02 

0.01 – 0.02 

<0.001 

n 

-0.03 

-0.08 – 0.02 

0.254 

lorey 

-0.02 

-0.04 – 0.01 

0.126 

meanconn 

-0.00 

-0.02 – 0.01 

0.603 

Random Effects 

σ2 

0.10 

τ00 LocID_f 

0.09 

τ00 month_f 

0.27 

ICC 

0.78 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 

0.046 / 0.793 

dredge(mixed.temp) 

## Global model call: lmer(formula = Tmean ~ H + n + lorey + meanconn 
+ (1 | LocID_f) +  
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##     (1 | month_f), data = vars, na.action = "na.fail") 
## --- 
## Model selection table  
##    (Intrc)       H     lorey      mncnn        n df   logLik  AICc 
delta weight 
## 2    25.95 0.01413                                5 -160.503 331.2  
0.00  0.556 
## 1    26.33                                        4 -161.918 331.9  
0.78  0.377 
## 10   26.38 0.01418                      -0.02866  6 -162.610 337.4  
6.28  0.024 
## 9    26.73                              -0.02704  5 -164.066 338.3  
7.13  0.016 
## 4    26.39 0.01477 -0.014950                      6 -163.217 338.7  
7.49  0.013 
## 3    26.61         -0.009177                      5 -165.168 340.5  
9.33  0.005 
## 6    26.07 0.01424           -2.849e-03           6 -164.330 340.9  
9.72  0.004 
## 5    26.45                   -2.966e-03           5 -165.822 341.8 
10.64  0.003 
## 12   26.93 0.01489 -0.016790            -0.03280  7 -165.093 344.5 
13.32  0.001 
## 11   27.10         -0.010790            -0.02964  6 -167.176 346.6 
15.41  0.000 
## 14   26.37 0.01431            4.982e-05 -0.02872  7 -166.457 347.2 
16.05  0.000 
## 8    26.81 0.01496 -0.018930 -7.476e-03           7 -166.679 347.7 
16.49  0.000 
## 13   26.74                   -2.608e-04 -0.02678  6 -168.013 348.2 
17.08  0.000 
## 7    26.95         -0.012300 -5.980e-03           6 -168.799 349.8 
18.65  0.000 
## 16   27.13 0.01504 -0.019020 -4.572e-03 -0.02899  8 -168.784 353.9 
22.79  0.000 
## 15   27.24         -0.012360 -3.277e-03 -0.02688  7 -170.984 356.3 
25.10  0.000 
## Models ranked by AICc(x)  
## Random terms (all models):  
## '1 | LocID_f', '1 | month_f' 

mixed.temp2 <- lmer(Tmean~H+(1|LocID_f)+(1|month_f), data=vars,na.acti
on="na.fail") 
summary(mixed.temp2) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: Tmean ~ H + (1 | LocID_f) + (1 | month_f) 
##    Data: vars 
##  
## REML criterion at convergence: 321 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -3.7713 -0.6002  0.0453  0.6409  2.7707  
##  
## Random effects: 
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##  Groups   Name        Variance Std.Dev. 
##  LocID_f  (Intercept) 0.09861  0.3140   
##  month_f  (Intercept) 0.27416  0.5236   
##  Residual             0.10178  0.3190   
## Number of obs: 386, groups:  LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept) 25.952414   0.202582  128.11 
## H            0.014133   0.003992    3.54 
##  
## Correlation of Fixed Effects: 
##   (Intr) 
## H -0.525 

tab_model(mixed.temp2) 

  

Tmean 

Predictors 

Estimates 

CI 

p 

(Intercept) 

25.95 

25.56 – 26.35 

<0.001 

H 

0.01 

0.01 – 0.02 

<0.001 

Random Effects 

σ2 

0.10 

τ00 LocID_f 

0.10 

τ00 month_f 

0.27 

ICC 

0.79 

N LocID_f 

15 

N month_f 

12 

Observations 

386 

Marginal R2 / Conditional R2 
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0.016 / 0.789 

plot(mixed.temp2) 

 

qqnorm(resid(mixed.temp2)) 
qqline(resid(mixed.temp2)) 

 

## Plots showing model predictions by location 
temp.mm <- ggpredict(mixed.temp2, terms = c("H"))  # this gives overal
l predictions for the model 
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# Plot the predictions  
(temp.pred <- ggplot(temp.mm) +  
    geom_line(aes(x = x, y = predicted)) +          # slope 
    geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predic
ted + std.error),  
                fill = "lightgrey", alpha = 0.5) +  # error band 
    geom_point(data = vars,                    # adding the raw data (
scaled values) 
               aes(x = H, y = Tmean, colour = LocID_f)) +  
    labs(x = "Height, m", y = "Monthly mean temperature, °C",  
         title = NULL,col="Location") +  
    theme(axis.title=element_text(size=22), 
          legend.title=element_text(size=22), 
          legend.text=element_text(size=16)) + 
    theme_pubr() + 
    theme(legend.position = "left") + 
    ggtitle("(a)") + 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 5)) 
)  

 

set_theme(base=theme_bw()) 
(temp.effects <- plot_model(mixed.temp2,type="re",show.values=FALSE)) 

## [[1]] 
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##  
## [[2]] 

 

(temp.effects[[1]]<- temp.effects[[1]] + labs(title="(b)",x="Location"
)+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 
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(temp.effects[[2]]<- temp.effects[[2]] + labs(title="(c)",x="Calendar 
month")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 

 

(temp.plots <- arrangeGrob(arrangeGrob(temp.pred),arrangeGrob(temp.eff
ects[[1]],temp.effects[[2]],ncol=1), 
                          ncol=2,widths=c(3,1.5))  ) 
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## TableGrob (1 x 2) "arrange": 2 grobs 
##   z     cells    name            grob 
## 1 1 (1-1,1-1) arrange gtable[arrange] 
## 2 2 (1-1,2-2) arrange gtable[arrange] 

##ggsave("templmerplots.jpg", plot = temp.plots, height = 200, width = 
300, units = "mm") 
##ggsave("tempplot.jpg",plot=temp.pred,height = 150, width = 180, unit
s = "mm") 

LMM for daily maximum temp ~ veg data 

day <- rawmod%>% 
  group_by(LocID,H,month,DOY)%>% 
  summarise(rms=rmse(temp,TALOC), mad=mae(temp,TALOC), 
            meandiff=mean(diff),maxdiff=max(diff),mindiff=min(diff), 
            Tmean=mean(temp),Tmax=max(temp),Tmin=min(temp), 
            TALOCmean=mean(TALOC),maxTALOC=max(TALOC),minTALOC=min(TAL
OC)) 
day2 <- merge(day, veg) 
day2$LocID_f <- factor(day2$LocID, levels = c("1","2","3","4","5","6",
"7","8","9","10", 
                                              "11","12","13","14","15"
)) 
day2$month_f <- factor(day2$month, levels = c("1","2","3","4","5","6",
"7", 
                                              "8","9","10","11","12")) 
 
 
mixed.tmax <- lmer(Tmax~H+n+lorey+meanconn+ 
                     (1|LocID_f)+(1|month_f)+(1|DOY), data=day2,na.act
ion="na.fail") 
summary(mixed.tmax) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: Tmax ~ H + n + lorey + meanconn + (1 | LocID_f) + (1 | mon
th_f) +   
##     (1 | DOY) 
##    Data: day2 
##  
## REML criterion at convergence: 44024.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -7.6440 -0.5580 -0.0483  0.4689  6.5021  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  DOY      (Intercept) 2.379    1.542    
##  LocID_f  (Intercept) 1.251    1.118    
##  month_f  (Intercept) 1.140    1.068    
##  Residual             2.474    1.573    
## Number of obs: 11391, groups:  DOY, 365; LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
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## (Intercept) 35.997044   2.380437  15.122 
## H            0.062748   0.003719  16.874 
## n           -0.090789   0.090908  -0.999 
## lorey       -0.056962   0.044008  -1.294 
## meanconn    -0.049772   0.031469  -1.582 
##  
## Correlation of Fixed Effects: 
##          (Intr) H      n      lorey  
## H        -0.012                      
## n        -0.414 -0.006               
## lorey    -0.749 -0.037  0.006        
## meanconn -0.571 -0.010 -0.288  0.339 

tab_model(mixed.tmax) 

  

Tmax 

Predictors 

Estimates 

CI 

p 

(Intercept) 

36.00 

31.33 – 40.66 

<0.001 

H 

0.06 

0.06 – 0.07 

<0.001 

n 

-0.09 

-0.27 – 0.09 

0.318 

lorey 

-0.06 

-0.14 – 0.03 

0.196 

meanconn 

-0.05 

-0.11 – 0.01 

0.114 

Random Effects 

σ2 

2.47 

τ00 DOY 

2.38 

τ00 LocID_f 
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1.25 

τ00 month_f 

1.14 

ICC 

0.66 

N LocID_f 

15 

N month_f 

12 

N DOY 

365 

Observations 

11391 

Marginal R2 / Conditional R2 

0.064 / 0.680 

dredge(mixed.tmax) 

## Global model call: lmer(formula = Tmax ~ H + n + lorey + meanconn + 
(1 | LocID_f) +  
##     (1 | month_f) + (1 | DOY), data = day2, na.action = "na.fail") 
## --- 
## Model selection table  
##    (Intrc)       H     lorey    mncnn        n df    logLik    AICc  
delta 
## 2    30.87 0.06262                              6 -22008.50 44029.0   
0.00 
## 10   32.72 0.06262                    -0.12420  7 -22009.05 44032.1   
3.11 
## 6    32.72 0.06257           -0.04502           7 -22009.94 44033.9   
4.89 
## 4    31.66 0.06270 -0.026170                    7 -22010.51 44035.0   
6.03 
## 14   33.69 0.06259           -0.03596 -0.09014  8 -22010.93 44037.9   
8.87 
## 12   33.85 0.06272 -0.033380          -0.13230  8 -22010.97 44038.0   
8.95 
## 8    35.01 0.06273 -0.056720 -0.05883           8 -22011.32 44038.7   
9.66 
## 16   36.00 0.06275 -0.056960 -0.04977 -0.09079  9 -22012.30 44042.6  
13.62 
## 1    32.54                                      5 -22143.75 44297.5 
268.50 
## 9    34.27                            -0.11680  6 -22144.32 44300.6 
271.64 
## 5    34.41                   -0.04537           6 -22144.98 44302.0 
272.96 
## 3    32.60         -0.002150                    6 -22146.04 44304.1 
275.08 
## 13   35.28                   -0.03717 -0.08156  7 -22146.07 44306.1 
277.14 
## 11   34.57         -0.008615          -0.11890  7 -22146.61 44307.2 
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278.24 
## 7    35.60         -0.029420 -0.05253           7 -22147.01 44308.0 
279.03 
## 15   36.48         -0.029630 -0.04436 -0.08189  8 -22148.09 44312.2 
283.20 
##    weight 
## 2   0.725 
## 10  0.153 
## 6   0.063 
## 4   0.035 
## 14  0.009 
## 12  0.008 
## 8   0.006 
## 16  0.001 
## 1   0.000 
## 9   0.000 
## 5   0.000 
## 3   0.000 
## 13  0.000 
## 11  0.000 
## 7   0.000 
## 15  0.000 
## Models ranked by AICc(x)  
## Random terms (all models):  
## '1 | LocID_f', '1 | month_f', '1 | DOY' 

mixed.tmax2 <- lmer(Tmax~H+(1|LocID_f)+(1|month_f)+(1|DOY), data=day2,
na.action="na.fail") 
summary(mixed.tmax2) 

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: Tmax ~ H + (1 | LocID_f) + (1 | month_f) + (1 | DOY) 
##    Data: day2 
##  
## REML criterion at convergence: 44017 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -7.6426 -0.5582 -0.0482  0.4687  6.5024  
##  
## Random effects: 
##  Groups   Name        Variance Std.Dev. 
##  DOY      (Intercept) 2.379    1.542    
##  LocID_f  (Intercept) 1.449    1.204    
##  month_f  (Intercept) 1.140    1.068    
##  Residual             2.474    1.573    
## Number of obs: 11391, groups:  DOY, 365; LocID_f, 15; month_f, 12 
##  
## Fixed effects: 
##              Estimate Std. Error t value 
## (Intercept) 30.868600   0.456303   67.65 
## H            0.062616   0.003717   16.85 
##  
## Correlation of Fixed Effects: 
##   (Intr) 
## H -0.217 
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tab_model(mixed.tmax2) 

  

Tmax 

Predictors 

Estimates 

CI 

p 

(Intercept) 

30.87 

29.97 – 31.76 

<0.001 

H 

0.06 

0.06 – 0.07 

<0.001 

Random Effects 

σ2 

2.47 

τ00 DOY 

2.38 

τ00 LocID_f 

1.45 

τ00 month_f 

1.14 

ICC 

0.67 

N LocID_f 

15 

N month_f 

12 

N DOY 

365 

Observations 

11391 

Marginal R2 / Conditional R2 

0.020 / 0.674 

plot(mixed.tmax2) 
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qqnorm(resid(mixed.tmax2)) 
qqline(resid(mixed.tmax2)) 

 

## Plots showing model predictions by location 
tmax.mm <- ggpredict(mixed.tmax2, terms = c("H"))  # this gives overal
l predictions for the model 
 
# Plot the predictions  
(tmax.pred <- ggplot(tmax.mm) +  
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    geom_line(aes(x = x, y = predicted)) +          # slope 
    geom_ribbon(aes(x = x, ymin = predicted - std.error, ymax = predic
ted + std.error),  
                fill = "lightgrey", alpha = 0.5) +  # error band 
    geom_point(data = day2,                    # adding the raw data (
scaled values) 
               aes(x = H, y = Tmax, colour = LocID_f)) +  
    labs(x = "Height, m", y = "Daily maximum temperature, °C",  
         title = NULL,col="Location") +  
    theme(axis.title=element_text(size=22), 
          legend.title=element_text(size=22), 
          legend.text=element_text(size=16)) + 
    theme_pubr() + 
    theme(legend.position = "left") + 
    ggtitle("(a)") + 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 5)) 
)  

 

set_theme(base=theme_bw()) 
(tmax.effects <- plot_model(mixed.tmax2,type="re",show.values=FALSE)) 

## [[1]] 
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##  
## [[2]] 

 

##  
## [[3]] 
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(tmax.effects[[2]]<- tmax.effects[[2]] + labs(title="(b)",x="Location"
)+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 

 

(tmax.effects[[3]]<- tmax.effects[[3]] + labs(title="(c)",x="Calendar 
month")+ 
    theme(plot.title = element_text(hjust = 0.01, vjust = - 7), 
          axis.title = element_text(size=14))) 
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(tmax.plots <- arrangeGrob(arrangeGrob(tmax.pred),arrangeGrob(tmax.eff
ects[[2]],tmax.effects[[3]],ncol=1), 
                           ncol=2,widths=c(3,1.5))  ) 

## TableGrob (1 x 2) "arrange": 2 grobs 
##   z     cells    name            grob 
## 1 1 (1-1,1-1) arrange gtable[arrange] 
## 2 2 (1-1,2-2) arrange gtable[arrange] 

##ggsave("tmaxlmerplots.jpg", plot = tmax.plots, height = 200, width = 
300, units = "mm") 
##ggsave("tmaxplot.jpg",plot=tmax.pred,height = 150, width = 180, unit
s = "mm") 
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Appendix 4.2 

R scripts to run the microclimc microclimate model 

This document includes the R code, required inputs and model outputs of the 
microclimc microclimate model for the Sikundur site in North Sumatra, Indonesia, and 
compares the model output with observed temperatures taken from data loggers for 
the period October 2018 - October 2019. 

Setup for the model 

First load the required packages and set the working directory. 

# Load required packages 
library(microclimc) 
library(microctools) 
library(microclima) 

##  
## Attaching package: 'microclima' 

## The following objects are masked from 'package:microctools': 
##  
##     difprop, habitats, solalt, solartime, solazi 

library(NicheMapR) 
library(dplyr) 

## Warning: package 'dplyr' was built under R version 4.0.3 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 4.0.3 

library(reshape2) 
library(lubridate) 

## Warning: package 'lubridate' was built under R version 4.0.3 

##  
## Attaching package: 'lubridate' 
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## The following objects are masked from 'package:base': 
##  
##     date, intersect, setdiff, union 

library(ggpubr) 

## Warning: package 'ggpubr' was built under R version 4.0.3 

library(gridExtra) 

##  
## Attaching package: 'gridExtra' 

## The following object is masked from 'package:dplyr': 
##  
##     combine 

library(Metrics) 
library(ggfortify) 

## Warning: package 'ggfortify' was built under R version 4.0.3 

library(ggforce) 

## Warning: package 'ggforce' was built under R version 4.0.2 

library(ggeffects) 

## Warning: package 'ggeffects' was built under R version 4.0.3 

library(sjPlot) 

## Warning: package 'sjPlot' was built under R version 4.0.3 

## Registered S3 methods overwritten by 'lme4': 
##   method                          from 
##   cooks.distance.influence.merMod car  
##   influence.merMod                car  
##   dfbeta.influence.merMod         car  
##   dfbetas.influence.merMod        car 

## Learn more about sjPlot with 'browseVignettes("sjPlot")'. 

library(corrplot) 

## Warning: package 'corrplot' was built under R version 4.0.2 

## corrplot 0.84 loaded 

library(MuMIn) 
library(lme4) 

## Warning: package 'lme4' was built under R version 4.0.3 

## Loading required package: Matrix 

library(Hmisc) 

## Warning: package 'Hmisc' was built under R version 4.0.3 
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## Loading required package: lattice 

## Loading required package: survival 

## Loading required package: Formula 

## Warning: package 'Formula' was built under R version 4.0.3 

##  
## Attaching package: 'Hmisc' 

## The following objects are masked from 'package:dplyr': 
##  
##     src, summarize 

## The following objects are masked from 'package:base': 
##  
##     format.pval, units 

library(tidyverse) 

## Registered S3 method overwritten by 'httr': 
##   method           from   
##   print.cache_info hoardr 

## -- Attaching packages --------------------------------------- tidyv
erse 1.3.0 -- 

## v tibble  3.0.6     v purrr   0.3.4 
## v tidyr   1.1.2     v stringr 1.4.0 
## v readr   1.4.0     v forcats 0.5.1 

## Warning: package 'tibble' was built under R version 4.0.3 

## Warning: package 'tidyr' was built under R version 4.0.3 

## Warning: package 'readr' was built under R version 4.0.3 

## Warning: package 'forcats' was built under R version 4.0.3 

## -- Conflicts ------------------------------------------ tidyverse_c
onflicts() -- 
## x lubridate::as.difftime() masks base::as.difftime() 
## x gridExtra::combine()     masks dplyr::combine() 
## x lubridate::date()        masks base::date() 
## x tidyr::expand()          masks Matrix::expand() 
## x dplyr::filter()          masks stats::filter() 
## x lubridate::intersect()   masks base::intersect() 
## x dplyr::lag()             masks stats::lag() 
## x tidyr::pack()            masks Matrix::pack() 
## x lubridate::setdiff()     masks base::setdiff() 
## x Hmisc::src()             masks dplyr::src() 
## x Hmisc::summarize()       masks dplyr::summarize() 
## x lubridate::union()       masks base::union() 
## x tidyr::unpack()          masks Matrix::unpack() 

library(sitreeE) 

## Warning: package 'sitreeE' was built under R version 4.0.2 
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## Loading required package: sitree 

## Warning: package 'sitree' was built under R version 4.0.2 

## Loading required package: data.table 

## Warning: package 'data.table' was built under R version 4.0.3 

##  
## Attaching package: 'data.table' 

## The following object is masked from 'package:purrr': 
##  
##     transpose 

## The following objects are masked from 'package:lubridate': 
##  
##     hour, isoweek, mday, minute, month, quarter, second, wday, week
, 
##     yday, year 

## The following objects are masked from 'package:reshape2': 
##  
##     dcast, melt 

## The following objects are masked from 'package:dplyr': 
##  
##     between, first, last 

library(ggpointdensity) 

## Warning: package 'ggpointdensity' was built under R version 4.0.2 

library(viridis) 

## Loading required package: viridisLite 

# Load location specific info 
points <- read.csv("points.csv") 

1) Download NCEP climate forcing data 

# Create empty dataframes to store outputs in 
M <- vector("list", length = nrow(points)) 
climdata <- data.frame() 
 
 
for (a in 1:nrow(points)) { 
    start <- if_else(points$type[a] == "plot", as.POSIXlt("2018-09-01"
), as.POSIXlt("2019-01-01")) 
    end <- start + as.difftime(56, units = "weeks") 
    interval <- 60 
    tme <- seq(from = start, by = interval * 60, to = end) 
    climate <- hourlyNCEP(lat = points$lat[a], long = points$long[a], 
tme = tme) 
    climate1 <- hourlyncep_convert(climate, lat = points$lat[a], long 
= points$long[a]) 
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    climate1["Loc"] = points$ID[a] 
    climdata <- rbind(climdata, climate1) 
} 
 
# Save data as csv file write.csv(climdata, file='climNCEPdata.csv') 

2) Run the microclimc model 

# Load NCEP data 
climdata <- read.csv("climNCEPdata.csv") 
# Input location info 
points <- read.csv("points.csv") 
# Initialise empty dataframe to store outputs 
metout <- data.frame() 
 
 
for (a in 1:nrow(points)) { 
    climate <- filter(climdata, Loc == points$Loc[a]) 
    tme <- as.POSIXlt(climate$obs_time, format = "%Y-%m-%d %H:%M") 
    prec <- dailyprecipNCEP(lat = points$lat[a], long = points$long[a]
, tme) 
    vegp <- habitatvars(2, lat = points$lat[a], long = points$long[a], 
tme, m = 20) 
    vegp$hgt <- points$veghyt[a] 
    soilp <- soilinit("Loam") 
    # Run model in hourly timesteps for a year using weather dataset i
ncluded 
    # with the package 
    dataout <- runwithNMR(climate, prec, vegp, soilp, reqhgt = (points
$refhyt[a]),  
        lat = points$lat[a], long = points$long[a]) 
    metout1 <- dataout$metout 
    metout1$obs_time <- with_tz(metout1$obs_time, tzone = "Asia/Jakart
a") 
    metout1["Loc"] = points$Loc[a] 
    metout1["logID"] = points$logID[a] 
    metout1["height"] = points$height[a] 
    metout <- rbind(metout, metout1) 
} 
 
# Reformat dates & convert timezone to Jakarta 
metout$obs_time <- parse_date_time(metout$obs_time, "ymd HMS") 
metout["hour"] = hour(metout$obs_time) 
metout["DOY"] = yday(metout$obs_time) 
metout["week"] = week(metout$obs_time) 
metout["month"] = month(metout$obs_time) 
 
 
# Save microclimc predictions as .csv file write.csv(metout, 
# file='microclimc_output.csv') 



 

 

Appendix 5.1 

R scripts to run the NicheMapR endotherm model 

This document provides the R code, required inputs, and outputs of the the 
NicheMapR microclimate and endotherm models, which is used to calculate heat 
exchange, metabolism, and water loss for Sumatran orangutan at Sikundur, North 
Sumatra. 

Initial setup 

# Load packages 
library(NicheMapR) 
library(ggplot2) 
library(dplyr) 
library(knitr) 
library(tidyr) 
library(lubridate) 
library(ggpubr) 
library(gridExtra) 
library(Metrics) 
library(reshape2) 
library(ggforce) 
library(ggpubr) 
 
# Load in datafile for input data points 
point <- read.csv("points.csv") 
# Filter points df to keep only locations of interest Filter locations 
for 
# points of interest only 
filter <- c(1.1, 2.1, 3.1, 4.1, 1.5, 2.5, 3.5, 4.5) 
point <- filter(point, ID %in% filter) 
 
# Read in logger data 
loggers <- read.csv("clim_hourly.csv") 
# Removing rows of data where lux >32,000, or where temp increased by 
>5, plus 
# the following two data points (to remove obs where logger was expose
d to 
# direct sunlight resulting in high temp recoridngs). 
loggers <- filter(loggers, keep != "FALSE") 
# Convert datetime column to POSIXct format and remove duplicate colum
ns 
loggers$datetime <- parse_date_time(loggers$datetime, "dmy HM") 

1) Run the microclimate model 

Run the microclimate model, extract & export outputs: 

# Create empty data frames where models outputs will be stored. 
M <- vector("list", length = nrow(point)) 
shadmet <- data.frame() 
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metout <- data.frame() 
 
# Specify number of days to run model for: 
t <- 365 
 
# Run the model using parameters from points data frame.  Append loc, 
height & 
# date to outputs for both max shade (shadmet) and no shade (metout).  
The loop 
# will run the model for each row, and automatically add the output to 
the 
# dataframes created in the previous step. 
for (l in 1:nrow(point)) { 
    M[[l]] <- micro_global(loc = c(point$long[l], point$lat[l]), runmo
ist = 0, runshade = 1,  
        minshade = 0, maxshade = point$shade[l], timeinterval = t, REF
L = 0.1, elev = point$elevation[l],  
        slope = point$slope[l], aspect = point$aspect[l], RUF = 0.02, 
D0 = point$DO[l],  
        ZH = point$ZH, writecsv = 1, message = 0, Refhyt = point$heigh
t[l], Usrhyt = point$midheight[l]) 
    shad <- data.frame(M[[l]][["shadmet"]]) 
    shad["LocID"] = point$ID[l] 
    shad["height"] = point$height[l] 
    shad["date"] <- as.Date(shad$DOY, origin = "2018-12-31") 
    shad["month"] = month(shad$date) 
    shad["hour"] = shad$TIME/60 
    shad["week"] = week(shad$date) 
    shadmet <- rbind(shadmet, shad) 
    met <- data.frame(M[[l]][["metout"]]) 
    met["LocID"] = point$ID[l] 
    met["height"] = point$height[l] 
    met["date"] <- as.Date(met$DOY, format = "%j", origin = "2018-12-3
1") 
    met["month"] = month(met$date) 
    met["hour"] = met$TIME/60 
    met["week"] = week(met$date) 
    metout <- rbind(metout, met) 
} 
 
# Reorder output dataframes to put Loc and height and date columns fir
st 
metout <- metout[, c(20:25, 1:19)] 
shadmet <- shadmet[, c(20:25, 1:19)] 
 
# Write output files to .csv in source directory 
write.csv(metout, "metout_SRTM.csv") 
write.csv(shadmet, "shadmet_SRTM.csv") 

Plots of observed & predicted values: 

Calculate correlation coefficients, RMSE and MAD of model predcitions against logger 
data for each location: 

2) Running the endotherm model for a series of ambient temperatures 



   

 

291 

 

Run the microclimate model for mid-canopy heights: 

# Create empty data frames where models outputs will be stored. 
M <- vector("list", length = nrow(point)) 
shadmet <- data.frame() 
metout <- data.frame() 
 
# Specify number of days to run model for: 
t <- 365 
 
# Run the model using parameters from points data frame.  Append loc, 
height & 
# date to outputs for both max shade (shadmet) and no shade (metout).  
The loop 
# will run the model for each row, and automatically add the output to 
the 
# dataframes created in the previous step. 
for (l in 1:nrow(point)) { 
    M[[l]] <- micro_global(loc = c(point$long[l], point$lat[l]), runmo
ist = 0, runshade = 1,  
        minshade = 0, maxshade = point$shade[l], timeinterval = t, REF
L = 0.1, elev = point$elevation[l],  
        slope = point$slope[l], aspect = point$aspect[l], RUF = 0.02, 
D0 = point$DO[l],  
        ZH = point$ZH[l], writecsv = 1, message = 0, Refhyt = point$he
ight[l], Usrhyt = point$midheight[l]) 
    shad <- data.frame(M[[l]][["shadmet"]]) 
    shad["LocID"] = point$ID[l] 
    shad["height"] = point$height[l] 
    shad["date"] <- as.Date(shad$DOY, origin = "2018-12-31") 
    shad["month"] = month(shad$date) 
    shad["hour"] = shad$TIME/60 
    shad["week"] = week(shad$date) 
    shadmet <- rbind(shadmet, shad) 
    met <- data.frame(M[[l]][["metout"]]) 
    met["LocID"] = point$ID[l] 
    met["height"] = point$height[l] 
    met["date"] <- as.Date(met$DOY, format = "%j", origin = "2018-12-3
1") 
    met["month"] = month(met$date) 
    met["hour"] = met$TIME/60 
    met["week"] = week(met$date) 
    metout <- rbind(metout, met) 
} 
 
# Reorder output dataframes to put Loc and height and date columns fir
st 
metout <- metout[, c(20:25, 1:19)] 
shadmet <- shadmet[, c(20:25, 1:19)] 
 
# Save model outputs write.csv(shadmet,'micro_mid.csv') 

2a) Using predicted values of orangutan BMR based on the mouse-

elephant curve: 
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Model parameters: 

cat <- c("adult male", "adult female", "juvenile")  # List of age/sex 
classes 
 
# core temperature 
TC <- 33.4  # core temperature (deg C) 
TCMAX <- 35.2  # maximum core temperature (deg C) 
RAISETC <- 0.25  # increment by which TC is elevated (deg C) 
 
# size and shape 
AMASS <- c(116, 55, 25.5)  # mass, kg (adult male, adult female, juven
ile) 
SHAPE <- 4  # use ellipsoid geometry 
SHAPE_B_REF <- 4  # start off near to a sphere (-) 
SHAPE_B_MAX <- 5  # maximum ratio of length to width/depth 
UNCURL <- 0.1  # allows the animal to uncurl to SHAPE_B_MAX, the value 
being the increment SHAPE_B is increased per iteration 
SAMODE <- 2  # surface area relations (2 is mammal, 0 is based on shap
e specified in GEOM) 
 
# fur properties 
DHAIRD = 0.00015  # hair diameter, dorsal (m) 
DHAIRV = 0.00015  # hair diameter, ventral (m) 
LHAIRD = c(0.15, 0.1, 0.05)  # hair length, dorsal (m) (adult male, fe
male & juvenile) 
LHAIRV = 0.05  # hair length, ventral (m) 
ZFURD = 0.03  # fur depth, dorsal (m) 
ZFURV = 0.03  # fur depth, ventral (m) 
RHOD = 1760000  # hair density, dorsal (1/m2) 
RHOV = 9e+05  # hair density, ventral (1/m2) 
REFLD = 0.2  # fur reflectivity dorsal (fractional, 0-1) 
REFLV = 0.2  # fur reflectivity ventral (fractional, 0-1) 
 
# physiological responses 
SKINW <- 0.1  # base skin wetness (%) 
MXWET <- 5  # maximum skin wetness (%) 
SWEAT <- 0.25  # intervals by which skin wetness is increased (%) 
Q10 <- 2.2  # Q10 effect of body temperature on metabolic rate (-) 
QBASAL.est <- c(120.18, 68.67, 38.58)  # basal heat generation (W) (ma
le, female & juvenile) 
DELTAR <- 5  # offset between air temeprature and breath (°C) 
EXTREF <- 20  # O2 extraction efficiency (%) 
PANTING <- 0.1  # turns on panting, the value being the increment by w
hich the panting multiplier is increased up to the maximum value, PANT
MAX 
PANTMAX <- 15  # maximum panting rate - multiplier on air flow through 
the lungs above that determined by metabolic rate 

Running the model for a series of ambient temps: 

# environment parameters 
TAs <- seq(0, 50, 1)  # air temperature (deg C) 
VEL <- 1  # wind speed (m/s) 
vd <- WETAIR(rh = 30, db = 40)$vd  # Weather and Schoenbaechler had 16
.7 mm Hg above 40 deg C = 30% RH at 40 deg C 
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vd_sat <- WETAIR(rh = 100, db = TAs)$vd  # Weather and Schoenbaechler 
had 16.7 mm Hg above 40 deg C = 30% RH at 40 deg C 
exp_rh <- vd/vd_sat * 100 
exp_rh[exp_rh > 100] <- 100 
exp_rh[TAs < 30] <- 15 
hum <- exp_rh  #rep(humidity,96) 
Q10s <- rep(1, length(TAs)) 
Q10s[TAs >= TCMAX] <- 2  # assuming Q10 effect kicks in only after air 
temp rises above TCMAX 
# Run the model 
endo.TAs <- data.frame() 
 
for (c in 1:3) { 
    MASS <- AMASS[c] 
    HAIRD <- LHAIRD[c] 
    BASAL <- QBASAL.est[c] 
    endo.out <- lapply(1:length(TAs), function(x) { 
        endoR(TA = TAs[x], VEL = VEL, TC = TC, TCMAX = TCMAX, RH = 90, 
AMASS = MASS,  
            SHAPE = SHAPE, SHAPE_B_REF = SHAPE_B_REF, SHAPE_B_MAX = SH
APE_B_MAX,  
            SKINW = SKINW, SWEAT = SWEAT, MXWET = MXWET, Q10 = Q10s[x]
, QBASAL = BASAL,  
            DELTAR = DELTAR, DHAIRD = DHAIRD, DHAIRV = DHAIRV, LHAIRD 
= HAIRD, LHAIRV = LHAIRV,  
            ZFURD = ZFURD, ZFURV = ZFURV, RHOD = RHOD, RHOV = RHOV, RE
FLD = REFLD,  
            RAISETC = RAISETC, PANTING = PANTING, PANTMAX = PANTMAX, E
XTREF = EXTREF,  
            UNCURL = UNCURL, SAMODE = SAMODE, SHADE = 80) 
    })  # run endoR  
    # extract the output 
    endo.out1 <- do.call("rbind", lapply(endo.out, data.frame)) 
    # thermoregulation output 
    treg <- endo.out1[, grep(pattern = "treg", colnames(endo.out1))] 
    colnames(treg) <- gsub(colnames(treg), pattern = "treg.", replacem
ent = "") 
    # morphometric output 
    morph <- endo.out1[, grep(pattern = "morph", colnames(endo.out1))] 
    colnames(morph) <- gsub(colnames(morph), pattern = "morph.", repla
cement = "") 
    # heat balance 
    enbal <- endo.out1[, grep(pattern = "enbal", colnames(endo.out1))] 
    colnames(enbal) <- gsub(colnames(enbal), pattern = "enbal.", repla
cement = "") 
    # mass aspects 
    masbal <- endo.out1[, grep(pattern = "masbal", colnames(endo.out1)
)] 
    colnames(masbal) <- gsub(colnames(masbal), pattern = "masbal.", re
placement = "") 
    QGEN <- enbal$QMET  # metabolic rate (W) 
    H2O <- masbal$H2OResp_g + masbal$H2OCut_g  # g/h water evaporated 
    TFA_D <- treg$TFA_D  # dorsal fur surface temperature 
    TFA_V <- treg$TFA_V  # ventral fur surface temperature 
    TskinD <- treg$TSKIN_D  # dorsal skin temperature 
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    TskinV <- treg$TSKIN_V  # ventral skin temperature 
    TCs <- treg$TC  # core temperature 
    # Combine outputs into one dataframe 
    out <- data.frame(TAs, QGEN, H2O, TFA_D, TFA_V, TskinD, TskinV, TC
s) 
    # Add column for class (adult male/adult female/juvenile) 
    out["class"] = cat[c] 
    endo.TAs <- rbind(endo.TAs, out) 
} 
# write.csv(endo.TAs,'endo_TAs_predBMR.csv') 

Plot the results: 

# Plot TAs vs TCs 
TCs <- ggplot(endo.TAs, aes(x = TAs, y = TCs, colour = class)) + geom_
point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature,°C") + ylab("Core 
body temperature, °C") +  
    theme_bw() + theme(panel.grid = element_blank()) + theme(legend.ti
tle = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
# Fur temperature 
TFA <- ggplot(endo.TAs, aes(x = TAs, y = TFA_D, colour = class)) + geo
m_point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature,°C") + ylab("Dorsa
l fur temperature, °C") +  
    theme_bw() + theme(panel.grid = element_blank()) + theme(legend.ti
tle = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
# metabolic rate 
MR <- ggplot(endo.TAs, aes(x = TAs, y = QGEN, colour = class)) + geom_
point(aes(shape = class),  
    size = 1) + xlab("Air temperature, °C") + ylab("Metabolic rate, W"
) + xlim(0,  
    40) + theme_bw() + theme(panel.grid = element_blank()) + theme(leg
end.title = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
# Water loss 
H2Oloss <- ggplot(endo.TAs, aes(x = TAs, y = H2O, colour = class)) + g
eom_point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature, °C") + ylab("bv") 
+ theme_bw() +  
    theme(panel.grid = element_blank()) + theme(legend.title = element
_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
(TAplots <- ggarrange(TCs, TFA, MR, H2Oloss, ncol = 2, nrow = 2, commo
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n.legend = TRUE,  
    legend = "bottom")) 

 

# ggexport(TAplots,filename='TAPlots_predBMR.pdf') 

2b) Using observed values of BMR taken from Pontzer et al (2010) 

Model parameters: 

cat <- c("adult male", "adult female", "juvenile")  # List of age/sex 
classes 
 
# core temperature 
TC <- 36  # core temperature (deg C) 
TCMAX <- 38  # maximum core temperature (deg C) 
RAISETC <- 0.25  # increment by which TC is elevated (deg C) 
 
# size and shape 
AMASS <- c(116, 55, 25.5)  # mass, kg (adult male, adult female, juven
ile) 
SHAPE <- 4  # use ellipsoid geometry 
SHAPE_B_REF <- 4  # start off near to a sphere (-) 
SHAPE_B_MAX <- 5  # maximum ratio of length to width/depth 
UNCURL <- 0.1  # allows the animal to uncurl to SHAPE_B_MAX, the value 
being the increment SHAPE_B is increased per iteration 
SAMODE <- 2  # surface area relations (2 is mammal, 0 is based on shap
e specified in GEOM) 
 
# fur properties 
DHAIRD = 0.00015  # hair diameter, dorsal (m) 
DHAIRV = 0.00015  # hair diameter, ventral (m) 
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LHAIRD = c(0.15, 0.1, 0.05)  # hair length, dorsal (m) (adult male, fe
male & juvenile) 
LHAIRV = 0.05  # hair length, ventral (m) 
ZFURD = 0.03  # fur depth, dorsal (m) 
ZFURV = 0.03  # fur depth, ventral (m) 
RHOD = 1760000  # hair density, dorsal (1/m2) 
RHOV = 9e+05  # hair density, ventral (1/m2) 
REFLD = 0.2  # fur reflectivity dorsal (fractional, 0-1) 
REFLV = 0.2  # fur reflectivity ventral (fractional, 0-1) 
 
# physiological responses 
SKINW <- 0.1  # base skin wetness (%) 
MXWET <- 5  # maximum skin wetness (%) 
SWEAT <- 0.25  # intervals by which skin wetness is increased (%) 
Q10 <- 2.2  # Q10 effect of body temperature on metabolic rate (-) 
QBASAL.obs <- c(77.39, 63.77, 49.96)  # basal heat generation (W) (mal
e, female & juvenile) 
DELTAR <- 5  # offset between air temeprature and breath (°C) 
EXTREF <- 20  # O2 extraction efficiency (%) 
PANTING <- 0.1  # turns on panting, the value being the increment by w
hich the panting multiplier is increased up to the maximum value, PANT
MAX 
PANTMAX <- 15  # maximum panting rate - multiplier on air flow through 
the lungs above that determined by metabolic rate 

Running the model for a series of ambient temps: 

# environment parameters 
TAs <- seq(0, 50, 1)  # air temperature (deg C) 
VEL <- 1  # wind speed (m/s) 
vd <- WETAIR(rh = 30, db = 40)$vd  # Weather and Schoenbaechler had 16
.7 mm Hg above 40 deg C = 30% RH at 40 deg C 
vd_sat <- WETAIR(rh = 100, db = TAs)$vd  # Weather and Schoenbaechler 
had 16.7 mm Hg above 40 deg C = 30% RH at 40 deg C 
exp_rh <- vd/vd_sat * 100 
exp_rh[exp_rh > 100] <- 100 
exp_rh[TAs < 30] <- 15 
hum <- exp_rh  #rep(humidity,96) 
Q10s <- rep(1, length(TAs)) 
Q10s[TAs >= TCMAX] <- 2  # assuming Q10 effect kicks in only after air 
temp rises above TCMAX 
# Run the model 
endo.TAs <- data.frame() 
 
for (c in 1:3) { 
    MASS <- AMASS[c] 
    HAIRD <- LHAIRD[c] 
    BASAL <- QBASAL.obs[c] 
    endo.out <- lapply(1:length(TAs), function(x) { 
        endoR(TA = TAs[x], VEL = VEL, TC = TC, TCMAX = TCMAX, RH = 90, 
AMASS = MASS,  
            SHAPE = SHAPE, SHAPE_B_REF = SHAPE_B_REF, SHAPE_B_MAX = SH
APE_B_MAX,  
            SKINW = SKINW, SWEAT = SWEAT, MXWET = MXWET, Q10 = Q10s[x]
, QBASAL = BASAL,  
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            DELTAR = DELTAR, DHAIRD = DHAIRD, DHAIRV = DHAIRV, LHAIRD 
= HAIRD, LHAIRV = LHAIRV,  
            ZFURD = ZFURD, ZFURV = ZFURV, RHOD = RHOD, RHOV = RHOV, RE
FLD = REFLD,  
            RAISETC = RAISETC, PANTING = PANTING, PANTMAX = PANTMAX, E
XTREF = EXTREF,  
            UNCURL = UNCURL, SAMODE = SAMODE, SHADE = 80) 
    })  # run endoR  
    # extract the output 
    endo.out1 <- do.call("rbind", lapply(endo.out, data.frame)) 
    # thermoregulation output 
    treg <- endo.out1[, grep(pattern = "treg", colnames(endo.out1))] 
    colnames(treg) <- gsub(colnames(treg), pattern = "treg.", replacem
ent = "") 
    # morphometric output 
    morph <- endo.out1[, grep(pattern = "morph", colnames(endo.out1))] 
    colnames(morph) <- gsub(colnames(morph), pattern = "morph.", repla
cement = "") 
    # heat balance 
    enbal <- endo.out1[, grep(pattern = "enbal", colnames(endo.out1))] 
    colnames(enbal) <- gsub(colnames(enbal), pattern = "enbal.", repla
cement = "") 
    # mass aspects 
    masbal <- endo.out1[, grep(pattern = "masbal", colnames(endo.out1)
)] 
    colnames(masbal) <- gsub(colnames(masbal), pattern = "masbal.", re
placement = "") 
    QGEN <- enbal$QMET  # metabolic rate (W) 
    H2O <- masbal$H2OResp_g + masbal$H2OCut_g  # g/h water evaporated 
    TFA_D <- treg$TFA_D  # dorsal fur surface temperature 
    TFA_V <- treg$TFA_V  # ventral fur surface temperature 
    TskinD <- treg$TSKIN_D  # dorsal skin temperature 
    TskinV <- treg$TSKIN_V  # ventral skin temperature 
    TCs <- treg$TC  # core temperature 
    # Combine outputs into one dataframe 
    out <- data.frame(TAs, QGEN, H2O, TFA_D, TFA_V, TskinD, TskinV, TC
s) 
    # Add column for class (adult male/adult female/juvenile) 
    out["class"] = cat[c] 
    endo.TAs <- rbind(endo.TAs, out) 
} 
# write.csv(endo.TAs,'endo_TAs_obsBMR.csv') 

Plot the results (point): 

# Plot TAs vs TCs - scatterplot 
TCs <- ggplot(endo.TAs, aes(x = TAs, y = TCs, colour = class)) + geom_
point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature,°C") + ylab("Body 
temperature, °C") +  
    theme_bw() + theme(panel.grid = element_blank()) + theme(legend.ti
tle = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
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# Fur temperature 
TFA <- ggplot(endo.TAs, aes(x = TAs, y = TskinD, colour = class)) + ge
om_point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature,°C") + ylab("Dorsa
l fur temperature, °C") +  
    theme_bw() + theme(panel.grid = element_blank()) + theme(legend.ti
tle = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
# metabolic rate 
MR <- ggplot(endo.TAs, aes(x = TAs, y = QGEN, colour = class)) + geom_
point(aes(shape = class),  
    size = 1) + xlab("Air temperature, °C") + ylab("Metabolic rate, W"
) + xlim(0,  
    40) + theme_bw() + theme(panel.grid = element_blank()) + theme(leg
end.title = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
# Water loss 
H2Oloss <- ggplot(endo.TAs, aes(x = TAs, y = H2O, colour = class)) + g
eom_point(aes(shape = class),  
    size = 1) + xlim(0, 40) + xlab("Air temperature, °C") + ylab("Wate
r loss, g/h") +  
    theme_bw() + theme(panel.grid = element_blank()) + theme(legend.ti
tle = element_blank()) +  
    theme(axis.title = element_text(size = 12), axis.text = element_te
xt(size = 10)) 
 
(TAplots <- ggarrange(TCs, TFA, MR, H2Oloss, nrow = 2, ncol = 2, commo
n.legend = TRUE,  
    legend = "bottom")) 



   

 

299 

 

 

# ggexport(TAplots,filename='TAplots_obsBMR.pdf') 

3) Running the model for locations at Sikundur, using the microclimate 

model as environmental inputs 

3a) Using BMR from mouse-elephant curve 

# run the model for shaded conditions 
E <- vector("list", length = nrow(point)) 
endo.est <- data.frame() 
 
 
# Use for loop to run for all three classes and all rows in points df 
# automatically 
for (c in 1:3) { 
    MASS <- AMASS[c] 
    HAIRD <- LHAIRD[c] 
    BASAL <- QBASAL.est[c] 
    for (X in 1:nrow(point)) { 
        # extract microclimate outputs 
        micro <- data.frame(M[[X]][["metout"]])  # unshaded above-grou
nd conditions 
        soil <- data.frame(M[[X]][["soil"]]) 
        micro.shad <- data.frame(M[[X]][["shadmet"]])  # shaded above-
ground conditions 
        shadsoil <- data.frame(M[[X]][["shadsoil"]]) 
        dates <- (M[[X]][["dates"]]) 
        # location-specific environment parameters 
        TAs <- micro.shad$TALOC  # air temperatures at height of anima
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l (deg C) 
        TAREFs <- micro.shad$TAREF  # air temperatures at reference he
ight (deg C) 
        TSKYs <- micro.shad$TSKYC  # sky temperatures (deg C) 
        TGRDs <- shadsoil$D0cm  # surface temperatures (deg C) 
        VELs <- micro.shad$VLOC  # wind speeds at animal height (m/s) 
        RHs <- micro.shad$RHLOC  # relative humidity at animal height 
(%) 
        SHADE <- (100 - point$shade[X])/100 
        QSOLRs <- micro.shad$SOLR * SHADE  # solar radiation (W/m2) co
rrected for shade level 
        Zs <- micro.shad$ZEN  # zenith angle of the sun (degrees) 
        ELEV <- (M[[X]][["elev"]])  # elevation (m) 
        ABSSB <- 1 - (M[[X]][["REFL"]])  # substrate solar absorptivit
y (%) 
        # Run the model 
        E[[X]] <- lapply(1:length(TAs), function(x) { 
            endoR(TA = TAs[x], TAREF = TAREFs[x], TSKY = TSKYs[x], TGR
D = TGRDs[x],  
                VEL = VELs[x], RH = RHs[x], QSOLR = QSOLRs[x], Z = Zs[
x], ELEV = ELEV,  
                ABSSB = ABSSB, TC = TC, TCMAX = TCMAX, AMASS = MASS, S
HAPE = SHAPE,  
                SHAPE_B_REF = SHAPE_B_REF, SHAPE_B_MAX = SHAPE_B_MAX, 
SKINW = SKINW,  
                SWEAT = SWEAT, Q10 = Q10, QBASAL = BASAL, DELTAR = DEL
TAR, DHAIRD = DHAIRD,  
                DHAIRV = DHAIRV, LHAIRD = HAIRD, LHAIRV = LHAIRV, ZFUR
D = ZFURD,  
                ZFURV = ZFURV, RHOD = RHOD, RHOV = RHOV, REFLD = REFLD
, RAISETC = RAISETC,  
                PANTING = PANTING, PANTMAX = PANTMAX, EXTREF = EXTREF, 
UNCURL = UNCURL,  
                SAMODE = SAMODE, SHADE = 0) 
        }) 
        # Extract the outputs and bind to master dataframe 
        endo.out <- do.call("rbind", lapply(E[[X]], data.frame)) 
        endo.out["LocID"] = point$ID[X] 
        endo.out["class"] = cat[c] 
        endo.out <- cbind(endo.out, TAs) 
        endo.est <- rbind(endo.est, endo.out) 
    } 
} 
# write.csv(endo.est,'endo_shade_est.csv') 

3b) observed BMR values from Pontzer et al (2010) 

# run the model for shaded conditions 
E <- vector("list", length = nrow(point)) 
endo <- data.frame() 
 
 
# Use for loop to run for all three classes and all rows in points df 
# automatically 
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for (c in 1:3) { 
    MASS <- AMASS[c] 
    HAIRD <- LHAIRD[c] 
    BASAL <- QBASAL.obs[c] 
    for (X in 1:nrow(point)) { 
        # extract microclimate outputs 
        micro <- data.frame(M[[X]][["metout"]])  # unshaded above-grou
nd conditions 
        soil <- data.frame(M[[X]][["soil"]]) 
        micro.shad <- data.frame(M[[X]][["shadmet"]])  # shaded above-
ground conditions 
        shadsoil <- data.frame(M[[X]][["shadsoil"]]) 
        dates <- (M[[X]][["dates"]]) 
        # location-specific environment parameters 
        TAs <- micro.shad$TALOC  # air temperatures at height of anima
l (deg C) 
        TAREFs <- micro.shad$TAREF  # air temperatures at reference he
ight (deg C) 
        TSKYs <- micro.shad$TSKYC  # sky temperatures (deg C) 
        TGRDs <- shadsoil$D0cm  # surface temperatures (deg C) 
        VELs <- micro.shad$VLOC  # wind speeds at animal height (m/s) 
        RHs <- micro.shad$RHLOC  # relative humidity at animal height 
(%) 
        SHADE <- (100 - point$shade[X])/100 
        QSOLRs <- micro.shad$SOLR * SHADE  # solar radiation (W/m2) co
rrected for shade level 
        Zs <- micro.shad$ZEN  # zenith angle of the sun (degrees) 
        ELEV <- (M[[X]][["elev"]])  # elevation (m) 
        ABSSB <- 1 - (M[[X]][["REFL"]])  # substrate solar absorptivit
y (%) 
        # Run the model 
        E[[X]] <- lapply(1:length(TAs), function(x) { 
            endoR(TA = TAs[x], TAREF = TAREFs[x], TSKY = TSKYs[x], TGR
D = TGRDs[x],  
                VEL = VELs[x], RH = RHs[x], QSOLR = QSOLRs[x], Z = Zs[
x], ELEV = ELEV,  
                ABSSB = ABSSB, TC = TC, TCMAX = TCMAX, AMASS = MASS, S
HAPE = SHAPE,  
                SHAPE_B_REF = SHAPE_B_REF, SHAPE_B_MAX = SHAPE_B_MAX, 
SKINW = SKINW,  
                SWEAT = SWEAT, Q10 = Q10, QBASAL = BASAL, DELTAR = DEL
TAR, DHAIRD = DHAIRD,  
                DHAIRV = DHAIRV, LHAIRD = HAIRD, LHAIRV = LHAIRV, ZFUR
D = ZFURD,  
                ZFURV = ZFURV, RHOD = RHOD, RHOV = RHOV, REFLD = REFLD
, RAISETC = RAISETC,  
                PANTING = PANTING, PANTMAX = PANTMAX, EXTREF = EXTREF, 
UNCURL = UNCURL,  
                SAMODE = SAMODE, SHADE = 0) 
        }) 
        # Extract the outputs and bind to master dataframe 
        endo.out <- do.call("rbind", lapply(E[[X]], data.frame)) 
        endo.out["LocID"] = point$ID[X] 
        endo.out["class"] = cat[c] 
        endo.out <- cbind(endo.out, TAs) 
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        endo <- rbind(endo, endo.out) 
    } 
} 
# write.csv(endo,'endo_shaded.csv') 

Plot endotherm model outputs with estimated BMR input (a) and observed BMR input 
from Pontzer et al (b). 

# Add dates to model outputs 
dates <- select(shadmet, month, DOY, hour) 
dates <- dates %>% 
    slice(rep(1:n(), times = 3)) 
 
# Endotherm outputs With estimated BMR 
endo.est <- cbind(endo.est, dates) 
 
 
filter1 <- c(1.1, 2.1, 3.1, 4.1) 
filter2 <- c(1.5, 2.5, 3.5, 4.5) 
endo.est <- endo.est %>% 
    mutate(Loc = case_when(LocID %in% filter1 ~ "edge", LocID %in% fil
ter2 ~ "interior")) 
# Add total water loss 
endo.est["H2O"] = endo.est$masbal.H2OResp_g + endo.est$masbal.H2OCut_g 
 
# Summarise values for average day. 
endo.sum <- endo.est %>% 
    group_by(class, hour) %>% 
    summarise(maxBMR = max(enbal.QMET), meanBMR = mean(enbal.QMET), mi
nBMR = min(enbal.QMET),  
        maxH2O = max(H2O), meanH2O = mean(H2O), minH2O = min(H2O), max
Core = max(treg.TC),  
        meanCore = mean(treg.TC), minCore = min(treg.TC), maxFur = max
(treg.TFA_D),  
        meanFur = mean(treg.TFA_D), minFur = min(treg.TFA_D)) 
 
# plot values 
water <- ggplot(endo.est, aes(x = hour, y = H2O, colour = Loc)) + geom
_smooth() +  
    xlab("time, hours") + ylab("Water loss, g/h") + ggtitle("(a)") + f
acet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
BMR <- ggplot(endo.est, aes(x = hour, y = enbal.QMET, colour = Loc)) + 
geom_smooth() +  
    xlab("time, hours") + ylab("Metabolic rate, W") + ggtitle("(a)") + 
facet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
core <- ggplot(endo.est, aes(x = hour, y = treg.TC, colour = Loc)) + g
eom_smooth() +  
    xlab("time, hours") + ylab("Core body temperature, °C") + facet_wr
ap(~class) +  
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    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
fur <- ggplot(endo.est, aes(x = hour, y = treg.TFA_D, colour = Loc)) + 
geom_smooth() +  
    xlab("time, hours") + ylab("Dorsal fur temperature, °C") + ggtitle
("(a)") + facet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
# With observed BMR 
 
# Add dates to output df 
endo <- cbind(endo, dates) 
# add column for edge/interior 
filter1 <- c(1.1, 2.1, 3.1, 4.1) 
filter2 <- c(1.5, 2.5, 3.5, 4.5) 
endo <- endo %>% 
    mutate(Loc = case_when(LocID %in% filter1 ~ "edge", LocID %in% fil
ter2 ~ "interior")) 
# Add column for total water loss 
endo["H2O"] = endo$masbal.H2OResp_g + endo$masbal.H2OCut_g 
 
# Summarise values for average day 
endo.sum <- endo %>% 
    group_by(class, hour) %>% 
    summarise(maxBMR = max(enbal.QMET), meanBMR = mean(enbal.QMET), mi
nBMR = min(enbal.QMET),  
        maxH2O = max(H2O), meanH2O = mean(H2O), minH2O = min(H2O), max
Core = max(treg.TC),  
        meanCore = mean(treg.TC), minCore = min(treg.TC), maxFur = max
(treg.TFA_D),  
        meanFur = mean(treg.TFA_D), minFur = min(treg.TFA_D)) 
 
# plot values 
water.obs <- ggplot(endo, aes(x = hour, y = H2O, colour = Loc)) + geom
_smooth() +  
    xlab("time, hours") + ylab("Water loss, g/h") + ggtitle("(b)") + f
acet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
BMR.obs <- ggplot(endo, aes(x = hour, y = enbal.QMET, colour = Loc)) + 
geom_smooth() +  
    xlab("time, hours") + ylab("Metabolic rate, W") + ggtitle("(b)") + 
facet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
core.obs <- ggplot(endo, aes(x = hour, y = treg.TC, colour = Loc)) + g
eom_smooth() +  
    xlab("time, hours") + ylab("Core body temperature, °C") + facet_wr
ap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
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fur.obs <- ggplot(endo, aes(x = hour, y = treg.TFA_D, colour = Loc)) + 
geom_smooth() +  
    xlab("time, hours") + ylab("Dorsal fur temperature, °C") + ggtitle
("(b)") + facet_wrap(~class) +  
    theme_pubclean() + theme(legend.title = element_blank(), legend.po
sition = "bottom") 
 
 
# Put figures together and export 
BMRplots <- grid.arrange(BMR, BMR.obs, nrow = 2) 

 

H2Oplots <- grid.arrange(water, water.obs, nrow = 2) 
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furplots <- grid.arrange(fur, fur.obs, nrow = 2) 

 

# ggsave('MRplots.png',plot=BMRplots, height=176, width=176, units='mm
') 
# ggsave('H2Oplots.png', plot=H2Oplots, height=176, width=176, units='
mm') 
# ggsave('furplots.png', plot=furplots, height=176, width=176, units='
mm') 


