
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Efficient and Physics-based Facial Blendshapes based

on ODE sweeping Surface and Newton’s second law

Abstract—Online games require small data of 3D models for

low storage costs, quick transmission over the Internet, and

efficient geometric processing to achieve real-time performance,

and new techniques of facial blendshapes to create natural facial

animation. Current geometric modelling and animation

techniques involve big data of geometric models and widely

applied facial animation using linear interpolation cannot

generate natural facial animation and create special facial

animation effects. In this paper, we propose a new approach to

integrate the strengths of ODE (ordinary differential equation)

sweeping surfaces and Newton’s second law-based facial

blendshapes to create 3D models and their animation with small

data, high efficiency, and ability to create special facial effects.

Keywords—wireframe extraction, ODE sweeping surface-

represented 3D models, Newton’s second law-based facial

blendshapes

I. INTRODUCTION

Recently, the two most significant and interlinked
challenges, which limit the development of game production,
are geometric modelling and computer animation. As the game
industry focuses more and more on scene realism and
performance, the game capacity has shown geometric multiplier
growth especially after the 3D model techniques have been
widely used. For instance, Super Mario Bros., released in 1985,
spent only 64 KB to store the whole game. After over 10 years,
Super Mario Bros. Deluxe, released in platform GBC in 1999,
took 342 KB, which is only approximately 6 times the size of
the former game, remaining the 2D scene. However, when it
came to the 21st century, as the 3D models are introduced into
the game industry, the size of New Super Mario Bros., released
in platform NDS in 2006, came to 10 MB, which is nearly 30

times compared with the 1999’s one. Markedly, the size surged
250 times i.e. 2.5 GB in 2012 released New Super Mario Bros.
U, with both the scene and models using 3D techniques.

As is widely agreed, to achieve accurate and fine models and
natural animation, rich details are required for good realism,
which involves abundant design parameters, i.e. surface vertices
of polygon models.

Nevertheless, problems are deservedly brought out when
managing those massive data, causing a large increase of the
time used in shape manipulation, animation disposing and
rendering. Besides, transmitting is also an important issue of
online games. As the large data of geometric models or rendered
images transmit among the game players over the Internet, the
transmission time is noticeably increased, and the real-time
performance of game playing is reduced due to the limitation of
the communication technology. Apart from the above problems,
the size of the current games, with high storage cost, has placed
a great burden on the hard drives, like video game Call of Duty:
Infinite Warfare which uses over 130 GB of storage to maintain
its game, while the average capacity of the mainstream SSD is
only 128 GB. Sufficient example models with good realism and
abundant details are required by advanced games based on data-
driven techniques, which spend heavy human involvement and
high cost and cause inefficient game production.

As for animation, if it follows the underlying physics of
object movements and de-formations, the requirement of high
computational resources and much computational time, which
would directly affect the performance of real-time games, is
inevitable. These are all challenges for techniques related to real-
time animation, including modelling and skin deformation.

Junheng Fang

The National Center for Computer

Animation

Bournemouth University

Bournemouth, UK

jfang@bournemouth.ac.uk

 Shaojun Bian

The National Center for Computer

Animation

Bournemouth University,

Bournemouth, UK

sjbianbian@163.com

 Jon Macey

The National Center for Computer

Animation

Bournemouth University,

Bournemouth, UK

jmacey@bournemouth.ac.uk

 Andres Iglesias

Department of Applied Mathematics

and Computational Sciences

University of Cantabria

Cantabria, Spain

iglesias@unican.es

 Hassan Ugail

The Centre for Visual Computing

University of Bradford

Bradford, UK

h.ugail@bradford.ac.uk

 Lihua You

The National Center for Computer

Animation

Bournemouth University

Bournemouth, UK

LYou@bournemouth.ac.uk

 Jian Jun Zhang

The National Center for Computer

Animation

Bournemouth University

Bournemouth, UK

jzhang@bournemouth.ac.uk

Alexander Malyshev

Department of Mathematics

University of Bergen

Norway

alexander.malyshev@uib.no

Ehtzaz Chaudhry

The National Center for Computer

Animation

Bournemouth University

Bournemouth, UK

echaudhry@bournemouth.ac.uk

mailto:jfang@bournemouth.ac.uk
mailto:sjbianbian@163.com
mailto:jmacey@bournemouth.ac.uk
mailto:iglesias@unican.es
mailto:h.ugail@bradford.ac.uk
mailto:LYou@bournemouth.ac.uk
mailto:jzhang@bournemouth.ac.uk
mailto:alexander.malyshev@uib.no
mailto:echaudhry@bournemouth.ac.uk

The widely used surface creation approaches are polygon,
patch modelling like subdivision and NURBS. The polygon
technique manipulates surface vertices of simple geometric
primitives to generate complex models. The patch technique
divides the complicated models into plenty of simple patches
and after processing them separately, combines them together to
fulfil the model. The subdivision technique separates the
polygonal faces into smaller pieces by approximating or
interpolating schemes to build a denser mesh of the model.
However, these techniques require further improvements, for
example how to reduce tedious and time-consuming manual
operations when stitching separated patches together as well as
considering continuity between adjacent ones, how to
manipulate the global shape of complicated patches, and how to
apply physics of object deformations in the recreated model.

Both the academia and industry practices in the animation
field regard skin de-formation techniques as the standardized
approaches when forming real-time animation. Among all the
different skin deformation methods, the major characteristics
have not been changed, realism and efficiency. To achieve
realism, more and more details are required to be stored, i.e.
sufficient vertices, which causes plenty of redundancy that is not
used often in computation. Linear interpolation is still popular
in facial blendshapes and determining skin deformations.
Physics-based techniques cannot avoid numerical computations,
which costs high sources of CPU, and reduces efficiency.

Therefore, how to solve the above challenges has become an
urgent obstacle in developing advanced game techniques. In
order to address these challenges, this paper will: (1) extract a
3D surface model into a wireframe-defined one to reduce data
size of 3D models, (2) use an ordinary differential equation
(ODE)-based meth-od to recreate 3D models with small data
from the extracted wireframes, (3) propose a new and physics-
based technique of facial blendshapes based on the Newton’s
second law to generate new wireframes from existing ones, and
(4) combine the ODE sweeping surface-represented 3D models
with the physics-based facial blendshapes to create natural facial
animation efficiently.

The remaining parts of this paper consist of five sections.
Existing work is reviewed in Section II. The theory and method
of creating ODE sweeping surface-represented 3D models are
introduced in Section III. A new, efficient, and the physics-
based algorithm of facial blendshapes is examined in Section IV.
Experiments are made in Section V. Conclusions and future
work are presented in Section vi.

II. RELATED WORK

For commercially available graphics package, the widely
recognized method to build models is polygon modelling and
skin surface creation, which could exhibit details and branches,
as well as assign UV texture coordinates, given in [1].
Nevertheless, it is difficult to create curved surfaces. Instead,
approximating curved surfaces with many small flat planes is
used to visualize them, which reduces the precision. Though
polygon modelling is more easily to generate hard edges,
NURBS modelling could create curved objects with smoother
surfaces and more readily edit the patches with fewer design
parameters, investigated in [2]. This advantage makes it
welcome in building realistic models. However, stitching

adjacent patches requires tedious manual operations to tackle the
continuity problem. Another method to build models is
subdivision modelling. It first creates a rough polygonal model,
and then uses approximating or interpolation to subdivide each
face into smaller ones to finally get a denser mesh. It could easily
create complicated geometry with more efficiently rendering,
whilst the insufficient underlying parametrization makes it hard
to elaborate the accuracy. Besides, Várady et al. have declared a
method based on in-curved network for further shape controls,
which is particularly used to revise the inside of transfinite
patches in [3].

For generating more realistic models, physics-based
modelling is provided with the physical laws underlying its
surface deformation. Nealen et al. have made a review of
multifarious physics-based modelling methods in [4], including
finite element method, finite difference method, mass-spring
system and reduced deformable models using modal analysis
etc.

ODEs, as an important branch of modern mathematics and
an effective tool for people to solve various practical problems,
have been generally used to represent the underlying physics in
the computer graphics field. Take free-fall motion of a bouncing
ball as an instance, Newton’s second law 𝐹 = 𝑑𝑃/𝑑𝑡 =
𝑑(𝑚𝑣)/𝑑𝑡 = 𝑚𝑑𝑣/𝑑𝑡 = 𝑚𝑎 actually uses the derivative of
velocity 𝑣 with respect to time 𝑡 to denote acceleration a, and
then times mass 𝑚 to describe force 𝐹 . The introduction of
ordinary differential equations into geometric modelling
provides a potential to generate physically realistic facades as
well as deformations of 3D models. In the existing work, ODE-
based sweeping surfaces [5], ODE-based surface deformations
[6] and ODE-based sweeping blending [7] have been developed.
ODE-based methods create, manipulate, and animate 3D models
with the solution to a suitably selected vector-valued ordinary
differential equation subjected to user’s specified boundary
conditions. The created ODE sweeping surface-represented 3D
models have small data and good continuities between two
adjacent patches, whilst the traditional surface modelling
approaches use a vast number of surface vertices or control
points. Furthermore, Polygon models cannot approximate
curved surfaces with many flat facets. NURBS and other patch-
based modelling require many manual operations to stitch two
adjacent patches together. It is difficult even impossible to
achieve high-order continuities.

Skin deformations play an important role in character
animation and facial animation. Chaudhry et al. made a review
of main skin deformation techniques in [8]. In comparison with
volume-based techniques, surface-based techniques are widely
used in computer animation field as they are much simpler.
Surface-based skin deformation techniques can be divided into
purely geometric, physics-based, and data-driven. Purely
geometric techniques, which ignore the underlying physics but
only manipulate vertices to change shapes. Physics-based
techniques create more natural and realistic appearances but
require heavy computational calculations. If example models are
of high quality, data-driven techniques can also create realistic
skin deformations but require a lot of effort to prepare high
quality example models.

The simplest method of purely geometric deformation is
linear interpolation. Other methods like joint-related
approaches, which treat the skin by using an explicit function of
the skeleton to move the shell. One such approach examined in
[9] is called skeleton subspace deformation, which introduces
vertex weights for smooth transformation of bones. Example-
based techniques, which use existing poses as the base to
interpolate the keyframes in [10].

The physics-based deformation techniques are based on the
anatomy and biomechanics of skin deformation deriving from
the action of muscles. It uses the mass-spring system, finite
element method (FEM) and finite volume method to determine
contractile muscle forces and muscle geometry transformation.
In [11], FEM was used to simulate dynamic deformations of a
visco-elastic object, while the mass-spring system is more used
for interactive animation of deformable models, carried out in
[12]. The finite volume method is more used to simulate the
deformable movement of skeletal muscles. These methods are
all based on partial differential equation (PDE), though they
approximate PDEs with different forms. Another PDE-based
skin deformation model was proposed in [13], which reduces the
numerical calculations and creates physically realistic skin
deformations with high efficiency by including vertex
identification on iso-parametric curves, Fourier series
conversion and the analytic solution to a formulated model with
underlying physics.

Different from the above methods, this paper will propose a
new, efficient, and physics-based algorithm of facial
blendshapes derived from Newton’s second law, and combine it
with ODE sweeping surface-based 3D modelling to create 3D
facial models with small data and animate ODE sweeping
surface-represented 3D models with the proposed physics-based
algorithm of facial blendshapes.

III. CREATION OF ODE SWEEPING SURFACE-REPRESENTED 3D

MODELS

Creation of ODE sweeping surface-represented 3D models
is inspired by [14]. For completeness, this section briefly
introduces the theory and method, including the mathematical
model in Subsection A, accurate closed form solution in
Subsection B, continuities between two adjacent patches in
Subsection C, and the creation process of ODE sweeping
surface-represented 3D models in Subsection D.

A. Mathematical Model

The mathematical model of ODE sweeping surfaces consists
of a vector-valued ordinary differential equation and boundary
conditions. Depending on different continuity requirements, the
ordinary differential equation and boundary conditions have
different forms.

The accurate solution of second-order, fourth-order, and
sixth-order ordinary differential equations (ODEs) has two, four,
and six unknown constants to satisfy the requirement of position
continuity, position and tangent continuities, and position,
tangent, and curvature continuities. When curvature continuity
is not required, curvature can be used to manipulate surfaces
efficiently. Based on these considerations, this paper uses the
following vector-valued sixth-order ordinary differential
equation proposed in [14]:

 𝜌
𝑑6𝑺(𝑢,𝑣𝑖)

𝑑𝑢6 + 𝜂
𝑑4𝑺(𝑢,𝑣𝑖)

𝑑𝑢4 +
𝑑2𝑺(𝑢,𝑣𝑖)

𝑑𝑢2 = 0 ()

where 𝜌, 𝜂, and 𝜆 are called shape control parameters.
In order to make two adjacent surface patches achieve

position, tangent, and curvature continuities, two adjacent ODE
sweeping surfaces must share the following boundary
conditions:

𝑢 = 0 𝑆(0, 𝑣) = 𝒄1(𝑣)

𝜕𝑆(0,𝑣)

𝜕𝑢
= 𝒄2(𝑣)

𝜕2𝑆(0,𝑣)

𝜕𝑢2
= 𝒄3(𝑣)

𝑢 = 1 𝑆(0, 𝑣) = 𝒄4(𝑣)
𝜕𝑆(0,𝑣)

𝜕𝑢
= 𝒄5(𝑣)

𝜕2𝑆(0,𝑣)

𝜕𝑢2
= 𝒄6(𝑣)

 ()

where 𝒄1(𝑣) and 𝒄4(𝑣) are boundary curves of an ODE

sweeping surface, 𝒄2(𝑣) and 𝒄5(𝑣) are the first partial

derivatives across boundary curves, and 𝒄3(𝑣) and 𝒄6(𝑣) are

the second partial derivatives across boundary curves.

Fig. 1. ODE surface and boundary and control curves [14]

For each of the boundary curves 𝒄1(𝑣) and 𝒄4(𝑣) shown in
Fig. 1, we can draw two control curves next to each of the
boundary curves. From the boundary curve and two control
curves, we can use the method given in [14] to obtain 𝒄2(𝑣),
𝒄5(𝑣), 𝒄3(𝑣) and 𝒄6(𝑣).

B. Accurate closed form solutionl

For each of components 𝑥 , 𝑦 , and 𝑧 , (1) presents one

ordinary differential equation. We use 𝑆ϕ(𝑢, 𝑣𝑖) (ϕ = 𝑥, 𝑦, 𝑧)

to represent the components of the surface 𝑺(𝑢, 𝑣𝑖), and let

𝑆ϕ(𝑢, 𝑣𝑖) = 𝑒𝑟𝑢, (1) is transformed into an algebra equation.

Solving it and submitting the obtained roots back to

𝑆ϕ(𝑢, 𝑣𝑖) = 𝑒𝑟𝑢 , we can obtain the solution of ODE (1).

Substituting the obtained accurate closed form solution into

boundary conditions (2), all the unknown constraints in the

solution are determined, and the accurate closed form solution

take the form of:

 𝑺(𝑢, 𝑣) = 𝑔1(𝑢)𝒄1(𝑣) + 𝑔2(𝑢)𝒄2(𝑣) + 𝑔3(𝑢)𝒄3(𝑣)
 +𝑔4(𝑢)𝒄4(𝑣) + 𝑔5(𝑢)𝒄5(𝑣) + 𝑔6(𝑢)𝒄6(𝑣) ()

where the known functions 𝑔6(𝑢) (𝑖 = 1, 2, 3, 4, 5, 6) are

given in [14].

C. Continuity between adjacent patches

Since the accurate closed form solution exactly satisfies
boundary conditions, two ODE patches obtained from the
solution share the same boundary conditions and naturally
achieve position, tangent, and curvature continuities on their
shared boundary curves at 𝑢 = 0 and 𝑢 = 1.

On the boundary curves at 𝑣 = 0 and 𝑣 = 1 , two ODE

sweeping surfaces can be written as 𝑆ϕ̅(𝑢, 0) and 𝑆ϕ̿(𝑢, 1). And

the position, tangent, and curvature continuities are obtained by
satisfying the following conditions:

 𝑆ϕ(𝑢, 0) = 𝑆ϕ̿(𝑢, 1)

𝜕𝑆ϕ(𝑢, 0) 𝜕𝑣⁄ = 𝜕𝑆ϕ̿(𝑢, 1) 𝜕𝑣⁄

 𝜕2𝑆ϕ(𝑢, 0) 𝜕2𝑣⁄ = 𝜕2𝑆ϕ̿(𝑢, 1) 𝜕2𝑣⁄ ()

D. Creation process of ODE sweeping surface-represented

3D models

The above method can be used to create 3D models from
scratch or convert polygon, NURBS and subdivision models
into ODE sweeping surface-represented models. We briefly
introduce these methods below.

When 3D models will be created from scratch, the following
steps will be followed. First, we draw boundary curves and
control curves and determine the boundary conditions (2) from
boundary curves and control curves. Then we solve ODE (1)
subject-ed to boundary conditions (2) to obtain the accurate
closed form solution determine the unknow constants in the
closed form solution. After that, the obtained closed form
solutions for two adjacent ODE surfaces are substituted into (4)
to satisfy the continuity requirements. Finally, a 3D model is
created from a network of boundary curves called a wireframe.

When a polygon, NURBS and subdivision 3D model will

be converted into an ODE sweeping surface-represented model,

we follow the following steps. First, we segment the 3D model

into patches. Then we extract the boundary curves of these

patches to obtain wireframe of the 3D model and draw two

control curves for each of extracted boundary curves. From the

boundary and control curves, we determine boundary

conditions (2). After that, we solve ODE (1) subjected

boundary conditions (2) to obtain the accurate closed form

solution and use (4) to satisfy the continuity requirements. The

obtained closed form solution is used to create one ODE

sweeping patch. An ODE sweeping surface-represented 3D

model is created after the wireframe is filled with ODE patches.

Fig. 2 shows a converted ODE sweeping surface-represented

dog model.

Fig. 2. ODE surface and boundary and control curves [14].

IV. NEWTON’S SECOND LAW-BASED FACIAL BLENDSHAPES

In this section, we develop a new, efficient, and physics-
based algorithm of facial blendshapes based on Newton’s
second law. In what follows, we first present New-ton’s second

law, then derive its accurate closed form solution, and finally
determine the unknow constants involved in the accurate closed
form solution.

In a three-dimensional space, Newton's second law can be

written as:

 𝑚𝑎 = 𝑓 ()

where 𝑚 stands for mass, 𝒂 denotes the acceleration which has

three components 𝑎(𝑖)(𝑖 = 1, 2, 3) with 𝑎(1) = 𝑎𝑥 , 𝑎(2) = 𝑎𝑦

and 𝑎(3) = 𝑎𝑧, and 𝒇 stands for the external force also with three

components in each direction 𝑓(𝑖)(𝑖 = 1, 2, 3) with 𝑓(1) = 𝑓𝑥 ,

𝑓(2) = 𝑓𝑦 and 𝑓(3) = 𝑓𝑧.

The acceleration a is related to the position change x as:

 𝑎 =
𝑑2𝒙

𝑑𝑡2 ()

where the position change 𝒙 has three components 𝑥(𝑖)(𝑖 =

1, 2, 3) with 𝑥(1) = 𝑥, 𝑥(2) = 𝑦, and 𝑥(3) = 𝑧.
Substituting (6) into (5), the following formula could be

obtained in the form of components:

 𝑚
𝑑2𝑥(𝑖)

𝑑𝑡2 = 𝑓(𝑖) (𝑖 = 1,2,3) ()

The next step is to determine initial and boundary conditions
of solving the above second-order ordinary differential
equations. This can be achieved by considering the positions at
the initial and final poses and the velocity at the initial pose.

Assuming a 3D model is defined by the polygon vertices �̅�𝑛
(𝑛 = 1, 2, 3, … , 𝑁) at the initial pose 𝑡 = 0 , and �̿�𝑛 (𝑛 =
1, 2, 3, … , 𝑁) at the final pose 𝑡 = 1 , the position change is

𝒙𝑛 = 0 at the initial pose 𝑡 = 0 and 𝒙𝑛 = �̿�𝑛 − �̅�𝑛 at the final

pose 𝑡 = 1.

If we assume that the rate of the position change at 𝑡 = 0 is

zero, i.e. 𝑑𝒙𝑛/𝑑𝑡 = 0 , the initial and boundary conditions

could be gained:

𝑡 = 0 𝒙𝑛 = 0

𝑑𝒙𝑛

𝑑𝑡
= 0 (8)

 𝑡 = 1 𝒙𝑛 = �̿�𝑛 − �̅�𝑛
 (𝑛 = 1, 2, 3, … , 𝑁)

In the form of components, (8) could be changed into:

𝑡 = 0 𝑥𝑛
(𝑖) = 0

𝑑𝑥𝑛

(𝑖)

𝑑𝑡
= 0 (9)

 𝑡 = 1 𝑥𝑛
(𝑖) = �̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)
 (𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

Replacing 𝑥(𝑖) with 𝑥𝑛
(𝑖) in (9), we get:

 𝑚
𝑑2𝑥𝑛

(𝑖)

𝑑𝑡2 = 𝑓𝑛
(𝑖)

 ()

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

Dividing both sides of (10) by 𝑚, we obtain:

 𝑚
𝑑2𝑥𝑛

(𝑖)

𝑑𝑡2 = 𝑓𝑛
(𝑖)

 ()

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

Integrating (11) with respect to time 𝑡 twice, we obtain:

 𝑥𝑛
(𝑖) =

𝑓𝑛
(𝑖)𝑡2

2𝑚
+ 𝑐0𝑡 + 𝑐1 ()

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

where 𝑐0 and 𝑐1 are unknown constants.

Introducing (12) into (9), and solving for the two unknown

constants 𝑐0 and 𝑐1 as well as the external force 𝑓𝑛
(𝑖)

, we have:

𝑐0 = 𝑐1 = 0

 𝑓𝑛
(𝑖)

= 2𝑚[�̿�𝑛
(𝑖)

− �̅�𝑛
(𝑖)] ()

 (𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

Substituting (13) into (12), we reach the following formula

to calculate the position change:

 𝑥𝑛
(𝑖) = [�̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)]𝑡2 ()

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

Finally, by adding the position change 𝑥𝑛
(𝑖) to the position

values �̅�𝑛
(𝑖) of each vertex of the 3D model at the initial pose

𝑡 = 0, we get the following formulae which will be used to

determine the position values �̂�𝑛
(𝑖)

 at any poses between the

initial and final poses:

 �̂�𝑛
(𝑖)

= �̅�𝑛
(𝑖) + [�̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)]𝑡2 ()

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)

With time 𝑡 changes in the interval [0, 1], we use the above

formulae to obtain a set of different position values of the 3D

model. Then we use these position values to create facial

blendshapes between the initial and final poses.

V. EXPERIMENTS

We implemented the above Compared with the animation

of other parts of a virtual human character, face deformation is

more crucial since it requires higher precision to be regarded as

realistic. Thus, in order to demonstrate the result of the

Experiments, using the source provided by [15], two face

models in the same topological structure with different

expressions are chosen as Fig.3. We first use the ODE-based

approach to recreate the two different models and then use

linear interpolation to calculate the keyframes in between.

Finally, form an animation between the two different

reconstructed expression models to demonstrate the algorithm

implementation as well as how it could be applied in face

deforming animation.

A. Patch Separation

Different facial expressions can be defined with some

parameters. Paul et al. provided the Facial Action Coding

System (FACS) in [16] to use corresponding parameters to

control disparate face shapes. Hamm et al. claimed that the

facial appearance could be used to encode the action of each

facial muscles with marginally imperative changes in [17].

Furthermore, any anatomically possible facial expression could

be encoded by FACS through deconstructing it into temporal

(a) Neutral Model (b) Laugh Model

Fig. 3. Source models in two different states.

segments and action units, which could be used for further
interpolation to adapt to any intelligent environment, mentioned
in [18]. Differently, we use a wireframe to define a 3D model
and use ODE sweeping surfaces to recreate the 3D model from
the wireframe.

In this paper, we separate the face model into seven different

patches shown in Fig.4. These seven patches are: eye socket,

eye bone, nose bridge, nostril, cheek, mouth, and jaw. After

separating the 3D model into patches, we extract the boundary

curves of the patches.

Fig. 4. Patch Separation. We separate the face into 7 different patches: eye

socket, eye bone, nose bridge, nostril, cheek, mouth, and jaw.

B. Facial Recreation

After extracting all the boundary curves, we add two control

curves for each of the boundary curves to determine the

tangents and curvature on the extracted boundary curves which

are actually the first and second partial derivatives. The left of

Fig.5 shows the boundary curves and two control curves, and

the right of Fig.5 shows the curves obtained from ODE

sweeping surfaces.

We compare the original model with ODE sweeping

surface-represented model of the neutral model in Fig.6(a) and

the laugh model in Fig.6(b). In the figures, the left images are

from the original model and the right images are from the ODE-

sweeping surface-represented model.

Although few patches are used to create ODE sweeping

surface-represented 3D model, the recreated face models shown

in the right images do not lose too many details compared with

the original face models shown in the left images of Figs. 6(a)

and 6(b). In addition to the relatively good approximation of the

recreated face models to the original models, the ODE sweep-

Fig. 5. Wireframes extraction. The left figure shows the boundary curves and

control curves of each patch. The right figure shows the ODE-based

generated curves. When converting models to ODE sweeping surfaces,

the data size significantly reduces, which are more convenient for storage

and speed up network transmission.

(a) Neutral Model (b) Laugh Model

Fig. 6. Comparison of original and recreated model. The original laugh model

contains details like na-solabial folds, which we use ODE-based recreated

surface to restore them. ODE sweeping tech-nique could store significant

details through manipulating control curves..

TABLE I. COMPARISON OF SIZE BETWEEN ORIGINAL AND RECREATED

MODELS

Model

Type

Original

Model

Recreated

Model

Reduce

Rate

vertices

number

neutral 8221 4764 42.05%

laugh 8246 4764 42.23%

polygon

number

neutral 15378 4236 72.45%

laugh 15411 4236 72.51%

ing surface-represented models, shown in TABLE I, is defined
by 4764 points on boundary curves and control curves and three
shape control parameters involved in (1). They indicate that the
design variables of the ODE sweeping surface-represented
model is only about 58% of the design variables of the
corresponding original model. Therefore, the ODE sweeping
surface-represented models could noticeably save the data
storage space with similar quality to the original model.
Furthermore, the ODE sweeping surface-represented models
provide a convenient way to quickly manipulate the face shapes
and expressions through modifying boundary curves, control
curves, and shape control parameters. Since two adjacent ODE
sweeping patches share the same boundary conditions, up to
curvature continuities are naturally achieved, which avoids
manual operations to stitch two adjacent ODE sweeping patches
together and save a lot of time in achieving curvature
continuities between adjacent patches.

C. Facial Blendshapes

Facial blendshapes of polygon models are to interpolate the

vertices of the neutral model and target model. When a neutral

model and a target model have different topology or vertices, a

lot of work and time are required to find the correspondence

between the neutral model and target model. Since many

polygon vertices are used to define a polygon model, a lot of

time is also required to calculate the interpolation between the

neutral model and the target model.

After a neutral model and a target model have been

converted into ODE-sweeping surface-represented models,

facial blendshapes can be achieved through interpolate the

boundary curves and control curves, which avoids the work in

finding the correspondence between two models with different

topology and vertices and saves the time in interpolating many

polygon vertices.

In comparison with most widely used facial blendshapes

based on linear interpolation which is purely geometric, facial

blendshapes use the Newton’s second law. Therefore, the

proposed algorithm is physics-based and has a potential to

create more natural appearance of facial blendshapes. We have

implemented these two algorithms and use both of them to

create facial blendshapes.

Fig. 7. 31 keyframe models blending two different interpolation methods. The

first row is the facial blendshapes generated by linear interpolation while

the second row is generated by the interpolation derived Newton’s second

law. Here we use the same size green box and blue box to respectively

show the shape change of mouth and eye. After comparing the shape

change of mouth and eye, it could be found that, the change acceleration

of the second row keeps the same, whilst that of the first row is small at

first and surges at the end i.e., more natural.

The facial blendshapes shown in the first row of Fig.7 are

created with the Newton’s second law-based interpolation.

First, we interpolate two boundary curves and four control

curves for each of ODE sweeping surface patches of a 3D

model to obtain the boundary conditions at the poses between

the neutral model and target model. Then, ODE sweeping

surface-represented 3D models are created from the obtained

boundary conditions. Plus the original neutral model and target

model, 30 keyframe models are used to create smooth facial

animation.

 The facial blendshapes shown in the second row of Fig.7 are

created with linear interpolation. Similarly, 30 keyframe

models including the original neutral model and target model

are used to create smooth facial animation.

Comparing the images shown in Figs.7, we can conclude

that facial blendshapes based on linear interpolation generate

equal changes between two adjacent models, i.e., move with a

same velocity. Actually, facial chape changes are not in a same

velocity. For example, when we open or close our mouth, two

lips may move quickly or slowly at the beginning or at the end.

Such an acceleration or deceleration effect could create more

natural lip movements. With the interpolation derived

Newton’s second law, it is easy to create such acceleration and

or deceleration effect and more natural blendshapes could be

generated.

VI. CONCLUSION

In this paper, we have developed a new and physics-based
algorithm of facial blendshapes derived from Newton’s second
law and combined it with ODE sweeping surfaces to represent
neutral and target models, create the models between neutral and
target models, and generate physics-based facial animation. The
proposed method has the advantages of small data of created
models, easy obtainment and natural maintenance of required
continuities, efficient shape manipulation, correspondence
avoidance between the neutral model and target model, natural
facial blendshapes, and easy creation of special animation
effects.

However, wireframes defining facial models are manually
extracted in our work, which requires many manual operations
and a lot of time. This can be improved by developing an
automatic extraction algorithm. A template facial model with
pre-defined surface patches can be introduced to automatically
segment any 3D facial models, and a Maya Mel script can be
implemented to automatically extract boundary curves of the
segmented patches and generate control curves. Facial
blendshapes include interpolation between a neutral model and
a target model and blending among a neutral model and many
target models. In this paper, we only investigate facial
blendshapes using interpolation between a neutral model and a
target model, and facial blendshapes among a neutral model and
many target models have not been investigated. New algorithms
of facial blendshapes based on Newton’s second law can be
developed to tackle this problem. In order to facilitate the
applications of the proposed method, an interactive interface
based on ODE sweeping surface-represented models and the
interpolation using Newton’s second law can be developed to
create facial blendshapes easily. In the future, we will
investigate these issues.

ACKNOWLEDGMENT

This research is supported by the PDE-GIR project which

has received funding from the European Union Horizon 2020

research and innovation programme under the Marie

Skodowska-Curie grant agreement No 778035.

REFERENCES

[1] M. Russo, Polygonal modeling: basic and advanced techniques. Jones &
Bartlett Learning (2006).

[2] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business
Media (2012).

[3] T. Várady, P. Salvi, and A. Rockwood, “Transfinite surface interpolation
with interior con-trol,” Graphical models, vol. 74, no. 6, pp. 311–320.
Elsevier (2012).

[4] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deform-able models in computer graphics,” in EU-
ROGRAPHICS 2005 STAR–STATE OF THE ART REPORT. Citeseer
(2005).

[5] L. You, X. Yang, M. Pachulski, and J. J. Zhang, “Boundary constrained
swept surfaces for modelling and animation,” in Computer Graphics
Forum, vol. 26, no. 3, pp. 313–322 (2007).

[6] L. You, X. Yang, X. Y. You, X. Jin, and J. J. Zhang, “Shape manipulation
using physically based wire deformations,” Computer Animation and
Virtual Worlds, vol. 21, no. 3-4, pp. 297–309 (2010).

[7] E. Chaudhry, L. You, X. Jin, X. Yang, and J. J. Zhang, “Shape modeling
for animated char-acters using ordinary differential equations,”
Computers & graphics, vol. 37, no. 6, pp. 638–644 (2013).

[8] E. Chaudhry, L. You, and J. J. Zhang, “Character skin deformation: A
survey,” in 2010 Sev-enth International Conference on Computer
Graphics, Imaging and Visualization. pp. 41–48 (2010).

[9] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object grasping,” in
In Proceedings on Graphics interface’88. Citese-er (1988).

[10] B. Allen, B. Curless, and Z. Popović, “Articulated body deformation from
range scan data,” ACM Transactions on Graphics (TOG), vol. 21, no. 3,
pp. 612–619 (2002).

[11] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr, “Dynamic real-
time deformations us-ing space & time adaptive sampling,” in
Proceedings of the 28th annual conference on Com-puter graphics and
interactive techniques, pp. 31–36 (2001).

[12] S. M. Platt and N. I. Badler, “Animating facial expressions,” in
Proceedings of the 8th annual conference on Computer graphics and
interactive techniques, pp. 245–252 (1981).

[13] S. Bian, Z. Deng, E. Chaudhry, L. You, X. Yang, L. Guo, H. Ugail, X.
Jin, Z. Xiao, and J. J. Zhang, “Efficient and realistic character animation
through analytical physics-based skin de-formation,” Graphical Models,
vol. 104, p. 101035 (2019).

[14] S. Bian, G. Maguire, W. Kokke, L. You, and J. J. Zhang, “Efficient c2
continuous surface creation technique based on ordinary differential
equation,” Symmetry, vol. 12, no. 1, p. 38 (2020).

[15] Mesh Data from Deformation Transfer for Triangle Meshes,
http://people.csail.mit.edu/sumner/research/deftransfer/data.html, last
accessed 2021/01/05.

[16] E. Paul, H. Joseph C, and F. Wallace V, Facial action coding system. Salt
Lake City: A Human Face (2002).

[17] J. Hamm, C. G. Kohler, R. C. Gur, and R. Verma, “Automated facial
action coding system for dynamic analysis of facial expressions in
neuropsychiatric disorders,” Journal of neuro-science methods, vol.200,
no. 2, pp. 237–256 (2011).

[18] A. Freitas-Magalhães, The face of lies. Leya (2013).

