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Deep Learning Aided Physical-Layer Security:
The Security versus Reliability Trade-off

Tiep M. Hoang, Dong Liu, Thien Van Luong, Jiankang Zhang, and Lajos Hanzo

Abstract—This paper considers a communication system whose
source can learn from channel-related data, thereby making a
suitable choice of system parameters for security improvement.
The security of the communication system is optimized using
deep neural networks (DNNs). More explicitly, the associated
security vs reliability trade-off problem is characterized in
terms of the symbol error probabilities and the discrete-input
continuous-output memoryless channel (DCMC) capacities. A
pair of loss functions were defined by relying on the Lagrangian
and on the monotonic-function based techniques. These were then
used for managing the learning/training process of the DNNs
for finding near-optimal solutions to the associated non-convex
problem. The Lagrangian technique was shown to approach
the performance of the exhaustive search. We concluded by
characterizing the security vs reliability trade-off in terms of
the intercept probability vs the outage probability.

Index terms—Physical layer security, reliability, deep learn-
ing, neural network, Lagrange.

I. INTRODUCTION

Securing wireless communication systems is of salient
importance in the face of the ever-increasing information
security threats [1]–[3]. In parallel to new network protocols,
architectures and technologies, there is a vital need to conceive
powerful physical-layer security (PLS) and physical-layer au-
thentication (PLA) schemes relying on machine learning tech-
niques [4]–[6].1 It is believed that the introduction of machine
learning to communication systems will enable them to adapt
to the surrounding environment, perform cognitive functions
like human intelligence, and make wise decisions to improve
the quality of service [7]. One of the most powerful machine
learning techniques, namely deep learning (DL), which relies
on the architecture of a deep neural network (DNN), has drawn
much attention from the research community [8]. However,
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1The PLA focuses on identity authentication for determining users in
the uplink, while the PLS basically addresses security designs, e.g. secure
beamforming, in the downlink. The PLA is out of the context of this paper.

there is a paucity of literature on applying DL to PLS
solutions, which motivates this contribution.

In parallel, power-efficient system design is also an impor-
tant area of research in communications [2]. For judiciously
allocating and controling the transmit power of a wireless
communication system, sophisticated optimization tools may
be invoked for finding the optimal solutions. At the time of
writing, DNNs are popular for solving stochastic optimization
problems in wireless systems without deriving complex math-
ematical expressions [9], [10]. Moreover, DNNs have been
shown to be capable of learning from the data that may have
unknown time-variant distribution. A promising technique is
to employ the classic Lagrangian dual method for managing
the process of updating the gradients for DNNs [9], [10]. The
Lagrangian dual method requires updating the intermediate
multipliers that are not part of the DNN architecture [9], while
there is another beneficial technique of solving constrained op-
timization problems without relying on intermediate variables
[11].

A. Related Works

In the context of DL-aided PLS, the authors of [12]–[16]
have used DNNs for optimizing the security. In general, the
DNN-aided techniques applied for enhancing the PLS in [12]–
[16] tend to aim for finding numerical solutions rather than
closed-form mathematical solutions and approximate solutions
(as seen in [17]). For example, the authors of [12] and [16]
focus their attention on designing wiretap codes for enhancing
the security level, while the works in [13]–[15] focus on power
control, beamforming and artificial noise aspects, respectively.
However, apart from [16], the security optimization problems
of [12]–[15] only consider the average power constraint and
ignore other salient constraints. Explicitly, the solution of
constrained optimization problems by DNNs in the face of
uncertainty has remained an open issue. More specifically, nei-
ther the Lagrangian dual method nor the so-called monotonic-
function-based (MFB) method have been considered in [12]–
[16].

Furthermore, when it comes to performance metrics, the
secrecy rate is one of the most widely used ones. In general,
the secrecy rate of a system, namely Cs, is based on the
difference of the legitimate channel capacity (denoted by CB)
and the illegitimate channel capacity (denoted by CE). In this
context, most of the contributions theoretically derive CB and
CE from the Shannon capacities by assuming that the input
signal obeys a continuous Gaussian distribution (see [18]–[21]
and references therein). However, in practice, the input signal
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is discrete. Furthermore, the Shannon capacities represent
the theoretical upper bounds, but not the actual capacities
of channels. From a practical perspective, the discrete-input
continuous-output memoryless channel (DCMC) capacities are
much closer to the realistically attainable actual capacities
[22]–[24], but there is only limited PLS-literature relying on
the DCMC capacity. Another problem is that the symbol/bit
error rates are the most popular practical performance metrics,
but they are typically neglected by most of the existing PLS-
related contributions. Hence, our goal is to build a bridge
between the theoretical analysis and the reality by considering
practical metrics. In Table I, we boldly and explicitly contrast
our novel contributions to the relevant literature, which are
detailed further below.

B. Contributions

Our contributions can be summarized as follows:
• We formulate a stochastic constrained optimization prob-

lem for striking a security vs reliability trade-off quan-
tified in terms of the symbol error probability (SEP) vs
DCMC secrecy rate. Explicitly, we find the optimal power
sharing between the information-bearing and the artificial
noise part.

• We then solve the problem formulated, which is stochas-
tic non-convex optimization problem, by using deep
learning. In particular, we employ the Lagrange and
MFB techniques for guiding the learning-for-optimizing
process of DNNs to find the optimal parameters. In
contrast to [12]–[16], we consider not only the average
power constraint, but also the security constraint. To
the best of our knowledge, this is the first contribution
solving this challenging constrained security optimization
problem by harnessing the Lagrange as well as the MFB
techniques intrinsically amalgamated with DNNs.

• Our numerical results show that the proposed deep
learning-aided technique approaches the security perfor-
mance that is attained by the exhaustive search, especially
for the Lagrangian approach. Furthermore, we quantify
the security vs reliability trade-off in terms of the inter-
cept vs outage probabilities [25].

The remainder of the paper is organized as follows. Section
II presents the system model, while Section III formulates
the security-reliability trade-off in the context of constrained
security optimization. In Section IV, a pair of DNN-aided
techniques are conceived for solving the optimization prob-
lem considered. Our numerical results and conclusions are
presented in Sections V and VI, respectively.

Notations: Cm×n denotes the complex field that includes all
complex-valued matrices of size m×n; In denotes the identity
matrix of size n×n; The scripts (·)>, (·)∗, and (·)† denote the
transpose, conjugate, and Hermitian operators, respectively;
z ∼ CN (m,Σ) represents a complex Gaussian random vector
with mean m and covariance matrix Σ.

II. SYSTEM MODEL

We consider a wireless system, which consists of a source
(A), a legitimate user (B), and a malicious eavesdropper (E).

In this system, A is assumed to be an intelligent entity that
is aware of the environment and can learn from channel-
related data to make decisions. Let us denote the instanta-
neous complex-valued channel between A and B at time t by
hB ∈ CNA×1. Furthermore, denote the instantaneous complex-
valued channel between A and E at time t by hE ∈ CNA×1.
We also assume that the channel estimation at A is imperfect
and only the estimate of the legitimate channel is available
at A. What A knows about the legitimate channel at a certain
time t will be the estimated quantity hB,est ∈ CNA×1.

Then, A is assumed to rely on hB,est for designing the beam-
forming vector b = h∗B,est/‖hB,est‖. At the same time, A
also generates the artificial noise matrix A ∈ CNA×(NA−1) for
drowning out the potential illegitimate users, while ensuring
that [b A] forms an orthonormal basis of CNA×NA to avoid
contaminating the reception of A. If the estimated channel
hB,est is exactly the same as the actual channel hB, then the
interference will become zero at B. However, in reality, we
have hB,est 6= hB and the relationship between hB,est and hB
can be modelled by [26], [27]

hB =
√

1− ζ2 hB,est + ζ eB (1)

where eB ∼ CN (0, 1) is the channel estimation error that is
independent of hB,est, and ζ ∈ (0, 1) denotes the estimation
error coefficient. The smaller ζ, the more accurate the chan-
nel estimation. Similarly, the eavesdropping channel can be
modelled as

hE =
√

1− ζ2 hE,est + ζ eE, (2)

where hE,est ∼ CN (0, 1) is the estimated channel, which is
known to A, and eE ∼ CN (0, 1) is the estimation error.

Combining the beamforming vector and the artificial noise
matrix, A aims for designing a signal vector sA ∈ CNA×1 as
follows [28]:

sA =
√
ρinfo bsinfo +

√
ρnoise Az, (3)

where sinfo is the information-bearing signal with
E
{
|sinfo|2

}
= 1, while z ∈ C(NA−1)×1 is the artificial

noise with E
{
zz†
}

= INA−1. Finally, ρinfo and ρnoise are
power-related factors. We can normalize sA according to
E
{
‖sA‖2

}
= NA, which leads to

ρinfo + ρnoise(NA − 1) = NA. (4)

Due to 0 ≤ ρinfo ≤ NA, we can write ρinfo = ϕNA where 0 ≤
ϕ ≤ 1 denotes the power allocation coefficient. Accordingly,
we have ρnoise = (1−ϕ)NA

NA−1 .
After A transmits the signal sA, the signal received at B can

be expressed as:

rB =
√
γA/NA h>B (

√
ρinfobsinfo +

√
ρnoiseAz) + nB

=
√
ϕγA h>B bsinfo +

√
(1− ϕ)γA

NA − 1
h>B Az + nB, (5)

where γA = PA
σ2

B
represents the signal-to-noise ratio (SNR).

Note that PA is the average transmit power of A, while σ2
B is

the noise variance of B, and nB ∼ CN (0, 1) is the additive
white Gaussian noise (AWGN) that is normalized.
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TABLE I: Boldly contrasting our contribution to the literature

Pre-2018
(e.g., [17])

[12]
2018

[13]
2019

[14]
2019

[16]
2020

[15]
2020

This
work

Security optimization with deep learning X X X X X X
Security- or reliability-related constraints X X X
Deep learning with Lagrangian method X
Deep learning with MFB method X
Power control X X X X X
Beamforming and artificial noise X X X X X
Wiretap code design X X X
SEP or BER X X X
DCMC capacity X X

Similarly, the signals received at E can be formulated as:

rE =
√
γA/NA h>E (

√
ρinfobsinfo +

√
ρnoiseAz) + nE

=
√
ϕγA h>E bsinfo +

√
(1− ϕ)γA

NA − 1
h>E Az + nE, (6)

where nE ∼ CN
(

0,
σ2

E
σ2

B

)
is the normalized AWGN, and σ2

E is
the actual noise variance of E. In general, we have σ2

E 6= σ2
B.

By considering the ratio σ2
E
σ2

B
, we can observe that the worst-

case scenario occurs for σ2
E << σ2

B, which leads to σ2
E
σ2

B
→ 0.

III. PROBLEM FORMULATION

A. Symbol error probabilities

When the symbol si ∈ {s1, . . . , sM} is sent by A and sj is
incorrectly detected by B, the pairwise error probability for B,
conditioned on the channel hB, can be readily deduced from
(5) as follows [29]:

CPEPB (si → sj |hB) = Q

 √
ϕγA|h>B b(si − sj)|√

2
[
(1−ϕ)γA‖h>B A‖2

NA−1 + 1
]
 ,

(7)

where Q(z) =
∫∞
z

e−x2/2
√
2π

dx. Similarly, the pairwise error
probability for E, conditioned on the channels hB and hE,
can be deduced from (6) as follows:

CPEPE (si → sj |h) = Q

 √
ϕγA|h>E b(si − sj)|√

2
[
(1−ϕ)γA‖h>E A‖2

NA−1 +
σ2

E
σ2

B

]
 ,

(8)

where h =
[
h>B ,h

>
E

]>
.

The conditional symbol error probability (CSEP) for B and
the CSEP for E are, respectively, given by

CSEPB(ϕ|hB) ≤ 1

M

M∑
i=1

M∑
j=1,j 6=i

CPEPB (si → sj) , (9)

CSEPE(ϕ|h) ≤ 1

M

M∑
i=1

M∑
j=1,j 6=i

CPEPE (si → sj) , (10)

where the inequality follows the rule of the union bound. Using
the nearest neighbor approximation [29, Chapter 5], we can

simplify the right hand side (RHS) of (9) by the following
approximation:

CSEPB(ϕ|hB) ≈MdminQ

 √
ϕγA|h>B b|dmin√

2
[
(1−ϕ)γA‖h>B A‖2

NA−1 + 1
]
 ,

(11)

where dmin is the minimum distance between constellation
points, and Mdmin is the number of nearest neighbours at the
distance dmin. Similarly, we have

CSEPE(ϕ|h) ≈MdminQ

 √
ϕγA|h>E b|dmin√

2
[
(1−ϕ)γA‖h>E A‖2

NA−1 +
σ2

E
σ2

B

]
 .

(12)

As such, the average SEP for B and the average SEP for E
are given by

PB = EhB {CSEPB(ϕ|hB)} , (13)
PE = Eh {CSEPE(ϕ|h)} , (14)

where EhB {·} is the expectation over hB, and Eh {·} is the
expectation over h =

[
h>B ,h

>
E

]>
.

B. DCMC Secrecy Rate

Let CB and CE be the DCMC capacity of the A-B link and
that of the A-E link, respectively. The DCMC secrecy rate can
be defined as Cs = [CB − CE]+ where [x]+ = x for x ≥ 0
and [x]+ = 0 for x ≤ 0.

From a PLS perspective, it is worth considering the worst-
case scenario, which corresponds to the lower bound of Cs.
Thus, we will consider the following quantity:

C lower
s = [C lower

B − Cupper
E ]+, (15)

where C lower
B is the lower bound of CB, and Cupper

E is the
upper bound of CE. Recall that the traditional PLS solutions
rely on the unrealistic assumption that the input signals are
continuous, e.g. Gaussian distribution [22]–[24]. By contrast,
we consider a more realistic scenario where the input signals
are discrete, thus formulating the secrecy rate based on the
DCMC capacities but not Shannon’s upper limit of channel
capacity.2

2The Shannon capacity is also referred to as the continuous-input
continuous-output memoryless channels (CCMC) capacity.
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Proposition 1. The expression for C lower
B can be formulated

as:

C lower
B = Eh,z,nB {gB(ϕ|h, z, nB)} , (16)

where

gB(ϕ|h, z, nB) = log2M −
1

M

M∑
i=1

log2

 M∑
j=1

eΨB(i,j)

 ,
(17)

ΨB(i, j) =
(
−
∣∣√ϕγAh>B b(si − sj) + ñB

∣∣2 +
∣∣ñB
∣∣2) /σ̃B

2
,

ñB =
√

γA
NA−1 h>B Az + nB ∼ CN

(
0, σ̃B

2
)
, and σ̃B

2
=

γA‖h>B A‖2
NA−1 + 1. The expectation Eh,z,nB {·} is taken over h,

z and nB.

Proof. See Appendix A.

Proposition 2. The expression for Cupper
E is given by

Cupper
E = Eh,z {gE(ϕ|h, z)} , (18)

where

gE(ϕ|h, z) = log2M −
1

M

M∑
i=1

log2

 M∑
j=1

eΨ̃E(i,j)

 (19)

and Ψ̃E(i, j) =
−
∣∣√ϕ(NA−1)

1−ϕ h>E b(si−sj)+h>E Az
∣∣2+∣∣h>E Az

∣∣2∥∥h>E A
∥∥2 . The

expectation Eh,z {·} is taken over h and z.

Proof. See Appendix B.

C. Stochastic Optimization Formulation

Since the estimated expressions PB,est, PE,est, C lower
B,est and

Cupper
E,est are available at A, they will be employed for optimizing

the security performance of the proposed system. In particular,
A now aims for finding ϕ so that{

PB is minimized
PE is maximized

⇒

{
PB is minimized
|PE,max − PE| is minimized

⇒

{
Eh {CSEPB} is minimized
Eh {|PE,max − CSEPE|} is minimized

(20)

where PE,max = M−1
M is the maximum SEP of E. In general,

it is a challenging goal to minimize any multi-component
objective function (OF), which will lead to a multiple-objective
optimization (MOO) problem. Explicitly, our optimization
objective of (20) can be formulated in the form of linear
scalarization as follows:

min
ϕ

εPB + ε̂(PE,max − PE), (21a)

where ε ∈ [0, 1] is the priority factor, and ε̂ = 1− ε. If ε = 1,
we only minimize the average SEP of B without considering
the average SEP of E. By contrast, ε = 0 means that we
only minimize the average SEP of E without considering the
average SEP of B. Hence, the value of ε indicates our priority
and helps in striking a trade-off between the above pair of
conflicting objectives.

To guarantee the security level of our proposed system,
solving the MOO problem (21) may not be sufficient by itself.
Since C lower

s is based on the difference between C lower
B and

Cupper
E , we have to consider the following constraint:

C lower
B − Cupper

E ≥ 0. (22)

Upon combining (21) and (22) together, we arrive at the
following stochastic optimization problem:

min
ϕ

εEh {CSEPB}+ ε̂Eh {|PE,max − CSEPE|} , (23a)

s.t. C lower
B − Cupper

E ≥ 0. (23b)

Substituting (11), (12), (16) and (18) into (23), we can
rewrite (23) as follows:

min
ϕ

Eh {F(ϕ)} , (24a)

s.t. Eh,nB,z {C(ϕ)} ≤ 0, (24b)

where the functions F(ϕ) and C(ϕ) are defined as

F(ϕ) , εMdminQ

(√
ϕγA‖hB‖dmin√

2

)

+ ε̂

∣∣∣∣∣M − 1

M
−MdminQ

 √
ϕγA|h>E b|dmin√

2
[
(1−ϕ)γA‖h>E A‖2

NA−1 +
σ2

E
σ2

B

]

∣∣∣∣∣,

(25)

and

C(ϕ) =

M∑
i=1

log2

[∑M
j=1 e

ΨB(i,j)∑M
j=1 e

Ψ̃E(i,j)

]
. (26)

To elaborate, the stochastic optimization problem (24) is non-
convex, hence it is hard to solve by conventional optimization
techniques. Thus, we will tackle this challenge by using power-
ful DNNs. In the sequel, a pair of DNN-based approaches will
be proposed to handle the stochastic non-convex optimization
problem (24).

IV. DEEP-LEARNING-AIDED SECURITY DESIGNS

This section presents a pair of alternative techniques of
solving (24) (or equivalently (23)). As an intelligent entity,
which can learn from the statistical history of channel-related
data to decide system parameters for improving security, A
will employ DNNs to achieve this goal.

There are two types of DNNs to be considered in this work.
As for the first type, we use the Lagrangian dual method for
carrying out the gradient updates on primal and dual variables,
and then we set the Lagrange function to be the loss function
of a DNN. As for the second technique, we formulate a cost
function based on a certain monotonic function and manage
the learning process through directly computing the gradient of
the cost function. In general, the main difference between these
two types of DNNs lies in the formulation of the loss function.
In both approaches, the gradient updates are performed with
the aid of unsupervised DNNs. Note that we will use the
term “Lagrange-DNNs” to refer to the DNNs used for the
Lagrangian technique. Similarly, the terms “MFB-DNNs” will
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Update

Fig. 1: The architecture of a DNN and the weight updating rule are illustrated.

refer to the DNNs used for the second approach, where MFB
stands for “monotonic-function-based”.

The Lagrange-DNNs will be presented in Sub-section IV-B,
while the MFB-DNNs will be presented in Sub-section IV-C.
Prior to delving into the Lagrange-DNNs and the MFB-DNNs,
we will discuss the gradient updating mechanism of a generic
DNN in Sub-section IV-A.

A. Gradient Descent and Approximation by DNNs
Let fθ represent a function parameterized by a certain vector

θ. Then, the mapping fθ : x→ ϕ characterizes the functional
relationship between the input x and the output ϕ, formulated
as ϕ = f(x;θ). Furthermore, we define `(ϕ) as a function of ϕ
and call `(ϕ) a loss/cost/risk function. The physical meanings
of x, ϕ and θ can be interpreted as follows:
• x is the channel-related data and obeys some distribution.

Considering the sampling over time, we have xn as the
realization of x at a certain time slot n. After |B| time
slots, we obtain a batch of samples, denoted by B =
{x1,x2, . . . ,x|B|}. Note that |B| is the cardinality of B.

• θ is not invariant, but it can be iteratively updated in
order to improve the relationship fθ between x and ϕ.
At the t-th iteration, we have θ = θ[t].

• ϕ is the power allocation coefficient, which needs to be
optimized. ϕ will be chosen so that the loss function is
minimized. With respect to the n-th input sample xn, the
specific value of the output ϕ at the t-th iteration is ϕ[t]

n .
For notational simplicity, we will denote

ϕn = f(x;θ)
∣∣
x=xn

= f(xn;θ)

as a simplified version of the function ϕ, when x is
substituted by a specific value xn. Also, let us denote

ϕ[t]
n = f(x;θ)

∣∣
x=xn, θ=θ[t] = f(xn;θ[t])

as a specific value of the function ϕ, when respectively
substituting x and θ by specific values xn and θ[t].
Obviously, we have ϕ[t]

n = ϕn

∣∣∣
θ=θ[t]

.
As x is random, it is worth considering the average quantity

L(ϕ) = E {` (ϕ)} = Ex {` (fθ)} . (27)

To lower the average loss L(ϕ), we aim to solve the following
optimization problem:

min
ϕ
L(ϕ)⇔ min

fθ
Ex {` (fθ)} ⇔ min

fθ
Ex

{
`
(
f(x;θ)

)}
.

(28)

In practice, we may not have sufficiently statistical knowledge
of the truth distribution of x. Instead, we may only have a
batch B of data samples. Using the data batch B, we can
relax the problem (28) as follows:

min
ϕ
L(ϕ) ≈ min

fθ

1

|B|
∑
xn∈B

`
(
f(xn;θ)

)
. (29)

The relationship between (29) and our proposed problem (24)
will be discussed in detail in the next sub-sections. For now, let
us just focus on how to use DNNs for solving (29) generally.

Using the gradient descent for finding the solution to
(29), we can update the parameter vector θ according to the
following rule:

θ[t+1] = θ[t] − η

|B|
∑
xn∈B

∇θ`
(
ϕn
)∣∣∣

θ=θ[t]
. (30)

In order to perform the above weight update with the help of
a DNN, we will comply with the following designs:
• A DNN takes x as the input and outputs ϕ as the solution.
• The weights of a DNN are the elements in θ.

As a result, the weight update in (30) is equivalent to the pro-
cess of training/updating the DNN weights. Figure 1 illustrates
the architecture of a DNN consisting of two hidden layers.

In short, the DNN training process aims to update the weight
vector θ in order to improve the functional relationship fθ
between the channel-related data x and the power allocation
policy ϕ. Noticeably, a DNN consists of connected neurons
(as illustrated in Figure 1), thus the functional relationship
fθ can be further improved by combining neurons together.
Although a single neuron is activated by a simple function,
the connection of multiple neurons will form a more complex
function, whereby enabling us to learn the mapping fθ as best
as possible. According to [10], [30], [31], DNNs are capable
of approximating sophisticated functions with any tolerance.
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Remark 1. The DNN architecture seen in Figure 1 depicts
the relationship fθ : x → ϕ between the data x and the
variable ϕ. However, the output layer of this DNN architecture
can be re-designed to cope with multivariate problems. If we
want to minimize a certain function of the form L(ϕ, ω, φ),
then we can re-design the output layer with more than one
neuron in order to find many functional relationships between
the data and the variables ϕ, ω, and φ. For example, if ω is
complex-valued and φ is real-valued, then the output layer can
have 4 neurons, which correspond to the following functional
relationships: fθ : x → ϕ, f̌θ : x → R{ω}, f̂θ : x → I{ω},
and f̄θ : x→ φ.

In the following subsections, two different types of DNNs
will be considered: i) Lagrange-DNNs and ii) MFB-DNNs.
Both these two types apply the gradient descent to update
their weights. In other words, the weight updating mechanism
(30) can be applied to both the Lagrange-DNN and the MFB-
DNN. To distinguish the notations w.r.t. Lagrange-DNNs from
the notations w.r.t. MFB-DNNs, we will consider the following
alternative notations:

θ,θ[t] replaced by
========

{
θ̂, θ̂[t], w.r.t. Lagrange-DNNs;
θ̃, θ̃[t], w.r.t. MFB-DNNs,

ϕ, ϕn, ϕ
[t]
n

replaced by
========

{
ϕ̂, ϕ̂n, ϕ̂

[t]
n , w.r.t. Lagrange-DNNs;

ϕ̃, ϕ̃n, ϕ̃
[t]
n , w.r.t. MFB-DNNs.

B. Lagrange Approach

This sub-section presents how to employ the Lagrangian
dual method for managing the gradient update of Lagrange-
DNNs during the learning process. First, the average loss
function L(ϕ̂) in (27) is explicitly formulated as follows:

L(ϕ̂) = Eh,nB,z {F(ϕ̂)}+ ξdualEh,nB,z {C(ϕ̂)}
, LLag(ξdual, ϕ̂), (31)

where ξdual is the Lagrange multiplier associated with the
stochastic constraint (24b). Note that LLag(ξdual, ϕ̂) is also
called the Lagrange function. Then, using the Lagrangian dual
method [32], we can convert (24) into the following primal-
dual problem:

max
ξdual≥0

min
ϕ̂

LLag(ξdual, ϕ̂), (32)

It was shown in [9], [10] that Lagrange-DNNs can be
employed for solving the primal-dual problems. To be more
specific, for the problem (32), instead of directly finding the
optimal value ϕ̂∗ of ϕ̂, we can use a certain Lagrange-DNN
for outputting ϕ̂[t]

n ≈ ϕ̂∗. This means that the Lagrange-DNN
is used for learning the functional relationship fθ̂ : x → ϕ̂
so that the average loss function LLag(ξdual, fθ̂) is minimized.
Recall that θ̂ denotes the vector capturing all the weights of
the Lagrange-DNN. Note that once the Lagrange-DNN has
been employed, the Lagrange dual problem (32) becomes the
following approximate problem:

max
ξdual≥0

min
θ̂

LLag (ξdual, fθ̂
)
. (33)

Algorithm 1: Using DNNs for solving the problem (33)

1: Initialize ξ[0]dual ≥ 0 for ξdual.
2: Train a DNN to minimize LLag

(
ξdual, fθ̂

)
.

3: Upon convergence at the (t + 1)-th epoch, get a critical
point ϕ∗(ξdual>0) , f(θ̂[t+1]).

4: if ξdual is less than a small tolerance, e.g., ξdual ≤ 10−6,
then

5:6: ξdual is considered as zero. Assign the desired solution
ϕ∗ ←− ϕ∗(ξdual>0).

7: Go to the last step in line 15.
8: else
9:10: Train another DNN to minimize LLag(ξdual = 0, fθ̂).

11: Upon convergence at the (t+1)-th epoch, get another
critical point ϕ∗(ξdual=0) , f(θ̂[t+1]).

12: Compare the critical points ϕ∗(ξdual>0) and ϕ∗(ξdual=0) to
select the optimal solution ϕ∗ to the problem (24).
Assign the desired solution ϕ∗ ←− ϕ∗(ξdual>0), only if
ϕ∗(ξdual=0) is a better solution than ϕ∗(ξdual>0).

13: Go to the last step in line 15.
14: end if
15: Return ϕ∗ as the desired solution.

Due to the relationship ϕ̂
[t]
n ≈ ϕ̂∗, the solution of (33)

constitutes an approximation of the actual optimal solution of
(32). However, the optimality gap between these two solutions
can be arbitrarily small, thanks to the universal approximation
theorem of [10], [30].

On the basis of the Lagrangian dual method, the primal
variable θ̂ and the dual variable ξdual can be iteratively updated.
For the primal update, at the (t+ 1)-st iteration, we have

θ̂[t+1] = θ̂[t] − η

[
∇θ̂E

{
F
(
fθ̂
)}∣∣∣

θ̂=θ̂[t]

+ ξ
[t]
dual∇θ̂E

{
C
(
fθ̂
)}∣∣∣

θ̂=θ̂[t]

]
. (34)

For the dual update, at the (t+ 1)-st iteration, we have

ξ
[t+1]
dual =

[
ξ
[t]
dual + ηE

{
C
(
fθ̂
)}∣∣∣

θ̂=θ̂[t]

]+
. (35)

In (35), the operator [·]+ is used for ensuring that ξdual is non-
negative in any iteration. Note that θ̂ is the weight vector of the
Lagrange-DNN in this Lagrangian technique, thus the primal
update is performed within the Lagrange-DNN. By contrast,
the dual update of ξdual is performed outside the Lagrange-
DNN.

The expectation operator Eh,nB,z {·} in (34), as well as
in (35), represents averaging over the entire training dataset;
however, it is computationally more attractive to perform the
expectation over a smaller set of examples, namely, a mini
batch B. In doing so, it may be readily shown that the nature
of DNNs may be efficiently exploited by using the stochastic
gradient descent (SGD) method [33].3 In this vein, the primal

3Conventional gradient-based techniques without a DNN cannot learn from
the data. By contrast, the integration of DNNs will help a system to learn non-
linear functions.
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Fig. 2: The Lagrange approach is depicted in the sub-figure (A), while the MFB approach is depicted in the sub-figure (B).

and dual updates in (34) and (35) will be, respectively, adjusted
into

θ̂[t+1] = θ̂[t] − η

|B|

|B|∑
n=1

{[
∇ϕ̂n
F (ϕ̂n)

∣∣∣
ϕ̂n=ϕ̂

[t]
n

+ ξ
[t]
dual∇ϕ̂n

C (ϕ̂n)
∣∣∣
ϕ̂n=ϕ̂

[t]
n

]

×

[
∇θ̂ϕ̂n

∣∣∣
θ̂=θ̂[t]

]}
(36)

and

ξ
[t+1]
dual =

ξ[t]dual +
η

|B|

|B|∑
n=1

C
(
ϕ̂[t]
n

)+

. (37)

Herein, |B| denotes the size of the mini batch B, which has to
be sufficiently large for guaranteeing the convergence of (36)
and (37).

In short, the process of handling the Lagrangian dual
problem (33) can be summarized in Algorithm 1. It should
be noted that the Steps 10-13 of Algorithm 1 ensure that if
a critical point of the Lagrangian function LLag

(
ξdual, fθ̂

)
is

associated with the multiplier ξdual = 0, we will not miss it.
Although the dual update at the (t + 1)-st iteration can lead
to ξdual being equal to a small positive number ξ[t+1]

dual , this
value may still be considered as relatively large, given that
the OF is constituted by the SEPs that may have very low
values. Another reason is that a Lagrange-DNN may encounter
the issue of having a vanishing gradient, which prevents that
Lagrange-DNN from getting an update, thus yielding a ξ[t+1]

dual
value far away from the actual optimal value of ξdual.

C. Monotonic-function-based (MFB) approach

In contrast to the cost function LLag(ξdual, ϕ̂) of the La-
grangian approach, we will formulate another cost function
that incorporates the stochastic constraint (24b). In this vein,
we use another DNN, namely the MFB-DNN, whose weight
vector and output are denoted by θ̃ and ϕ̃, respectively.

When using the MFB-DNN, we aim to find the functional
relationship fθ̃ : x→ ϕ̃ so that the average loss function L(ϕ̃)
is minimized. In other words, the MFB-DNN is employed for
outputting ϕ̃

[t]
n ≈ ϕ̃∗. Different from the formulation of the

loss function L (ϕ̂) = LLag(ξdual, ϕ̂) in the Lagrange approach,

the loss function of the MFB-DNN in the MFB method will
be formulated as:

L (ϕ̃) = LMFB (ϕ̃)

, λ1Eh {F (ϕ̃)}

+ (1− λ1)M

([
1

λ2
Eh {C (ϕ̃)}

]+)
, (38)

where 0 < λ1 < 1 is the factor balancing the OF Eh {F (ϕ̃)}
and the left hand side Eh {C (ϕ̃)} of the constraint; λ2 > 0
is the scaling factor; and M([z]+) can be one of the popular
monotonic functions like the ReLU function, sigmoid function,
tanh function and sofplus function.4 Based on the fact that
M[max(0, z)] is a monotonically increasing function of z,
we observe that{

M(max(0, z)) =M(0) ≥ 0 when z ≤ 0

M(max(0, z)) =M(z) >M(0) when z > 0
. (39)

As such, M[max(0, z)] reaches the minimum value M(0)
when z ≤ 0. Likewise, the second term in (38) reaches the
minimum value M(0) when Eh {C(ϕ̃)} ≤ 0, i.e.,

M
(

1

λ2
[Eh {C (ϕ̃)}]+

)
=M(0)

⇐⇒Eh {C (ϕ̃)} ≤ 0. (40)

From (38)–(39), we can deduce the following inequality:

LMFB (ϕ̃) ≥ −λ1Eh {F (ϕ̃)}+ (1− λ1)M(0). (41)

Ideally, LMFB (ϕ̃) is minimized when the equality “=” occurs
in (41). In this ideal case, minimizing LMFB (ϕ̃) corresponds
to minimizing the OF Eh {F (ϕ̃)}. Moreover, the occurrence
of the equality also corresponds to the occurrence of (40), i.e.
the stochastic constraint of (24b) is approximately satisfied.

Although, the equality in (41) may not always be achievable,
it is promising that the process of training a neural network
to minimize LMFB (ϕ̃n) might find the solution of the original
problem (24). Replacing ϕ̃n by fθ̃ and applying the gradient

4In simulation, we use M[max(0, z)] = log2(1 + emax(0,z)), which is
based on the softplus function.
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descent, the weight vector θ̃ of the MFB-DNN can be itera-
tively updated as follows:

θ̃[t+1] = θ̃[t] − η∇θ̃L
MFB (fθ̃)∣∣∣

θ̃=θ̃[t]

= θ̃[t] − η

[
λ1∇θ̃ Eh

{
F
(
fθ̃
)} ∣∣∣

θ̃=θ̃[t]

+ (1− λ1)

×∇θ̃M

([
Eh

{
C
(
fθ̃
)}]+

λ2

)∣∣∣∣∣
θ̃=θ̃[t]

]
. (42)

It is plausible for the MFB-DNN that it can directly update
its weights without needing any intermediate variables.

Practically, when a batch of |B| examples is fed to the MFB-
DNN, the gradient update (42) will be approximately adjusted
into the following form:

θ̃[t+1] = θ̃[t] − η

|B|

|B|∑
n=1

{[
λ1∇ϕ̃n

F (ϕ̃n)
∣∣∣
ϕ̃n=ϕ̃

[t]
n

+ ((1− λ1)/λ2)

×∇ϕ̃n
M
(

[C (ϕ̃n)]
+
) ∣∣∣∣∣

ϕ̃n=ϕ̃
[t]
n

]

×

[
∇θ̃ϕ̃n

∣∣∣
θ̃=θ̃[t]

]}
. (43)

Remark 2. Although we only optimize the real-valued vari-
able ϕ ∈ R in this paper, it is worth mentioning that our
proposed approach may also be extended to the optimization of
complex-valued variables. This may be achieved by doubling
the number of output neurons to handle the real and imaginary
parts. Another way of optimizing complex-valued variables is
to use complex-valued DNNs [34]; however, this direction has
not yet been fully supported by contemporary simulation tools.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will present our numerical results ob-
tained by the proposed DNN. For characterizing the security
vs reliability trade-off in terms of the SEPs vs the DCMC
capacities, and the so-called intercept vs outage probability us-
ing the 4-QAM signalling. Note that we consider the uncoded
transmission and leave coded schemes for future works.

Moreover, we consider the full search as the baseline since,
it represents the standard best-case upper-bound. Hence, we
compare both proposed DNN-based approaches to the full
search for quantifying their security performance.

DNN configuration: The Lagrange-DNN and the MFB-
DNN share the same configurations: the input, the output,
the number of nodes (or neurons) in each layer, and the
activation function of each neuron. The n-th input sample can
be formulated as

xn =
[
R {hn,est}> , I {hn,est}>

]>
,

where R {·} and I {·} denote the real and imaginary part,
respectively. Herein, hn,est is the realization of hest =[
h>B,est,h

>
E,est

]>
at the n-th time slot. As for the output yout,

A simply designs yout = ϕ in order to assign the optimal
power allocation coefficient to the output node. Furthermore,
ϕ assumes a real value in the range (0, 1), thus the output layer
can be activated by an activation function ranging from 0 to
1, for example, the sigmoid function. The number of hidden
layers is 2 and the number of neurons in each hidden layer is
20. The learning rate of each DNN is set to 0.001. A batch
of examples passed through a DNN is 2000, and the total
number of examples is 20, 000. Unless otherwise specified,
we will terminate the training process after 400 epoch.

A. Convergence

Figs. 3 and 4 characterize the convergence of both the
Lagrangian and MFB solutions in comparison with the ex-
haustive search. The system parameters used are as follows:
γA = {0, 5, . . . , 35}, NA = 5, ε = 0.7 and ζ = 0.
Note that for the MFB approach, two cases are illustrated: i)
(λ1, λ2) = (0.5, 50) and ii) (λ1, λ2) = (0.7, 10). Note that the
number of evaluations used for the exhaustive search is equal
to the number of examples used for the Lagrange/MFB-DNN.
Observe that the Lagrangian performance is almost identical to
that of the exhaustive search, while that of the MFB approach
is different from the exhaustive search. In particular, PB of
the MFB-DNN is lower than PB of the Lagrange-DNN, and
similarly, PE of the MFB-DNN is lower than PE of the
Lagrange-DNN. Naturally, we wish to reduce the value of PB
and simultaneously increase PE, which is indeed the case in
Fig. 3. This is because we are finding the optimal solution
ϕ∗ of the problem (24) in terms of the security vs reliability
trade-off.

Similar to our observations gleaned from Figs. 3-4, the
remaining figures also demonstrate a close agreement between
the Lagrange-DNN and the exhaustive search, regarding the
SEP, the outage probability and the intercept probability. By
contrast, there is a significant gap between the MFB-DNN
and the exhaustive search, although this gap is reduced for
some specific parameter values. Noticeably, the MFB-DNN
requires the careful tuning of the parameters λ1 and λ2 for
approaching the exhaustive search performance, which has to
be repeated when the system parameters change. By contrast,
the Lagrange-DNN using Algorithm 1 does not require the
tuning of any other parameters in the DNN architecture.
Indeed, the Lagrange-DNN loss function does not rely on λ1
and λ2, but it relies only on the Lagrange multiplier ξdual,
which will be automatically found by Algorithm 1.

It is clear that the Lagrange-DNN approaches the exhaustive
search performance upon increasing its complexity, hence
outperforming the MFB-DNN.

B. Security versus SNR Performance

Let us now discuss the security vs SNR performance in Figs.
3 and 4. In Fig. 3, PB and PE are depicted vs the logarithmic
SNR scale in dB. Observe that PB is always lower than PE
at any specific γA, because we find the optimal solution ϕ∗

that minimizes PB and maximizes PE at the same time. At a
high SNR of γA = 20 dB, PB falls below 10−3, while PE can
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Fig. 3: Comparison between the Lagrange-DNN and MFB-DNN.
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Fig. 4: CB and CE versus the SNR γA.

exceeds 0.7. Moreover, PE continues to increase with γA, but
its increase tend to saturate around 0.72.

In Fig. 4, the average capacities of the legitimate and
illegitimate channels are shown together. The trend of the
legitimate channel capacity CB is opposite to that of CE.
In particular, their gap widens as γA increases. As a result,
the achievable DCMC secrecy rate, which is the difference
between CB and CE, also increases with γA. At high SNR, CB

and CE tend to a constant.

C. Security performance versus the priority factor

By choosing γA ∈ {5, 10, 15} dB, NA = 15, ε = 0.5 and
ζ = 0.3, we will portray the effect of the priority factor ε
on the SEPs. Figs. 5 shows PB versus ε, while 6 shows PE
versus ε̂ = 1 − ε. Recall that a large value of ε indicates a
higher priority of minimizing PB, while a larger of ε̂ indicates a
higher priority of maximizing PE. This conflicting relationship
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100
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P 

at
 B

ob

γA = 5

γA = 10

γA = 15

MFB-DNN
Lagrange-DNN
Exhaustive search

Fig. 5: SEP at B versus the priority factor ε.

between PB and PE is formulated in (23) and is illustrated
by Figs. 5-6. In general, our objective is to decrease PB and
increase PE at the same time. However, they are conflicting
objectives, and there is a need to aim at a compromise.

Increasing ε leads to a reduction in PB, because increasing
ε implies giving higher priority to minimizing PB. However,
increasing ε also leads to a reduction of PE, which then
becomes beneficial for E. To prevent E from successfully
decoding the legitimate messages, we might want to increase
the SEP at E by reducing ε, but the cost of reducing ε is
an increased PB. In short, it is impossible to have the lowest
value of PB and the highest value of PE at the same time.
Instead, we have to choose ε carefully in order to attain an
acceptable pair of (PB, PE). For example, at γA = 5 dB, if we
want PB ≤ 10−2 and PE ≥ 0.6 at the same time, then we can
choose ε = 0.75.

Still referring to Figs. 5 and 6, we can see that γA plays
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Fig. 7: IP versus OP with multiple values of γA.

a more important role than ε in yielding an attractive per-
formance. In particular, when γA increases from 5 dB to 15
dB, PB reduces by three orders of magnitude, while PE only
increases slowly. For example, at γA = 10 dB or 15 dB, the
effect of ε on PB is still significant, but it does not substantially
affect PE. This implies that we should select ε as high as
possible, when increasing γA.

Although the SEP at B of Fig. 5 in the MFB-DNN approach
is a little lower than that in the Lagrange-DNN approach, the
SEP at E of Fig. 6 in the MFB-DNN approach is much lower
than that in the Lagrange-DNN. Hence the MFB-DNN does
not offer the optimal solution, because the OF constituted by
the combination of PB and PE is not at its minimal value.

D. Intercept Probability versus Outage Probability

In order to further investigate the security vs reliability
trade-off, it is worth contrasting the intercept probability (IP)
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Fig. 8: IP versus OP with multiple values of ζ.

with the outage probability (OP), where the IP is defined as
Pr{CE > R} and the OP as Pr{CB < R}. Here, R ≥ 0 is the
required data rate, which will be varied to measure the entire
IP and OP range. Additionally, it is necessary to consider the
worst-case PLS scenario of CE → Cuppwer

E and CB → C lower
B ,

hence we will portray the IP versus OP relationship in this
scenario. Upon observing the security performance of the
Lagrange-DNN approach and that of the MFB-DNN approach
in terms of OP and IP, we find that the reduction of OP is
attained at the cost of increasing IP and vice versa, regardless
of the specific type of the DNN-based approach used.

Explicitly, Fig. 7 portrays the IP vs OP relationship for
different values of γA, given that NA = 15, ε = 0.5 and
ζ = 0.3, where as expected, the IP increases when the OP
reduces and vice versa. This observation reflects the security
(determined by the IP) vs reliability (determined by the OP)
trade-off. More specifically, if we want to improve the security
level by reducing the IP, we have to accept a lower level of
reliability associated with an increased OP. Taking the SNR
into account, we can see that a higher value of γA will improve
the performance as a whole, i.e. both the IP and the OP are
reduced, but their trade-off relationship still holds.

Fig. 8 also portrays the IP versus the OP, parameterized by
the channel estimation error coefficient ζ, given that γA = 5
dB, NA = 5, ε = 0.5. The security vs reliability trade-off
is, once again, confirmed by this figure, because we cannot
reduce the IP and the OP at the same time. Instead, a lower IP
can be attained upon accepting a higher OP. Furthermore, the
performance is improved, when the estimation error coefficient
ζ becomes smaller. For example, if the OP has to be below
10−1, the IP is the lowest in conjunction with ζ = 0.1. By
contrast, the IP is the highest for ζ = 0.9. The trends underline
the importance of accurately estimating the channels.
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VI. CONCLUSIONS

The security vs reliability trade-off was quantified in terms
of the practical performance metrics of the SEPs and the
DCMC capacity. We have shown that the optimization prob-
lem formulated can be solved both by the Lagrange-DNN
and the MFB-DNN, but the former approaches the security
performance of the exhaustive search more closely. Since the
architecture is flexible enough to increase the number of output
neurons for handling many other functional relationships, we
will thus consider multivariate optimization problems in our
future research. Arguably, spectrum sharing in 5G cognitive
radio networks may pose a high risk of eavesdropping, because
secondary users can exploit the spectrum sensing mechanism
to violate the privacy of primary users. Since spectrum sensing
can be supported by machine learning [35], it is necessary
to design new machine learning-aided algorithms that can
perform spectrum sensing and simultaneously guarantee the
system as information security.

APPENDIX

A. Lower bound of CB

We can rewrite (5) as follows:

rB =
√
ϕγA h>B bsinfo + n̂B, (44)

where n̂B =
√

(1−ϕ)γA
NA−1 h>B Az + nB is the equivalent noise

obeying a complex Gaussian distribution with zero-mean and
variance σ̂B

2
=

(1−ϕ)γA‖h>B A‖2
NA−1 + 1 , i.e., n̂B ∼ CN

(
0, σ̂B

2
)

.
If the entropy of n̂B increases (i.e., equivalently, the

noise variance σ̂B
2 increases), then the mutual information

I(sinfo; rB) between sinfo and rB will reduce [36]. Since σ̂B
2 ≤

γA‖h>B A‖2
NA−1 + 1, σ̃B

2, we can have I(sinfo; rB) ≥ I(sinfo; r̃B)
where

r̃B =
√
ϕγA h>B bsinfo + ñB (45)

and ñB ∼ CN
(

0, σ̃B
2
)
. As a result, the DCMC capacity of

the system formulated in (44), i.e., CB, can be lower-bounded
by that of the system in (45), i.e., C lower

B . According to [23,
Chapter 7], [24], the DCMC capacity C lower

B of the system in
(45) can be calculated as shown in (16), which completes the
proof. Note that the exact expression for CB can be readily
obtained by replacing ñB and σ̃B

2 in (16) by n̂B and σ̂B
2.

B. Upper bound of CE

The expression of CE can be written as: [24]

CE = log2M −
1

M

M∑
i=1

Eh,z,nE

log2

 M∑
j=1

eΨE(i,j)


= Eh,z,nE

log2M −
1

M

M∑
i=1

log2

 M∑
j=1

eΨE(i,j)

 ,

(46)

where ΨE(i, j) =
(
−
∣∣√ϕγAh>E b(si − sj) + n̂E

∣∣2 +
∣∣n̂E
∣∣2) /σ̂E

2
,

n̂E =
√

(1−ϕ)γA
NA−1 h>E Az + nE ∼ CN

(
0, σ̂E

2
)
, and

σ̂E
2

=
(1−ϕ)γA‖h>E A‖2

NA−1 +
σ2

E
σ2

B
. The expectation Eh,z,nE {·} is

taken over h, z and nE.
The eavesdropper E is capable of improving its capacity by

cancelling out nE from (6). In this case, the ergodic DCMC
capacity CE of E can reach

Cupper
E = lim

σ2
E/σ

2
B→0

CE, (47)

whose explicit form is shown in (18).
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