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Efficient and Physics-based Facial Blendshapes based 

on ODE sweeping Surface and Newton’s second law  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract—Online games require small data of 3D models for 

low storage costs, quick transmission over the Internet, and 

efficient geometric processing to achieve real-time performance, 

and new techniques of facial blendshapes to create natural facial 

animation. Current geometric modelling and animation 

techniques involve big data of geometric models and widely 

applied facial animation using linear interpolation cannot 

generate natural facial animation and create special facial 

animation effects. In this paper, we propose a new approach to 

integrate the strengths of ODE (ordinary differential equation) 

sweeping surfaces and Newton’s second law-based facial 

blendshapes to create 3D models and their animation with small 

data, high efficiency, and ability to create special facial effects. 

Keywords—wireframe extraction, ODE sweeping surface-

represented 3D models, Newton’s second law-based facial 

blendshapes 

I. INTRODUCTION  

Recently, the two most significant and interlinked 
challenges, which limit the development of game production, 
are geometric modelling and computer animation. As the game 
industry focuses more and more on scene realism and 
performance, the game capacity has shown geometric multiplier 
growth especially after the 3D model techniques have been 
widely used. For instance, Super Mario Bros., released in 1985, 
spent only 64 KB to store the whole game. After over 10 years, 
Super Mario Bros. Deluxe, released in platform GBC in 1999, 
took 342 KB, which is only approximately 6 times the size of 
the former game, remaining the 2D scene. However, when it 
came to the 21st century, as the 3D models are introduced into 
the game industry, the size of New Super Mario Bros., released 
in platform NDS in 2006, came to 10 MB, which is nearly 30 

times compared with the 1999’s one. Markedly, the size surged 
250 times i.e. 2.5 GB in 2012 released New Super Mario Bros. 
U, with both the scene and models using 3D techniques. 

As is widely agreed, to achieve accurate and fine models and 
natural animation, rich details are required for good realism, 
which involves abundant design parameters, i.e. surface vertices 
of polygon models. 

Nevertheless, problems are deservedly brought out when 
managing those massive data, causing a large increase of the 
time used in shape manipulation, animation disposing and 
rendering. Besides, transmitting is also an important issue of 
online games. As the large data of geometric models or rendered 
images transmit among the game players over the Internet, the 
transmission time is noticeably increased, and the real-time 
performance of game playing is reduced due to the limitation of 
the communication technology. Apart from the above problems, 
the size of the current games, with high storage cost, has placed 
a great burden on the hard drives, like video game Call of Duty: 
Infinite Warfare which uses over 130 GB of storage to maintain 
its game, while the average capacity of the mainstream SSD is 
only 128 GB. Sufficient example models with good realism and 
abundant details are required by advanced games based on data-
driven techniques, which spend heavy human involvement and 
high cost and cause inefficient game production. 

As for animation, if it follows the underlying physics of 
object movements and de-formations, the requirement of high 
computational resources and much computational time, which 
would directly affect the performance of real-time games, is 
inevitable. These are all challenges for techniques related to real-
time animation, including modelling and skin deformation. 

Junheng Fang 

The National Center for Computer 

Animation 

Bournemouth University 

Bournemouth, UK 

jfang@bournemouth.ac.uk 

 

 

 Shaojun Bian 

The National Center for Computer 

Animation 

Bournemouth University,  

Bournemouth, UK 

sjbianbian@163.com  

 

 

 Jon Macey  

The National Center for Computer 

Animation 

Bournemouth University,  

Bournemouth, UK 

jmacey@bournemouth.ac.uk 

 

 

 

 Andres Iglesias  

Department of Applied Mathematics 

and Computational Sciences 

University of Cantabria 

Cantabria, Spain 

iglesias@unican.es  

 

 

 

 Hassan Ugail 

The Centre for Visual Computing 

University of Bradford 

Bradford, UK 

h.ugail@bradford.ac.uk  

 

 

 

  Lihua You 

The National Center for Computer 

Animation 

Bournemouth University 

Bournemouth, UK 

LYou@bournemouth.ac.uk  

   

 

 

 

  Jian Jun Zhang 

The National Center for Computer 

Animation 

Bournemouth University 

Bournemouth, UK 

jzhang@bournemouth.ac.uk  

 

 

 

Alexander Malyshev 

Department of Mathematics 

University of Bergen 

Norway 

alexander.malyshev@uib.no    

 

 

 

Ehtzaz Chaudhry 

The National Center for Computer 

Animation 

Bournemouth University 

Bournemouth, UK 

echaudhry@bournemouth.ac.uk     

 

 

 

mailto:jfang@bournemouth.ac.uk
mailto:sjbianbian@163.com
mailto:jmacey@bournemouth.ac.uk
mailto:iglesias@unican.es
mailto:h.ugail@bradford.ac.uk
mailto:LYou@bournemouth.ac.uk
mailto:jzhang@bournemouth.ac.uk
mailto:alexander.malyshev@uib.no
mailto:echaudhry@bournemouth.ac.uk


The widely used surface creation approaches are polygon, 
patch modelling like subdivision and NURBS. The polygon 
technique manipulates surface vertices of simple geometric 
primitives to generate complex models. The patch technique 
divides the complicated models into plenty of simple patches 
and after processing them separately, combines them together to 
fulfil the model. The subdivision technique separates the 
polygonal faces into smaller pieces by approximating or 
interpolating schemes to build a denser mesh of the model. 
However, these techniques require further improvements, for 
example how to reduce tedious and time-consuming manual 
operations when stitching separated patches together as well as 
considering continuity between adjacent ones, how to 
manipulate the global shape of complicated patches, and how to 
apply physics of object deformations in the recreated model. 

Both the academia and industry practices in the animation 
field regard skin de-formation techniques as the standardized 
approaches when forming real-time animation. Among all the 
different skin deformation methods, the major characteristics 
have not been changed, realism and efficiency. To achieve 
realism, more and more details are required to be stored, i.e. 
sufficient vertices, which causes plenty of redundancy that is not 
used often in computation. Linear interpolation is still popular 
in facial blendshapes and determining skin deformations. 
Physics-based techniques cannot avoid numerical computations, 
which costs high sources of CPU, and reduces efficiency. 

Therefore, how to solve the above challenges has become an 
urgent obstacle in developing advanced game techniques. In 
order to address these challenges, this paper will: (1) extract a 
3D surface model into a wireframe-defined one to reduce data 
size of 3D models, (2) use an ordinary differential equation 
(ODE)-based meth-od to recreate 3D models with small data 
from the extracted wireframes, (3) propose a new and physics-
based technique of facial blendshapes based on the Newton’s 
second law to generate new wireframes from existing ones, and 
(4) combine the ODE sweeping surface-represented 3D models 
with the physics-based facial blendshapes to create natural facial 
animation efficiently.  

The remaining parts of this paper consist of five sections. 
Existing work is reviewed in Section II. The theory and method 
of creating ODE sweeping surface-represented 3D models are 
introduced in Section III. A new, efficient, and the physics-
based algorithm of facial blendshapes is examined in Section IV. 
Experiments are made in Section V. Conclusions and future 
work are presented in Section vi.    

II. RELATED WORK 

For commercially available graphics package, the widely 
recognized method to build models is polygon modelling and 
skin surface creation, which could exhibit details and branches, 
as well as assign UV texture coordinates, given in [1]. 
Nevertheless, it is difficult to create curved surfaces. Instead, 
approximating curved surfaces with many small flat planes is 
used to visualize them, which reduces the precision. Though 
polygon modelling is more easily to generate hard edges, 
NURBS modelling could create curved objects with smoother 
surfaces and more readily edit the patches with fewer design 
parameters, investigated in [2]. This advantage makes it 
welcome in building realistic models. However, stitching 

adjacent patches requires tedious manual operations to tackle the 
continuity problem. Another method to build models is 
subdivision modelling. It first creates a rough polygonal model, 
and then uses approximating or interpolation to subdivide each 
face into smaller ones to finally get a denser mesh. It could easily 
create complicated geometry with more efficiently rendering, 
whilst the insufficient underlying parametrization makes it hard 
to elaborate the accuracy. Besides, Várady et al. have declared a 
method based on in-curved network for further shape controls, 
which is particularly used to revise the inside of transfinite 
patches in [3]. 

For generating more realistic models, physics-based 
modelling is provided with the physical laws underlying its 
surface deformation. Nealen et al. have made a review of 
multifarious physics-based modelling methods in [4], including 
finite element method, finite difference method, mass-spring 
system and reduced deformable models using modal analysis 
etc. 

ODEs, as an important branch of modern mathematics and 
an effective tool for people to solve various practical problems, 
have been generally used to represent the underlying physics in 
the computer graphics field. Take free-fall motion of a bouncing 
ball as an instance, Newton’s second law 𝐹 = 𝑑𝑃/𝑑𝑡 =
𝑑(𝑚𝑣)/𝑑𝑡 = 𝑚𝑑𝑣/𝑑𝑡 = 𝑚𝑎  actually uses the derivative of 
velocity 𝑣 with respect to time 𝑡 to denote acceleration a, and 
then times mass 𝑚  to describe force 𝐹 . The introduction of 
ordinary differential equations into geometric modelling 
provides a potential to generate physically realistic facades as 
well as deformations of 3D models. In the existing work, ODE-
based sweeping surfaces [5], ODE-based surface deformations 
[6] and ODE-based sweeping blending [7] have been developed. 
ODE-based methods create, manipulate, and animate 3D models 
with the solution to a suitably selected vector-valued ordinary 
differential equation subjected to user’s specified boundary 
conditions. The created ODE sweeping surface-represented 3D 
models have small data and good continuities between two 
adjacent patches, whilst the traditional surface modelling 
approaches use a vast number of surface vertices or control 
points. Furthermore, Polygon models cannot approximate 
curved surfaces with many flat facets. NURBS and other patch-
based modelling require many manual operations to stitch two 
adjacent patches together. It is difficult even impossible to 
achieve high-order continuities.  

Skin deformations play an important role in character 
animation and facial animation. Chaudhry et al. made a review 
of main skin deformation techniques in [8]. In comparison with 
volume-based techniques, surface-based techniques are widely 
used in computer animation field as they are much simpler. 
Surface-based skin deformation techniques can be divided into 
purely geometric, physics-based, and data-driven. Purely 
geometric techniques, which ignore the underlying physics but 
only manipulate vertices to change shapes. Physics-based 
techniques create more natural and realistic appearances but 
require heavy computational calculations. If example models are 
of high quality, data-driven techniques can also create realistic 
skin deformations but require a lot of effort to prepare high 
quality example models.  



The simplest method of purely geometric deformation is 
linear interpolation. Other methods like joint-related 
approaches, which treat the skin by using an explicit function of 
the skeleton to move the shell. One such approach examined in 
[9] is called skeleton subspace deformation, which introduces 
vertex weights for smooth transformation of bones. Example-
based techniques, which use existing poses as the base to 
interpolate the keyframes in [10]. 

The physics-based deformation techniques are based on the 
anatomy and biomechanics of skin deformation deriving from 
the action of muscles. It uses the mass-spring system, finite 
element method (FEM) and finite volume method to determine 
contractile muscle forces and muscle geometry transformation. 
In [11], FEM was used to simulate dynamic deformations of a 
visco-elastic object, while the mass-spring system is more used 
for interactive animation of deformable models, carried out in 
[12]. The finite volume method is more used to simulate the 
deformable movement of skeletal muscles. These methods are 
all based on partial differential equation (PDE), though they 
approximate PDEs with different forms. Another PDE-based 
skin deformation model was proposed in [13], which reduces the 
numerical calculations and creates physically realistic skin 
deformations with high efficiency by including vertex 
identification on iso-parametric curves, Fourier series 
conversion and the analytic solution to a formulated model with 
underlying physics. 

Different from the above methods, this paper will propose a 
new, efficient, and physics-based algorithm of facial 
blendshapes derived from Newton’s second law, and combine it 
with ODE sweeping surface-based 3D modelling to create 3D 
facial models with small data and animate ODE sweeping 
surface-represented 3D models with the proposed physics-based 
algorithm of facial blendshapes.      

III. CREATION OF ODE SWEEPING SURFACE-REPRESENTED 3D 

MODELS 

Creation of ODE sweeping surface-represented 3D models 
is inspired by [14]. For completeness, this section briefly 
introduces the theory and method, including the mathematical 
model in Subsection A, accurate closed form solution in 
Subsection B, continuities between two adjacent patches in 
Subsection C, and the creation process of ODE sweeping 
surface-represented 3D models in Subsection D. 

A. Mathematical Model 

The mathematical model of ODE sweeping surfaces consists 
of a vector-valued ordinary differential equation and boundary 
conditions. Depending on different continuity requirements, the 
ordinary differential equation and boundary conditions have 
different forms.  

The accurate solution of second-order, fourth-order, and 
sixth-order ordinary differential equations (ODEs) has two, four, 
and six unknown constants to satisfy the requirement of position 
continuity, position and tangent continuities, and position, 
tangent, and curvature continuities. When curvature continuity 
is not required, curvature can be used to manipulate surfaces 
efficiently. Based on these considerations, this paper uses the 
following vector-valued sixth-order ordinary differential 
equation proposed in [14]: 

 𝜌
𝑑6𝑺(𝑢,𝑣𝑖)

𝑑𝑢6  +  𝜂
𝑑4𝑺(𝑢,𝑣𝑖)

𝑑𝑢4  +  
𝑑2𝑺(𝑢,𝑣𝑖)

𝑑𝑢2 = 0 () 

where 𝜌, 𝜂, and 𝜆 are called shape control parameters. 
In order to make two adjacent surface patches achieve 

position, tangent, and curvature continuities, two adjacent ODE 
sweeping surfaces must share the following boundary 
conditions: 

 
𝑢 = 0 𝑆(0, 𝑣) = 𝒄1(𝑣)  

𝜕𝑆(0,𝑣)

𝜕𝑢
= 𝒄2(𝑣)  

𝜕2𝑆(0,𝑣)

𝜕𝑢2
= 𝒄3(𝑣)

𝑢 = 1 𝑆(0, 𝑣) = 𝒄4(𝑣)  
𝜕𝑆(0,𝑣)

𝜕𝑢
= 𝒄5(𝑣)  

𝜕2𝑆(0,𝑣)

𝜕𝑢2
= 𝒄6(𝑣)

 () 

where 𝒄1(𝑣)  and 𝒄4(𝑣)  are boundary curves of an ODE 

sweeping surface, 𝒄2(𝑣)  and 𝒄5(𝑣)  are the first partial 

derivatives across boundary curves, and 𝒄3(𝑣) and 𝒄6(𝑣) are 

the second partial derivatives across boundary curves. 

 

 

Fig. 1. ODE surface and boundary and control curves [14] 

For each of the boundary curves 𝒄1(𝑣) and 𝒄4(𝑣) shown in 
Fig. 1, we can draw two control curves next to each of the 
boundary curves. From the boundary curve and two control 
curves, we can use the method given in [14] to obtain 𝒄2(𝑣), 
𝒄5(𝑣), 𝒄3(𝑣) and 𝒄6(𝑣). 

B. Accurate closed form solutionl 

For each of components 𝑥 , 𝑦 , and 𝑧 , (1) presents one 

ordinary differential equation. We use 𝑆ϕ(𝑢, 𝑣𝑖) (ϕ = 𝑥, 𝑦, 𝑧) 

to represent the components of the surface 𝑺(𝑢, 𝑣𝑖), and let 

𝑆ϕ(𝑢, 𝑣𝑖) = 𝑒𝑟𝑢, (1) is transformed into an algebra equation. 

Solving it and submitting the obtained roots back to 

𝑆ϕ(𝑢, 𝑣𝑖) = 𝑒𝑟𝑢 , we can obtain the solution of ODE (1). 

Substituting the obtained accurate closed form solution into 

boundary conditions (2), all the unknown constraints in the 

solution are determined, and the accurate closed form solution 

take the form of: 

 𝑺(𝑢, 𝑣) = 𝑔1(𝑢)𝒄1(𝑣) + 𝑔2(𝑢)𝒄2(𝑣) + 𝑔3(𝑢)𝒄3(𝑣) 
                         +𝑔4(𝑢)𝒄4(𝑣) + 𝑔5(𝑢)𝒄5(𝑣) + 𝑔6(𝑢)𝒄6(𝑣) () 

where the known functions 𝑔6(𝑢) (𝑖 = 1, 2, 3, 4, 5, 6) are 

given in [14].  

C. Continuity between adjacent patches 

Since the accurate closed form solution exactly satisfies 
boundary conditions, two ODE patches obtained from the 
solution share the same boundary conditions and naturally 
achieve position, tangent, and curvature continuities on their 
shared boundary curves at 𝑢 = 0  and 𝑢 = 1. 



On the boundary curves at 𝑣 = 0   and 𝑣 = 1 , two ODE 

sweeping surfaces can be written as 𝑆ϕ̅(𝑢, 0) and 𝑆ϕ̿(𝑢, 1). And 

the position, tangent, and curvature continuities are obtained by 
satisfying the following conditions: 

 𝑆ϕ(𝑢, 0) = 𝑆ϕ̿(𝑢, 1)          

𝜕𝑆ϕ(𝑢, 0) 𝜕𝑣⁄ = 𝜕𝑆ϕ̿(𝑢, 1) 𝜕𝑣⁄  

                        𝜕2𝑆ϕ(𝑢, 0) 𝜕2𝑣⁄ = 𝜕2𝑆ϕ̿(𝑢, 1) 𝜕2𝑣⁄  () 

D. Creation process of ODE sweeping surface-represented 

3D models 

The above method can be used to create 3D models from 
scratch or convert polygon, NURBS and subdivision models 
into ODE sweeping surface-represented models. We briefly 
introduce these methods below. 

When 3D models will be created from scratch, the following 
steps will be followed. First, we draw boundary curves and 
control curves and determine the boundary conditions (2) from 
boundary curves and control curves. Then we solve ODE (1) 
subject-ed to boundary conditions (2) to obtain the accurate 
closed form solution determine the unknow constants in the 
closed form solution. After that, the obtained closed form 
solutions for two adjacent ODE surfaces are substituted into (4) 
to satisfy the continuity requirements. Finally, a 3D model is 
created from a network of boundary curves called a wireframe. 

When a polygon, NURBS and subdivision 3D model will 

be converted into an ODE sweeping surface-represented model, 

we follow the following steps. First, we segment the 3D model 

into patches. Then we extract the boundary curves of these 

patches to obtain wireframe of the 3D model and draw two 

control curves for each of extracted boundary curves. From the 

boundary and control curves, we determine boundary 

conditions (2). After that, we solve ODE (1) subjected 

boundary conditions (2) to obtain the accurate closed form 

solution and use (4) to satisfy the continuity requirements. The 

obtained closed form solution is used to create one ODE 

sweeping patch. An ODE sweeping surface-represented 3D 

model is created after the wireframe is filled with ODE patches. 

Fig. 2 shows a converted ODE sweeping surface-represented 

dog model. 

 

Fig. 2. ODE surface and boundary and control curves [14]. 

IV. NEWTON’S SECOND LAW-BASED FACIAL BLENDSHAPES 

In this section, we develop a new, efficient, and physics-
based algorithm of facial blendshapes based on Newton’s 
second law. In what follows, we first present New-ton’s second 

law, then derive its accurate closed form solution, and finally 
determine the unknow constants involved in the accurate closed 
form solution. 

In a three-dimensional space, Newton's second law can be 

written as: 

 𝑚𝑎 = 𝑓 () 

where 𝑚 stands for mass, 𝒂 denotes the acceleration which has 

three components 𝑎(𝑖)(𝑖 = 1, 2, 3)  with 𝑎(1) = 𝑎𝑥 , 𝑎(2) = 𝑎𝑦 

and 𝑎(3) = 𝑎𝑧, and 𝒇 stands for the external force also with three 

components in each direction 𝑓(𝑖)(𝑖 = 1, 2, 3) with 𝑓(1) = 𝑓𝑥 , 

𝑓(2) = 𝑓𝑦 and 𝑓(3) = 𝑓𝑧. 

The acceleration a is related to the position change x as: 

 𝑎 =
𝑑2𝒙

𝑑𝑡2 () 

where the position change 𝒙  has three components 𝑥(𝑖)(𝑖 =

1, 2, 3) with 𝑥(1) = 𝑥, 𝑥(2) = 𝑦, and 𝑥(3) = 𝑧. 
Substituting (6) into (5), the following formula could be 

obtained in the form of components: 

 𝑚
𝑑2𝑥(𝑖)

𝑑𝑡2 = 𝑓(𝑖)  (𝑖 = 1,2,3) () 

The next step is to determine initial and boundary conditions 
of solving the above second-order ordinary differential 
equations. This can be achieved by considering the positions at 
the initial and final poses and the velocity at the initial pose.   

Assuming a 3D model is defined by the polygon vertices �̅�𝑛 
(𝑛 = 1, 2, 3, … , 𝑁)  at the initial pose 𝑡 = 0 , and �̿�𝑛 (𝑛 =
1, 2, 3, … , 𝑁)  at the final pose 𝑡 = 1 , the position change is 

𝒙𝑛 = 0 at the initial pose 𝑡 = 0  and 𝒙𝑛 = �̿�𝑛 − �̅�𝑛 at the final 

pose 𝑡 = 1. 

If we assume that the rate of the position change at 𝑡 = 0 is 

zero, i.e. 𝑑𝒙𝑛/𝑑𝑡 = 0 , the initial and boundary conditions 

could be gained: 

𝑡 = 0       𝒙𝑛 = 0    

 
𝑑𝒙𝑛

𝑑𝑡
= 0                        (8) 

                   𝑡 = 1          𝒙𝑛 = �̿�𝑛 − �̅�𝑛 
                           (𝑛 = 1, 2, 3, … , 𝑁)    

In the form of components, (8) could be changed into: 

𝑡 = 0     𝑥𝑛
(𝑖) = 0 

 
𝑑𝑥𝑛

(𝑖)

𝑑𝑡
= 0                    (9) 

         𝑡 = 1        𝑥𝑛
(𝑖) = �̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)                    
                                                   (𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁) 

Replacing 𝑥(𝑖) with 𝑥𝑛
(𝑖) in (9), we get: 

 𝑚
𝑑2𝑥𝑛

(𝑖)

𝑑𝑡2 = 𝑓𝑛
(𝑖)

 () 

(𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

Dividing both sides of (10) by 𝑚, we obtain: 



 𝑚
𝑑2𝑥𝑛

(𝑖)

𝑑𝑡2 = 𝑓𝑛
(𝑖)

 () 

(𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

Integrating (11) with respect to time 𝑡 twice, we obtain: 

 𝑥𝑛
(𝑖) =

𝑓𝑛
(𝑖)𝑡2

2𝑚
+ 𝑐0𝑡 + 𝑐1 () 

(𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

where 𝑐0 and 𝑐1 are unknown constants. 

Introducing (12) into (9), and solving for the two unknown 

constants 𝑐0 and 𝑐1 as well as the external force 𝑓𝑛
(𝑖)

, we have: 

𝑐0 = 𝑐1 = 0 

 𝑓𝑛
(𝑖)

= 2𝑚[�̿�𝑛
(𝑖)

− �̅�𝑛
(𝑖)] () 

      (𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

Substituting (13) into (12), we reach the following formula 

to calculate the position change: 

 𝑥𝑛
(𝑖) = [�̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)]𝑡2 () 

(𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

Finally, by adding the position change 𝑥𝑛
(𝑖) to the position 

values �̅�𝑛
(𝑖) of each vertex of the 3D model at the initial pose 

𝑡 = 0, we get the following formulae which will be used to 

determine the position values �̂�𝑛
(𝑖)

 at any poses between the 

initial and final poses: 

 �̂�𝑛
(𝑖)

= �̅�𝑛
(𝑖) + [�̿�𝑛

(𝑖)
− �̅�𝑛

(𝑖)]𝑡2 () 

(𝑖 = 1, 2, 3;  𝑛 = 1, 2, 3, … , 𝑁) 

With time 𝑡 changes in the interval [0, 1], we use the above 

formulae to obtain a set of different position values of the 3D 

model. Then we use these position values to create facial 

blendshapes between the initial and final poses. 

V. EXPERIMENTS 

We implemented the above Compared with the animation 

of other parts of a virtual human character, face deformation is 

more crucial since it requires higher precision to be regarded as 

realistic. Thus, in order to demonstrate the result of the 

Experiments, using the source provided by [15], two face 

models in the same topological structure with different 

expressions are chosen as Fig.3. We first use the ODE-based 

approach to recreate the two different models and then use 

linear interpolation to calculate the keyframes in between. 

Finally, form an animation between the two different 

reconstructed expression models to demonstrate the algorithm 

implementation as well as how it could be applied in face 

deforming animation. 

A. Patch Separation 

Different facial expressions can be defined with some 

parameters. Paul et al. provided the Facial Action Coding 

System (FACS) in [16] to use corresponding parameters to 

control disparate face shapes. Hamm et al. claimed that the 

facial appearance could be used to encode the action of each 

facial muscles with marginally imperative changes in [17]. 

Furthermore, any anatomically possible facial expression could 

be encoded by FACS through deconstructing it into temporal  

       

(a)    Neutral Model                        (b)    Laugh Model 

Fig. 3. Source models in two different states. 

segments and action units, which could be used for further 
interpolation to adapt to any intelligent environment, mentioned 
in [18]. Differently, we use a wireframe to define a 3D model 
and use ODE sweeping surfaces to recreate the 3D model from 
the wireframe. 

In this paper, we separate the face model into seven different 

patches shown in Fig.4. These seven patches are: eye socket, 

eye bone, nose bridge, nostril, cheek, mouth, and jaw. After 

separating the 3D model into patches, we extract the boundary 

curves of the patches.  

 

Fig. 4. Patch Separation. We separate the face into 7 different patches: eye 

socket, eye bone, nose bridge, nostril, cheek, mouth, and jaw. 

B. Facial Recreation 

After extracting all the boundary curves, we add two control 

curves for each of the boundary curves to determine the 

tangents and curvature on the extracted boundary curves which 

are actually the first and second partial derivatives. The left of 

Fig.5 shows the boundary curves and two control curves, and 

the right of Fig.5 shows the curves obtained from ODE 

sweeping surfaces.  

We compare the original model with ODE sweeping 

surface-represented model of the neutral model in Fig.6(a) and 

the laugh model in Fig.6(b). In the figures, the left images are 

from the original model and the right images are from the ODE-

sweeping surface-represented model. 



Although few patches are used to create ODE sweeping 

surface-represented 3D model, the recreated face models shown 

in the right images do not lose too many details compared with 

the original face models shown in the left images of Figs. 6(a) 

and 6(b). In addition to the relatively good approximation of the 

recreated face models to the original models, the ODE sweep- 

 

Fig. 5. Wireframes extraction. The left figure shows the boundary curves and 

control curves of each patch. The right figure shows the ODE-based 

generated curves. When converting models to ODE sweeping surfaces, 

the data size significantly reduces, which are more convenient for storage 

and speed up network transmission. 

 

(a)     Neutral Model                                 (b)    Laugh Model 

Fig. 6. Comparison of original and recreated model. The original laugh model 

contains details like na-solabial folds, which we use ODE-based recreated 

surface to restore them. ODE sweeping tech-nique could store significant 

details through manipulating control curves.. 

TABLE I.  COMPARISON OF SIZE BETWEEN ORIGINAL AND RECREATED 

MODELS 

 
Model 

Type 

Original 

Model 

Recreated 

Model 

Reduce 

Rate 

vertices 

number 

neutral 8221 4764 42.05% 

laugh 8246 4764 42.23% 

polygon 

number 

neutral 15378 4236 72.45% 

laugh 15411 4236 72.51% 

 

ing surface-represented models, shown in TABLE I, is defined 
by 4764 points on boundary curves and control curves and three 
shape control parameters involved in (1). They indicate that the 
design variables of the ODE sweeping surface-represented 
model is only about 58% of the design variables of the 
corresponding original model. Therefore, the ODE sweeping 
surface-represented models could noticeably save the data 
storage space with similar quality to the original model. 
Furthermore, the ODE sweeping surface-represented models 
provide a convenient way to quickly manipulate the face shapes 
and expressions through modifying boundary curves, control 
curves, and shape control parameters. Since two adjacent ODE 
sweeping patches share the same boundary conditions, up to 
curvature continuities are naturally achieved, which avoids 
manual operations to stitch two adjacent ODE sweeping patches 
together and save a lot of time in achieving curvature 
continuities between adjacent patches. 

C. Facial Blendshapes 

Facial blendshapes of polygon models are to interpolate the 

vertices of the neutral model and target model. When a neutral 

model and a target model have different topology or vertices, a 

lot of work and time are required to find the correspondence 

between the neutral model and target model. Since many 

polygon vertices are used to define a polygon model, a lot of 

time is also required to calculate the interpolation between the 

neutral model and the target model. 

After a neutral model and a target model have been 

converted into ODE-sweeping surface-represented models, 

facial blendshapes can be achieved through interpolate the 

boundary curves and control curves, which avoids the work in 

finding the correspondence between two models with different 

topology and vertices and saves the time in interpolating many 

polygon vertices.  

In comparison with most widely used facial blendshapes 

based on linear interpolation which is purely geometric, facial 

blendshapes use the Newton’s second law. Therefore, the 

proposed algorithm is physics-based and has a potential to 

create more natural appearance of facial blendshapes. We have 

implemented these two algorithms and use both of them to 

create facial blendshapes.  

 

 

Fig. 7. 31 keyframe models blending two different interpolation methods. The 

first row is the facial blendshapes generated by linear interpolation while 

the second row is generated by the interpolation derived Newton’s second 

law. Here we use the same size green box and blue box to respectively 

show the shape change of mouth and eye. After comparing the shape 

change of mouth and eye, it could be found that, the change acceleration 

of the second row keeps the same, whilst that of the first row is small at 

first and surges at the end i.e., more natural. 

The facial blendshapes shown in the first row of Fig.7 are 

created with the Newton’s second law-based interpolation. 

First, we interpolate two boundary curves and four control 

curves for each of ODE sweeping surface patches of a 3D 

model to obtain the boundary conditions at the poses between 

the neutral model and target model. Then, ODE sweeping 

surface-represented 3D models are created from the obtained 

boundary conditions. Plus the original neutral model and target 

model, 30 keyframe models are used to create smooth facial 

animation.   

 The facial blendshapes shown in the second row of Fig.7 are 

created with linear interpolation. Similarly, 30 keyframe 



models including the original neutral model and target model 

are used to create smooth facial animation.    

Comparing the images shown in Figs.7, we can conclude 

that facial blendshapes based on linear interpolation generate 

equal changes between two adjacent models, i.e., move with a 

same velocity. Actually, facial chape changes are not in a same 

velocity. For example, when we open or close our mouth, two 

lips may move quickly or slowly at the beginning or at the end. 

Such an acceleration or deceleration effect could create more 

natural lip movements. With the interpolation derived 

Newton’s second law, it is easy to create such acceleration and 

or deceleration effect and more natural blendshapes could be 

generated. 

VI. CONCLUSION 

In this paper, we have developed a new and physics-based 
algorithm of facial blendshapes derived from Newton’s second 
law and combined it with ODE sweeping surfaces to represent 
neutral and target models, create the models between neutral and 
target models, and generate physics-based facial animation. The 
proposed method has the advantages of small data of created 
models, easy obtainment and natural maintenance of required 
continuities, efficient shape manipulation, correspondence 
avoidance between the neutral model and target model, natural 
facial blendshapes, and easy creation of special animation 
effects. 

However, wireframes defining facial models are manually 
extracted in our work, which requires many manual operations 
and a lot of time. This can be improved by developing an 
automatic extraction algorithm. A template facial model with 
pre-defined surface patches can be introduced to automatically 
segment any 3D facial models, and a Maya Mel script can be 
implemented to automatically extract boundary curves of the 
segmented patches and generate control curves. Facial 
blendshapes include interpolation between a neutral model and 
a target model and blending among a neutral model and many 
target models. In this paper, we only investigate facial 
blendshapes using interpolation between a neutral model and a 
target model, and facial blendshapes among a neutral model and 
many target models have not been investigated. New algorithms 
of facial blendshapes based on Newton’s second law can be 
developed to tackle this problem. In order to facilitate the 
applications of the proposed method, an interactive interface 
based on ODE sweeping surface-represented models and the 
interpolation using Newton’s second law can be developed to 
create facial blendshapes easily. In the future, we will 
investigate these issues. 
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