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Abstract

Human beings experience life through a spectrum of modes such as vision, taste, hearing, smell, and touch. These multiple modes
are integrated for information processing in our brain using a complex network of neuron connections. Likewise for artificial
intelligence to mimic the human way of learning and evolve into the next generation, it should elucidate multi-modal information
fusion efficiently. Modality is a channel that conveys information about an object or an event such as image, text, video, and audio. A
research problem is said to be multi-modal when it incorporates information from more than a single modality. Multi-modal systems
involve one mode of data to be inquired for any (same or varying) modality outcome whereas cross-modal system strictly retrieves
the information from a dissimilar modality. As the input-output queries belong to diverse modal families, their coherent comparison
is still an open challenge with their primitive forms and subjective definition of content similarity. Numerous techniques have been
proposed by researchers to handle this issue and to reduce the semantic gap of information retrieval among different modalities. This
paper focuses on a comparative analysis of various research works in the field of cross-modal information retrieval. Comparative
analysis of several cross-modal representations and the results of the state-of-the-art methods when applied on benchmark datasets
have also been discussed. In the end, open issues are presented to enable the researchers to a better understanding of the present
scenario and to identify future research directions.
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1. Introduction

When we fail to understand the contents of an image embed-
ded in a text, figure captions, and referral text often help. Just by
looking at a figure, a person might not be able to understand it
exactly but with the help of collateral text, it can be understood
efficiently. For instance, when we see a volleyball picture(figure
1), we may not be able to understand or know about the volley-
ball game. However, the picture can be completely understood
with the help of collateral text (such as caption, figure reference,
and related citation) describing the volleyball game. This im-
plies that information from more than one source is beneficial
in further understanding of things and also helpful in better in-
formation retrieval. This is where cross-modal data fusion and
retrieval come into the picture.

Figure 1: An example of a volleyball image and collateral text in the form of
the caption, figure reference, and related citation.

Recently, cross-modal retrieval has gained a lot of attention
due to the rapid increase in multi-modal data such as images,
text, video, and audio. The term modality represents a spe-
cific form in which data exists and it is also associated with a
sensory perception such as vision and hear modalities which
are major sources of communication and responsiveness in hu-
man beings and animals. The data consisting of more than one
modality is known as multi-modal data. It has the characteristic
of high-level semantic homogeneity and low-level expressive
heterogeneity such as the same thing having diverse representa-
tions. Different forms of representation help people better un-
derstand things as illustrated in the volleyball example above.
While searching for something, people often want to get accu-
rate results in different forms which create a need for an efficient
multi-media information retrieval platform. Classic approaches
to information retrieval are of uni-modal nature. Uni-modal
means information derived just from one channel, such as only
from images or only from the text (but not both). For example,
only the text query is used for information search and retrieval
from a text repository. This retrieval approach is of the least use
these days when enormous multimedia data is being generated.
Cross-modal and multi-modal systems, on the other hand, are
able to link more than one modalities such as image, text, au-
dio, and video. In cross-modal, input query mode and resultant
mode are dissimilar. For example, query text for related images
and query image for related text. However, the resultant mode
can be similar to the query mode in a multi-modal system. For
example, query text to retrieve related images and matched text.

Cross-modal and multi-modal are explained using a simple ex-
ample in figure (2) where + represents both text and images can
be retrieved using an image query and vice versa in multi-modal
approach.

Figure 2: An illustration of information retrieval in cross-modal and multi-
modal system.

Therefore, the fundamental idea of cross-modal is to in-
tegrate numerous modes of information to derive better re-
sults than just one channel. For instance, an image-text cross-
modal system integrates textual information along with an im-
age which is known as image annotation. Vice-versa, it also
queries text keywords to retrieve images, known as image re-
trieval. In simple words, image annotation is a process of ex-
plaining an image with appropriate linguistic cues. It is use-
ful in knowledge transfer sessions for application areas such
as medical science, military, business, education, and sports to
name a few. For example, a CT scan is known to the radiologist
but not to an intern or a patient. Therefore, the expert has to
explain it using proper terminology by pointing out key areas
on the given image. Image retrieval is a process of retrieving an
appropriate image from the database as per the user query, for
instance, with text keywords. With the evolution of the seman-
tic web and huge data repositories, a major challenge comes
into the picture which is effective indexation and retrieval of
both still and moving images and the identification of key areas
inside the images. An image cannot be expressed completely
just by using visual features only as they under-constrain the
information contained in it. Visual features of an image include
color distribution, texture, shape, and edges. Typically, image
retrieval systems make use of images and the corresponding
text/keywords for indexing and retrieving images using both
keywords and visual features of the image. Cross-modal image
retrieval aims to use text for retrieving relevant images related
to the text.

1.1. Motivation

Cross-modal learning has become tremendously popular be-
cause of its effective information retrieval capability. Numer-
ous cross-modal representation and retrieval methods have been
proposed by researchers to resolve the issue of cross-modal re-
trieval considering several modalities. Various appealing sur-
veys have been introduced which summarizes the work done in
this field. Image and text are the highly utilized modalities and
a number of articles on cross-modal retrieval have been pub-
lished considering these. However, there is no proper survey
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mainly focusing on the image-text cross-modal retrieval tech-
niques. The objective of this article is to conduct a comprehen-
sive review of cross-modal retrieval which incorporates image
and text modalities, the main concerns of which are different
from previous surveys and reviews. So, the motivation behind
this review article is:

1. Lack of a full-fledged review article on image and text
modalities.

2. To present various challenges and open issues in the cross-
modal retrieval field.

3. Image and text modalities are the basic and highly utilized
modalities, however, we are still away from achieving an
ideal level in their cross-modal retrieval process.

1.2. Related surveys

Existing literature reviews related to cross-modal informa-
tion retrieval have presented the topic quite well to the research
community. [1] presented an overview of cross-modal retrieval
in 2016, however, it does not comprise several significant works
proposed in recent years. In [2], authors have presented nu-
merous multi-modal techniques, but their focus is only on tech-
niques based on machine learning. [3] is a contemporary sur-
vey, however, it presents a brief study of cross-media retrieval
methods compared to the vastness of the topic. An overview
of different cross-media retrieval techniques incorporating mis-
cellaneous modalities has been provided in [4]. [5] article only
explore various cross-media retrievals with joint graph regular-
ization. The focus of [6] is on cross-media analysis and reason-
ing and the various analysis methods rather than cross-media
retrieval. [7] has provided a survey on cross-media image and
text information fusion where the main focus is on analyzing
two methods of image and text associations.

Table (1) shows the comparison of the current survey with
the existing reviews related to cross-modal learning sorted year
wise. Comparison is performed on the basis of the domain, dif-
ferent modalities incorporated in the paper, comparative anal-
ysis, challenges, open issues, benchmark datasets, and evalua-
tion metrics. It can be seen in the table that only one survey is
focusing on image and text modalities but their main concern
is an image-text association and not cross-modal retrieval. A
blank cell in the table implies that the information is missing
for that particular column and Xmeans that it is present in the
article. Domain column specifies the main focus of the arti-
cle and all value under Mode column means that the article is
not particularly focusing on any two or three modalities rather
it is talking about the whole multi-media. Comparative analy-
sis depicts whether the comparison among techniques has been
performed quantitatively or qualitatively.

1.3. Contributions

The significant contributions of this paper are as follows:

1. This review focuses to present a summary of recent
progress in cross-modal retrieval considering text and im-
age (image-to-text and text-to-image). It comprises several
novel works and references which are absent in previous

surveys. It will act as a valuable resource for beginners to
get acquainted with the topic.

2. A broad classification of various cross-modal approaches
has been presented and difference among them is also dis-
cussed.

3. It provides information regarding various prominent
benchmark datasets and evaluation metrics utilized for
cross-modal method performance estimation.

4. It presents a comparative analysis of diverse cross-modal
representation techniques when applied on benchmark
datasets. This analysis will be highly useful for future re-
search.

5. The article summarizes various challenges in the field of
cross-modal retrieval and open issues to work upon by fu-
ture researchers.

1.4. Article organization

This article starts with an introduction of cross-modal re-
trieval in Section 1 which includes motivation for the survey,
contributions, comparison with existing surveys, article road
map, and organization. An appropriate review methodology
(Section 2) has been shadowed in writing the proposed survey
which incorporates five subtopics: research questions, sources
of information, search criteria, data extraction, and publica-
tion metrics. The inception of cross-modal retrieval, its general
architecture, applications, observed challenges in the process,
and the initial related articles are presented in concert under
the background section (Section 3). Section 4 discusses about
the diverse cross-modal representation and retrieval techniques
which are broadly classified into real-valued and binary tech-
niques. The literature related to these techniques has also been
included in this section. The famous image-text benchmark
datasets which have been widely used by the researchers in the
cross-modal field have been presented in Section 5. Section
6 is of comparative analysis which introduces different perfor-
mance evaluation metrics along with a comparison of various
cross-modal retrieval methods. A summary of several state-of-
the-art cross-modal retrieval works has been demonstrated with
the use of tables in Section 7. The miscellaneous open issues
in cross-modal retrieval domain have been discussed in Section
8. Finally, Section 9 culminates the survey with the conclusion.
Figure (3) depicts the road map of the article.

2. Review methodology

The categorical survey technique described in this research
article has been obtained from the technique described by
Kitchenham et al. [8, 9]. Distinct stages used in this review
are: to create a review technique, planning an exhaustive sur-
vey, executing the survey, comparison of results, comparative
result analysis, and exploring open issues. The review tech-
nique employed in this categorical survey is described in figure
(4).
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Table 1: Comparison of the proposed survey with existing surveys
Sr.
No.

Article Year Domain Mode Comparative
analysis

Challenges Open
issues

Datasets Eval.
met-
rics

1 Priyanka [7] 2013 Cross-media text and image informa-
tion fusion

Image
and
text

2 Wang et al. [1] 2016 Cross-modal retrieval all Quantitative X X X X

3 Peng et al. [4] 2017 Cross-media retrieval: concepts,
benchmarks, methodologies and
challenges

all Quantitative X X X X

4 Peng et al. [6] 2017 Cross-media analysis and reasoning
advances and directions

all X X

5 Baltruvsaitis et al.[2] 2018 Multimodal machine learning all Qualitative X

6 Monelli and Bondu et
al.[5]

2018 Joint graph regularization based se-
mantic analysis for cross-media re-
trieval

all Qualitative

7 Monelli and Bondu [3] 2019 Cross-media feature retrieval and opti-
mization

all X X

8 Proposed survey - Cross-modal retrieval considering im-
age and text modalities

Image
and
text

Qualitative and
quantitative

X X X X

Figure 3: Road map for the article

2.1. Research questions
A number of vital areas required to be considered in the case

of cross-modal retrieval are summarized in the following re-
search questions:

1. RQ1: What is the need of cross-modal retrieval?
AS1: The results achieved in information retrieval can be

Figure 4: Shortlisting of the research articles starting from title, ab-
stract/conclusion, full text and redundancy

highly improved when information from more than one
mode is incorporated into the process. [Details in Section
1]

2. RQ2: What is the background of the word cross-modal?
AS2: Cross-modal learning is inspired from working of
human brain. [Details in Section 3]

3. RQ3: What are the different challenges faced during the
process of cross-modal retrieval?
AS3: Handling of huge multi-modal datasets, heteroge-
neous modalities and others. [Details in Section 3.3]

4. RQ4: What are various applications of cross-modal re-
trieval?
AS4: Emotion recognition system, biomedical image re-
trieval, and spoken to sign language transcription to name
a few. [Details in Section 3.2.1]

5. RQ5: Which state-of-the-art methods have been proposed
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recently for multi-modal data representation and retrieval
and which image and text descriptors have been used in
combination?
AS5: The popular multi-modal data representation method
is CCA, SIFT and LDA are famous methods utilized for
image and text representation respectively. [Details in Sec-
tion 4 and Table 18]

6. RQ6: What are the various existing prominent image-text
benchmark datasets?
AS6: NUS-WIDE, Wikipedia and MIRFlickr 25k are few
popular datasets. [Details in Section 5 and Table 7]

7. RQ7: What are the primary evaluation metrics utilized by
researchers and comparison of miscellaneous techniques
on different benchmark datasets?
AS7: MAP and PR curve are commonly accepted evalu-
ation metrics by research community. [Details in Section
6]

8. RQ8: What are the open issues in the field of cross-modal
retrieval?
AS8: Lack of huge multi-modal datasets, restricted anno-
tations and diversity requirement in dataset composition
are few open issues. [Details in Section 8 and Table 17]

2.2. Sources of information

We searched broadly in electronic database sources as rec-
ommended by Kitchenham et al. [8, 9]; the electronic databases
used for searching are given in figure (5).

Figure 5: The electronic databases used in the survey

2.3. Search criteria

The survey conducted contains the literature review of the
qualitative and quantitative research articles from the year 2010
to 2020 in the English language. In this article, we have in-
cluded research papers from peer-review journals, symposiums,
conferences, technical reports, and workshops. The exclusion
criteria used in the search is given in figure (4). An individ-
ual search was applied to a few articles from Springer, Elsevier,
and IEEE to name a few to cross-check the electronic search-
ing. There were 579 articles gathered from the search which
were then further reduced to 485 based on the titles of the ar-
ticles. The exclusion was done based on the titles as the ti-
tles which were relevant to image-text cross-modal were kept
in the list and titles which seemed out of the scope of the area

were excluded (such as papers based on other cross-modal re-
trievals were excluded). The number was further reduced to
280 based on the abstract and conclusion of the article. The ab-
stracts/conclusions of all the papers were read and relevant pa-
pers to cross-modal retrieval considering image and text were
selected among all other papers. Finally, 189 articles were se-
lected based on their full text as the papers whose technique
was not relevant to our domain were excluded. Then, these 189
articles were examined thoroughly to give the final list of 132
research papers with the help of reference investigation and re-
dundancies to eliminate common challenges based on inclusion
and exclusion criteria.

2.4. Data extraction
Many problems were faced in extracting relevant information

from the sources specified. Various authors were contacted for
finding the in-depth knowledge of research if required. Our
review used the following procedure for data extraction:

• The data from 132 research articles was extracted by one
of the authors after a detailed review.

• Another author then cross-checked the review results ex-
tracted.

• If any conflict arose during cross-checking, then a compro-
mise meeting was held by authors to resolve the conflict.

The aim of this review is to find the available research in image-
text cross-modal retrieval. Most of the research articles on
cross-modal retrieval are published in a comprehensive variety
of referred journals and conference proceedings.

2.5. Publication metrics
This section involves the publication metrics related to cross-

modal retrieval. Figure (7) presents a chart of year-wise publi-
cations from year 2010 to 2020 which has been obtained by
executing the search string allintitle: retrieval ”cross modal”
OR ”cross media” OR ”multi modal” OR ”multi media” on
Google Scholar as per year. It can be inferred from the chart
that the publication count in the field has increased overall.

Figure (6) displays the publication count of prominent jour-
nals in the field of cross-modal retrieval during last decade.
Journal Multimedia Tools and Applications has the highest pub-
lication count of 23. Here, X represents all journals having
publication count of 1. They are given in table (2). Fig-
ure (8) demonstrates the cross-modal retrieval journal publica-
tion count geographically on the world map during last decade.
China has the maximum publication count with a score of 174.
India and US are on second and third position with a score of
15 and 11 respectively.

3. Background

The inception of the terms cross-modal and multi-modal is in
neurology and are inspired from multi-sensory integration in-
side brain [10, 11]. We often need to understand images of ob-
jects/scenes through the use of phrases because image does not
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Figure 6: Journal publications count in the area of Cross-modal retrieval during last decade. Journals represented by X are given in table (2)

Table 2: List of journals represented by X in figure (6), having a publication
count of 1.

Publisher Journals

Elsevier
Alexandria Engineering; Computer Vision and Image Under-
standing; Digital Signal Processing

Information Sciences; Procedia Computer Science; Signal
Processing: Image Communication

Hindawi Mathematical Problems in Engineering; Mobile Information
Systems

IEEE

Journal of Se-
lected Topics in

Applied Earth Observations and Remote Sens-
ing; Signal Processing

IEEE Signal Processing Magazine

Transactions on

Automation Science and Engineering; Biomet-
rics, Behavior, and Identity Science; Circuits
and Systems for Video Technology

Dependable and Secure Computing; Geo-
science and Remote Sensing; Industrial Elec-
tronics

Industrial Informatics; Neural Networks and
Learning Systems

IET
CAAI Transactions on Intelligence Technoloy

Image Processing

Springer

Computer Vision; Computer Science and Technology

Neural Computing and Applications; Pattern Analysis and Ap-
plications

Signal, image and video processing; Soft Computing

Taylor &
Francis

Intelligent Automation & Soft Computing; The imaging sci-
ence

Other International Journal of Signal Processing, Image Processing
and Pattern Recognition

contain all the relevant information. Thus, we use one modality
of communication to compensate for the absence of informa-
tion in another mode [12] which implies co-relating text and
image. In simple terms, cross-modal or multi-modal is linking
of more than one modality such as text, image and video. The
process of using one modality to retrieve related information in
other modality is known as cross-modal retrieval. Retrieval of

Figure 7: Cross-modal retrieval article publishing trend

Figure 8: Geographical representation of country wise journal publication
count in last decade

text using an image is called image annotation and retrieval of
an image using text is known as image retrieval.

Figure (9) shows a lucid comparison of various modalities
utilized inside the brain and computer. For instance, sight
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Figure 9: Comparison of computer and brain, based on different modalities
which are integrated inside them to make a decision. For instance, image
modality in a computer is similar to vision modality in the brain, tongue bio-
metric is similar to taste and so on.

modality for the brain is collated with image modality for com-
puter, hear is collated with audio, and so on. Humans get fa-
miliar with the outside world using multiple sensory channels
where each channel provides a distinctive impression of the en-
vironment [13]. Each sense or sensory modality seems to ex-
ercise separately to interact with the environment and acquire
knowledge, however, the information received from all the sen-
sory channels is integrated by the brain into an extensive aware-
ness regarding the outside world [14]. As an example, when it is
difficult to understand a person’s articulation then the interlocu-
tor will automatically start observing other modes of expression
such as mouth movements and facial/body expressions. In a
similar fashion, only one modality is not enough to understand
an incident/object for decision making. So, computers can be
evolved to the next level by integrating information from di-
verse modalities to achieve better results than just one infor-
mation channel. Current generation computers are not capa-
ble to perform cross-modal computation efficiently due to their
existing structure (separation of memory and processor unlike
brain neurons [15]) and complexity involved in the cross-modal
learning phenomenon. Hence, cross-modal learning is an at-
tempt to make the computer evolve to the next level.

3.1. Architecture

Figure (10) demonstrates the general framework of a cross-
modal retrieval system. Four modalities such as text, image,
video, and audio are shown in the figure as an example. Typ-
ically, the initial form of data contains noise which affects the
overall building and accuracy of the system. Pre-processing
is performed on the data to remove that noise and to make it
appropriate for further processing on it. The second step is to
represent each modality separately by doing a feature extraction
process using varied algorithms such as BoW, SIFT, and CNN
depending upon the multi-modal data. As per the multi-modal
representations, common representations for diverse modalities
are learned using correlation modeling. In the end, this com-

mon representation enables the cross-modal retrieval process by
appropriate ways of data indexing, summarization, and ranking.

Figure 10: General framework of cross-modal retrieval process

Figure (11) shows the general topological architecture of
cross-modal image annotation and retrieval system. It defines
the relative locations of each entity in the rectangular boxes and
process flow through directed arrows. Working of each entity is
briefed as follows:

Figure 11: General topological architecture of image-text cross-modal system

1. Manual annotation: Manual annotation implies the label-
ing of unlabelled images or providing an appropriate ex-
planation for each image by an expert.

2. Repository: A repository refers to a central location for
the storage and management of data consisting of images
and text. It is the common location for fetching and saving
data for all the entities present in the system. The pre-
pared and organized data after an annotation is put into the
repository for further analysis. The image and textual data
are picked up by image and text analysis modules sepa-
rately for analysis and then the extracted features are put
back in the repository. The cross-modal learning module
is connected to the repository so that when a query is fed
into the module, it can retrieve the related result from the
repository module.

3. Image analysis: This module consists of three sub-
modules which are as follows:

• Image pre-processing: It involves the cleaning of
noisy images, improving the quality of blur images,
and image resizing.
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• Image segmentation: It is a process of segregation of
an image into several small segments such as a group
of pixels which makes the image representation eas-
ier to analyze.

• Feature extraction: It consists of withdrawing the
useful features from an image which uniquely iden-
tifies it.

4. Text analysis: This is further divided into three steps:

• Corpus creation: It includes text pre-processing, typ-
ically consisting of noise and stop words removal.
After pre-processing, the final word corpus is cre-
ated.

• Frequency analysis: It involves assigning a fre-
quency to the words in the corpus.

• Feature extraction: Like image feature extraction,
text feature extraction identifies the vital features
from the text which differs it from other text. Few
feature extraction methods include Bag-of-Words
(BoW), TF-IDF, and weirdness coefficient.

5. Cross-modal learning: This is the most important module
in the architecture and is the final system which is used for
image annotation and retrieval purpose. When a text query
is fed into it, it fetches the matched text and related images
from the repository and returns them to the user.

3.2. Origin and applications

Most of the initial works which are inspired by cross-modal
human behavior are related to the integration of acoustic and vi-
sual modalities [16, 17, 18]. Numerous works proposed in the
80s and 90s are influenced by the McGurk effect [19]. As per
this effect, an illusion happens when an acoustic element of one
sound is combined with the visual element of another sound
which leads to the perception of a third sound. After getting
motivation from previous researches on cross-language infor-
mation retrieval (CLIR) and spoken document retrieval (SDR)
Thijs Westerveld presented one of the earliest researches on
cross-modal retrieval considering image and text [20, 21]. In
both of his works, he proposed the use of the Latent Seman-
tic Indexing (LSI) method for cross-modal image-text retrieval.
This method builds a common multi-modal semantic space to
represent images and text simultaneously which benefits the re-
trieval of related text using an image and vice-versa.

3.2.1. Applications
Authors have introduced numerous techniques for cross-

modal information retrieval considering miscellaneous modal-
ities and applied them in varied applications. Summary of
prominent and recent applications exploiting various modalities
is stated in the table (3). As this survey is focused on image and
text modalities, the prominent works and representation tech-
niques related to those are mentioned in section (4). Few ap-
plications are described as below and also presented in figure
(12):

Figure 12: Applications of cross-modal retrieval

1. Face-voice matching and retrieval: Studies reveal that hu-
man appearances are linked to their voices and humans
have the tendency to recognize the association of voice
and face. As an example, after hearing a voice, humans
can easily identify the gender of the person and the ap-
proximate age. Inspired by this, a cross-modal framework
for face voice matching and retrieval is proposed [22]. In
addition to the framework, a novel face-voice dataset has
been constructed from Chinese speakers and formed a data
collection tool as well.

2. Spoken to sign language transcription: Cross-modal data
fusion has been applied to explore the spoken language to
sign language and vice versa [23]. Sign language is help-
ful to assist the communication with hard-of-hearing or
deaf people and the proposed methodology has introduced
How2Sign technology which is based upon the American
Sign Language dataset.

3. Emotion recognition system: Psycho-linguistics is the
study of the mental aspects of speech and language. As per
the studies on human communication, people start adjust-
ing their behavior by imitating the expressions, gestures,
and speaking style of their interlocutor which is known
as entrainment. Entrainment presence in cross-modal set-
tings is investigated in [24] and its effect on multi-modal
emotion recognition system. Moreover, cross-speaker
dependence and cross-modality have also been inquired
about. After empirical analysis, it has been found that
there is a strong relationship between acoustic and fa-
cial features of one person with the emotional state of
other and speakers show alike emotions specifying pow-
erful mutual influence in their expressive behaviors 72%
of the time. It has been found that there is a robust depen-
dence among heterogeneous modalities across interlocu-
tors and the emotional state of an interlocutor can be iden-
tified from the information provided by the other interlocu-
tor.

4. Disaster and emergency management system: A large
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number of disaster videos, images, and news are uploaded
and searched on social media regularly. These multime-
dia can be utilized as sensors to extract important infor-
mation about the disasters. Images and text have been as-
sociated by [25] to extract prominent phrases related to
floods. Bag of words model for text features and Speeded-
up Robust Features (SURF) for image feature extraction
has been used. For the integration of image and text, anal-
ysis has been done using a proposed novel method. Two
flood event corpora were used for experiments (a) US Fed-
eral Emergency Management Agency media library, and
(b) public Facebook groups and pages for the flood and
the aid (in German).

5. Biomedical image retrieval: Considering the growth of
the healthcare industry, important text and images keep on
hiding under the inessential data which makes it hard to re-
trieve the relevant information. Biomedical articles often
contain annotation markers or tags such as letters, stars,
symbols, or arrows in their figures to spot the highlights.
These markers are also correlated with the image captions
and text in the article. Identification of the markers be-
comes important to extract the Region of Interest (ROI)
from images. A novel technique has been proposed in [26]
with the combination of rule-based and statistical image
processing ways for localizing and annotating the medical
image regions or ROIs. Moreover, a cross-modal image
retrieval technique has been implemented based on ROI
identification and classification.

6. Material identification: A combination of visual and au-
dio can be utilized for identifying a particular material. In
[27], authors are identifying a wooden material based on
sound and its image. ELM-LRF method is used for feature
extraction from images and audio. For cross-modal data
representation, CCA, MCCA (Mean CCA), and CCCA
(Cluster CCA) approaches are utilized and out of which
CCCA is found to be the best among the three.

7. Recipe video retrieval: A video of a recipe can be re-
trieved from a textual recipe. A cross-modal fusion sub-
network is proposed in [28] for obtaining video from a
written recipe. It learns both independent and collabora-
tive dynamics which enhances the associated representa-
tion of videos and recipes. Co-attention network utilized
for explicitly emphasizing the cross-modal interactive fea-
tures between recipe and video.

3.3. Challenges

The main challenges observed in the process of cross-modal
retrieval are represented in figure (13) and defined as follows:

1. Massive multimedia data sets: Sophisticated content re-
trieval has become a challenge in ever-growing multime-
dia data volume over the internet [47]. Thus the model
efficiency and accuracy suffer from the relevant feature ex-
traction, selective data retention by removing redundancy
while taking care of language syntax, and semantic inter-
pretations. It is also challenging to store and retrieve data

Figure 13: Challenges in cross-modal retrieval

in real-time cross-modal systems to serve a useful purpose
and claim the automatic semantic application.

2. Heterogeneity among modalities: The ever increasing size
of multimedia data on social media every day creates a
bottleneck for efficient information retrieval [48]. Mo-
bile devices and social websites such as Twitter, Facebook,
and Flickr are generating a variety of heterogeneous data
which is semantically different and cannot be compared
directly in their initial form. It is required to reduce the se-
mantic gap among miscellaneous modalities so that they
can be compared/matched with each other to find similar-
ities. Semantic gap refers to the difference between low-
level features and high-level concepts. The nature of data
distributions, noise/artifacts, and key features involved in
various modalities are subtle and prone to errors while or-
chestrating them for mutual information retrieval. There-
fore multimedia data and massive size present a challenge.

3. Manual procedure is expensive: Most of the data that is
found on the Internet these days is either not annotated
or inaccurate. It is quite difficult to annotate the raw data
(images for example) manually by an expert due to its mas-
sive volume and diversity. Hence it is needed to leverage
this manual process for an automatic replacement which is
comparatively accurate [49].

4. Need of efficient feature extraction: Choosing optimal fea-
ture extraction method for underlying multi-modal data is
still an open question [50], [51]. How effectively a modal-
ity has been represented through its feature vectors eventu-
ally affects the overall model quality and reliability. There
is a traditional trade-off between the time complexity and
model validation accuracy so the art is to find mutual equi-
librium. With effective feature extraction best practices,
identifying similarities between modalities will be easier
and efficient.

5. Representation complication: In the case of multiple
modalities, the basic problem is about coherent representa-
tion and synchronization among various modalities which
are often not complementary and thus carry redundancy.
Thus, it is important to have precise spectrum representa-
tion with maximum information gain and no redundancy.
For example, in the case of image and text, images can be
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Table 3: Various application areas of cross-modal information retrieval along with modalities used, year, and reference. Modalities’ representation: A-audio,
I-image,3D-three dimensional, T-text, V-video, L-location.

Sr. Modalities Applications Year Ref.

1 A, I
Face-voice matching and retrieval 2019 [22]

Material identification 2019 [27]

2 A, I, 3D Image-audio-3D retrieval in multiple concepts 2013 [29]

3 A, I, T Multiple distinct category image-audio and image-text retrieval 2019 [30]

4 A, I, T, V, 3D Image-text-audio-video cross modal retrieval in various concepts 2013 [31]

5 A, T
Text-audio retrieval in audios from Freesound library 2019 [32]

Text-audio retrieval in multiple concepts from Spotify, YouTube and Musixmatch
sources

2019 [33]

6 A, V

Audio-visual retrieval in distinct categories of YouTube and Google audio set
videos

2019 [34]

Emotion recognition systems 2013 [24]

Human behaviour analysis 2018 [35]

7 A, V, L Audio-visual-location cross-modal retrieval in distinct categories 2011 [36]

8 A, V, T Youtube video categorization 2020 [37]

9 I, T

RoI identification and classification in CT scan images 2014 [26]

Image retrieval in different categories 2014, 2019 [38], [39]

24 distinct category image-text retrieval 2012 [40]

Disaster and emergency management 2016 [25]

image-text retrieval in various categories 2017, 2018 [41], [42]

10 I, T, V
Image-text and video-text retrieval in multiple categories 2015 [43]

Video, image and text retrieval in video lectures 2014 [44]

11 T, V

Multiple concepts’ video annotation 2011 [45]

cooking activities’ video annotation, videos’ temporal activity localization evalu-
ation, personal videos’ annotation

2019 [46]

Cooking recipe retrieval 2019 [28]

represented in spatial or spectral while the text is symbolic
and dependent upon grammar rules and cultural norms [2].

4. Cross-modal representation and retrieval techniques

Cross-modal representation techniques can be broadly clas-
sified into two categories: (a) Real-valued representation and
(b) Binary representation. In real-valued representation learn-
ing, the learned common representations of diverse modalities
are real-valued. However, in binary representation learning,
diverse modalities are mapped into a common hamming space.
Cross-modal similarity searching is faster in binary representa-
tion, so the retrieval process also becomes faster. However, the
retrieval accuracy becomes less in binary representation as the
information is lost because representation is encoded to binary
codes. Prominent cross-modal learning methods and related
works are presented in the following sub-sections. Figure(14)
presents a taxonomy of cross-modal retrieval methods. Table
(4) shows the list of acronyms used in this article. Figure (15)
presents the literature classification utilized in this survey.

4.1. Real-valued representation learning

This section presents the information regarding various real-
valued representation learning methods and their application on
different datasets. Figure (16) presents the evolution of real-
valued representation learning methods in recent years.

4.1.1. Subspace learning
Subspace learning plays a vital role in cross-modal informa-

tion retrieval. Diverse modalities have different representation
features as well as they are located in diverse feature spaces
[52]. The modalities can be mapped to common isomorphic
subspaces from old miscellaneous spaces by learning potential
common subspaces (as shown in figure 17).

CCA and its variants, CM, SM and SCM. CCA is the most pop-
ular unsupervised technique of subspace learning which was
introduced by Hotelling [53] in 1936. The principal logic be-
hind this technique is to find the pair of projections for di-
verse modalities such that the correlation between them is max-
imized [54]. CCA can be recognized as an issue of identi-
fying the basis vectors for two group of variables aiming to
mutually maximize the correlation between variables’ projec-
tions onto the basis vectors [55]. Let 〈·, ·〉 represents the eu-
clidean inner product of vectors p, q which is equal to p′q,
where A′ is the transpose of a vector or matrix A. Let (p, q)
denotes a multivariate random vector and its sample instances
as S = ((p1, q1), ..., (pn, qn)). S p represents (p1, ..., pn) and
S q = (q1, ..., qn), consider defining a new coordinate for p by
choosing a direction dp and projecting p onto the direction:
p → 〈dp, p〉, similarly for q, the direction is dq. A sample of
new coordinate is obtained: S p,dp = (〈dp, p1〉, ..., 〈dp, pn〉) and
similarly S q,dq = (〈dq, q1〉, ..., 〈dq, qn〉). First step is to choose
dp and dq for maximizing the correlation between vectors, such
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Figure 14: Taxonomy of cross-modal retrieval methods

Table 4: List of acronyms in alphabetical order
Acronym Definition Acronym Definition Acronym Definition

AADAH Attention-Aware Deep Adversarial Hashing DVSH-Q DVSH variant without bitwise max-margin loss SCM Semantic Correlation Matching

ACMR Adversarial Cross-Modal Retrieval FSH Fusion Similarity Hashing S CM KL SCM with Kullback-Leibler divergence measure

AICDM Annotation by Image-to-Concept Distribution Model FSH-S FSH with a simple fusion graph construction S CM l1 SCM with l1 distance measure

BoVW Bag of Visual Words GSS-SL Generalized Semisupervised Structured Subspace learning SCM l2 SCM with l2 distance measure

BoW Bag of Words HOG Histogram of Oriented Gradients S CM NC SCM with normalized correlation measure

CCA Canonical Correlation Analysis HRL Hybrid Representation Learning S CM NCc SCM with centered normalized correlation measure

CM Correlation Matching HRL C Hybrid Representation Learning with CNN features SDCH Semantic Deep Cross-modal Hashing

CM l1 CM with l1 distance measure HRL H Hybrid Representation Learning with handcrafted features SIFT Scale Invariant Feature Transformation

CM l2 CM with l2 distance measure IMH Inter Media Hashing SM Semantic Matching

CM NC CM with normalized correlation measure JFSSL Joint Feature Selection and Subspace Learning SM KL SM with Kullback-Leibler divergence measure

CM NCc CM with centered normalized correlation measure KCCA Kernel Canonical Correlation Analysis S M l1 SM with l1 distance measure

CMOLRS Cross-Modal Online Low-Rank Similarity LBP Local Binary Pattern S M l2 SM with l2 distance measure

CMSTH Cross-Modal Self-Taught Hashing LCMH Linear Cross-Modal Hashing SM NC SM with normalized correlation measure

CMTC Cross-Modal Topic Correlation LDA Latent Dirichlet Allocation S M NCc SM with centered normalized correlation measure

CNN Convolutional Neural Network LSSH Latent Semantic Sparse Hashing SMFH Supervised Matrix Factorization Hashing

Corr-AE Correspondence Autoencoder M3R Multi-Modal Mutual topic Reinforcement modelling SRLCH Subspace Relation Learning for Cross-modal Hashing tech-
nique

CVH Cross-View Hashing MAP Mean Average Precision SVM Support Vector Machine

DAML Deep Adversarial Metric Learning MDCR Modality Dependent Cross-media Retrieval TDH Triplet based Deep Hashing

DAML D Deep Adversarial Metric Learning with deep features MDSSL Multiordered Discriminative Structured Subspace Learning TDH C TDH with CNN-F features

DAML S Deep Adversarial Metric Learning with shallow features MFDH Multi-view Feature Discrete Hashing T DH H TDH with handcrafted features

DCMH Deep cross-modal hashing MHTN Modal-adversarial Hybrid Transfer Network UCH Unsupervised Concatenation Hashing

DDL Discriminative Dictionary Learning MLRank Multi-correlation Learning to Rank UCH LLE UCH with Locally Linear Embedding

DLSH Discrete Latent Semantic Hashing MRR Mean Reciprocal Rank UCH LPP UCH with Locality Preserving Projection

DMSH Deep Multi-level Semantic Hashing MSFH Multi-modal graph regularized Smooth matrix Factorization
Hashing

ZSH Zero-Shot Hashing

DVSH Deep Visual Semantic Hashing PR curve Precision Recall curve ZSH1 ZSH (with complete data)

DVSH-B DVSH variant without binarization QCH Quantized Correlation Hashing ZSH2 ZSH (with zero shot data)

DVSH-H DVSH variant without using the hashing networks RCH Robust Cross-view Hashing ZSH3 ZSH (with semi-supervised zero shot data)

DVSH-I DVSH variant by replacing the cosine max-margin loss S3CA Shared Semantic Space with Correlation Alignment ZSH4 ZSH (with semi-supervised zero shot data and different label
spaces)

that:

ρ = max
dp,dq

Corr(S pdp, S qdq) (1)

= max
dp,dq

〈S pdp, S qdq〉∥∥∥S pdp

∥∥∥ ∥∥∥S qdq

∥∥∥ (2)

where ρ represents the equation to be maximized. Let E de-
notes the empirical expectation of function f (p, q) and given
by

E =
1
m

m∑
i=1

f (pi, qi) (3)

then ρ can be redefined as

ρ = max
dp,dq

E[〈dp, p〉〈dq, q〉]√
E[〈dp, p〉2]E[〈dq, q〉2]

(4)

= max
dp,dq

E[d′p pq′dq]√
E[d′p pp′dp]E[d′qqq′dq]

(5)

= max
dp,dq

d′pE[pq′]dq√
d′pE[pp′]dpd′qE[qq′]dq

(6)

Covariance matrix of (p, q) is defined as:

Cov(p, q) = E
[(

p
q

)(
p
q

)′]
=

Cpp Cpq

Cqp Cqq

 = C (7)
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Figure 15: Overview of literature based on image-text cross-modal retrieval

Total covariance matrix C is a block matrix where Cpq = C′qp
are between-sets covariance matrices and Cpp,Cqq are within-
sets covariance matrices, although eq (7) represents the covari-
ance matrix in zero-mean case only. Now ρ can be redefined

as:

ρ = max
dp,dq

d′pCpqdq√
d′pCppdpd′qCqqdq

(8)

The maximum of ρ w.r.t. dp and dq is the maximum canonical

13



Figure 16: Real-valued representation learning methods’ research evolution.

Figure 17: General representation of subspace learning process

correlation.

Authors in [56] have proposed the use of CCA, Semantic
Matching (SM), and Semantic Correlation Matching (SCM)

in cross-modal document retrieval task. Two hypotheses have
been investigated in this: (a) Benefit to explicitly modelling the
correlation between two elements, and (b) This modelling is
more useful in feature spaces having higher levels of abstrac-
tion. Images are represented by Scale Invariant Feature Trans-
formation (SIFT) features and text using Latent Dirichlet Al-
location (LDA). The motive is to retrieve images that closely
match the text query and to retrieve text which closely matches
the image query. A new Wikipedia dataset has been composed
for the experimentation. The cross-modal framework proved to
outperform the state-of-art cross-modal retrieval methods and
even the novel image retrieval systems on the uni-modal re-
trieval tasks. A mathematical formulation is introduced in [57]
which associates cross-modal retrieval systems’ design with
isomorphic feature spaces for diverse modalities. Two hypothe-
ses are inspected related to the principal characteristics of these
feature spaces: (1) low-level cross-modal correlations should
be accounted for, and (2) space should allow semantic abstrac-
tion. So, three novel solutions to cross-modal retrieval problem
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are then obtained from these hypotheses are CM, SM and SCM.
CM is an unsupervised approach that models cross-modal cor-
relations, SM is a supervised method that relies on semantic
representation and SCM is the combination of both of them.

In [58], a cross-modal retrieval framework has been pre-
sented which outputs a ranked list of semantically relevant text
from a separate text corpus (having no related images) when
queried using an image and vice versa. For these two tasks, a
novel Structural SVM based unified formulation has been pro-
posed. Two representations considered for both image and text
modality are: (a) uni-modal probability distributions over top-
ics learned using LDA, and (b) explicit learning multi-modal
correlations using CCA. The work done in [41] is an extension
of [58]. A new loss function based on normalized correlation is
introduced in this which is found to be better than the previous
two loss functions. Along with this, the proposed method is
compared with other baseline methods, extensive analysis of
training, and run-time efficiency. Comparison based on two
new evaluation metrics and recent image and text features is
also incorporated in the new work. [59] has proposed a cross-
modal technique for extracting semantic relationship between
classes using annotated images. Firstly, both visual features
and text are projected onto a latent space using CCA, and then
the probabilistic interpretation of CCA is utilized for calculat-
ing the representative distribution of the latent variable for each
class. Two measures are obtained based on the representative
distributions: (1) semantic relation between classes, and (2) ab-
straction level of each class.

Classic CCA method has few drawbacks [54]: (1) It is able
to compute only the linear correlation between two sets of vari-
ables, however, the relationship may be non-linear in most of
the real-world implementations; (2) It is able to operate only on
two modalities; (3) If it is applied on a supervised problem then
it wastes the information available in the form of labels because
it is an unsupervised technique, and (4) Intra-modal semantic
consistency is an important factor to improve retrieval accuracy
but CCA fails to capture this [60]. To handle the drawbacks
of classic CCA, several variants of this method are introduced
such as Generalized CCA (GCCA), Kernal CCA (KCCA), Lo-
cality Preserving CCA (LPCCA), and Deep CCA (DCCA) to
name a few. CCA extension techniques seek to construct a cor-
relation that maximizes non-linear projection. In [61], authors
have introduced a new dataset containing images, text (para-
graph), and hyperlinks. This dataset is named as WIKI-CMR
and it is composed of Wikipedia articles. It consists of to-
tal of 74961 documents including images, textual paragraphs,
and hyperlinks. Documents are classified into 11 diverse se-
mantic classes. CCA and KCCA cross-modal retrieval tech-
niques have been applied to the dataset. An Improved CCA
(ICCA) technique has been proposed in [60] to control the lim-
itations of traditional 2-view CCA. For improvement in intra-
modal semantic consistency, two effective semantic features are
proposed which are based on text features. Traditional 2-view
CCA has been expanded to 4-view CCA and it is embedded into
an escalating framework to reduce the over-fitting. The frame-
work combines training of linear projection and non-linear hid-
den layers to make sure that fine representations of input raw

data are learned at the output of the network. A similarity met-
ric is also presented for improving distance measure which is
inspired by large scale similarity learning. In [62], an extension
of the CCA approach has been introduced, named multi-label
CCA (ml-CCA). It learns the shared subspaces by taking care of
high-level semantic information in the formation of multi-label
annotations. This approach utilizes the multi-label information
for generating correspondences instead of relying on explicit
pairing among different modalities like CCA. A fast ml-CCA
technique is also presented in this which has the capability of
handling huge datasets.

An unsupervised learning framework based on KCCA is pro-
posed which identifies the relation between image annotation
by humans and the corresponding importance of things and
their layout in the scene [63]. This uncovered relation is uti-
lized in increasing the accuracy of search results as per queries.
A novel approach for image retrieval and auto-tagging has been
introduced in [64] which utilizes the object importance infor-
mation provided by keyword tag list. It is an unsupervised ap-
proach based on KCCA which finds the relationship between
image tagging by humans and the corresponding importance
of objects and their outline in the scene. As the KCCA tech-
nique is non-parametric, so it scales poorly with the training set
size and has trouble with huge real-world datasets [2]. To han-
dle KCCA drawbacks and to provide an alternative, Deep CCA
(DCCA) has been proposed. It tackles the scalability issue and
leads to better correlated representation space.

Graph regularization based methods. Cross-modal retrieval
typically includes two fundamental issues: (a) Relevance es-
timation; and (b) Coupled feature selection. In [65], authors are
dealing with both the issues. To deal with the first issue, multi-
modal data is mapped to a common subspace to measure the
similarity among modalities. Projection matrices are learned
for this mapping and l21-norm penalties are imposed on them
separately to deal with the second issue, which selects appro-
priate and discriminative features from diverse feature spaces
at the same time. Further, a multi-modal graph regularization
term is applied to the projected data to preserve intra and in-
ter modality similarity relationships. An iterative algorithm is
introduced for solving the joint learning issue along with its
convergence analysis. The excessive experimentation on three
popular datasets proved the proposed technique to outperform
the state-of-art techniques.

To overcome the semantic and heterogeneity gap between
modalities, the potential correlation of diverse modalities need
to be considered. Also, the semantic information of class labels
required to be utilized for reducing the semantic gap among
different modalities as well as realizing the inter-dependence
and interoperability of divergent modalities. So, authors in
[52] have proposed a cross-modal retrieval framework which is
based on graph regularization and modality dependence, fully
utilizing the correlation between modalities. After consider-
ing the semantic and feature correlation, projection matrices
are learned separately for Image-to-Text and Text-to-Image re-
trievals. Then the internal arrangement of original feature space
is utilized to construct an adjoining graph having semantic in-
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formation constraints which enables the diverse labels of mis-
cellaneous modality data to get closer to respective semantic
information. The whole process can be visualized in figure
(18). The objective function for I2T and T2I tasks are defined
in equation (9 and 10) respectively.

F(U1,V1) = λ
∥∥∥UT

1 X − VT
1 Y

∥∥∥2
F + (1 − λ)

∥∥∥UT
1 X − S

∥∥∥2
F+

αtr(U1XT L1XUT
1 − S T L1S )+
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2
F

(9)
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2
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where U1,U2 and V1,V2 represent the image and text projec-
tion matrices in I2T and T2I respectively. S is the semantic
matrix of image and text, X and Y represents the feature ma-
trices of image and text respectively, λ, α, β1 and β2 are bal-
ance parameters. A semantic consistency cross-modal retrieval
with semi-supervised graph regularization (SCCMR) method
is introduced in [66] which ensures a globally optimal solu-
tion by merging prediction of labels and optimization of pro-
jection matrices to a unified architecture. Simultaneously, the
method also considers nearest neighbors in potential image-text
subspace and image-text with the same semantics using graph
embedding. discriminative features are captured from different
modalities by applying l21-norm constraint to projection matri-
ces.

Figure 18: Process of cross-modal retrieval framework followed in [52]

Inspired by the fact that unlabelled data can be composed
easily and aid to exploit the correlation between modali-
ties, [67] has proposed a novel framework generalized semi-
supervised structured subspace learning (GSS-SL) for cross-
modal retrieval. A label graph constraint is proposed for pre-
dicting appropriate concept labels for un-annotated data. For
modeling correlation between modalities, GSS-SL utilizes the
label space as a linkage after consideration of the fact that con-
cept labels directly unveils the semantic information of multi-
modal data. Specifically, a joint minimization formulation is
created from the combination of the label-linked loss function,
label graph constraint, and regularization for learning discrim-
inative common subspace. Multiple linear transformations are
alternatively optimized by an effective optimization method for
diverse modalities and updating of the class indicator matrices
for un-annotated data is also performed.

Other subspace learning methods. A modality-dependent
cross-media retrieval (MDCR) model has been proposed in [68]
in which two couple of projections are learned for diverse cross-
media retrieval tasks rather than one couple of projections. Two
couple of mappings are learned to project text and images from
original feature space into separate common latent subspaces
by simultaneously optimizing the correlation between text and
images and linear regression from one modal space to seman-
tic space. A novel discriminative dictionary learning (DDL)
approach amplified with common label alignment has been in-
troduced in [69] for effective cross-modal retrieval. It increases
the discriminative ability of intra-modality information from di-
verse concepts and relevance of inter-modality information in
the same class. To handle the huge multi-modal web data, [70]
has proposed a cluster-sensitive cross-modal correlation learn-
ing framework. A novel correlation subspace learning tech-
nique which learns a group of a cluster–sensitive sub-models is
presented to better fit the content divergence of various modal-
ities.

A Multi-ordered Discriminative Structured Subspace Learn-
ing (MDSSL) approach is proposed in [71]. This metric
learning framework learns a discriminative structured subspace
where data distribution is reserved for ensuring a required met-
ric. An adversarial cross-modal retrieval method has been pro-
posed in [72] which attempts to make an effective common sub-
space based on adversarial learning. To handle the problem of
multi-view embedding from diverse visual hints and modalities,
a unified solution is proposed for subspace learning techniques
which makes use of Rayleigh quotient [73]. It is extendable
for supervised learning, multiple views, and non-linear embed-
ding. A multi-view modular discriminant analysis (MvMDA)
approach is introduced for considering the view difference. Af-
ter getting motivation from the fact that un-annotated data can
be easily compiled and helps to utilize the correlations among
diverse modalities, a novel generalized semi-supervised struc-
tured subspace learning (GSS-SL) approach is proposed in [67]
for the task of cross-modal retrieval. For aligning diverse
modality data by moving one source modality to another tar-
get modality, a cross-modal retrieval approach with augmented
adversarial training is proposed in [74]. An augmented version
of the conditional generative adversarial network is utilized for
reserving the semantic meaning in the modality transfer pro-
cess.

4.1.2. Statistical and probabilistic methods
Statistical methods include the Markov model (MM), Hid-

den Markov Model (HMM), Markov Random Field, and so
forth. Probabilistic methods incorporate the use of probability
and various probabilistic models. They are typically utilized to
find out the probability of generating a particular modality re-
sult based on a given query modality. Scientific biomedical ar-
ticles contain multi-modal information such as images and text.
Considering the growth of the healthcare industry, important
text and images keep on hiding under the inessential data which
makes it hard to retrieve the relevant information. Biomedical
articles often contain annotation markers or tags such as letters,
stars, symbols, or arrows in figures which highlight the cru-
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cial area in the figure. These markers are also correlated with
the image captions and text in the article. Identification of the
markers becomes important to extract the ROIs from images.
A novel technique has been proposed in [26] with the combi-
nation of rule-based and statistical image processing ways for
localizing and annotating the medical image regions or ROIs.
Moreover, a cross-modal image retrieval technique has been
implemented on articles and it is based upon ROI identification
and classification.

Automatic image annotation and retrieval framework based
on probabilistic models have been proposed in [75] with an as-
sumption that image regions can be explained using blobs (a
kind of vocabulary). Blob is an acronym for Binary Large Ob-
ject and it is a collection of binary data that is stored as a sin-
gle unit in a database. Blobs are created from image features
using clustering. To automatically annotate or retrieve images
using a word as a query, the trained probabilistic model pre-
dicts the probability of producing a word with the help of im-
age blobs. After experimentation, the proposed probabilistic
model based on the cross-media relevance model is proved to
be almost six times better than a model based on the word-
blob co-occurrence model and two times better than a model
derived from machine translation in terms of mean precision.
An improvement of cross-media relevance model [75] is pre-
sented in [76] to automatically assign related keywords to un-
annotated images based on images’ train data. Images present
in the training dataset are fragmented into parts and then these
parts are represented using a blob. K-means algorithm is used
for blobs’ creation for clustering those image parts. Using this
model, the probability for assigning a keyword into a blob is
predicted and after annotation success, one image part is repre-
sented by a keyword. TF-IDF method is used for text document
feature extraction and appropriate text documents are retrieved
using images’ automatic annotation information. Experimen-
tation is performed on IAPR TC-12 and 500 Wikipedia web-
pages (landscape related) dataset to show the usefulness of the
proposed technique.

4.1.3. Rank based methods
These methods see the issue of cross-modal retrieval as a

problem of learning to rank. Ranking of images and tags is suit-
able for efficient tag recommendation or image search. In [77],
a new Multi-correlation Learning to Rank (MLRank) approach
is proposed for image annotation which ranks the tags for im-
ages as per their relevance after considering semantic impor-
tance and visual similarity. Two cases are defined: (a) image-
bias consistency; and (b) tag-bias consistency that is developed
into an optimization problem for rank learning.

In [78], a ranking model has been optimized as a listwise
ranking problem considering cross-modal retrieval process and
a learning to rank with relational graph and pointwise con-
straint (LR2GP) technique has been proposed. Firstly, a dis-
criminative ranking model is introduced that utilizes the rela-
tionship between a single modality for improvement in ranking
performance and learning of an optimal embedding shared sub-
space. A pointwise constraint is proposed in low-dimension
embedding space to make up for the real loss in the training

phase. In the end, a dynamic interpolation algorithm is se-
lected for dealing with the problem of fusion of loss function.
A Cross-Modal Online Low-Rank Similarity function learning
(CMOLRS) technique is proposed in [79] that learns a low-rank
bilinear similarity measurement for the task of cross-modal re-
trieval. A fast-CMOLRS technique is also introduced which
has less processing time than the former technique.

4.1.4. Topic Models
Topic models are a kind of statistical model that finds the

abstract topics which arise in a set of documents. A cross-
modal topic correlation model has been introduced in [80]
which jointly models the text and image modalities. A sta-
tistical correlation model is examined which is conditioned on
category information. [81] proposed a novel supervised multi-
modal mutual topic reinforcement modeling (M3R) technique
that makes a joint cross-modal probabilistic graphical model for
finding the mutually consistent semantic topics using required
interaction between model factors.

A topic correlation model (TCM) is presented in [82] by mu-
tual modeling of images and text modalities for cross-modal
retrieval task. Images are represented by the bag-of-features
model based on SIFT and text is represented by topic distri-
bution learned from the latent topic model. These features are
mapped into a common semantic space and statistical correla-
tions are analyzed. These correlations are utilized for finding
out the conditional probability of results in one modality while
querying in another modality.

4.1.5. Machine learning and Deep learning based methods
Machine learning (ML) refers to the capability of a ma-

chine to enhance its performance on the basis of previous out-
comes. ML approaches allow systems to learn without being
programmed explicitly. Deep learning mimics the way the hu-
man brain works for both feature extraction and classification
as discussed in [83]. This section includes the works which
are based on machine learning and deep learning. Summary of
deep learning based cross-modal systems incorporating image
and text have been presented separately in the table (18). In
[40], authors have proposed a novel technique of multi-modal
Deep Belief Network for finding out the missing data in text
or image modality. Also, the proposed model can be used for
multi-modal data retrieval as well as annotation purpose. After
experimentation on MIR Flickr data containing images and cor-
responding tags, the proposed model is found to be better than
bi-modal data of images and text. Moreover, its performance
outperforms the performance of Linear Discriminant Analysis
(LDA) and Support Vector Machine (SVM) models. As the
cross-modal data is heterogeneous in nature, so it is trouble-
some to compare directly. For making it comparable, authors in
[30] have made use of deep learning by proposing a deep corre-
lation mining technique. Various media features are trained in
this technique and then fused together with the help of correla-
tion between their trained features. Moreover, the Levenberg-
Marquart technique has been used for avoiding the local min-
ima problem in deep learning. Experiments are performed on
image-audio and image-text databases to validate the proposed
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solution. Authors have proposed a novel cross-modal retrieval
technique based on similarity theory and deep learning [84].
They have utilized Local Binary Pattern (LBP) as an image de-
scriptor and Deep Belief Network (DBN) as a deep learning
algorithm.

In [85], a new Scalable Deep Multi-modal Learning (SDML)
data retrieval method has been introduced. A common sub-
space is predefined to maximize between-class variation and
minimize within-class variation. Then a network is trained for
each modality separately such that n networks are obtained for
n modalities. It is done to transform multi-modal data into the
common predefined subspace for achieving multi-modal learn-
ing. The method is scalable to a number of modalities as it can
train different modality-specific networks separately. It is the
first proposed technique which is individually projecting data
of different modalities into a predefined common subspace. Ex-
perimentation is performed on four benchmark datasets such as
PKU XMedia, Wikipedia, NUS-WIDE, and MS-COCO dataset
to validate the proposed technique. To solve the problem of
image-text cross-modal retrieval, various novel models are in-
troduced in [86] which are designed by correlating hidden rep-
resentations of a pair of autoencoders. Minimizing correlation
learning error enables the model to learn invisible representa-
tions by just utilizing the general information in diverse modal-
ities. On the other hand, minimizing the representation learn-
ing error builds hidden representations good enough for recon-
structing inputs of each modality. A specific parameter is set in
the models to make a balance between two types of error gener-
ated by representation and correlation learning. Models are di-
vided into two groups: (1) one contains three models that recon-
struct both modalities and so named as multimodal reconstruc-
tion correspondence autoencoder, and (2) the second contains
two models that reconstruct a single modality and so named
as unimodal reconstruction correspondence autoencoder. Ex-
perimentation is performed on three popular datasets and the
proposed technique is found to be better than two popular mul-
timodal deep models and three CCA based models.

Supervised cross-modal retrieval techniques provide better
accuracy than unsupervised techniques at the additional cost of
data labeling or annotation. Lately, semi-supervised techniques
are gaining popularity as they provide a better framework to
balance the trade-off between annotation cost and retrieval ac-
curacy. A novel deep semi-supervised framework is proposed
in [87] to handle both annotated and un-annotated data. Firstly,
an un-annotated part of training data is labeled using the la-
bel prediction component and then a common representation
of both modalities is learned to perform cross-modal retrieval.
The two modules of the network are trained in a sequential
manner. After extensive experimentation on pascal, Wikipedia,
and NUS-WIDE datasets, the proposed framework is found to
be outperforming both supervised and semi-supervised exist-
ing methods. In [88], authors have introduced an image-text
multi-modal neural language model which can be utilized for
retrieving related images from complex sentence queries and
vice versa. It has been presented here that text representations
and image features can be jointly learned in the case of image-
text modeling by training the models in conjunction using a

convolutional network.
A novel correspondence autoencoder model is proposed in

[89] which is designed by correlating hidden representations of
two uni-modal autoencoders. For this model training, an opti-
mal objective that minimizes the linear combination of repre-
sentation learning errors for every mode and correlation learn-
ing error between the hidden representation of the modalities.
A correspondence restricted Boltzmann machine (Corr-RBM)
is proposed in [90] for mapping the original features of modal-
ity data into a low-dimensional common space where hetero-
geneous data can be compared. Two deep neural structures are
made from corr-RBM as the chief building block for the cross-
modal retrieval process. Cross-modal retrieval is performed
using CNN visual features with various classic approaches in
[91]. A deep semantic matching (DSM) technique is also intro-
duced for handling cross-modal retrieval w.r.t. samples labeled
with one or multiple labels. In [92], authors have proposed a
deep and bidirectional representation learning model (DBRLM)
where images and text are represented by two separate convo-
lutional based networks.

A novel modal-adversarial hybrid transfer network has been
proposed in [93]. It realizes the knowledge transfer from the
single-modal source domain to the cross-modal target domain
and then learns the common cross-modal representation. The
architecture is based on deep learning and is divided into two
subnetworks: (a) Modal-sharing knowledge transfer subnet-
work; and (b) Modal adversarial semantic learning subnet-
work. A deep learning model has been introduced in [94],
named, AdaMine (ADAptive MINing Embedding) for learn-
ing the common representation of recipe items incorporating
recipe images and their recipe in textual form. In [95], au-
thors have proposed a novel approach generative cross-modal
learning network (GXN) which includes generative processes
into the cross-modal feature embedding which will be useful in
learning both global abstract features and local grounded fea-
tures. A deep neural network based approach known as hybrid
representation learning (HRL) is proposed for learning com-
mon representation for each modality [96].

A new deep adversarial metric learning (DAML) technique
is introduced for cross-modal retrieval which maps annotated
data pairs of diverse modalities non-linearly into a shared la-
tent feature subspace [97]. The inter-concept difference is max-
imized and the intra-concept difference is minimized. Each
data pair difference caught from modalities of the same class
is also minimized. Motivated by zero-shot learning, [98] has
presented a ternary adversarial network with self-supervision
(TANSS) model. It includes three parallel sub-networks: (1)
two semantic feature learning subnetworks which capture the
intrinsic data structures of diverse modes and preserve their re-
lationships using semantic features in shared semantic space;
(2) a self-supervised semantic subnetwork that utilizes seen and
unseen label word vectors to use them as guidance for supervis-
ing semantic feature learning and increases knowledge transfer
to unseen labels; and (3) adversarial learning scheme is used
for maximizing the correlation and consistency of semantic fea-
tures among various modalities. This whole network facilitates
effective iterative parameter optimization. In [99], a shared se-
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mantic space with correlation alignment (S3CA) is proposed for
cross-modal data representation. It aligns the non-linear corre-
lations of cross-modal data distribution in deep neural networks
made for diversified data.

4.1.6. Other methods
This section includes the summary of those works which can-

not be classified under any of the above classes. In [100], au-
thors have proposed an Annotation by Image-to-Concept Dis-
tribution Model (AICDM) for image annotation using the links
between visual features and human concepts from image-to-
concept distribution. There is a rapid increase in the discussions
regarding disaster and emergency management on social me-
dia these days. Flood event observation has a principal role in
emergency management and the related videos and images are
also uploaded and searched on the web while disasters. This
data can be helpful in emergency management by using it in
sensors. Inspired by this, authors in [25] are performing image
retrieval enhancement in the field of floods and flood aids. Inte-
gration of image and text features is performed after extracting
visual features from images using BoW and text features using
TF-IDF and weirdness. After extensive experimentation on US
FEMA and Facebook datasets, it has been demonstrated that
the proposed method is enhancing the emergency management
efficiency by showing improvement in image recognition with
the incorporation of text features in it.

Images are ranked as per similarity of semantic features in
the query by semantic example retrieval. So, in [38], the accu-
racy of semantic features is improved using cross-modal regu-
larization which is based on associated text.

4.2. Binary representation learning or Cross-modal hashing
In general, the word hash means chop and mix which con-

secutively means that the hashing function chops and mixes in-
formation to obtain hash results [101]. The idea of hashing was
first introduced by H. P. Luhn in his 1953 article A new method
of recording and searching information [102]. Entire informa-
tion regarding the birth of hashing is presented in [103]. It is
nearly impossible to achieve a completely even distribution. It
can only be created by considering of structure of keys. For a
random group of keys, it is impractical to generate an appropri-
ate generic hash function as the keys are not known beforehand.
Random uniform hash works best in this case. So, inspired by
the need of using random access system having a huge capacity
for business applications, Peterson gave an estimation for the
amount of search needed for the exact location of a record in
numerous storage systems including the sorted-file and index
table method [104]. Then the term hashing was first used by
Morris in his article [105] in 1968. Few general definitions in
hashing are described below [101]:

• Hashing function: This function (h(·)) is used to map the
random size of data to a fixed interval [0, p]. Given a data
having n data points i.e. A = [a1, a2, ..., an] ∈ RD (real
coordinate space of dimension D) and a hashing function
h(·), then h(A) = [h(a1), h(a2), ..., h(an)] ∈ [0, p] are known
as hashes or hash values of data points represented by A.

Hashing function is practically utilized in a hash table data
structure which is highly popular for quick data lookup.

• Nearest neighbour (NN): It represents one or more data
entities in A = [a1, a2, ..., an] ∈ RD which are nearest to the
query point aq.

• Approximate nearest neighbour (ANN): It attempts to find
a data point ax ∈ A which is an ε−approximate nearest
neighbour of the query point aq in that ∀ax ∈ A, the dis-
tance between ax and a satisfies the relation d(ax, a) ≤
(1 + ε)d(aq, a).

Cross-modal hashing techniques are effective in resolving
the issue of large scale cross-modal retrieval because it com-
bines the benefits of classic cross-modal retrieval and hash-
ing. These techniques either rely on annotated training data
or they lack semantic analysis [106]. For correlating diverse
modalities, typical cross-modal hashing techniques learn a uni-
fied hash space. Then the search process is improved based
on hash codes. Hashing methods are broadly classified into
Data-dependent and Data-independent methods [107]. In data-
dependent methods, an appropriate hash function is learned us-
ing the available training data, however, the hash function is
generated using random mapping independent of the training
data in data-independent methods. Hash function learning is
categorized into two stages: (1) Dimensionality reduction; and
(2) Quantization. Dimensionality reduction means mapping the
information from the original space to a low-dimensional spa-
tial representation. Quantization means a linear or non-linear
transformation of actual features to binary segment the feature
space for acquiring hash codes. The aim of hashing methods
is to minimize the semantic gap among modalities as much as
possible. A typical resolution for this issue can be learning of a
uniform hash code to make it more consistent. Another resolu-
tion can be the minimization of the coding distance and enhance
its compactness. Hashing taxonomy followed in this survey is:
(1) General hashing methods which are defined first; and (2)
Deep learning based hashing methods which are defined later
in a different subsection. General hashing methods include all
the methods which do not incorporate deep learning. Figure
(19) presents an evolution of cross-modal hashing techniques.

Table (5) presents the comparison of hashing techniques on
various characteristics such as optimization, time complexity,
hash function, and distance metric utilized for similarity cal-
culation. While optimizing the objective function, either the
relaxation is given for easy optimization or not which we call
discrete type. Relaxation of discrete hash codes may result
in quantization loss and performance degradation [108]. Time
complexity mentioned here is for the whole method execution
where n is the number of training samples used in it. Hash-
ing models can be categorized into linear and non-linear type
[109]. The distance metric is the metric utilized in the inter or
intra similarity among modalities’ calculation.

4.2.1. General hashing methods
This section includes all the cross-modal retrieval works

based on hashing technique and which does not incorporate a
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Figure 19: Evolution of research in cross-modal hashing

Table 5: Comparison of hashing methods on the basis of various characteristics. T = Traditional hashing method and D = Deep learning based hashing method
Characteristics Type Hashing method Methods

Optimization

Relaxation
T LCMH [110], QCH [111]

D TDH [112], SDCH [113]

Discrete
T DLSH [114], SRLCH [109]

D DVSH [115], DCMH [116]

Alternative solution
T MFDH [117], MSFH [108], SMFH [118]

D ZSH [119]

Hash function

Linear T UCH [120], LCMH [110], CMSTH [106], MSFH [108]

Non-linear
T SRLCH [109]

D DVSH [115]

Distance metric

Cosine
T QCH [111]

D DVSH [115]

Euclidean
T LCMH [110], MSFH [108]

D ZSH [119]

Hamming
T DLSH [114], CMSTH [106]

D DCMH [116], TDH [112], AADAH [121]

deep learning approach. In [120], authors have proposed an
Unsupervised Concatenation Hashing (UCH) technique where
Locally Linear Embedding and Locality Preserving Projection
are introduced for reconstructing the manifold structure of orig-
inal space in the hamming space. l2,1-norm regularization is
imposed on the projection matrices for exploiting the diverse
characteristics of various modalities. The proposed technique
has been compared with other hashing techniques such as CVH,
IMH, RCH, FSH, and CCA [122] as well. CVH [123] is an ex-
tension of classic uni-modal spectral hashing [124] to multi-
modal field. In IMH [125], learned binary codes conserve
both inter and intra-media consistency. FSH [126] embeds the
graph-based fusion similarity to a common hamming space.
In RCH [127], common hamming space is learned in diverse
modalities’ binary codes are created as consistent as possible.
Table (6 shows the comparison of these techniques when ap-
plied on Wikipedia and Pascal dataset. This comparison is
based on MAP scores when images are retrieved from the text
(T2I), the text is retrieved from image (I2T) and the average of
both scores. Bold values in the table represent the highest MAP
score in the respective task and hash code length.

In [106], authors have introduced Cross-Modal Self-Taught
Hashing (CMSTH) technique for both cross-modal and uni-
modal image retrieval. It can successfully catch the semantic
correlation from un-annotated training data. Three steps are fol-
lowed in the learning procedure: (1) Hierarchical Multi-Modal
Topic Learning (HMMTL) is proposed for identifying multi-
modal topics using semantic information; (2) Robust Matrix
Factorization (RMF) is utilized for transferring the multi-modal
topics to hash codes which form a unified hash space, and (3)

in the end hash functions are learned for projecting the modal-
ities to a unified hash space. A new cross-modal hashing tech-
nique is proposed in [110] to handle the method scalability is-
sue in the training period. The time complexity of the technique
varies linearly with training data size which allows scalable in-
dexing for multi-media search over various modalities. Hash
functions are learned accurately while considering inter and in-
tra modality similarities. Experiments are performed on NUS-
WIDE and Wikipedia dataset to prove the effectiveness of the
method. The objective function utilized here for preservation
of inter-similarity between modalities for the bi-modal case is
defined as:

min
B(1),B(2)

∥∥∥B(1) − B(2)
∥∥∥2

F ;

s.t., B(i)T
e = 0,

b(i) ∈ {−1, 1},

B(i)T
B(i) = Ic, i = 1, 2;

(11)

where B(1) and B(2) represents the data matrices of image and
text modalities, e is n × 1 vector having each entry equal to 1,
‖·‖F is a Frobenius norm, Ic is c × c identity matrix, B depicts
final binary codes obtained, constraint B(i)T

e = 0 needs each bit
has same chance to be 1 or −1 and constraint B(i)T

B(i) = Ic

requires the bits of each modality to be acquired separately.
Loss function term

∥∥∥B(1) − B(2)
∥∥∥2

F obtains the maximal consis-
tency (or the minimal difference) on two object representations.
Equation (11) is extended for more than two modality case and
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Figure 20: Cross-modal hashing approach proposed in [109]

the new general equation obtained is:

min
B(i),i=1,...,p

p∑
i=1

p∑
i< j

∥∥∥B(i) − B( j)
∥∥∥2

F ;

s.t., B(i)T
e = 0,

b(i) ∈ {−1, 1},

B(i)T
B(i) = Ic, i = 1, ..., p,

(12)

where p represents no. of diverse modalities and rest of the
notations are same as eq. (11).

The issue of cross-modal hashing is how to efficiently con-
struct the correlation among diverse modality representations in
the hash function learning process. Most of the traditional hash-
ing techniques map the miscellaneous modality data to a joint
abstraction space by linear projections similar to CCA. Due to
this, these methods are unable to effectively reduce the seman-
tic gap among modalities which has been proved to lead to bet-
ter accuracy in information retrieval. So to tackle this issue, a
Latent Semantic Sparse Hashing method has been proposed in
[128]. This method executes the cross-modal similarity with
the use of sparse coding, for capturing important images’ struc-
tures, and matrix factorization, for learning latent concepts from
the text. In [111], a quantized correlation hashing (QCH) tech-
nique is proposed which considers the quantization loss over
different modalities and the relation among them simultane-
ously. The relation among diverse modalities that explains the
similar object is established by maximizing the correlation be-
tween the hash codes across modes. The resultant objective
function is converted to a uni-modal formulation which is then
optimized using another process. Objective function is defined
in equation (13). Suppose two modalities (xi, yi) are represent-
ing n object, where xT

i depicts ith row of data matrix X ∈ Rn×dx

of one modal and yT
i represents ith row of data matrix Y ∈ Rn×dy

of another modal. dx and dy are dimensions of the modalities.
Similarity information between data points across domains is
defined as: S i j = 1 iff xi and y j are similar and 0 otherwise.

min O(Bx, By,Wx,Wy) = (‖Bx − XWx‖
2
F+∥∥∥By − YWy

∥∥∥2
F) − α′

∑
(i, j)

S i j(
xT

i WxWT
y y j −

√
xT

i WxWT
x xi

√
yT

j WyWT
y y j

)
s.t. WT

x Wx = Ic×c

WT
y Wy = Ic×c

(13)

where Bx ∈ {−1, 1}n×c and By ∈ {−1, 1}n×c are two kinds of bi-
nary codes with same code length c for each object. Wx ∈ Rdx×c

and Wy ∈ Rdy×c depicts two projection matrices for two modali-
ties, WT

y means transpose of a matrix Wy and similarly for other
matrices. α′ represents control parameter for balancing quan-
tization loss and cosine similarity constraint. For making Wx

and Wy as orthogonal projections, constraints WT
x Wx = Ic×c and

WT
y Wy = Ic×c are used.
Most of the classic hashing techniques either suffer from high

training costs or fail to capture the diverse semantics of various
modalities. In order to tackle this issue, [114] has presented an
efficient Discrete Latent Semantic Hashing (DLSH) approach.
Firstly, it learns the latent semantic representations of miscella-
neous modalities and afterward, projects them into a common
hamming space for supporting scalable cross-modal retrieval.
This approach directly correlates the explicit semantic labels
with binary codes, so it increases the discriminative ability of
learned hashing codes. Unlike traditional hashing approaches,
DLSH directly learns binary codes using an effective discrete
hash optimization. The overall objective function of the DLSH
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Table 6: Comparison of benchmark techniques on the basis of MAP scores on Wikipedia and Pascal VOC dataset with different hash code lengths presented in
[120].

Tasks Methods
Length of hash codes

Wikipedia Pascal VOC 2007

16 32 64 128 16 32 64 128

I2T

CVH [123] 0.1499 0.1408 0.1372 0.1323 0.1484 0.1187 0.1651 0.1411

CCA [122] 0.1699 0.1519 0.1495 0.1472 0.1245 0.1267 0.123 0.1218

IMH [125] 0.2022 0.2127 0.2164 0.2171 0.2087 0.2016 0.1873 0.1718

RCH [127] 0.2102 0.2234 0.2397 0.2497 0.2633 0.3013 0.3209 0.333

FSH [126] 0.2346 0.2491 0.2531 0.2573 0.289 0.3173 0.334 0.3496

UCH LPP [120] 0.242 0.2497 0.255 0.2576 0.2706 0.3074 0.3255 0.3277

UCH LLE [120] 0.2429 0.2518 0.2578 0.2588 0.2905 0.3245 0.3345 0.3396

T2I

CVH 0.1315 0.1171 0.108 0.1093 0.0931 0.0945 0.0978 0.0918

CCA 0.1587 0.1392 0.1272 0.1211 0.1283 0.1362 0.1465 0.1553

IMH 0.1648 0.1703 0.1737 0.172 0.1631 0.1558 0.1537 0.1464

RCH 0.2171 0.2497 0.2825 0.2973 0.2145 0.2656 0.3275 0.3983

FSH 0.2149 0.2241 0.2332 0.2368 0.2617 0.303 0.3216 0.3428

UCH LPP 0.2351 0.2518 0.2623 0.2689 0.3945 0.4877 0.5187 0.5321

UCH LLE 0.2363 0.2567 0.2845 0.2993 0.4106 0.4913 0.5217 0.5343

Average

CVH 0.1407 0.129 0.1226 0.1208 0.1208 0.1066 0.1315 0.1165

CCA 0.1643 0.1456 0.1384 0.1341 0.1264 0.1315 0.1347 0.1386

IMH 0.1835 0.1915 0.1951 0.1946 0.1859 0.1787 0.1705 0.1591

RCH 0.2137 0.2365 0.2611 0.2735 0.2389 0.2834 0.3242 0.3657

FSH 0.2248 0.2366 0.2431 0.247 0.2753 0.3102 0.3278 0.3462

UCH LPP 0.2385 0.2508 0.2586 0.2632 0.3326 0.3976 0.4221 0.4299

UCH LLE 0.2396 0.2542 0.2712 0.2791 0.3506 0.4079 0.4281 0.437

approach for two modalities is given as:

min
Ui |i=1,2,Ai |i=1,2,Wi |i=1,2,Q

2∑
i=1

‖φ(Xi) − UiAi‖
2
F+

β

2∑
i=1

‖B −WiAi‖
2
F+

δ‖B − QY‖2F + γ

 2∑
i=1

‖Ui‖
2
F +

2∑
i=1

‖Wi‖
2
F + ‖Q‖2F


s.t.B ∈ {−1, 1}L×N

(14)

where B is binary hash code matrix, ‖·‖F is the Frobenius norm
of matrix, L is hash code length and N is no. of training in-
stances, Xi denotes the original feature matrices of modalities,
Q is semantic transfer matrix, Ai ∈ Rk×N is the latent semantic
representation of modalities and k is its dimension, Ui ∈ Rm×k

is basis matrix and m is no. of anchors, Wi ∈ RL×k represents
projection matrices for two sub-retrieval tasks, φ(Xi) ∈ Rm×N

is Gaussian kernel projection of image and text features, β and
δ are penalty parameters and γ is regularization parameter for
avoiding over-fitting.

In [109], authors have proposed a novel supervised Subspace
Relation Learning for Cross-modal Hashing technique which
utilizes the relation information of labels in semantic space for
making similar data from diverse modalities nearer in the low-
dimension hamming subspace. This technique preserves the
discrete constraints, modality relations, and non-linear struc-
tures while admitting a closed-form binary code solution which

increases the training accuracy. Both hash functions and uni-
fied binary codes are learned at the same time using an iterative
alternative optimization algorithm. Using these hash functions
and binary codes, multi-modal data can be effectively indexed
and searched. The framework of the proposed SRLCH tech-
nique is shown in figure (20).

In [118], authors have proposed an approach of supervised
matrix factorization hashing for using label information and
effective cross-modal retrieval. This method is based on col-
lective matrix factorization which considers both local geomet-
ric consistency in each mode and label consistency across sev-
eral modalities. To resolve the issue of quantization loss which
happens by relaxing discrete hash codes in the cross-modal re-
trieval process, [108] has proposed a multi-modal graph reg-
ularized smooth matrix factorization hashing which is an un-
supervised technique. The aim of this technique is to learn
unified hash codes for multi-media data in a common latent
space where similarity of diverse modalities can be identified
efficiently.

[117] utilizes multiple views for image and text representa-
tion to enhance feature information. A discrete hashing learning
framework is proposed which employs complementary infor-
mation among multiple views to make discriminative compact
hash codes learning better. It performs classifier and subspace
learning simultaneously for completing multiple searches at the
same time.
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4.2.2. Cross-modal hashing methods based on deep learning

Deep learning has become highly popular in recent years.
Features extracted by deep learning methods have a powerful
capability of expressing the data and they also have rich seman-
tic information contained in them [106]. Thus, the multi-media
information retrieval accuracy enhances significantly by com-
bining hashing methods with deep learning. Various works in-
corporating cross-modal hashing methods based on deep learn-
ing have been introduced recently which are discussed in this
section.

Capturing of spatial dependency of images and temporal dy-
namics of text is an important task in learning potential feature
representations and cross-modal relations as it reduces the het-
erogeneity gap among modalities. So, a novel Deep Visual Se-
mantic Hashing model has been introduced in [115]. It creates
concise hash codes of textual sentences and images in a com-
plete deep learning architecture that catches the essential cross-
modal correspondences between natural language and visual
data. DVSH model has a hybrid deep framework that comprises
a visual semantic fusion network to learn joint embedding space
of text and images, and two mode-specific hashing networks to
learn hash functions for generating concise binary codes. The
proposed framework efficiently unites cross-modal hashing and
joint multi-modal embedding that is based on a new amalgama-
tion of RNN over sentences, CNN over images, and a structures
max-margin objective which combines everything together to
facilitate the learning of similarity preserving and high-quality
hash codes. Various cross-modal hashing techniques are based
on hand-crafted features that may not attain a good accuracy
value. A novel deep cross-modal hashing technique has been
introduced in [116] by combining hash-code learning and fea-
ture learning into the same framework. From beginning to end,
this framework consists of deep neural networks, one for each
mode to do feature learning from starting.

A triplet based deep hashing network is proposed in [112].
firstly, the triplet labels are utilized that explains the relative
relationship among three instances as supervision for catching
more common semantic correlations among cross-modal in-
stances. For boosting the discriminative ability of hash codes,
a loss function is generated from intra-modal and inter-modal
views. In the end, graph regularization is utilized for preserv-
ing the actual semantic similarity between hash codes in the
hamming space. A deep adversarial hashing network has been
proposed in [121] with attention mechanism for increasing the
measurement of content similarities for particularly aiming at
the informative pieces of multi-media. It has three modules:
(a) feature learning module for getting feature representations;
(b) attention module for creating attention mask; (c) hashing
module for learning hash functions. A novel deep cross-modal
hashing framework is proposed in [113] which combines hash
codes and feature learning into the same network. It has consid-
ered both inter and intra modality correlation and a loss function
with dual semantic supervision for hash learning.

In [119], a novel cross-modal zero-shot hashing method has
been introduced which efficiently utilizes both labeled and un-
labeled multi-modal data having separate label spaces. Zero-

shot hashing learns a hashing model that is trained using only
samples from seen classes, however, it has the capability of
good generalization for unseen classes’ samples. Typically, it
utilizes the class attributes to seek a semantic embedding space
for transferring knowledge from seen classes to unseen classes.
So, it may perform poorly in the case of less labeled data. In
[129], authors have proposed a multi-level semantic supervi-
sion generating method after exploring the label relevance, and
a deep hashing framework is introduced for multi-label image-
text cross-modal retrieval. It can capture the binary similarity
as well as the complex multi-label semantic structure of data in
diverse forms at the same time.

5. Benchmark datasets

With the advent of huge multi-modal data generation, cross-
modal retrieval has become a crucial and interesting problem.
Researchers have composed diverse multi-modal datasets for
evaluating the proposed cross-modal techniques. Figure (21)
presents the evolution of the datasets in recent years. Sum-
mary of prominent multi-modal datasets is given in table (7)
which includes dataset name, mode, total concepts, dataset size,
image representation, text representation, related article, and
data source. Figure (22) presents a graph of the total number
of categories in the datasets. Information regarding prominent
benchmark datasets is given in the following points. After go-
ing through all the references related to cross-modal retrieval
used in this survey, approximately used frequencies of popular
datasets have been found and are represented in the form of a
bar chart in figure (23).

Figure 21: Evolution of benchmark datasets

1. NUS-WIDE1 [130]: This is a real-world web image dataset
composed by Lab for Media Search in the National Uni-
versity of Singapore. It consists of: (a) 2,69,648 images
and associated tags from Flickr with 5,018 unique tags,

1https://lms.comp.nus.edu.sg/wp-content/uploads/2019/

research/nuswide/NUS-WIDE.html
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Figure 22: A chart displaying the total number of categories in the popular
datasets

Figure 23: Approximate used frequencies of prominent datasets in the refer-
ences on cross-modal retrieval

(b) Ground-truth for 81 concepts; and (c) low-level im-
age features of six types, comprising 144-D color cor-
relogram, 128-D wavelet texture, 64-D color histogram,
500-D BoW based on SIFT descriptions, 73-D edge direc-
tion histogram and 225-D block-wise color moments. Fig-
ure (24) shows two examples (angelfish and autumn class)
from the dataset with the image and the associated tags.

2. IAPR TC-122 [131]: This dataset is also known as Im-
ageCLEF 2006. It has been created for CLEF (Cross-
Language Evaluation Forum) cross-language image re-
trieval task. It is composed of 20,000 images taken from
a private photographic image collection and associated
captions are in three different languages such as English,
Spanish, and German. This benchmark has been estab-

2https://www.imageclef.org/photodata

Figure 24: Two examples from NUS-WIDE dataset in which an image is asso-
ciated with numerous related tags

lished from an initiative started by Technical Commit-
tee 12 (TC-12) of the International Association of Pattern
Recognition (IAPR). The idea behind this dataset creation
was to use it for evaluating the efficiency of both visual
and text-based retrieval techniques.

3. Wikipedia3 [56]: It consists of a document corpus with as-
sociated text and image pairs. It has been designed from
Wikipedia’s featured articles which are complemented by
one or more images from Wikipedia Commons, providing
a pair of desirable variety. Each article is classified into
one of 29 concepts by Wikipedia and the concepts are as-
signed to both image and text modules of the article. The
researchers have considered the top 10 highly populated
concepts as some of the concepts are rare. The final cor-
pus consists of 2,866 documents. These are image-text
pairs that have been assigned a class from the vocabulary
of 10 semantic classes.

4. PASCAL VOC 20074 [132]: This dataset has been taken
from the PASCAL (pattern analysis, statistical modeling,
and computational learning) VOC (Visual Object Chal-
lenge) challenge. The dataset provided in this challenge
is being utilized by researchers for the evaluation of the
proposed cross-modal techniques. PASCAL VOC 2007
dataset has been widely used by the research commu-
nity. It contains annotated consumer pictures composed
from Flickr5 (photo and video sharing website). The
dataset consists of a total of 9,963 images and 24,640 an-
notated objects which have been categorized into 20 differ-
ent classes with four main concepts. The images consist of
varied viewing conditions such as lightning, pose, and oth-
ers. Annotators took guidance from annotation guidelines6

for appropriately annotating each image in the ground-
truth[133]. The entities mentioned in the annotation are
class, bounding box, view, truncated, and difficult.

5. MIR FLickr 25k and 1M7 [134], [135]: The dataset is

3http://www.svcl.ucsd.edu/projects/crossmodal/
4http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.

html
5https://www.flickr.com/
6http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

guidelines.html
7http://press.liacs.nl/mirflickr/
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available in 2 sizes: 25k and 1M. The images have been
collected from Flickr for the research purpose related to
image content and image tags. Moreover, tags and EXIF
(Exchangeable image file format) image metadata has also
been extracted and made publicly available. Image tags
have been presented in two forms: (a) raw form in which
they are obtained from users; and, (b) in the processed
form where raw tags have been cleaned by Flickr (e.g. re-
moval of spaces and special characters). In MIR Flickr 25k
data, images have been manually annotated. Each image
has an average of 8.94 tags. So, there are 1386 tags that
are associated with at least 20 images. Images are split into
15,000 training and 10,000 testing images. MIR Flickr 1M
data is an extension of MIR Flickr 25k. Images have not
been annotated manually, unlike original 25k data. Images
are represented using MPEG-7 edge histogram and homo-
geneous texture descriptors and color descriptors.

6. INRIA-Websearch [136]: This dataset consists of 71,478
images resulted from a web search engine for 353 mis-
cellaneous search queries. Top-ranked images have been
chosen from this search along with their corresponding
metadata and ground-truth annotations. For each searched
query, the dataset comprises the initial textual query, top-
ranked images, and an annotation file. More than 200 im-
ages have been retrieved for 80% of queries. Annotation
file consists of manual labels for image relevance to the
query and other related metadata such as web page URL,
image URL, page title, image’s alternate text, 10 words
before the image on a web page, and 10 words after. Im-
ages have been scaled to fit in a 150 × 150 pixel square,
however, preserving the original aspect ratio.

7. Flickr 8k and 30k8 [137], [138]: Flickr 30k is an exten-
sion of the Flickr 8k dataset. Both datasets have been cre-
ated from the Flickr website. Flickr 8k contains 8,092 im-
ages and its main focus is on people or animals (mainly
dogs) carrying out some action. Images have been col-
lected from six different Flickr groups manually and anno-
tated using multiple captions in the form of sentences by
selected workers from the US. Flickr 30k contains 31,783
images of everyday scenes, activities, and events. Images
are associated with 1,58,915 captions which have been at-
tained via crowd-sourcing. The approach followed to col-
lect this data is the same as followed by [137].

8. PASCAL sentence data9 [139]: The images for this dataset
have been collected from PASCAL VOC 2008 challenge
[132]. Data consists of 1000 images selected from around
6000 images of PASCAL VOC 2008 training data. Images
have been categorized into 20 categories depending upon
the objects that appear in them and few images are present
in multiple classes. Fifty random images have been cho-
sen from each class to compose the dataset. Each image is
annotated with five different captions in the form of sen-
tences.

8http://shannon.cs.illinois.edu/DenotationGraph/
9http://vision.cs.uiuc.edu/pascal-sentences/

9. MS-COCO10 [140]: Microsoft Common Objects in COn-
text (MS COCO) dataset has been composed of the pic-
tures of daily scenes consisting of general objects in their
usual environment. The objects are labelled using per-
instance segmentation to help in precise object localiza-
tion. The dataset consists of total 3,28,000 images with
25,00,000 labelled instances. The objects chosen for the
dataset are from 91 diverse categories. The annotation
pipeline has been divided into three prominent exercises:
(1) labelling concepts which are present in the image, (2)
locating and marking all instances of labelled concepts;
and (3) segmentation of each object instance.

10. WIKI-CMR [61]: This dataset has been collected from
Wikipedia articles which contain images, paragraphs and
hyperlinks. Authors mainly focused on the areas: geog-
raphy, people, nature, culture and history for dataset col-
lection. It consists of total 74,961 documents categorized
into 11 diverse concepts. Each of the document includes
one paragraph, one associated image (or no image), a cat-
egory label and hyperlinks. Images are represented using
eight types of features including dense SIFT, Gist, PHOG,
LBP and other features. Text is represented using TF-IDF.

6. Comparative analysis

In this section, prominent evaluation metrics used for cross-
modal retrieval method performance analysis are defined. Af-
terward, comparisons of various cross-modal retrieval methods
when applied on diverse datasets are presented on the basis of
MAP score.

6.1. Evaluation metrics

For image and text modality, two cross-modal retrievals are
considered: (a) image to text retrieval (I2T), means retrieving
text related to the query image; and (2) text to image retrieval
(T2I), retrieving images that match with the textual query [1].
Precisely in the testing phase, given a text or an image query,
the aim of the cross-modal method is to search and retrieve the
images or text that closely matches the query modality respec-
tively. A retrieved outcome is considered to be relevant if it
belongs to the same concept as the query modality. Two typical
factors considered while quantitative performance evaluation
are: (1) class relevance evaluation between query and outcome;
(2) examining cross-modal relevance for image-text pairs. The
first factor tells about the ability to learn diverse cross-modal
latent representations while the second factor says about the ca-
pability of learning correlated latent concepts [81]. The metrics
related to the above two factors are as follows:

1. Precision, recall and PR curve: Precision is defined as the
ratio of T P to T P + FP, where T P is the number of out-
comes which are similar to query and T P+ FP is the num-
ber of total retrieved outcomes. It is useful in measuring

10http://cocodataset.org/
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Table 7: Summary of prominent image-text multi-modal datasets

Sr.
No.

Dataset Year Mode Total con-
cepts

Total images/
text

Image representation Text repre-
sentation

1 IAPR TC-12
[131]

2006 Image/ cap-
tion

Diverse 20,000/

60,000
- -

2 MIRFlickr 25k
[134]

2008 Image/ tags Diverse 25,000/

2,23,500
- -

3 NUS-WIDE
[130]

2009 Image/ tags 81 2,69,648/

5,018 unique
tags

Color correlogram,
wavelet texture, color
histogram, BoW based
on SIFT descriptions,
edge direction histogram
and block-wise color
moments

Tag occur-
rence feature

4 ImageNet11[141] 2009 Images/
synsets

12 subtrees 32,00,000/

5,247
SIFT -

5 Wikipedia [56] 2010 Image/ text 29 (10 major) 2,866/ 2,866 SIFT LDA

6 Pascal VOC 2007
[132]

2010 Image/ tags 20 9,963/ 24,640 - -

7 MIRFlickr 1M
[135]

2010 Image/ tags Diverse 10,00,000/

89,40,000
MPEG-7 edge histogram
and homogeneous tex-
ture descriptors, color
descriptor

Flickr user
tags, EXIF
metadata

8 INRIA-
websearch
[136]

2010 Image/ labels 353 71478/ - - -

9 Pascal sentence
data [139]

2010 Image/ sen-
tences

20 1000/ 5000 - -

10 Wikipedia POTD
[142]

2011 Images/ para-
graphs

NA 1987/ 1987 SIFT Text tokeniza-
tion using
rainbow

11 Flickr 8k [137] 2013 Image/ cap-
tions or
sentences

Diverse 8092/ 40460 - -

12 WIKI-CMR [61] 2013 Images/
paragraphs/
hyperlinks

11 38,804/

74,961
SIFT, gist, PHOG, LBP,
self similarity, spatial
pyramid method

TF-IDF

13 Flickr 30k [138] 2014 Image/ cap-
tions or
sentences

Diverse 31,783/

1,58,915
- -

14 MS COCO [140] 2014 Images/ labels 91 3,28,000/

25,00,000
- -

11 http://www.image-net.org

the probability of success for an information retrieval sys-
tem. On the other hand, Recall is defined as the ratio of T P
to T P + FN, where T P is the same as explained above and

T P + FN is the total number of relevant outcomes in the
repository. It is useful in measuring the percentage of re-
trieved relevant results for an information retrieval system
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[76, 84]. Refer to the table (8) for a complete understand-
ing of the definition of precision and recall. Precision and
recall can be expressed as (eq. 15, 16):

prec =
T P

T P + FP
(15)

rec =
T P

T P + FN
(16)

where prec represents precision, rec is recall, T P indicates
true positive, FP is false positive and FN represents false
negative.

Table 8: Table for better understanding of precision and recall
Relevant Irrelevant Total

Retrieved True Positive (TP) False Positive (FP) Predicted Positive

Not retrieved False Negative (FN) True Negative (TN) Predicted Negative

Total Actual Positive Actual Negative T P + FP + T N + FN

Most of the works [143, 52, 144, 145] have used the
precision-recall curve to visualize the performance of their
algorithm. The curve indicates the precision value at dif-
ferent recall levels. Authors in [146] have also used preci-
sion curve for performance visualization. It indicates the
change in precision with respect to the number of retrieved
results.

2. F-measure: It is a typical metric utilized for evaluating
the performance of information retrieval systems [84]. Af-
ter considering the effects of both precision and recall, F-
measure can be defined mathematically as eq. (17):

F =
(θ2 + 1) × prec × rec
θ2 × (prec + rec)

(17)

here θ has been used for adjusting the weighted proportion
of both recall (rec) and precision (prec). If θ becomes 1
then F-measure can be redefined as F1 (eq. 18):

F1 =
2 × prec × rec

prec + rec
(18)

Here, F1 is the perfect combination of recall and precision.
More the value of F1, more better is the algorithm.

3. MAP: Mean Average Precision (MAP) is the most popu-
lar metric used for evaluating the performance of a cross-
modal retrieval algorithm. It measures whether the re-
trieved result belongs to the same class as the query data
(relevant) or not (irrelevant) [81]. It is the average of av-
erage precision calculated over all the queries. Given a
query (an image or a text) and a group of its correspond-
ing O retrieved outcomes, average precision is defined as
(eq. 19):

AP =
1
R

O∑
o=1

P(o)rel(o) (19)

where R is the number of relevant outcomes in the re-
trieved outcomes, P(o) is the precision of top o retrieved
outcomes, if the oth retrieved outcome is relevant then

rel(o) = 1 and otherwise 0. Now, MAP can be defined
as (eq. 20):

MAP =
1
Q

Q∑
q=1

AP (20)

where Q is the total number of queries. A large MAP value
signifies the betterment of the cross-modal algorithm when
applied on a particular dataset.

4. Percentage: MAP metric only considers the factors that
whether the outcome is relevant to query or not. For more
precise evaluation, all the retrieved outcomes are ranked as
per correlation. Typically, a query text (or image) is con-
sidered to be successful in retrieving results if its corre-
sponding ground-truth image (or text) appears in the first
a percent of the ranked list of retrieved outcomes. Per-
centage is the ratio of correctly retrieved query outcomes
among all the query outcomes. Authors in [84, 81, 142]
have utilized this metric for algorithm evaluation and have
chosen the value of a as 0.2 or 20%.

5. MRR: Mean Reciprocal Rank (MRR) is another perfor-
mance evaluation metric similar to percentage. It has been
applied in [84, 81] for method evaluation regarding the po-
sition of the corresponding ground-truth outcome paired
with the query. It is mathematically expressed as (eq. 21):

MRR =
1
|O|

|O|∑
n=0

1
rankn

(21)

where |O| is the number of query outcomes, rankn in-
dicates the position of corresponding unique groud-truth
paired with nth query in the retrieved set.

Figure 25: Average MAP score chart of different hashing methods on NUS-
WIDE data

6.2. Comparison of results using diverse techniques
This section presents the comparison of various cross-modal

retrieval techniques on primary datasets. Techniques are com-
pared on the basis of the MAP score as it is the most popular and
widely used evaluation metric. Three MAP scores are consid-
ered here which are I2T (when image queries related text), T2I
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Table 9: Comparison of prominent hashing techniques on the basis of MAP scores on NUS-WIDE dataset with different hash code lengths.

Methods
Length of hash codes

I2T T2I Average

16 32 64 128 16 32 64 128 16 32 64 128

IMH [125] 0.2056 0.2145 0.2317 0.2381 0.2533 0.2613 0.22185 0.2339 0.2465

LSSH [128] 0.4933 0.5006 0.5069 0.5084 0.625 0.6578 0.6823 0.6913 0.55915 0.5792 0.5946 0.59985

QCH [111] 0.5395 0.5489 0.5568 0.5741 0.54815 0.5615

CMSTH [106] 0.5032 0.5073 0.527 0.5439 0.4761 0.4965 0.5088 0.5243 0.48965 0.5019 0.5179 0.5341

FSH-S [126] 0.4996 0.461 0.4556 0.4776 0.446 0.4423 0.4886 0.4535 0.44895

FSH [126] 0.5059 0.5063 0.5171 0.479 0.481 0.4965 0.49245 0.49365 0.5068

SMFH [118] 0.4553 0.4623 0.4658 0.468 0.5033 0.5056 0.5065 0.5079 0.4793 0.48395 0.48615 0.48795

MFDH [117] 0.646 0.6714 0.7014 0.7121 0.7811 0.8285 0.8653 0.8824 0.71355 0.74995 0.78335 0.79725

DLSH [114] 0.5127 0.516 0.5179 0.5203 0.5234 0.5284 0.5165 0.5197 0.52315

DCMH [116] 0.5903 0.6031 0.6093 0.6389 0.6511 0.6571 0.6146 0.6271 0.6332

AADAH [121] 0.6403 0.6294 0.652 0.6789 0.6975 0.7039 0.6596 0.66345 0.67795

TDH H [112] 0.6393 0.6626 0.6754 0.6647 0.6758 0.6803 0.652 0.6692 0.67785

TDH C [112] 0.6393 0.6626 0.6754 0.6647 0.6758 0.6803 0.652 0.6692 0.67785

ZSH1 [119] 0.6411 0.6434 0.6457 0.6468 0.6755 0.6763 0.6789 0.6796 0.6583 0.65985 0.6623 0.6632

ZSH2 [119] 0.5982 0.6017 0.6033 0.6059 0.6286 0.6297 0.6325 0.6339 0.6134 0.6157 0.6179 0.6199

ZSH3 [119] 0.1733 0.1756 0.1771 0.1783 0.1721 0.1736 0.1743 0.1748 0.1727 0.1746 0.1757 0.17655

ZSH4 [119] 0.1481 0.1492 0.1511 0.1519 0.1437 0.1453 0.1475 0.1498 0.1459 0.14725 0.1493 0.15085

SDCH [113] 0.813 0.834 0.841 0.823 0.857 0.868 0.818 0.8455 0.8545

Table 10: Comparison of prominent hashing techniques on the basis of MAP scores on Wikipedia dataset with different hash code lengths.

Methods
Length of hash codes

I2T T2I Average

16 32 64 128 16 32 64 128 16 32 64 128

LSSH [128] 0.233 0.234 0.2387 0.234 0.5571 0.5743 0.571 0.5577 0.39505 0.40415 0.40485 0.39585

QCH [111] 0.2343 0.2477 0.3034 0.317 0.26885 0.28235

CMSTH [106] 0.3155 0.3293 0.3313 0.3375 0.3562 0.37 0.3825 0.3878 0.33585 0.34965 0.3569 0.36265

SMFH [118] 0.2572 0.2759 0.2863 0.2913 0.5784 0.604 0.6163 0.6219 0.4178 0.43995 0.4513 0.4566

MFDH [117] 0.3548 0.3763 0.3878 0.3954 0.8318 0.8458 0.8568 0.8666 0.5933 0.61105 0.6223 0.631

DLSH [114] 0.2838 0.3429 0.352 0.6764 0.7478 0.749 0.4801 0.54535 0.5505

ZSH1 [119] 0.2998 0.3017 0.3035 0.3063 0.3016 0.3025 0.3044 0.3061 0.3007 0.3021 0.30395 0.3062

ZSH2 [119] 0.2543 0.2551 0.2576 0.2581 0.2526 0.2541 0.2563 0.2587 0.25345 0.2546 0.25695 0.2584

ZSH3 [119] 0.1214 0.1233 0.1247 0.1251 0.1178 0.1196 0.1218 0.1232 0.1196 0.12145 0.12325 0.12415

ZSH4 [119] 0.0982 0.0997 0.1012 0.1019 0.0936 0.0949 0.0971 0.0995 0.0959 0.0973 0.09915 0.1007

(when text queries matched images), and the average of these
(I2T and T2I) two values. Table (9) shows the MAP scores
on NUS-WIDE dataset. The blank spaces in the tables indi-
cate that there is no value provided for that particular hash code
length. The bold value in each of the hash code columns rep-
resents the highest value in that column. Figure (25) presents
a chart of average MAP scores for table (9). It is evident from
table (9) and figure (25) that the performance of SDCH [113]
method is the best in both I2T and T2I tasks, however, MFDH
[117] shows best performance on 128 hash code length. Table
(10 and 11) presents the MAP scores on Wikipedia and MIR-
Flickr 25k dataset respectively. For table (10), the best results
are shown by MFDH [117] technique in both I2T and T2I tasks.
ZSH1 [119] method shows the best performance on MIRFlickr
25k dataset for 128 hash code and otherwise SDCH [113] per-
forms the best. Table (12) shows the comparison of various
cross-modal hashing techniques based on deep learning on the

IAPR TC-12 dataset. SDCH [113] method has the highest map
score in both I2T and T2I tasks on all hash code lengths except
128. On length 128, DVSH-B [115] method shows the high-
est performance for both tasks. Average MAP results shown
in table (10, 11 and 12) can be visualized in figure (26, 27 and
28) for Wikipedia, MIRFlickr and IAPR TC-12 datasets respec-
tively.

Table (13 and 14) show the comparison of various real-
valued learning techniques based on MAP score on Wikipedia
and NUS-WIDE dataset respectively. Four types of methods are
included: (1) deep learning based; (2) subspace learning meth-
ods; (3) topic models; and (4) rank-based methods. Map score
in bold font represents the highest value in that particular col-
umn and italic font represents the highest value in a particular
method type.
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Table 11: Comparison of prominent hashing techniques on the basis of MAP scores on MIRFlickr 25k dataset with different hash code lengths.

Methods
Length of hash codes

I2T T2I Average

16 32 64 128 16 32 64 128 16 32 64 128

FSH-S [126] 0.609 0.5969 0.593 0.6036 0.5944 0.5923 0.6063 0.59565 0.59265

FSH [126] 0.5968 0.6189 0.6195 0.5924 0.6128 0.6091 0.5946 0.61585 0.6143

MFDH [117] 0.6836 0.6939 0.7066 0.723 0.7408 0.7506 0.7602 0.7797 0.7122 0.72225 0.7334 0.75135

DLSH [114] 0.6379 0.648 0.6603 0.6764 0.6777 0.685 0.65715 0.66285 0.67265

DCMH [116] 0.741 0.7465 0.7485 0.7827 0.79 0.7932 0.76185 0.76825 0.77085

AADAH [121] 0.7563 0.7719 0.772 0.7922 0.8062 0.8074 0.77425 0.78905 0.7897

TDH H [112] 0.711 0.7228 0.7289 0.7422 0.75 0.7548 0.7266 0.7364 0.74185

TDH C [112] 0.711 0.7228 0.7289 0.7422 0.75 0.7548 0.7266 0.7364 0.74185

DMSH [129] 0.726 0.737 0.75 0.755 0.763 0.775 0.7405 0.75 0.7625

ZSH1 [119] 0.7812 0.7831 0.7862 0.7874 0.7964 0.7989 0.8025 0.8037 0.7888 0.791 0.79435 0.79555

ZSH2 [119] 0.7302 0.7334 0.7351 0.7363 0.7092 0.7113 0.7132 0.7148 0.7197 0.72235 0.72415 0.72555

ZSH3 [119] 0.2126 0.2135 0.2141 0.2147 0.2016 0.2023 0.2027 0.2031 0.2071 0.2079 0.2084 0.2089

ZSH4 [119] 0.1873 0.1899 0.1917 0.1926 0.1795 0.1807 0.1816 0.1822 0.1834 0.1853 0.18665 0.1874

SDCH [113] 0.845 0.866 0.873 0.831 0.856 0.863 0.838 0.861 0.868

Table 12: Comparison of prominent deep learning based hashing techniques on the basis of MAP scores on IAPR TC-12 dataset with different hash code lengths.

Methods
Length of hash codes

I2T T2I Average

16 32 64 128 16 32 64 128 16 32 64 128

DVSH [115] 0.5696 0.6321 0.6964 0.7236 0.6037 0.6395 0.6806 0.6751 0.58665 0.6358 0.6885 0.69935

DVSH-B [115] 0.626 0.6761 0.7359 0.7554 0.6285 0.6728 0.6922 0.6756 0.62725 0.67445 0.71405 0.7155

DVSH-Q [115] 0.5385 0.6113 0.6869 0.7097 0.5684 0.6153 0.6618 0.6693 0.55345 0.6133 0.67435 0.6895

DVSH-I [115] 0.4792 0.5035 0.5583 0.589 0.4903 0.5496 0.589 0.6012 0.48475 0.52655 0.57365 0.5951

DVSH-H [115] 0.4575 0.4975 0.5493 0.569 0.4396 0.4853 0.5185 0.5337 0.44855 0.4914 0.5339 0.55135

DCMH [116] 0.4526 0.4732 0.4844 0.5185 0.5378 0.5468 0.48555 0.5055 0.5156

AADAH [121] 0.5293 0.5283 0.5439 0.5358 0.5565 0.5648 0.53255 0.5424 0.55435

SDCH [113] 0.726 0.787 0.803 0.704 0.783 0.797 0.715 0.785 0.8

Figure 26: Average MAP score chart of different hashing methods on Wikipedia
data

7. Discussion

Cross-modal information retrieval is a burdensome task be-
cause of the semantic gap among modalities. Due to which
different modalities cannot be compared directly to each other.

Figure 27: Average MAP score chart of different hashing methods on MIR-
Flickr data

To handle this issue, researchers have introduced several tech-
niques for multi-modal data representation in the past few
years. Table (18) presents a summary of recent literature for
state-of-the-art techniques used for image-text cross-modal re-
trieval. It is divided into three parts: the first part contains works
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Figure 28: Average MAP score chart of different hashing methods on IAPR
TC-12 data

incorporating real-valued representation learning, the second
includes binary representation learning works and the third is
devoted to works based on deep learning. The table describes
the cross-modal method, image and text feature extractors, the
dataset used, method type, evaluation metric, and references.

The data-dependent hashing methods can be categorized into
supervised, unsupervised, and semi-supervised as per utiliza-
tion of data supervision information. Supervised methods usu-
ally obtain better search accuracy than the other two methods
because of the utilization of semantic label information. Un-
supervised methods are appropriate for small scale and data-
distributed retrieval, however, semi-supervised methods per-
form better in case of less label information. Table (15) shows
the comparison of these three types of methods. Deep learn-
ing plays a vital role in hash learning, feature extraction, and
retrieval performance in a hashing method. Usually, the deep
learning based hashing method performs better than the general
hashing method as it is data-dependent and its performance de-
pends upon a substantial increase in data scale. So, deep hash-
ing methods usually perform better in case of a colossal amount
of multi-modal data but with higher hardware cost. Besides,
the black box feature extraction attributes of deep learning may
lead to the exclusion of vital information from the original data.
Moreover, the optimization process of deep learning requires
plenty of manual fine-tuning [107]. The refinement and potent
of feature extraction part of the deep hashing method must be
considered in future works. Table (16) presents a comparison of
general and deep learning based hashing methods in the cross-
modal retrieval field. As the hash retrieval is a type of statisti-
cal task, label information plays an important role in it without
particular method consideration. In the case of un-annotated or
incomplete labeled data, impulsively following retrieval perfor-
mance under a supervised situation may lead to poor algorithm
performance. So, consideration of algorithm performance in
case of diverse data labeling degrees is required in the future.

Table 13: Performance comparison of prominent real-valued learning methods
on the basis of MAP score on Wikipedia dataset

Method type Methods
MAP score

I2T T2I Average

Deep learning
based methods

LBP+DBN [84] 0.2576 0.2761 0.2669

Deep semi-
supervised frame-
work [87]

0.436 0.341 0.388

MHTN [93] 0.514 0.444 0.479

HRL H [96] 0.672 0.686 0.679

HRL C [96] 0.647 0.666 0.656

DAML S [97] 0.356 0.267 0.322

DAML D [97] 0.559 0.481 0.52

S3CA [99] 0.551 0.485 0.518

Corr-AE [89] 0.326 0.361 0.344

Corr-Cross-AE [89] 0.336 0.341 0.338

Corr-Full-AE [89] 0.335 0.368 0.352

Subspace
learning meth-
ods

JFSSL [65] 0.3063 0.2275 0.2669

CM [56] 0.249 0.196 0.223

SM [56] 0.225 0.223 0.224

SCM [56] 0.277 0.226 0.252

CM l1 [57] 0.193 0.234 0.214

CM l2 [57] 0.199 0.243 0.221

CM NC [57] 0.288 0.239 0.263

CM NCc [57] 0.287 0.239 0.263

SM l1 [57] 0.22 0.274 0.247

SM l2 [57] 0.205 0.276 0.241

SM NC [57] 0.301 0.276 0.289

S M NCc [57] 0.352 0.272 0.312

SM KL [57] 0.206 0.274 0.24

SCM l1 [57] 0.334 0.273 0.304

SCM l2 [57] 0.315 0.267 0.291

SCM NC [57] 0.371 0.279 0.325

SCM NC c [57] 0.382 0.281 0.332

SCM KL [57] 0.311 0.27 0.291

MDCR [68] 0.287 0.225 0.256

SCCMR [66] 0.431 0.403 0.417

MDSSL [71] 0.3517 0.2851 0.3184

Topic models
CMTC [80] 0.293 0.232 0.266

M3R [81] 0.2298 0.2677 0.2488

Rank based
methods

CMOLRS [79] 0.454 0.414 0.434

fast CMOLRS [79] 0.451 0.411 0.431

8. Open issues

The motive of cross-modal learning is to prepare a model to
which one type of modality is inserted as a query to retrieve
the results in another modality. For this process, the collected
data has to be arranged in a manner so that retrieval can happen
in less time as well as the results must be accurate and seman-
tically relate to the queried modality data. Researchers have
proposed miscellaneous algorithms for making cross-modal re-
trieval task more effective, however, there are few open issues
which still need to be considered in the future to make the re-
trieval process much better. These issues are discussed in a
table (17) which can act as future research directions. The table
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Table 14: Performance comparison of prominent real-valued learning methods
on the basis of MAP score on NUS-WIDE dataset

Method type Methods
MAP score

I2T T2I Average

Deep learning
based methods

LBP+DBN [84] 0.3373 0.4221 0.3797

Deep semi-
supervised frame-
work [87]

0.556 0.422 0.489

MHTN [93] 0.52 0.534 0.527

HRL H [96] 0.446 0.476 0.461

HRL C [96] 0.603 0.599 0.601

DAML S [97] 0.531 0.539 0.535

DAML D [97] 0.512 0.534 0.523

Corr-AE [89] 0.319 0.375 0.347

Corr-Cross-AE [89] 0.349 0.348 0.349

Corr-Full-AE [89] 0.331 0.379 0.355

Subspace
learning meth-
ods

JFSSL [65] 0.4035 0.3747 0.3891

SCCMR [66] 0.434 0.386 0.41

DDL [69] 0.4498 0.498 0.4739

MDSSL [71] 0.5218 0.4079 0.4649

ACMR [72] 0.544 0.538 0.541

GSS-SL [67] 0.5364 0.404 0.4702

Topic model M3R [81] 0.2445 0.3044 0.2742

Rank based
methods

CMOLRS [79] 0.415 0.34 0.378

fast CMOLRS [79] 0.414 0.348 0.381

is categorized into two parts: (1) Algorithm level; and (2) Data
level. Former discusses the issues related to the cross-modal al-
gorithm and later presents the open issues related to the multi-
modal data considered in the algorithm. The current situation
corresponding to the open issue is also described separately in
the table.

1. Noisy and restricted annotations: A large amount of multi-
modal data is created by people on various websites such
as YouTube, Facebook, and Flickr to name a few. This
data on the web is not properly organized and annotations
related to it are also noisy and restricted. Annotations pro-
vide the required semantic information to understand the
particular modality data and labeling a huge data manu-
ally is almost impossible. In [147], authors have used the
combination of noisy and cleanly annotated images for ro-
bust image representations. One technique for combining
noisy and clean data is to train a network with noisy data
and then fine-tune it using clean data. However, this tech-
nique is not suitable for the proper usage of clean data. The
proposed method represents the technique of using clean
annotations for a reduction in noise in a large dataset and
fine-tuning of the network with both clean and reduced
noise data. The method consists of a multi-task network
that learns to clean noisy annotations together with effi-
cient classification of images. Extensive experimentation
is performed on the Open Images dataset to show the effi-
ciency of the proposed technique.

2. Need of a hybrid approach for designing cross-modal sys-
tem: Soft computing techniques have been used exten-
sively these days to solve real-life problems and they show

good results in data representation [148, 149, 150]. Al-
though, various authors have applied these techniques for
cross-modal system design, however, they are still in their
inception stage and need to be explored more. Moreover,
researchers either use a soft-computing or algorithmic ap-
proach. Both have their own limitations and strengths. So,
there is a need for a hybrid approach to link heterogeneous
data of various modalities.

3. Lack of large scale multi-modal datasets: Researchers are
designing various algorithms these days for cross-modal
retrieval and annotation. However, there is a lack of huge
datasets that contain data of various modalities to test and
validate the proposed algorithms. The algorithms have
been tested on extremely small datasets like the Wikipedia
dataset which consists of 2866 documents only. After sur-
veying, it has been found that there is a lack of large multi-
modal datasets and especially in the medical field [151].

4. Confusion in choosing data feature extraction method:
Most of the approaches used by authors consists of inde-
pendent feature extraction from each modality to be used
in cross-modal system construction as an initial step. If
the initial step is inappropriate then it will affect the whole
cross-modal technique. As an example, the performance
of a machine learning model extremely depends upon the
feature representation used for building the model. This
happens because various feature representations hide more
or less diverse descriptive factors of variations behind the
data [152]. So, it is necessary to choose an appropriate
feature extraction method for each modality under consid-
eration depending upon the type of data, application, and
cross-modal method.

5. Lack of scalable algorithms: A colossal amount of multi-
modal data is being generated and spread on the internet
nowadays due to the availability of fast networks, mobile
devices, and huge storage devices. So, productive cross-
modal methods are needed which can be applied in a dis-
tributed environment as well [23]. Moreover, further re-
search is required for designing efficient cross-modal algo-
rithms which can be applied on huge multi-modal datasets
[153].

6. Need of novel and diverse fields’ datasets: It can be identi-
fied from Section (4) and Table (7) that most of the datasets
are comprised from social media websites, so their content
is very similar to each other. There is an immense need
for diversity in the data content. Moreover, the datasets
which have been utilized by most of the researchers and
are very popular such as NUS-WIDE, Pascal VOC 2007,
and Wikipedia, have become too old now. Novel and di-
verse multi-modal datasets are required to be introduced.

7. Requirement of semi-supervised cross-modal techniques:
Supervised techniques perform better than unsupervised
because of the utilization of semantic label information
[117]. However, most of the generated multi-media data
is either unlabelled or has noisy annotations. Semi-
supervised methods are getting highly popular now and are
the future of cross-modal retrieval as they are the combina-
tion of both supervised and unsupervised and also provide
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Table 15: Comparison of hashing techniques in diverse supervision modes
Mode Label use Data process Hash learning Retrieval performance Performance in huge

data

Supervised Yes Complex Complex Good Good

Unsupervised No Simple Simple Fair Poor

Semi-supervised Partly Simple Complex Average Fair

Table 16: Comparison of general and deep learning based hashing methods
Hashing method Generality Modeling complexity Retrieval performance Parameter scale Hardware cost

General Poor Complex Fair Small Small

Deep learning based Good Simple Good Large Large

Table 17: Open issues in cross-modal retrieval

Type Open issue Current state

Algorithm level

1. Appropriate adoption of diverse modality feature de-
scriptors

1. Descriptors provided with benchmark datasets are
chosen mostly

2. Need of a hybrid of soft and hard computing ap-
proaches

2. Either soft or hard computing approach is utilized

3. Need of a scalable algorithm 3. Algorithms have restrictions of data size, modalities
and application areas

4. Need of a reproducible cross-modal retrieval method 4. Most methods are applicable in a particular applica-
tion area

5. Cross-modal retrieval implementation in big data,
cloud, and IoT environments

5. Rarely applied

6. More utilization of semi-supervised cross-modal re-
trieval techniques

6. Less used

Data level

7. Lack of huge datasets incorporating diverse modali-
ties

7. Most existing benchmark datasets are old and consist
of only image and text modality

8. Requirement of proper and exact labeling of images 8. Poor and noisy annotations

9. Diversity in data composition area 9.Datasets majorly composed from common social me-
dia websites

promising results [66].

32



Table 18: Summary of works done in image-text cross-modal retrieval

SR. TECHNIQUE IMAGE REP. TEXT REP. DATA TYPE METRIC REF.

Real-valued representation techniques

1 Linkage of each image
feature with text feature

Bag-of-Words CiCui system [154],
TF-IDF and weird-
ness [155]

US FEMA flood data, Face-
book pages’ and groups’ data
related to floods

- MAP [25]

2 Structural SVM, SR,
CSR (using CCA)

BoW of dense SIFT features Probability distribu-
tion

UIUC Pascal Sentence dataset,
IAPR TC-12 benchmark and
SBUCaptioned Photo dataset

- BLEU score,
rouge score

[58]

3 Markov Random Field
(MRF) and Hidden
Markov Model (HMM)

Image moments, gray level co-
occurrence matrix (GLCM)
moments, auto-correlation
coefficients (AC), edge fre-
quency (EF), Gabor filter
descriptor, Tamura descriptor,
color edge directional de-
scriptor (CEDD), fuzzy color
texture histogram (FCTH)
descriptor and combined
texture feature

Bag-of-Keywords Thoracic CT scan data of nine
distinct concepts containing
842 ROIs (created)

Supervised Precision,
recall and their
curve, ten-fold
cross valida-
tion accuracy,
classification
accuracy

[26]

4 Cluster sensitive cross-
modal correlation learn-
ing framework

Wavelet feature, 3 level spa-
cial max-pooling, GIST, dense
SIFT with sparse coding,
PHOG and color histogram

TF-IDF and Latent
Dirichlet alloca-
tion(LDA)

Image Clef and Wikipedia
[156] dataset

Semi-supervised MAP [70]

5 AICDM Scalable color descriptor,
color layout descriptor, ho-
mogeneous texture descriptor,
edge histogram, grid color
moment and gabor wavelet
moment

- ESP, pascal VOC 2007, web
image

- PR curve [100]

6 Probabilistic model of
automatic image annota-
tion

Blobs to represent image re-
gions

TF-IDF IAPR TC-12 and 500
Wikipedia web-pages dataset

- Precision,
recall, F-
measure

[76]

7 Joint feature selection
and subspace learning

Gist, SIFT LDA Pascal, Wikipedia and NUS-
WIDE dataset

- MAP, PR
curve

[65]

8 Local Group based Con-
sistent Feature Learning
(LGCFL)

GIST, HoG word frequency fea-
ture, latent Dirich-
let allocation model
with 10 dimensions

LabelMe, Wikipedia, Pascal
VOC2007, NUS-WIDE

Supervised MAP, PR
curve

[157]

9 KCCA based approach Gist, color histogram, BoVW word frequency, rel-
ative tag rank, abso-
lute tag rank

Pascal VOC 2007, labelme, Unsupervised Normalized
discounted
cumulative
gain

[64]

10 Structural SVM based
unified framework

SIFT, BoVW, LDA BoW, LDA IAPR TC-12 Benchmark,
UIUC Pascal Sentence,
SBU-Captioned Photo

- BLEU, pre-
cision, recall,
median rank,
MAP

[41]

11 Cross mOdal Similar-
ity Learning algorithm
with Active Queries
(COSLAQ)

SIFT, GIST latent Dirichlet allo-
cation model

Wikipedia , Pascal VOC2007,
NUSWIDE-1.5K, LabelMe

Supervised MAP [42]

12 CM, SM, SCM SIFT LDA Wikipedia Unsupervised MAP, PR
curve

[56]

13 Graph regularization and
modality dependence
(GRMD)

CNN LDA INRIA-websearch, Pascal sen-
tence, Wikipedia 2010

- MAP, PR
curve

[52]

14 CCA, KCCA SIFT, gist, PHOG, LBP, self
similarity, spatial pyramid
method

TF-IDF WIKI-CMR - Precision [61]

15 Improved CCA - - NUS-WIDE, Pascal sentence,
Wikipedia

- MAP [60]

16 Unsupervised KCCA
based framework

Gist, HSV color histogram,
SIFT

Words frequency,
relative tag rank,
absolute tag rank

Labelme, Pascal VOC Unsupervised Normalized
Discounted
Cumulative
Gain (NDCG)

[63]

17 MLRank Gist, color histogram, color
suto-correlation, edge direc-
tion histogram, wavelet tex-
ture, block-wise color mo-
ments

- Corel 5k, NUS-WIDE, IAPR
TC12

Semi-supervised Precision, re-
call, F1 score,
MAP, N+ (no.
of keywords
with non-zero
recall value)

[77]
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18 CM, SM, SCM SIFT LDA TVGraz, Wikipedia Supervised and
unsupervised

MAP, PR
curve

[57]

19 CCA and its probabilistic
interpretation

RGB-SIFT Binary features MIRFlickr 1M - Precision [59]

20 Regularizer of image se-
mantics

SIFT LDA TVGraz, Wikipedia, pascal
sentence dataset

- MAP, PR
curve

[38]

21 Modality-dependent
cross-media retrieval
(MDCR) model

CNN visual features LDA Wikipedia, pascal sentence,
INRIA-websearch

Supervised MAP [68]

22 Semantic consistency
cross-modal retrieval
(SCCMR)

CNN, VGG LDA, BoW Wikipedia, pascal sentence,
NUS-WIDE-10k, INRIA-
websearch

Semi-supervised MAP, PR
curve

[66]

Binary-valued or cross-modal hashing techniques

23 Unsupervised Concate-
nation Hashing (UCH)

Gist word frequency
count

Pascal, UCI handwritten digit,
Wikipedia

Unsupervised MAP [120]

24 Cross-modal self-taught
hashing (CMSTH)

SIFT, HoG, GIST TF-IDF Wikipedia, NUS-WIDE Unsupervised MAP [106]

25 Linear cross-modal hash-
ing

SIFT LDA NUS-WIDE, Wikipedia - MAP, recall [110]

26 Latent semantic sparse
hashing

Sparse coding Matrix factorization Labelme, NUS-WIDE,
Wikipedia

- MAP, PR
curve

[128]

27 Quantized correlation
hashing

SIFT, BoW LDA, tag vector 58W-CIFAR, NUS-WIDE,
Wikipedia

Supervised MAP, preci-
sion

[111]

28 Discrete Latent Semantic
Hashing

SIFT, gist, edge histogram Topic vectors, index
vector of selected
tags, feature vector
derived from PCA,
binary tagging vec-
tor

Labelme, MIRFlickr 25k,
NUS-WIDE, Wikipedia

Supervised MAP, PR
curve

[114]

29 Subspace Relation
Learning for Cross-
modal Hashing

SIFT, gist LDA, tag occur-
rence feature vector

ImageNet, Labelme, MIR-
Flickr 25k, NUS-WIDE,
UCI handwritten digit data,
Wikipedia

Supervised MAP, preci-
sion

[109]

30 Deep Visual Semantic
Hashing model

Deep f c7 features BoW vector IAPR TC-12, MS COCO - MAP, preci-
sion

[115]

31 Deep cross-modal hash-
ing

Gist, bag-of-visual-words
(BOVW)

BoW vector IAPR TC-12, MIRFlickr 25k,
NUS-WIDE

- MAP, PR
curve

[116]

32 Triplet-based deep hash-
ing network

SIFT BoW MIRFlickr 25k, NUS-WIDE Supervised MAP, PR
curve

[112]

33 Attention-Aware Deep
Adversarial Hashing

- BoW IAPR TC-12, NUS-WIDE,
MIRFlickr 25k

- MAP, PR
curve

[121]

34 Supervised matrix factor-
ization hashing

SIFT Topic vector, BoW NUS-WIDE, Wikipedia Supervised MAP, pre-
cision, PR
curve

[118]

35 Semantic deep cross-
modal hashing

- BoW IAPR TC-12, MIRFlickr,
NUS-wIDE

Supervised MAP, preci-
sion curve, PR
curve

[113]

36 Zero-shot hashing BoVW, SIFT, gist LDA, BoW MIRFlickr, NUS-WIDE,
Wikipedia

Semi-supervised MAP [119]

37 Deep multi-level seman-
tic hashing

- BoW MIRFlickr 25k Supervised MAP, PR
curve

[129]

38 Cycle-Consistent Deep
Generative Hashing
(CYC-DGH)

CNN LDA Microsoft COCO, IAPR TC-
12, wiki

- MAP, preci-
sion curve, PR
curve

[158]

39 Multi-modal graph reg-
ularized smooth matrix
factorization hashing

SIFT, BoW, edge histogram LDA, tag vector fea-
ture vectors

MIRFlickr, NUS-WIDE,
Wikipedia

Unsupervised MAP, PR
curve

[108]

40 Multi-view feature dis-
crete hashing

SIFT, histogram feature,
BoVW

Word vector, mean
vector, covariance
matrix, feature
histogram

MIRFlickr, MMED, NUS-
WIDE, Wikipedia

Supervised MAP, PR
curve

[117]

Cross-modal methods based on deep learning

41 Multi-modal Deep Belief
Network (DBN)

Image specific DBN which
used Gaussian Restricted
Boltzmann Machines (RBM)

Text specific DBN
which used Repli-
cated Softmax
model

MIR Flickr Data Unsupervised MAP [40]

42 Levinberg-Marquardt
deep canonical correla-
tion analysis (LMDCCA)

Deep neural network Deep neural net-
work

Wikipedia Articles data - Precision
recovery curve

[30]
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43 Cross-media multiple
deep network

GIST, Pyramid Histogram of
Words (PHoW), MPEG-7,
SIFT, color correlogram, color
histogram, wavelet texture,
edge direction histogram,
block-wise color moments

BoW NUSWIDE-10k, Wikipedia,
Pascal Sentences

- MAP, PR
curve

[159]

44 Deep canonical correla-
tion analysis(DCCA)

color histogram, color cor-
relogram, edge direction
histogram, wavelet texture,
block-wise color moments,
SIFT, GIST, MPEG-7

Bag-of-Words
(BoW)

Wikipedia, pascal, NUS-
WIDE10k

Supervised MAP [160]

45 Deep coupled met-
ric learning (DCML)
method

SIFT, BoVW, GIST, color his-
togram

Latent Dirichlet
allocation (LDA)
model

Wikipedia, Pascal VOC 2007,
NUS-WIDE

- Precision,
MAP, ROC
and CMC
curve

[161]

46 Deep semi-supervised
framework

CNN, GIST, SIFT 100-d, 399-d and
1000-d word freq
vectors

Wikipedia, pascal VOC, NUS-
WIDE

Semi-supervised MAP [87]

47 Correspondence autoen-
coder

Pyramid Histogram of Words
(PHOW), MPEG-7 descrip-
tors and Gist

Bag-of-Words Wikipedia, Pascal, NUS-
WIDE

- MAP [86]

48 Multitask learning ap-
proach with 3 modules:
Correlation Network,
Cross-modal Autoen-
coder, Latent Semantic
Hashing

4096-dimensional vector ex-
tracted by the fc10 layer of
VGGNet

1386/2000-
dimensional bag-of-
word vectors

MIRFLICKR-25K, MS
COCO

- MAP [162]

49 Deep Adversarial Met-
ric Learning approach
(DAML)

SIFT, VGG LDA, BoW Wikipedia, pascal, NUS-
WIDE

Supervised MAP [97]

50 Deep Pairwise Ranking
model with multi-
label information for
Cross-Modal retrieval
(DPRCM)

CNN, GIST, SIFT 100-d, 399-d and
1000-d word freq
vectors

Wikipedia, pascal, NUS-
WIDE

Supervised MAP [163]

51 Deep Belief Network LBP - NUS-WIDE, Wikipedia - MAP, percent-
age, MRR

[84]

52 Log-Bilinear Model - - IAPR TC-12, attribute discov-
ery, SBU captioned photos

- Bleu, per-
plexity and
retrieval evalu-
ation

[88]
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9. Conclusion

From the review on cross-modal information retrieval, it has
been found that cross-modal retrieval techniques are better than
classic uni-modal systems in retrieving the multi-modal data
and adding values to complement meaningful information. The
article summarizes the prominent works done by various re-
searchers in the field of image-text cross-modal retrieval. Pri-
mary information has been presented with the help of tables,
figures, and graphs to make it more understandable. A tax-
onomy of cross-modal retrieval techniques has been demon-
strated. Information regarding famous image-text multi-modal
datasets has been presented. Comparison among various cross-
modal techniques when applied on a particular dataset is shown.
Miscellaneous applications in the field of cross-modal retrieval
are mentioned and general architecture is shown. Challenges
and open issues have also been discussed to help the research
community in further research. Although significant work has
been proposed in this field, still we are far away from achieving
an ideal position and accuracy in the process. This approach
has still not been accepted and applied worldwide in most of
the real-life applications. Moreover, ample work is required to
be done in this field to introduce novel better algorithms or to
enhance the retrieval efficiency of the classic algorithms. It is
expected that this article will be useful for the readers and re-
searchers to better understand the present situation and state-of-
the-art cross-modal retrieval methods and motivate researches
in the field.
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[2] T. Baltrušaitis, C. Ahuja, L.-P. Morency, Multimodal machine learning:
A survey and taxonomy, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 41 (2) (2018) 423–443 (2018).

[3] M. Ayyavaraiah, B. Venkateswarlu, Cross media feature retrieval and
optimization: A contemporary review of research scope, challenges and
objectives, in: International Conference On Computational Vision and
Bio Inspired Computing, Springer, 2019, pp. 1125–1136 (2019).

[4] Y. Peng, X. Huang, Y. Zhao, An overview of cross-media retrieval: Con-
cepts, methodologies, benchmarks, and challenges, IEEE Transactions
on circuits and systems for video technology 28 (9) (2017) 2372–2385
(2017).

[5] M. Ayyavaraiah, B. Venkateswarlu, Joint graph regularization based se-
mantic analysis for cross-media retrieval: a systematic review, Inter-
national Journal of Engineering & Technology 7 (2.7) (2018) 257–261
(2018).

[6] Y.-x. Peng, W.-w. Zhu, Y. Zhao, C.-s. Xu, Q.-m. Huang, H.-q. Lu, Q.-
h. Zheng, T.-j. Huang, W. Gao, Cross-media analysis and reasoning:
advances and directions, Frontiers of Information Technology & Elec-
tronic Engineering 18 (1) (2017) 44–57 (2017).

[7] M. Priyanka, B. S. Devi, S. Riyazoddin, M. J. Reddy, Analysis of cross-
media web information fusion for text and image association-a survey
paper, Global Journal of Computer Science and Technology (2013).

[8] B. Kitchenham, S. Charters, Guidelines for performing systematic liter-
ature reviews in software engineering (2007).

[9] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering–a
systematic literature review, Information and software technology 51 (1)
(2009) 7–15 (2009).

[10] B. E. Stein, T. R. Stanford, B. A. Rowland, Development of multisen-
sory integration from the perspective of the individual neuron, Nature
Reviews Neuroscience 15 (8) (2014) 520–535 (2014).

[11] R. L. Miller, B. A. Rowland, Multisensory integration: How the brain
combines information across the senses, Computational Models of Brain
and Behavior (2017) 215–228 (2017).

[12] R. K. Srihari, Use of captions and other collateral text in understanding
photographs, in: Integration of Natural Language and Vision Processing,
Springer, 1995, pp. 245–266 (1995).

[13] B. E. Stein, M. A. Meredith, The merging of the senses., The MIT Press,
1993 (1993).

[14] B. E. Stein, M. A. Meredith, W. S. Huneycutt, L. McDade, Behavioral
indices of multisensory integration: orientation to visual cues is affected
by auditory stimuli, Journal of Cognitive Neuroscience 1 (1) (1989) 12–
24 (1989).

[15] M. Otoom, Beyond von neumann: Brain-computer structural metaphor,
in: 2016 Third International Conference on Electrical, Electronics,
Computer Engineering and their Applications (EECEA), IEEE, 2016,
pp. 46–51 (2016).

[16] B. P. Yuhas, M. H. Goldstein, T. J. Sejnowski, Integration of acoustic
and visual speech signals using neural networks, IEEE Communications
Magazine 27 (11) (1989) 65–71 (1989).

[17] C. Saraceno, R. Leonardi, Indexing audiovisual databases through joint
audio and video processing, International Journal of Imaging Systems
and Technology 9 (5) (1998) 320–331 (1998).

[18] D. Roy, Integration of speech and vision using mutual information, in:
2000 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No. 00CH37100), Vol. 4, IEEE, 2000, pp.
2369–2372 (2000).

[19] H. McGurk, J. MacDonald, Hearing lips and seeing voices, Nature
264 (5588) (1976) 746–748 (1976).

[20] T. Westerveld, D. Hiemstra, F. De Jong, Extracting bimodal representa-
tions for language-based image retrieval, in: Multimedia’99, Springer,
2000, pp. 33–42 (2000).

[21] T. Westerveld, Image retrieval: Content versus context., in: RIAO, Cite-
seer, 2000, pp. 276–284 (2000).

[22] C. Xiong, D. Zhang, T. Liu, X. Du, Voice-face cross-modal matching
and retrieval: A benchmark, arXiv preprint arXiv:1911.09338 (2019).

[23] A. C. Duarte, Cross-modal neural sign language translation, in: Proceed-
ings of the 27th ACM International Conference on Multimedia, ACM,
2019, pp. 1650–1654 (2019).

[24] S. Mariooryad, C. Busso, Exploring cross-modality affective reactions
for audiovisual emotion recognition, IEEE Transactions on affective
computing 4 (2) (2013) 183–196 (2013).

[25] M. Jing, B. W. Scotney, S. A. Coleman, M. T. McGinnity, X. Zhang,
S. Kelly, K. Ahmad, A. Schlaf, S. Gründer-Fahrer, G. Heyer, Integration
of text and image analysis for flood event image recognition, in: 2016
27th Irish Signals and Systems Conference (ISSC), IEEE, 2016, pp. 1–6
(2016).

[26] M. M. Rahman, D. You, M. S. Simpson, S. K. Antani, D. Demner-
Fushman, G. R. Thoma, Interactive cross and multimodal biomedical
image retrieval based on automatic region-of-interest (roi) identification
and classification, International Journal of Multimedia Information Re-
trieval 3 (3) (2014) 131–146 (2014).

[27] Z. Liu, H. Liu, W. Huang, B. Wang, F. Sun, Audiovisual cross-modal
material surface retrieval, Neural Computing and Applications (2019)
1–9 (2019).

[28] D. Cao, Z. Yu, H. Zhang, J. Fang, L. Nie, Q. Tian, Video-based cross-
modal recipe retrieval, in: Proceedings of the 27th ACM International
Conference on Multimedia, ACM, 2019, pp. 1685–1693 (2019).

[29] M. Lazaridis, A. Axenopoulos, D. Rafailidis, P. Daras, Multimedia
search and retrieval using multimodal annotation propagation and index-
ing techniques, Signal Processing: Image Communication 28 (4) (2013)
351–367 (2013).

[30] D. Xia, L. Miao, A. Fan, A cross-modal multimedia retrieval method us-

36



ing depth correlation mining in big data environment, Multimedia Tools
and Applications (2019) 1–16 (2019).

[31] X. Zhai, Y. Peng, J. Xiao, Heterogeneous metric learning with joint
graph regularization for cross-media retrieval, in: Twenty-seventh AAAI
conference on artificial intelligence, 2013 (2013).

[32] B. Elizalde, S. Zarar, B. Raj, Cross modal audio search and retrieval with
joint embeddings based on text and audio, in: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, pp. 4095–4099 (2019).

[33] Y. Yu, S. Tang, F. Raposo, L. Chen, Deep cross-modal correlation learn-
ing for audio and lyrics in music retrieval, ACM Transactions on Multi-
media Computing, Communications, and Applications (TOMM) 15 (1)
(2019) 20 (2019).

[34] D. Zeng, Y. Yu, K. Oyama, Deep triplet neural networks with cluster-cca
for audio-visual cross-modal retrieval, arXiv preprint arXiv:1908.03737
(2019).

[35] P. Tripathi, P. P. Watwani, S. Thakur, A. Shaw, S. Sengupta, Discover
cross-modal human behavior analysis, in: 2018 Second International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), IEEE, 2018, pp. 1818–1824 (2018).

[36] J. Imura, T. Fujisawa, T. Harada, Y. Kuniyoshi, Efficient multi-modal
retrieval in conceptual space, in: Proceedings of the 19th ACM interna-
tional conference on Multimedia, ACM, 2011, pp. 1085–1088 (2011).

[37] P. Goyal, S. Sahu, S. Ghosh, C. Lee, Cross-modal learning for multi-
modal video categorization, arXiv preprint arXiv:2003.03501 (2020).

[38] J. C. Pereira, N. Vasconcelos, Cross-modal domain adaptation for text-
based regularization of image semantics in image retrieval systems,
Computer Vision and Image Understanding 124 (2014) 123–135 (2014).

[39] T. Gou, L. Liu, Q. Liu, Z. Deng, A new approach to cross-modal re-
trieval, in: Journal of Physics: Conference Series, Vol. 1288, IOP Pub-
lishing, 2019, p. 012044 (2019).

[40] N. Srivastava, R. Salakhutdinov, Learning representations for multi-
modal data with deep belief nets, in: International conference on ma-
chine learning workshop, Vol. 79, 2012 (2012).

[41] Y. Verma, C. Jawahar, A support vector approach for cross-modal search
of images and texts, Computer Vision and Image Understanding 154
(2017) 48–63 (2017).

[42] N. Gao, S.-J. Huang, Y. Yan, S. Chen, Cross modal similarity learning
with active queries, Pattern Recognition 75 (2018) 214–222 (2018).

[43] A. Habibian, T. Mensink, C. G. Snoek, Discovering semantic vocabular-
ies for cross-media retrieval, in: Proceedings of the 5th ACM on Inter-
national Conference on Multimedia Retrieval, ACM, 2015, pp. 131–138
(2015).

[44] N. Van Nguyen, M. Coustaty, J.-M. Ogier, Multi-modal and cross-modal
for lecture videos retrieval, in: 2014 22nd International Conference on
Pattern Recognition, IEEE, 2014, pp. 2667–2672 (2014).

[45] T. Nakano, A. Kimura, H. Kameoka, S. Miyabe, S. Sagayama, N. Ono,
K. Kashino, T. Nishimoto, Automatic video annotation via hierarchical
topic trajectory model considering cross-modal correlations, in: 2011
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), IEEE, 2011, pp. 2380–2383 (2011).

[46] B. Jiang, X. Huang, C. Yang, J. Yuan, Cross-modal video moment re-
trieval with spatial and language-temporal attention, in: Proceedings of
the 2019 on International Conference on Multimedia Retrieval, ACM,
2019, pp. 217–225 (2019).

[47] X. Xu, L. He, A. Shimada, R.-i. Taniguchi, H. Lu, Learning unified
binary codes for cross-modal retrieval via latent semantic hashing, Neu-
rocomputing 213 (2016) 191–203 (2016).

[48] K. Ahmad, Slandail: A security system for language and image analysis-
project no: 607691, Available at SSRN 3060047 (2017).

[49] A. Hanbury, A survey of methods for image annotation, Journal of Vi-
sual Languages & Computing 19 (5) (2008) 617–627 (2008).

[50] B. Rafkind, M. Lee, S.-F. Chang, H. Yu, Exploring text and image
features to classify images in bioscience literature, in: Proceedings of
the HLT-NAACL BioNLP Workshop on Linking Natural Language and
Biology, Association for Computational Linguistics, 2006, pp. 73–80
(2006).

[51] G. Wang, D. Hoiem, D. Forsyth, Building text features for object image
classification, in: 2009 IEEE conference on computer vision and pattern
recognition, IEEE, 2009, pp. 1367–1374 (2009).

[52] G. Wang, H. Ji, D. Kong, N. Zhang, Modality-dependent cross-modal re-

trieval based on graph regularization, Mobile Information Systems 2020
(2020).

[53] H. Hotelling, Relations between two sets of variates, in: Breakthroughs
in statistics, Springer, 1992, pp. 162–190 (1992).

[54] C. Guo, D. Wu, Canonical correlation analysis (cca) based multi-view
learning: An overview, arXiv preprint arXiv:1907.01693 (2019).

[55] D. R. Hardoon, S. Szedmak, J. Shawe-Taylor, Canonical correlation
analysis: An overview with application to learning methods, Neural
computation 16 (12) (2004) 2639–2664 (2004).

[56] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet,
R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia
retrieval, in: Proceedings of the 18th ACM international conference on
Multimedia, 2010, pp. 251–260 (2010).

[57] J. C. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. Lanckriet,
R. Levy, N. Vasconcelos, On the role of correlation and abstraction in
cross-modal multimedia retrieval, IEEE transactions on pattern analysis
and machine intelligence 36 (3) (2013) 521–535 (2013).

[58] Y. Verma, C. Jawahar, Im2text and text2im: Associating images and
texts for cross-modal retrieval., in: BMVC, Vol. 1, Citeseer, 2014, p. 2
(2014).

[59] M. Katsurai, T. Ogawa, M. Haseyama, A cross-modal approach for ex-
tracting semantic relationships between concepts using tagged images,
IEEE transactions on multimedia 16 (4) (2014) 1059–1074 (2014).

[60] J. Shao, Z. Zhao, F. Su, T. Yue, Towards improving canonical correlation
analysis for cross-modal retrieval, in: Proceedings of the on Thematic
Workshops of ACM Multimedia 2017, 2017, pp. 332–339 (2017).

[61] W. Xiong, S. Wang, C. Zhang, Q. Huang, Wiki-cmr: A web cross modal-
ity dataset for studying and evaluation of cross modality retrieval mod-
els, in: 2013 IEEE International Conference on Multimedia and Expo
(ICME), IEEE, 2013, pp. 1–6 (2013).

[62] V. Ranjan, N. Rasiwasia, C. Jawahar, Multi-label cross-modal retrieval,
in: Proceedings of the IEEE International Conference on Computer Vi-
sion, 2015, pp. 4094–4102 (2015).

[63] S. J. Hwang, K. Grauman, Accounting for the relative importance of
objects in image retrieval., in: BMVC, Vol. 1, 2010, p. 5 (2010).

[64] S. Hwang, K. Grauman, Learning the relative importance of objects from
tagged images for retrieval and cross-modal search, International journal
of computer vision 100 (2) (2012) 134–153 (2012).

[65] K. Wang, R. He, L. Wang, W. Wang, T. Tan, Joint feature selection
and subspace learning for cross-modal retrieval, IEEE transactions on
pattern analysis and machine intelligence 38 (10) (2015) 2010–2023
(2015).

[66] G. Xu, X. Li, Z. Zhang, Semantic consistency cross-modal retrieval with
semi-supervised graph regularization, IEEE Access 8 (2020) 14278–
14288 (2020).

[67] L. Zhang, B. Ma, G. Li, Q. Huang, Q. Tian, Generalized semi-supervised
and structured subspace learning for cross-modal retrieval, IEEE Trans-
actions on Multimedia 20 (1) (2017) 128–141 (2017).

[68] Y. Wei, Y. Zhao, Z. Zhu, S. Wei, Y. Xiao, J. Feng, S. Yan, Modality-
dependent cross-media retrieval, ACM Transactions on Intelligent Sys-
tems and Technology (TIST) 7 (4) (2016) 1–13 (2016).

[69] C. Deng, X. Tang, J. Yan, W. Liu, X. Gao, Discriminative dictionary
learning with common label alignment for cross-modal retrieval, IEEE
Transactions on Multimedia 18 (2) (2015) 208–218 (2015).

[70] S. Wang, F. Zhuang, S. Jiang, Q. Huang, Q. Tian, Cluster-sensitive struc-
tured correlation analysis for web cross-modal retrieval, Neurocomput-
ing 168 (2015) 747–760 (2015).

[71] L. Zhang, B. Ma, G. Li, Q. Huang, Q. Tian, Cross-modal retrieval using
multiordered discriminative structured subspace learning, IEEE Trans-
actions on Multimedia 19 (6) (2016) 1220–1233 (2016).

[72] B. Wang, Y. Yang, X. Xu, A. Hanjalic, H. T. Shen, Adversarial cross-
modal retrieval, in: Proceedings of the 25th ACM international confer-
ence on Multimedia, 2017, pp. 154–162 (2017).

[73] G. Cao, A. Iosifidis, K. Chen, M. Gabbouj, Generalized multi-view em-
bedding for visual recognition and cross-modal retrieval, IEEE transac-
tions on cybernetics 48 (9) (2017) 2542–2555 (2017).

[74] Y. Wu, S. Wang, G. Song, Q. Huang, Augmented adversarial training for
cross-modal retrieval, IEEE Transactions on Multimedia (2020).

[75] J. Jeon, V. Lavrenko, R. Manmatha, Automatic image annotation and re-
trieval using cross-media relevance models, in: Proceedings of the 26th
annual international ACM SIGIR conference on Research and develop-

37



ment in informaion retrieval, 2003, pp. 119–126 (2003).
[76] Y. Xia, Y. Wu, J. Feng, Cross-media retrieval using probabilistic model

of automatic image annotation, International Journal of Signal Process-
ing, Image Processing and Pattern Recognition 8 (4) (2015) 145–154
(2015).

[77] Z. Li, J. Liu, C. Xu, H. Lu, Mlrank: Multi-correlation learning to rank
for image annotation, Pattern Recognition 46 (10) (2013) 2700–2710
(2013).

[78] Q. Xu, M. Li, M. Yu, Learning to rank with relational graph and point-
wise constraint for cross-modal retrieval, Soft Computing 23 (19) (2019)
9413–9427 (2019).

[79] Y. Wu, S. Wang, Q. Huang, Online fast adaptive low-rank similarity
learning for cross-modal retrieval, IEEE Transactions on Multimedia
(2019).

[80] J. Yu, Y. Cong, Z. Qin, T. Wan, Cross-modal topic correlations for mul-
timedia retrieval, in: Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), IEEE, 2012, pp. 246–249 (2012).

[81] Y. Wang, F. Wu, J. Song, X. Li, Y. Zhuang, Multi-modal mutual topic
reinforce modeling for cross-media retrieval, in: Proceedings of the
22nd ACM international conference on Multimedia, 2014, pp. 307–316
(2014).

[82] Z. Qin, J. Yu, Y. Cong, T. Wan, Topic correlation model for cross-
modal multimedia information retrieval, Pattern Analysis and Applica-
tions 19 (4) (2016) 1007–1022 (2016).

[83] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553)
(2015) 436–444 (2015).

[84] B. Jiang, J. Yang, Z. Lv, K. Tian, Q. Meng, Y. Yan, Internet cross-media
retrieval based on deep learning, Journal of Visual Communication and
Image Representation 48 (2017) 356–366 (2017).

[85] P. Hu, L. Zhen, D. Peng, P. Liu, Scalable deep multimodal learning for
cross-modal retrieval, in: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, 2019, pp. 635–644 (2019).

[86] F. Feng, X. Wang, R. Li, I. Ahmad, Correspondence autoencoders for
cross-modal retrieval, ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 12 (1s) (2015) 26 (2015).

[87] D. Mandal, P. Rao, S. Biswas, Semi-supervised cross-modal retrieval
with label prediction, IEEE Transactions on Multimedia (2019).

[88] R. Kiros, R. Salakhutdinov, R. Zemel, Multimodal neural language mod-
els, in: International conference on machine learning, 2014, pp. 595–603
(2014).

[89] F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence
autoencoder, in: Proceedings of the 22nd ACM international conference
on Multimedia, 2014, pp. 7–16 (2014).

[90] F. Feng, R. Li, X. Wang, Deep correspondence restricted boltzmann
machine for cross-modal retrieval, Neurocomputing 154 (2015) 50–60
(2015).

[91] Y. Wei, Y. Zhao, C. Lu, S. Wei, L. Liu, Z. Zhu, S. Yan, Cross-modal
retrieval with cnn visual features: A new baseline, IEEE transactions on
cybernetics 47 (2) (2016) 449–460 (2016).

[92] Y. He, S. Xiang, C. Kang, J. Wang, C. Pan, Cross-modal retrieval via
deep and bidirectional representation learning, IEEE Transactions on
Multimedia 18 (7) (2016) 1363–1377 (2016).

[93] X. Huang, Y. Peng, M. Yuan, Mhtn: Modal-adversarial hybrid trans-
fer network for cross-modal retrieval, IEEE transactions on cybernetics
(2018).

[94] M. Carvalho, R. Cadène, D. Picard, L. Soulier, N. Thome, M. Cord,
Cross-modal retrieval in the cooking context: Learning semantic text-
image embeddings, in: The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, 2018, pp. 35–44
(2018).

[95] J. Gu, J. Cai, S. R. Joty, L. Niu, G. Wang, Look, imagine and match:
Improving textual-visual cross-modal retrieval with generative models,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7181–7189 (2018).

[96] W. Cao, Q. Lin, Z. He, Z. He, Hybrid representation learning for cross-
modal retrieval, Neurocomputing 345 (2019) 45–57 (2019).

[97] X. Xu, L. He, H. Lu, L. Gao, Y. Ji, Deep adversarial metric learning for
cross-modal retrieval, World Wide Web 22 (2) (2019) 657–672 (2019).

[98] X. Xu, H. Lu, J. Song, Y. Yang, H. T. Shen, X. Li, Ternary adversarial
networks with self-supervision for zero-shot cross-modal retrieval, IEEE

transactions on cybernetics (2019).
[99] Z. Yang, Z. Lin, P. Kang, J. Lv, Q. Li, W. Liu, Learning shared semantic

space with correlation alignment for cross-modal event retrieval, ACM
Transactions on Multimedia Computing, Communications, and Appli-
cations (TOMM) 16 (1) (2020) 1–22 (2020).

[100] J.-H. Su, C.-L. Chou, C.-Y. Lin, V. S. Tseng, Effective semantic an-
notation by image-to-concept distribution model, IEEE Transactions on
Multimedia 13 (3) (2011) 530–538 (2011).

[101] L. Chi, X. Zhu, Hashing techniques: A survey and taxonomy, ACM
Computing Surveys (CSUR) 50 (1) (2017) 1–36 (2017).

[102] H. P. Luhn, A new method of recording and searching information,
American Documentation 4 (1) (1953) 14–16 (1953).

[103] H. Stevens, Hans peter luhn and the birth of the hashing algorithm, IEEE
Spectrum 55 (2) (2018) 44–49 (2018).

[104] W. W. Peterson, Addressing for random-access storage, IBM journal of
Research and Development 1 (2) (1957) 130–146 (1957).

[105] R. Morris, Scatter storage techniques, Communications of the ACM
11 (1) (1968) 38–44 (1968).

[106] L. Xie, L. Zhu, P. Pan, Y. Lu, Cross-modal self-taught hashing for large-
scale image retrieval, Signal Processing 124 (2016) 81–92 (2016).

[107] W. Cao, W. Feng, Q. Lin, G. Cao, Z. He, A review of hashing methods
for multimodal retrieval, IEEE Access 8 (2020) 15377–15391 (2020).

[108] Y. Fang, H. Zhang, Y. Ren, Unsupervised cross-modal retrieval via
multi-modal graph regularized smooth matrix factorization hashing,
Knowledge-Based Systems 171 (2019) 69–80 (2019).

[109] H. T. Shen, L. Liu, Y. Yang, X. Xu, Z. Huang, F. Shen, R. Hong, Exploit-
ing subspace relation in semantic labels for cross-modal hashing, IEEE
Transactions on Knowledge and Data Engineering (2020).

[110] X. Zhu, Z. Huang, H. T. Shen, X. Zhao, Linear cross-modal hashing for
efficient multimedia search, in: Proceedings of the 21st ACM interna-
tional conference on Multimedia, 2013, pp. 143–152 (2013).

[111] B. Wu, Q. Yang, W.-S. Zheng, Y. Wang, J. Wang, Quantized correla-
tion hashing for fast cross-modal search, in: Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015 (2015).

[112] C. Deng, Z. Chen, X. Liu, X. Gao, D. Tao, Triplet-based deep hashing
network for cross-modal retrieval, IEEE Transactions on Image Process-
ing 27 (8) (2018) 3893–3903 (2018).

[113] C. Yan, X. Bai, S. Wang, J. Zhou, E. R. Hancock, Cross-modal hash-
ing with semantic deep embedding, Neurocomputing 337 (2019) 58–66
(2019).

[114] X. Lu, L. Zhu, Z. Cheng, X. Song, H. Zhang, Efficient discrete latent
semantic hashing for scalable cross-modal retrieval, Signal Processing
154 (2019) 217–231 (2019).

[115] Y. Cao, M. Long, J. Wang, Q. Yang, P. S. Yu, Deep visual-semantic
hashing for cross-modal retrieval, in: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 1445–1454 (2016).

[116] Q.-Y. Jiang, W.-J. Li, Deep cross-modal hashing, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
3232–3240 (2017).

[117] J. Yu, X.-J. Wu, J. Kittler, Learning discriminative hashing codes for
cross-modal retrieval based on multi-view features, Pattern Analysis and
Applications (2020) 1–18 (2020).

[118] J. Tang, K. Wang, L. Shao, Supervised matrix factorization hashing for
cross-modal retrieval, IEEE Transactions on Image Processing 25 (7)
(2016) 3157–3166 (2016).

[119] X. Liu, Z. Li, J. Wang, G. Yu, C. Domeniconi, X. Zhang, Cross-modal
zero-shot hashing, arXiv preprint arXiv:1908.07388 (2019).

[120] J. Yu, X.-J. Wu, Unsupervised concatenation hashing with sparse
constraint for cross-modal retrieval, arXiv preprint arXiv:1904.00726
(2019).

[121] X. Zhang, H. Lai, J. Feng, Attention-aware deep adversarial hashing for
cross-modal retrieval, in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 591–606 (2018).

[122] Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative quantization:
A procrustean approach to learning binary codes for large-scale image
retrieval, IEEE transactions on pattern analysis and machine intelligence
35 (12) (2012) 2916–2929 (2012).

[123] S. Kumar, R. Udupa, Learning hash functions for cross-view similarity
search, in: Twenty-Second International Joint Conference on Artificial
Intelligence, 2011 (2011).

38



[124] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Advances in neu-
ral information processing systems, 2009, pp. 1753–1760 (2009).

[125] J. Song, Y. Yang, Y. Yang, Z. Huang, H. T. Shen, Inter-media hashing for
large-scale retrieval from heterogeneous data sources, in: Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data, 2013, pp. 785–796 (2013).

[126] H. Liu, R. Ji, Y. Wu, F. Huang, B. Zhang, Cross-modality binary code
learning via fusion similarity hashing, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017, pp. 7380–
7388 (2017).

[127] X. Shen, F. Shen, Q.-S. Sun, Y.-H. Yuan, H. T. Shen, Robust cross-view
hashing for multimedia retrieval, IEEE Signal Processing Letters 23 (6)
(2016) 893–897 (2016).

[128] J. Zhou, G. Ding, Y. Guo, Latent semantic sparse hashing for cross-
modal similarity search, in: Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval,
2014, pp. 415–424 (2014).

[129] Z. Ji, W. Yao, W. Wei, H. Song, H. Pi, Deep multi-level semantic hashing
for cross-modal retrieval, IEEE Access 7 (2019) 23667–23674 (2019).

[130] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y.-T. Zheng, Nus-wide:
A real-world web image database from national university of singapore,
in: Proc. of ACM Conf. on Image and Video Retrieval (CIVR’09), San-
torini, Greece., July 8-10, 2009 (July 8-10, 2009).

[131] M. Grubinger, P. Clough, H. Müller, T. Deselaers, The iapr tc-12 bench-
mark: A new evaluation resource for visual information systems, in:
International workshop ontoImage, Vol. 2, 2006 (2006).

[132] M. Everingham, L. Gool, C. K. Williams, J. Winn, A. Zisserman, The
pascal visual object classes (voc) challenge, International journal of
computer vision 88 (2) (2010) 303–338 (2010).

[133] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, A. Zisser-
man, The pascal visual object classes challenge 2007 (voc2007) results
(2007).

[134] M. J. Huiskes, M. S. Lew, The mir flickr retrieval evaluation, in: Pro-
ceedings of the 1st ACM international conference on Multimedia infor-
mation retrieval, 2008, pp. 39–43 (2008).

[135] M. J. Huiskes, B. Thomee, M. S. Lew, New trends and ideas in visual
concept detection: the mir flickr retrieval evaluation initiative, in: Pro-
ceedings of the international conference on Multimedia information re-
trieval, 2010, pp. 527–536 (2010).

[136] J. Krapac, M. Allan, J. Verbeek, F. Juried, Improving web image search
results using query-relative classifiers, in: 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE, 2010,
pp. 1094–1101 (2010).

[137] M. Hodosh, P. Young, J. Hockenmaier, Framing image description as a
ranking task: Data, models and evaluation metrics, Journal of Artificial
Intelligence Research 47 (2013) 853–899 (2013).

[138] P. Young, A. Lai, M. Hodosh, J. Hockenmaier, From image descriptions
to visual denotations: New similarity metrics for semantic inference over
event descriptions, Transactions of the Association for Computational
Linguistics 2 (2014) 67–78 (2014).

[139] C. Rashtchian, P. Young, M. Hodosh, J. Hockenmaier, Collecting im-
age annotations using amazon’s mechanical turk, in: Proceedings of the
NAACL HLT 2010 Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk, Association for Computational Lin-
guistics, 2010, pp. 139–147 (2010).

[140] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, C. L. Zitnick, Microsoft coco: Common objects in context,
in: European conference on computer vision, Springer, 2014, pp. 740–
755 (2014).

[141] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet:
A large-scale hierarchical image database, in: 2009 IEEE conference
on computer vision and pattern recognition, Ieee, 2009, pp. 248–255
(2009).

[142] Y. Jia, M. Salzmann, T. Darrell, Learning cross-modality similarity for
multinomial data, in: 2011 International Conference on Computer Vi-
sion, IEEE, 2011, pp. 2407–2414 (2011).

[143] F. Zhong, G. Wang, Z. Chen, F. Xia, G. Min, Cross-modal retrieval for
cpss data, IEEE Access 8 (2020) 16689–16701 (2020).

[144] G. Xu, X. Li, L. Shi, Z. Zhang, A. Zhai, Combination subspace
graph learning for cross-modal retrieval, Alexandria Engineering Jour-
nal (2020).

[145] Y. Wang, X. Lin, L. Wu, W. Zhang, Q. Zhang, Lbmch: Learning bridg-
ing mapping for cross-modal hashing, in: Proceedings of the 38th inter-
national ACM SIGIR conference on research and development in infor-
mation retrieval, 2015, pp. 999–1002 (2015).

[146] G. Ding, Y. Guo, J. Zhou, Y. Gao, Large-scale cross-modality search
via collective matrix factorization hashing, IEEE Transactions on Image
Processing 25 (11) (2016) 5427–5440 (2016).

[147] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, S. Belongie,
Learning from noisy large-scale datasets with minimal supervision, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 839–847 (2017).

[148] C. Tian, V. De Silva, M. Caine, S. Swanson, Use of machine learning
to automate the identification of basketball strategies using whole team
player tracking data, Applied Sciences 10 (1) (2020) 24 (2020).

[149] D. J. Armaghani, G. D. Hatzigeorgiou, C. Karamani, A. Skentou,
I. Zoumpoulaki, P. G. Asteris, Soft computing-based techniques for con-
crete beams shear strength, Procedia Structural Integrity 17 (2019) 924–
933 (2019).

[150] C. Raghuraman, S. Suresh, S. Shivshankar, R. Chapaneri, Static and
dynamic malware analysis using machine learning, in: First Interna-
tional Conference on Sustainable Technologies for Computational In-
telligence, Springer, 2020, pp. 793–806 (2020).

[151] H. Müller, D. Unay, Retrieval from and understanding of large-scale
multi-modal medical datasets: A review, IEEE transactions on multime-
dia 19 (9) (2017) 2093–2104 (2017).

[152] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review
and new perspectives, IEEE transactions on pattern analysis and ma-
chine intelligence 35 (8) (2013) 1798–1828 (2013).

[153] Y. Jia, L. Bai, S. Liu, P. Wang, J. Guo, Y. Xie, Semantically-enhanced
kernel canonical correlation analysis: a multi-label cross-modal re-
trieval, Multimedia Tools and Applications 78 (10) (2019) 13169–13188
(2019).

[154] X. Zhang, K. Ahmad, Ontology and terminology of disaster manage-
ment, in: DIMPLE: DIsaster Management and Principled Large-scale
information Extraction Workshop Programme, 2014, p. 46 (2014).

[155] M. Rogers, K. Ahmad, Corpus linguistics and terminology extraction
(2001).

[156] Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, L. Wei, et al., Wiki-
cmr: A web cross modality database for studing and evaluation of cross
modality retrieval methods (2013).

[157] C. Kang, S. Xiang, S. Liao, C. Xu, C. Pan, Learning consistent feature
representation for cross-modal multimedia retrieval, IEEE Transactions
on Multimedia 17 (3) (2015) 370–381 (2015).

[158] L. Wu, Y. Wang, L. Shao, Cycle-consistent deep generative hashing for
cross-modal retrieval, IEEE Transactions on Image Processing 28 (4)
(2018) 1602–1612 (2018).

[159] Y. Peng, X. Huang, J. Qi, Cross-media shared representation by hier-
archical learning with multiple deep networks., in: IJCAI, 2016, pp.
3846–3853 (2016).

[160] J. Shao, L. Wang, Z. Zhao, A. Cai, et al., Deep canonical correlation
analysis with progressive and hypergraph learning for cross-modal re-
trieval, Neurocomputing 214 (2016) 618–628 (2016).

[161] V. E. Liong, J. Lu, Y.-P. Tan, J. Zhou, Deep coupled metric learning for
cross-modal matching, IEEE Transactions on Multimedia 19 (6) (2016)
1234–1244 (2016).

[162] J. Luo, Y. Shen, X. Ao, Z. Zhao, M. Yang, Cross-modal image-text re-
trieval with multitask learning, in: Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge Management, 2019,
pp. 2309–2312 (2019).

[163] Y. Jian, J. Xiao, Y. Cao, A. Khan, J. Zhu, Deep pairwise ranking with
multi-label information for cross-modal retrieval, in: 2019 IEEE Inter-
national Conference on Multimedia and Expo (ICME), IEEE, 2019, pp.
1810–1815 (2019).

39


