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In this article, we study the vulnerability management dimension in smart city initiatives. As many cities across the globe
invest a considerable amount of effort, resources and budget to modernise their infrastructure by deploying a series of tech-
nologies such as 5G, Software Defined Networks, and IoT, we conduct an empirical analysis of their current exposure to
existing vulnerabilities. We use an updated vulnerability dataset that is further enriched by quantitative research data from
independent studies evaluating the maturity and accomplishments of cities in their journey to become smart. We particu-
larly focus on cities that aspire to implement a (data-driven) Circular Economy agenda that we consider to potentially yield
the highest risk from a vulnerabilities exposure perspective. Findings show that although a smarter city is attributed with a
higher vulnerability exposure, investments on technology and human capital moderate this exposure in a way that it can be
reduced.
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1 INTRODUCTION AND MOTIVATION

With the ongoing trend of urbanisation, it is predicted that by 2050, 68% of the world population will live in cities
[41]. Such trend will impose considerable strains on the governance on a local authority level and is already
challenging the way cities manage their resources.

To address the challenges arising from the accelerating urbanisation and depletion of finite resources, cities
are moving toward the adoption of a range of approaches across a number of dimensions, one of which is the
technological. More specifically, the technological dimension refers to the use IT and computer network enablers
that can support the delivery of sustainability focused business models. The path and journey for a city in be-
coming smart may differ between the cities that may have different problems to solve as well as different starting
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points. London, for example, had challenges in the transportation sector, whereas Barcelona’s main driver was
to tackle pollution. In all cases, however, the end state is envisaged to use enabling technologies from the same
broad areas: 5G and Software Defined Networks, IoT, and Industrial Systems in general, as well as the adop-
tion of cloud and edge computing paradigms. These technologies would support decision making for planning,
managing resources and responding to incidents affecting supply and demand in real time.

At the same time, as the business models promoting sustainability emerge and mature, it became apparent
that data-driven Circular Economy is an emerging concept and approach cities should strive to adopt. This in
turn led to the realisation that a city becoming smart is an intermediary stage rather than an end goal. However,
achieving a state where a city is sustainable—or, equivalently, circular—carries significant risks if an appropriate
risk management plan is not in place. In contrast to traditional cyber systems, smart cities are a melting pot of
cyber-physical and socio-technical systems, where risk transfer occurs between the cyber and physical plane,
through two main conduits. From a cyber-physical system perspective, the transfer of risk occurs through the
IoT nodes (sensors and actuators), whereas from a socio-technical view the risk is transferred from the human
nodes. This inevitably leads to a wide attack surface with an increased scope of the impact affecting not only
confidentiality, integrity and availability, but also privacy and safety.

From a cybersecurity view, attacks on either direct smart city services or its citizens undermines the users’
incentive to adopt and use these services [1]. As smart cities encompass a wide range of technological domains
and themes (see, for example, Reference [20] for a comprehensive list of research themes), we argue that vulner-
abilities constitute a horizontal theme cutting across most of the other domains. Moreover, a vulnerability is a
key component of any risk-based approach as well as for any attack vector when there is a corresponding exploit
available. Vulnerability management is therefore critical for any local government and authority who engage in
smart city initiatives and the scope should extend beyond the core smart city services and infrastructure, but
reach to the end devices; for example, as smart urban services highly depend on mobile communications, there
are cases where local authorities are exploring ways in becoming local Mobile Network Operators, primarily
due to the 5G rollout. A safe and secure city operating a 5G network would need to consider end to end security
along with the QoS aspects and the authority’s lack of ability to frame cybersecurity can lead to the failure of
developing suitable security policies [14].

Our contribution. To our knowledge, the study of vulnerabilities in a smart cities context is primarily theoret-
ical [24, 27] or has not been extensively explored from an empirical evaluation perspective. In fact, most of the
empirical studies on cybersecurity for cities explore practices, capabilities, policies and government involvement
[34]. In this article, we attempt to create a baseline to allow the stakeholders of a city to compare their standing
and exposure against cities with similar profiles and characteristics. This is performed by consolidating and cor-
relating (mostly orthogonal) data from two types of sources: independent studies on the level of achievement and
maturity of a city becoming smart, and actual data from available online, potentially vulnerable devices. With
regards to the former, we adopted the most to date and accepted surveys and metrics assessing smart cities on a
number of dimensions. With regards to the vulnerabilities and exposures we employed and expanded the ENISA
2018-2019 vulnerabilities dataset by extending the date rage of collection of vulnerabilities, including city expo-
sure information. Through a grounded theory approach we correlate such information with the other established
third party research using city metrics. We focus on vulnerabilities that correspond to actual devices as captured
and indexed by the Sentient Hyper-Optimised Data Access Network (Shodan), an online database that is
periodically updated with device exposure information. This approach is twofold; first, it would allow a local au-
thority (who may be also running a smart city data centre) to gather and generate actionable threat intelligence
at an operational level that can also help them to conduct a cyber-physical risk assessment. Second, it will help
the city to understand the local and wider threat landscape and prioritise its synergies and collaboration efforts
with cities that have a similar exposure profile and alike constituencies. By creating the aforementioned baseline,
the respective decision maker would be in a position to develop a contextualised narrative by enriching their
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position with specific geo-political and social context and therefore make informed decisions on their vulnera-
bility management processes and cybersecurity investment in general. For example, we argue that more mature

smart cities—that is, in terms of achievement of a smart city agenda—would need to maintain and strictly adhere
to vulnerability management plans, as in the opposite case they are open to an assortment of threats, including
hybrid ones, that can directly affect the safety and well-being of their citizens.

The rest of this article is structured as follows. In Section 2, we introduce the concept of data-driven Circular
Economy for the benefit of the reader who is not familiar with the concept. We particularly focus on data-driven
circular cities, as these subscribe to the interconnected networks and cyber-physical systems paradigms, thus
elevating significantly the impact of a vulnerability. Section 3 describes and elaborates on the smart/circular
city maturity model, to illustrate the need for vulnerability contextualisation. Section 4 describes the proposed
approach by detailing the methodology and dataset used, the analysis and discussion on the findings. Section 5
summarizes the main findings and outlines areas for future research.

2 FROM TRADITIONAL CITIES TO SMART CITIES, TO CIRCULAR CITIES

The transition from a traditional to a smart city is not a new concept; however, it has come to the spotlight during
the recent years. Furthermore, many ICT enablers have reached a maturity level that allow the realisation of the
smart city concept. The International Telecommunication Union (ITU) alone in a recent survey captured
over 100 definitions for the term [42].

The term smart city is not the only one to describe a technologically evolved environment. There are many
other terms, like wired city, connected city, intelligent city, digital city, and so forth [31]. Alongside these defi-
nitions, a stream of research focuses on defining not only the dimensions that would characterise a city smart,
but also to measure the level of achievement across these dimensions, that is captured and described under a
maturity model.

From a systems perspective, a city can be viewed as a complex system that is continuously evolving, with all
of its components being organised and interconnected to perform particular functions or purposes. A smart city
can be viewed as a system of systems [23], a Socio Technical System (STS) [6] and a Cyber Physical System

(CPS) [36]. An STS comprises of the users and/or human assets, who interact with the city infrastructures in
meaningful ways, to receive a service or to contribute to a city’s function. User/human interactions are related
to the exchanging of information between both the physical and the cyber plane. Furthermore, users interact
with each other.

However, a Cyber Physical System consists of computation and control components on the one hand and
physical devices and intelligent assets on the other. The intelligent assets can have varying levels of “importance”
in the system, assuming different roles and offering services of different levels of criticality. CPS are mostly
implemented for critical infrastructures and industrial control systems; however, during the past few years they
have been adopted to many other domains including smart cities. A citywide deployment of a CPS must be
conducted in a way to ensure sustainability, safety, and security.

A particular milestone for massive CPS deployments is the establishment of the IoT paradigm rooted in 2008,
which marked the introduction of technologies like embedded systems and wireless networks. In essence, smart
devices, sensors, and actuators are employed to produce, collect and exchange information using wireless net-
works; at the same time machine learning approaches were introduced and employed [2] to create added value
out of the produced big data.

In general, smart city is a concept that primarily refers to the adoption of technological enablers to enhance the
quality of services that the city provides, with the overall aim to improve the citizens’ quality of life. According
to Reference [31], the majority of smart cities projects include four main attributes that are common, namely
sustainability, quality of life, smartness, and urbanisation [38].

It is argued that the adoption of technological enablers in a citywide scale is a key direction for achieving
sustainability. Some of the major challenges that come along with urbanisation include the waste management,
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air and noise pollution, adequacy of resources, traffic issues, citizens health and mental issues, transportation,
and so on. The use of technological approaches has changed the conventional concept of a city. Moreover, var-
ious studies [19, 38] that have as main topic the correlation between urbanisation and smart cities, came to a
conclusion that the new opportunities through the usage ICT influence positively the urban wealth.

2.1 Data-driven Circular Economy

As discussed, a smart city should be the epitome of sustainability, since any deviation from this would entertain
scenarios of dystopian futures. Since sustainability is one of the main business and societal drivers for transform-
ing a city into a smart one, there is a requirement to develop a suitable agenda and accompanied business models.
The Circular Economy (CE) paradigm is viewed as the sustainability approach, whereas ICT may provide the
means.

The term Circular Economy is used to describe the economic model where everything has value and nothing
is wasted. This means that assets like materials, devices, services, and generally resources are not disposed after
the first usage, but they are used again and again for a variety of purposes. The main goal of Circular Economy
is to maintain their utility without producing new assets or wasting them before the end of their lifecycle [12].
The main idea behind Circular Economy is to design products in a smart way so as to be used during their
whole lifecycle, be re-used and re-paired to extend this lifecycle and re-manufactured to create new products
[12]. Information and Communication Technologies can facilitate Circular Economy as it can provide useful
information on assets, their location, the condition, and the performance of assets, in real-time and over time.

According to the Ellen MacArthur Foundation, “A Circular Economy is one that is restorative and regenerative
by design, and that aims to keep products, components and materials at their highest utility and value at all time.
It distinguished between technical and biological cycles as an attempt to minimise leakage and wastage” [32].
Adopting nature inspired “techniques” on waste recycling/upcycling and reuse, Circular Economy is built on the
premise that every material can be reused in this way to be functional again as it will have the opportunity to be
regenerated and restored. Some of the main benefits of Circular Economy involve substantial net material savings,
reduced exposure to price volatility, increased economic development, increased innovation and job creation
potential and increased resilience in living systems and in the economy [32]. To achieve the aforementioned
highest utility and value, one would need to enable and maintain information flows, so that timely and fine-
grained decision making can take place. This in turn leads to accepting that a CE model would need to be data
driven to achieve its goals:

Definition 1. Smart, or data-driven Circular Economy is the utilization of reactive, adaptive, autonomous or
collaborative objects and systems for economic and environmental value creation [26].

In a data-driven CE ecosystem, the management of finite resources and intelligent assets is coordinated by
data flows. Data in turn are also considered to be assets and of a high value. Reciting Clive Humby, who back
in 2006 coined the phrase “data is the new oil” in an effort to stress that data have become the most valuable
resource, it can be seen that CE would need to be data enabled, or alternatively data driven, to be able to deliver
what it evangelises.

The interplay of CE with the intelligent assets and particular IoT devices leads to the creation of data structures
and patterns, to enable a “circular-by-design” approach. Currently, the prevailing pattern for managing an asset
is that of Location, Condition, Availability. From these three properties, Location and Availability
refer to the geolocation and the state of the asset. These two properties have already proven sufficient to lever-
age highly profitable data-driven CE business models, such as in the case of Uber and AirBnB. The Condition
property is more esoteric to CE itself as it is used to describe the state the respective asset is in terms of its life-
cycle. An example definition of this property is {Condition::good|require_repair|recycle}. A complete
treatment of this concept is presented in Reference [29].

Digital Threats: Research and Practice, Vol. 3, No. 4, Article 40. Publication date: December 2022.



Vulnerability Exposure Driven Intelligence in Smart, Circular Cities • 40:5

Fig. 1. A maturity model for a smart, circular city (adapted from Reference [12]).

3 A SMART CITY MATURITY LEVEL

A maturity model helps in structuring and streamlining the “CE readiness” of a city against a set of dimen-
sions. Maturity models are widespread in the field of organisational performance as they identify organisational
strengths and weaknesses as well as providing benchmarking information. Popular maturity models include
OPM3, CMMI, P3M3, PRINCE, BPMM, and Kerzner’s Project Management Maturity Model [22]. These models
may differ in terms of factors, number of levels as well as application domains [22].

In this work, we adopt the maturity model for smart circular cities as described in Reference [12]. This maturity
model is suitable for illustrating the technological roadmap for a city adopting a CE agenda. In Figure 1, the
maturity model paired with the potential impact of vulnerabilities in the respective level is outlined.

According to this maturity model, the progression from an instrumented to a responsive city involves the
following stages [12]:

• The Instrumented City. This is the first stage of the transition, where the city embeds constellations of
sensors and devices on the physical infrastructures (e.g., bridges, street lights, gas pipes, the grid). At this
stage, the devices perform basic tasks for specific purposes. Almost every device in a city environment
is equipped with sensors that perform constrained tasks and has been employed for narrow and specific
purposes.
• The Connected City. This is the stage where connectors between the different constellations are in place.

The existence of these connectors does not necessarily involve any actual exploitation or systematic util-
isation of the available data. The stakeholders are still constrained at this stage, consuming data within
their respective sector or domain, despite the increased heterogeneity of the data.
• The Smart City. This refers to the stage where all assets are fully interconnected and actionable informa-

tion is available to the stakeholders who can reach high levels of situational awareness. The activities of a
smart city environment take place as “back office” operations. Infrastructure operators, utility and service
providers can perform intelligent processing and the local government stakeholders can perform global
processing and maintain an overview of the city’s operations. A smart city is a heterogeneous environment,
with different purpose devices and technologies can be used by various users, stakeholders and citizens.
Citizens and visitors can use their personal devices, such as smartphones and tablets. For this reason, the
amount of data that is produced is vast and facilitates different aspects and services of a city.
• The Responsive City. This stage could be considered as the city’s “self-actualisation” level, in resem-

blance to Maslow’s hierarchy of needs. A responsive city could be considered as a stage where every part
of the city is in a complete sync with its counterparts. This means that humans, intelligent assets and all
the other components have access to information in real time, which will be in an appropriate and acces-
sible format. In this way, intelligent assets and smart city infrastructures will be in a position to dynam-
ically reconfigure network and physical structures when it is necessary to address the citizens needs, by
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balancing supply and demand. Ultimately, the city is able to adjust itself depending on the circumstances,
as living organisms do. A representative use case is the increased gatherings of people, such as social
events or incidents, where the safety of citizens and visitors is at stake. Furthermore, the city itself can
address and respond to the needs of people before these needs are expressed and avoidance of difficulties,
before they take place. Offering capabilities to the city’s assets to participate in real-time decision making
by reconfiguring its resources to meet the needs of the stakeholders and beneficiaries, defines in essence
the sentient city.

It is fairly evident that reaching the responsive city level of maturity would require—from a technological
perspective—to achieve high levels of connectivity and integration with software services that are delivered in
the whole vertical. A representative example is Software Defined Networks, where the network resources and
topology is fully defined and controlled by software. As such, the impact of a vulnerability being exploited at a
particular maturity level is expected to increase, as one traverses from a lower to a higher level. This suggests
that a vulnerability will carry a larger amount of risk, the higher the maturity level this vulnerability will be
placed on. More formally, if Rm (·) is some risk calculation function withm denoting the maturity level, then for
a particular vulnerability v the following should hold:

Ri (v ) ≤ R j (v )

for i < j. This means that if two cities have an identical vulnerability profile, then the city with the highest
maturity will also have the highest risk. This is captured in some quantitative vulnerability measurement sys-
tems such as the Common Vulnerability Scoring System (CVSS) [17, 28], where the resulting severity of a
vulnerability can be adjusted and subject to the so-called environmental variables. To the best of our knowledge,
the development of a methodology for producing a suitable vulnerability scoring system with an environmental
metric group for a smart city infrastructure remains a research challenge, see, for example, Reference [45] where
although a concise threat and risk model for smart cities is proposed, there is limited evidence on how the envi-
ronmental CVSS score dimension is populated. In fact, the CVSS measurement system itself has received criticism
from the research and practitioner communities [18, 21] with alternatives being proposed (see, for example, Ref-
erence [39]) but despite its shortcomings, it has still been applied to and validated through a variety of contexts
and scenarios [10]. In any case, the two main characteristics of a risk-based approach for a vulnerability-driven
assessment system would require a vulnerability measuring system and a risk methodology that considers inter-
dependent networks [35]. While these aspects are outside the scope of this work, we argue that the narratives
included in the proposed approach could be adapted to develop a suitable risk management approach informed
by vulnerability exposure.

In the remainder of this article, we conduct an empirical evaluation of the current state of vulnerabilities as
these exist in cities. We explore the existence of potential differences or patterns of vulnerabilities in a collection
of cities that can be used to infer practices, behaviours, and other risk factors.

4 ACTIONABLE THREAT INTELLIGENCE THROUGH VULNERABILITY MANAGEMENT

4.1 Datasets: Limitations of Research

For this research, datasets from two primary domains were considered. The first domain covers the independent
factors or variables of the study and is primarily composed from the descriptors of cities as expressed by the cities
in motion research [7]. The dependent variables are primarily covered from the cybersecurity dataset. To this
end, we extended the ENISA vulnerabilities 2018–2019 dataset [15, 16]. This dataset comprised contextualised
vulnerability data from a number of sources. Starting from the curated list of vulnerabilities in the NVD database,
these were enriched with tactics and techniques as specified by the ATT&CK framework1 as well as the exploit

1https://attack.mitre.org.
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Table 1. Dataset Description

Vulnerabilities City metrics

source features source features
NVD [33] CVE, CVSS Cities in Motion [7] Ninety-six variables over nine

indicator categories, including
population, human capital, technology,
city in motion score

Shodan #vulnerable devices,
geolocation

IMD [8] adoption of digital technologies,
citizen perceptions, smart city ranking

MITRE [30] CWE C40 [11] leading CE cities

database.2 Although the original ENISA dataset contained also information from Shodan on the number of ex-
ploits, it did not include information on the actual exposure—that is, a view of actual devices that are potentially
vulnerable to a particular exploit. For the purpose of this research, we extended the ENISA dataset to contain
such information.

Moreover, the geolocation of the IP addresses of the vulnerable devices was used to pivot between the vul-
nerability and city/country domain data. As such, we ended up with a dataset of vulnerabilities attached to
devices that in turn were mapped to geographical locations. Hence, the accuracy of geolocation is limited and
bounded by Shodan’s geo-mapping process. To this end, to avoid ambiguity on the city data and overcome any
city synonyms, the queries for the geolocation searches consisted of the (country, city) tuple.

A noteworthy limitation of this research is the fact that there was no identification information on the type
of service or direct attribution of ownership of the vulnerable devices. This means that we observe the city as
a whole rather than distinguishing the different services, sectors (e.g., separation between critical infrastructure
and household devices and so forth); such information is crucial in a fully blown interconnected networks ap-
proach. In addition to this, the collection does not cover IPv6, and as such a potentially substantial volume of
IoT devices was not taken into consideration. This may affect the actual results of relatively more mature smart
cities and especially those that have already deployed 5G, so we accept that the findings in the present study
represent the best case scenario and the lower bound of the attack surface. In addition, exclusion of IPv6 would
limit the scope to more “traditional” and core services. Nevertheless, this limitation, together with the geoloca-
tion approach shows the need for a city’s NOC/SOC equivalent to invest in asset discovery and a register that
from a practical perspective this is a non-trivial task. Furthermore, any IP addresses exposing devices through
VPN or TOR networks were not filtered out, as these were not expected to introduce any significant bias in the
analysis.

It should be noted that, as with all exercises of joining data from different sources, the end dataset may have
sparse entries. Although there are approaches to increase the sample population of a given feature with a low
number of data points (see, for example, ML-based dataset imputation applied on the ENISA dataset [37]), this
was not required for this study. A summary of the features of the resulting dataset used is presented in Table 1. In
addition to the vulnerabilities and city data, we also employed ITU’s Global Cybersecurity Index, GCI [43]. This
metric reflects a country’s commitment to cybersecurity and is compiled from 25 measured indicators across five
pillars: legal, technical, organisational, capacity building, and cooperation.

Another limitation of this study is the volatility of the results due to the nature of the live vulnerability ex-
posure data. More specifically, the data recorded from Shodan, a search engine designed to gather and index
information about internet-connected devices and systems, represent a snapshot in a particular time. Shodan’s
command line interface allows users to develop scripts in Bash language to automate the collection of results.

2https://www.exploit-db.com/about-exploit-db.
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The scripts that were created to automatically scrape the data contained several queries needed to collect the
desired data. Apart from the queries to retrieve port, device type, product type and protocol, the following four
queries were the most important:

• vuln: This query returns devices vulnerable to a given vulnerability such as MS17-010 or CVE-2017-15906.
• count: This query returns the total amount of devices. For example, in November 2020, 7,647,885 devices

were vulnerable to CVE-2017-15906.
• country: This query returns the number of devices from a specific country.
• city: This query returns the number of devices from a specific city.

For the purpose of this study, the vulnerability data were used to explore whether potentially significant
relationships may exist between these types of data and other, orthogonal dimensions (such as behavioural and
economic variables). In a real-life deployment, it would be more appropriate to collect and maintain historical
vulnerability data to run longitudinal research that is expected to provide actionable information of a higher
quality. To this end, other vulnerability exposure databases can be considered such as Censys3 and Zoomeye4;
it is noteworthy that the latter contains historical exposure information. In addition, as the exposure metric
is based on Shodan’s methodology of assigning CVEs to devices and services, the accuracy of the results and
findings are bounded by Shodan’s disclaimer of implied vulnerabilities.

Last, with regards to the quantitative measures of vulnerabilities, this study inherits the limitations and issues
surrounding the CVSS scoring convention. Specifically, although the CVSS approach is in principle founded on
widely acceptable methodologies and is considered trustworthy [21], its use and applications introduce conflicts
with regards to the assignment of the actual values and ground truth. Indicatively, the National Vulnerability
Database that can be viewed to maintain an authoritative record of CVSS scores shows a substantially low corre-
lation of some of impact measures (Confidentiality, Integrity, Availability) between CVSS version 2 and version 3.
More specifically, the correlation of integrity and availability between the two versions were found to be 0.34
and 0.38, respectively [15].

4.2 Analysis and Findings

The analysis that follows is twofold. First, we use the available datasets as means for evaluating whether these
published, available data are aligned with, or can interpret or support assumptions and policy directions as stated
in the recent literature. Secondly, we present a series of approaches smart city stakeholders could adopt when
developing vulnerability management capabilities.

The analysis also follows a top-down approach. We initially analyse data on a city aggregate level and evaluate
the counties vulnerability exposure by considering additional macroeconomic measures. We then move on to
city comparisons and finally we focus on the cities themselves.

To develop meaningful comparisons, we use the population variable to normalise the vulnerability data. There
are two approaches for doing this, namely dividing the vulnerability variables by the population, or adding the
latter to the set of independent variables in the regression model(s). Furthermore, we define the vulnerability
exposure Ec of a city or country c as

Ec =
∑

v ∈Vc

|v | ∗ bv ,

whereVc is the multiset of discovered vulnerabilities for c and bv is the CVSS base score of vulnerabilityv . As the
vulnerability exposure failed the Kolmogorov-Smirnov (K-S) normality test, we consider the natural logarithm
values ln(Ec ) instead, as this variable follows a normal distribution (K-S significance: 0.604), which allows the
construction and testing of the regression models.

3https://censys.io/.
4https://www.zoomeye.org/.
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Table 2. Country Regression Model

Model Info Model Fit

Observations:177 F (3,173) = 27845, p = 0.000
Dependent variable: log_exposure R2 = 0.326
Type: OLS Adj. R2 = 0.314

Coefficients Collinearity stats

B std. error β T p Tolerance VIF
intercept 11.177 0.268 41.640 .000

GDP 2.973e-005 0.000 0.218 2.917 .004 0.699 1.431
GCI 3.939 0.852 0.353 4.623 .000 0.667 1.498

population 3.501e-009 .000 0.210 3.232 .001 0.921 1.086

4.2.1 Scope: Country. A country level study can facilitate the contextualisation of the vulnerabilities exposure
as this can bring in country indices and factors, which to an extent encapsulate the historical efforts and profile
of the country on geo-pollitical matters. Analysis on a country level can be a good reference and baseline to build
a pragmatic cyber situational awareness capacity. For instance, a city’s investment budget is normally comprised
of funding external to the city (funding of national or international origin such as from international research
bodies or other organisations) as well as through income from its primary stakeholders (citizens, businesses) in
the form of a tax. Assuming that the GDP of a country is a factor that relates to the cybersecurity investment
and capacity [9, 13].

Table 2 summarizes the results of the regression analysis on the vulnerabilities exposure against the inde-
pendent variables, GDP, GCI, and population. The Variance Inflation Factors (VIF) are all less than 10—or,
alternatively the Tolerance values are greated than 0.1—showing that there is no co-linearity between the inter-
pretive variables. The adjusted R2 is significant, where it is shown that the Global Cybersecurity Index is the
strongest of the three in explaining the level of exposure. More specifically, although the GDP and population
result in the increase of the attack surface, the GCI also follows a positive correlation overall. In essence, as the
GDP increases so does the investment in networked devices, but countries do also seem to invest in improving
their cybersecurity capabilities at the same time, as captured by the GCI. However, this does not suggest that
all countries follow such practice; outlier countries who are on a low GCI score with high exposure may not
have an effective vulnerability management plan. At the time of writing, the countries with the highest expo-
sure and lowest GCI are Cape Verde, Palau, and Eritrea. Interestingly, at the time of writing (Q1 of 2021), the
government of Cape Verde approved the establishment of a national CSIRT and a National Cybersecurity Centre
together with the introduction of a legislative framework [40]. This is a timely development, as a country with a
high exposure and a low cybersecurity investment can potentially be an easy target and the adoption of security
controls and measures is imperative.

It should be highlighted that the regression model described above is vulnerability management practices
agnostic; a high GCI score indicates that there may be a vulnerability management scheme in place, but there is no
explicit metric for that—other than the generic technical and capacity building pillars. As such, the government
of a country could use this model to benchmark their position and compare where their actual exposure against
the estimated value. This in turn would allow them to strategise and prioritise on a vulnerability management
program.

Another metric showing the cybersecurity effort in relation to the exposure is the log of the ratio between
Ec and GCI. This metric is normally distributed (Shapiro–Wilk test significance: 0.056), with a mean of 14.685,
standard deviation of 2.28 and within the range of [9.73, 20.92]. Countries placed on the low end of the distribution
have potentially over-invested in cybersecurity considering their actual attack surface, whereas countries with
a value close to 20 may be overexposed.

Digital Threats: Research and Practice, Vol. 3, No. 4, Article 40. Publication date: December 2022.



40:10 • P.-D. Jarvis et al.

Fig. 2. Pairwise comparisons of the four city classes.

4.2.2 Scope: City. Moving on to a cities view, a broad analysis considers the cities based on their current
maturity level and agendas. To this end, we considered four classes of cities:

Class 1: the plain city, referring to those cities that have not indicated progress or intention to implement a
smart city agenda;

Class 2: the circular city, referring to cities that have a CE agenda, but have not explicitly considered to
implement this adopting a clear data-driven approach;

Class 3: the smart city, referring to cities that are evaluated and included in the IMD or Cities in Motion study;
Class 4: the both city, referring to cities that are smart and also have a CE agenda, as specified in the C40

dataset.

As it is advocated that CE cannot be delivered without the data-driven dimension employing technological
ICT enablers [3, 5], we argue that cities that have a set CE agenda, have also a more definitive and mature
technological roadmap than other cities.

Figure 2 summarises the pairwise vulnerability means comparisons of the different classes of cities. In all cases
the average CVSS base score revolves around the mid 7s with the plain cities exhibiting the highest mean and
standard deviation. With regards to these comparisons, all cities show significant differences except plain and
circular cities where their differences were not significant.

However, this first exploratory analysis is limited as a comparison of means is a static approach. In addition,
the sample of the cities with a circular only agenda is relatively small (N = 5) so we consider a further class
motion that contains all cities that are showing early signs of “smartness” (very low in the maturity scale), yet
clearly higher than the plain cities who have not declared any smart city initiatives. The city type remains an
ordinal, discrete variable with the ascending order of plain, motion, smart, both and in this case includes
all cities that have been included in the independent studies and respective datasets. Such arrangement allows
the construction of the following hypotheses:

H1 The city type moderates the vulnerability exposure such that it is higher for smarter cities than plainer
cities.

H2 The vulnerability exposure in cities increases with their population.
H3 The vulnerability exposure in cities decreases with their level of technology.

The focus of H1 is on the overall exposure rather than the severity score. This is an assumption stemming
from the fact that smarter cities become more dependable on technology; technology is more pervasive in smart
cities and the cyber attack surface is expected to be bigger than in a plain city. However, for H3 we assume that a
high technology score will have a negative relation with exposure. This is also in agreement with the particular
definition of this indicator in the Cities in Motion study, as it includes indicators that measure innovation, the web
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Table 3. City Regression Model 1

Model Info Model Fit

Observations:170 F (3,166) = 16727, p = 0.000
Dependent variable: exposure R2 = 0.231
Type: OLS Adj. R2 = 0.217

Coefficients

B std. error β T p
intercept 793555.776 743060.891 1068 .287
population .187 .038 0.348 4891 .000
technology −20047.553 4737.873 −.304 −4231 .000
city_type 775686.647 276255.132 .196 2808 .006

Table 4. Regression Model 2

Model Info Model Fit

Observations:171 F (6,164) = 16290, p = 0.000
Dependent variable: exposure R2 = 0.372
Type: OLS Adj. R2 = 0.349

Coefficients

B std. error β T p
population .190 .040 .414 4746 .000
technology −19471.425 4977.282 −.543 −3.912 .000

motion 1706746.558 621010.315 .278 2.748 .007
smart 2175288.130 496238.743 .405 4.384 .000
plain 2180776.000 763190.887 .220 2.857 .005
both 5468921.448 975307.816 .364 5.607 .000

index measuring the economic, social and political benefit obtained from the Internet as well as the registered
users on social media, broadband speed, WiFi coverage and so forth. On face value, some of these indicators
may be expected to increase exposure, but we also expect that a high technological achievement also requires
talent and expertise in cybersecurity in providing a secure and safe infrastructure to the citizens. Nevertheless,
as technology is one of many factors that is expected to influence the vulnerability exposure, it may not be
sufficient to “drag” exposure down; it is well accepted that cybersecurity cannot be addressed by solely technical
means and other factors (such as human aspects when the subject of the study is a socio-technical system) need
to be taken into consideration.

In Tables 3 and 4, the regression results are presented. In model 1, the independent variable city_type refers
to the four city classes (with circular being replaced by motion). This variable is exploded to its different types
in model 2 to validate H1. Note that there is no intercept in this model to avoid multicollinearity due to the
explosion of the type variable.

The results are significant and confirm the hypotheses H2 and H3. For H2 in particular, we can see that it
also holds by observing the β coefficients that confirm the order of the city types in accordance to our initial
hypothesis, with the smarter cities being more exposed than the plainer cities. This in turn confirms also the fact
that technology alone is not sufficient to address cybersecurity issues.

Figure 3 shows the results of hierarchical clustering (Ward’s method) of vulnerabilities on the cities that have
declared a smart and circular agenda (class both). This information can be actionable in two ways. First, it would
allow the local authorities to prioritise and team up with those authorities of the cities that seem to have similar
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Fig. 3. Hierarchical clustering of cities having a smart and CE agenda (class:both).

vulnerabilities and exposure profile. Such intelligence could contribute to information sharing and operational
cooperation activities. Assuming that CSIRTs on a local authority level are established—say, through forming
their own local authority CSIRT network - the councils could form operational cooperation structures with se-
lective peers. At the time of writing, the closest CSIRTs to supporting a local authority are primarily operators
of essential services (such as healthcare, transport, utiliy services and so forth, see ENISA’s CSIRT interactive
map5). Second, any attacks mounted to a city of a similar vulnerability profile could act as an early warning
for the unaffected yet similar city. The absence of geo-political contextualisation of the data at this level would
restrict the benefit of this approach to thwarting scatter-gun type of attacks, such as Mirai and Wannacry, which
had devastating consequences not to the economy but also to safety. In essence, such an approach would help
a local authority to effectively triage across the hundreds of cities and establish information sharing with peer
authorities for the purpose of increasing their situational awareness and improving their responses to cybersecu-
rity incidents. As an example on how the vulnerability exposure information can be leveraged from the clusters
shown in Figure 3, Paris and Amsterdam are grouped under the same cluster and as such exhibit similarities
on potential vulnerabilities. This would trigger an additional analysis and study to see why these two cities are
grouped together and an example direction would be to inspect the exposure profiles against the types of devices,
protocols and whenever possible, sectors. Both Amsterdam and Paris have made significant progress in smart
building infrastructures, with Amsterdam maintaining the most celebrated circular office building to date. “The
Edge,” is designed and built for the headquarters of Delloite in Amsterdam and is considered the most intelligent
office building in the world [44] with 28K sensors, and a state of the art data centre, constantly monitoring and
controlling the internal environment. Paris, however, has a concentration of almost half of innovative startups
in the smart building industry [4].

Table 5 contains the results of a factor analysis performed on the top 20 cities with the highest exposure and
potential exploitability to vulnerabilities. The analysis produced three factors (groups) in total, with a signifi-
cantly high alpha (over 0.7) in all cases, showing strong internal consistency and that the respective dimensions
(cities in our case) can be reduced and represented by their assigned groups (factors).

In Table 6, the weakness profile of the four city classes is shown. Although there seem to be differences
in the distribution of the weaknesses across the classes, this is an oversimplified overview offering a coarse
level comparison between these city classes and needs to be further contextualised and substantiated to extract

5https://www.enisa.europa.eu/topics/csirts-in-europe/csirt-inventory/certs-by-country-interactive-map.
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Table 5. Factor Analysis (Loadings) of Top 20 Cities with the Most

Potential Vulnerabilities

Factor 1 Factor 2 Factor 3
Ashburn 0.7724 Sydney 0.7245 Chicago 0.9596
Tokyo 0.6910 Central 0.8390 Miami 0.8154

London 0.9050 Incheon 0.8180 Buffalo 0.9574
Dublin 0.8811 Johannesburg 0.9552

Columbus 0.8197
Singapore 0.8458

Amsterdam 0.9710
Mumbai 0.8992

Paris 0.8611
Montreal 0.7529
Moscow 0.7682
Dallas 0.7713

Nuremberg 0.9840
Cronbach’s alpha 0.9614 0.9335 0.9130

Bartlett’s sphericity test: chi square: 24144.232 p-value: 0.000

Table 6. Weakness Profile per City Class

CWE plain circular smart both
20*: Improper Input Validation � �
399: Resource Management Errors � �
119*: Improper Restriction of Operations within the Bounds of a Memory Buffer � �
384: Session Fixation � �
416*: Use After Free �
787*: Out-of-bounds Write � �
287*: Improper Authentication � � �
476*: NULL Pointer Dereference � � �
732*: Incorrect Permission Assignment for Critical Resource �
444: Inconsistent Interpretation of HTTP Requests �
126: Buffer Over-read �
200*: Exposure of Sensitive Information to an Unauthorized Actor �
320: Key Management Errors �
362: Concurrent Execution using Shared Resource with Improper Synchronization �
390: Detection of Error Condition Without Action �
400*: Detection of Error Condition Without Action �

*In top 25 most dangerous software weaknesses list [30]: 75% 83% 80% 16%

actionable information. A metric prescribing the percentage of most dangerous weaknesses (as agreed by the
community) would offer opportunities for comparison, which can also be performed on a city level granularity,
comparing like-to-like cities (in terms of economic or other maturity dimensions). Interestingly, the cities that
have both a smart and circular agenda have the least percentage of most dangerous weaknesses. This finding, is
in agreement with the results in Figure 2, where the both class shows the lowest mean across all cities, although
the weakness profile data refer to unique counts of a particular weakness per city rather than the totals (as in
the case of the mean CVSS base scores).
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Table 7. Backward Regression Results

Model Info Model Fit

Observations:173 F (3,169) = 5738, p = 0.000
Dependent variable: exposure R2 = 0.163
Type: OLS Adj. R2 = 0.148

Coefficients

B std. error β T p
intercept 1849657.449 599408.291 3.086 .002

human_capital −13431.430 4856,886 −.204 −2.765 .006
smart 1103603.507 501319.562 .166 2.201 .029
both 4214523.878 1036497.640 .296 4.066 .000

4.2.3 Scope: Human Aspects. Notwithstanding the fact that the scope of software vulnerabilities and ex-
posures lies within the realm of interconnected devices, an analysis of a sociotechnical basis is a fundamen-
tal approach when assessing factors that are potentially capable of moderating and regulating these vulner-
abilities from a non-technical approach. To this end, Table 7 shows the results of a backward stepwise re-
gression with exposure being the dependent variable; the initial dependent variables were human_capital,
social_cohesion, technology as defined in Cities in Motion as well as the three city classes: plain, smart,
and both. The circular class was omitted again due to the low number of observations. Interestingly, the back-
ward regression completed after four rounds (models) where in every round a variable was removed. The end
result included human_capital, smart, and both. This is a remarkable result showing that smart cities, smart
cities with a CE agenda and human capital are significant in predicting the vulnerability exposure, even more
important that technology maturity. From the β coefficients, smart and circular cities are more vulnerable than
smart cities (with no circular agenda), showing indeed that smart, circular cities are likely to be more technologi-
cally “hungry,” highlighting the data-driven nature of CE, but at the same time are more exposed. This finding can
also be used to validate, to some extent, the adopted maturity model for smart, circular cities. Moreover, the nega-
tive sign of the β coefficient for human capital shows an inverse relationship between this factor and vulnerability
exposure. Although not surprising, the significance of this finding is appreciated if we look into the rationale and
indicators of the human capital construct. From the Cities in Motion study (Reference [7], p. 11): “The main goal
of any city should be to improve its human capital. A city with smart governance must be capable of attracting
and retaining talent, creating plans to improve education, and promoting both creativity and research.”

Moreover, the human capital variable is comprised of 10 indicators most of which focus on education and cul-
ture, such as number of universities that are in the top 500 list, expenditure on education per capita, international
movement of higher-level students, but also number of theatres per city, expenditure on leisure and recreation.
All in all, informed by this model we would dare to argue that a “sophisticated city is a (potentially) secure city.”

Interestingly, all the above empirical findings can be summed up by the position of Reference [27], referencing
[14, 25]: “considering the way humans, government, and technology interact, security education is desirable to
strengthen the knowledge of government officials and citizens with regard to cybersecurity issues.” Such posi-
tions reinforce the complex and interdisciplinary nature of cybersecurity; starting from studying the vulnerabili-
ties and an exposure of a particular conurbation that, in essence is dependent of and defined by a wealth of factors,
we discover significant relationships and dependencies of the exposure and many of these factors. The latter are
both technological and human, as measured by the independent studies. Having created a model showing the
expected exposure of a city and comparing this against the actual exposure (as measured by services like Shodan,
which was used in this current study), would allow the city’s planners, stakeholders and policy makers to reflect
on their particular case by factoring in their own geo-political context and take informed decisions on the re-
quired cybersecurity investment and vulnerability management and incident response capabilities in particular.
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It is also worth reporting that the regression was also ran with exposure_per_person being the dependent
variable. In this case, the most significant model contained the factors technology, both and plain. In other
words, if the size of the population is used to normalise the vulnerability exposure, then the technology factor
becomes more prevalent.

5 CONCLUDING REMARKS AND OUTLOOK

Extending the scope of data by including feeds from sources orthogonal to cybersecurity can offer added value to
cyber threat intelligence and increased situational awareness. We demonstrated that the injection of open data
from published smart city studies into the vulnerabilities domain can offer insights into the factors affecting the
vulnerability exposure of a particular socio-technical ecosystem. In particular, this work focused on smart cities
and to this end the vulnerability exposure was considered against a smart city maturity model to enable the devel-
opment of a meaningful and contextualised risk-based approach using vulnerability impact and exposure data.

Although the datasets used were from independently conducted studies or sources, we observed statistically
significant relationships. The underlying hypotheses were confirmed and there were no instances where the
data contradicted widely accepted beliefs and positions of the cybersecurity community, such as the increased
exposure of an advanced smart city and the fact that investing on the human capital is key to reducing the
cybersecurity risks.

The proposed approach has a wide range of research directions and practical implications. Cities are challenged
in the ways they fundamentally operate; their governance and business models are substantially revised to meet
the expectations of their citizens who are congruent to end users of the introduced ICT infrastructures. In such
deployments of devices on a massive scale, cyber situational awareness and incident response capabilities would
need to be adequately defined from the outset. As such, identifying a common ground between cybersecurity
approaches and local governance is a significant activity. Practices such as establishing a city level CSIRT and
coordination with other peer CSIRTs, cyber certification schemes for smart city products and services are a few
examples of activities for improving the risk posture and controlling the vulnerability exposure of a city.

Short-term future research involves the development of an integrated model of vulnerabilities in smart, circular
cities by performing structured equation modelling on the indicators of the non-vulnerability related data, such
as those described in the Cities in Motion and the IMD world digital competitiveness data that include the citizens’
perceptions and adoption of smart city technologies. From the vulnerabilities perspective, further enrichment
of the data with standardised CTI indicators such as ATT&CK’s techniques and tactics, CAPEC and so forth, is
expected to offer additional insights on the city’s exposure and facilitate more efficient decision making.

A limitation of this research is the coarse level of granularity on the city data and absence of context, since
every city and country have their own distinct paths and trajectories in the geo-political plane. Although from
a vulnerabilities and exposure perspective there may not be significant discriminators; however, from a risk per-
spective there can be considerable contrasts. To appreciate the subtle differences, we can distinguish between
scatter-gun type of attacks (such as Wannacry), and targeted, specific attacks (such as Stuxnet or the more recent
ransomware attacks on critical infrastructures, see the Colonial Pipeline attack) that are lately also acknowledged
as hybrid threats. Scatter-gun type of attacks do not discriminate by geographic location and the underlying prob-
ability of a successful attack would be comparable across all cities matching the right vulnerability profile. In this
case the impact of the (same type of) attack would be different, depending on the city maturity level, and the mod-
els proposed in this research can be used to both understand how a city performs against a baseline of alike cities,
but also to develop an incident response plan and decide on the prioritisation of information sharing with other
peer cities. With regards to the targeted attacks, the stakeholders should again compare their position relative
to the baseline and factor in their geo-pollitical parameters to assess whether their standing is adequate given
their context. A medium-term research direction that would allow the development of a incident response and
vulnerability management plan involves the introduction of sector specific device information to further enrich
the vulnerabilities descriptions. This will enable the study of vulnerabilities using theory and approaches from
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the interdependent networks domain. From an operational level, it will allow further interpretation and conse-
quently obtain more added value from the critical weaknesses (Table 6). Defining the boundaries of the different
constellations of subsystems and performing segmentation of the constituencies would allow the definition of
different risk areas (such as core critical infrastructure components to mobile ad hoc Machine-to-Machine as
well as end user/citizen realms) that in turn would enable the creation of more efficient resource management
capabilities and finer-tuned incident response capacity.

Last, enriching the datasets with finer-grained contextual and qualitative information (such as the geo-political
context) would enable a tighter coupling of the triptych comprised of vulnerability management, risk assessment
and incident response processes. The impact and severity quantification of the vulnerabilities would better be
reflected in the quantitative descriptors, such as the CVSS scores. As a future research activity, the first step
for capturing the different impact levels of a given vulnerability across the different cities would be through
the adjustment of the environmental scores depending on the smart city maturity level; this can be estimated
by using the regression models as presented in this work. Having an agreed or expected environmental score
for a given maturity level, it would be possible to allow some automated adjustments of a CVSS final score.
In principle, the higher the maturity level, the higher the CVSS environmental scores should be. However, by
introducing the city’s geo-political context, it would be possible to further tweak and refine the final score.
This would make the vulnerability severity and impact scoring system appropriate for feeding into the risk
assessment process. The residual risk in turn would then be considered for developing effective and appropriate
incident response capabilities. By maintaining the view of a smart city being an interconnected network running
critical infrastructures with a variety of stakeholders, the residual risk could be used for making a business case
of deploying CSIRTs on a city or local authority level. From a governance perspective we envisage such CSIRTs
to be placed below the respective National CSIRTs and at the same level of Law Enforcement entities and utility
providers, forming information sharing and cooperation networks on such layer. This would not only allow the
development of attainable and realistic vulnerability management processes, but would foster effective incident
response capabilities.
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