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Abstract

The desire for graphical methods to intuitively handle elastoplas-

tic materials has grown hand in hand with the advances made

in computer Graphics. Simulating physical materials with dy-

namic movements to photo-realistic resolution is still one of the

most crucial and challenging topics, especially involving fractures.

Material Point Method (MPM) presents a strong approach for

animating elastoplastic materials due to its natural support for

arbitrarily large topological deformations and intrinsic collision

handling. However, the partial derivative based MPM brings un-

derlying instability issue of handling discontinuous particle dis-

tributions and requires computationally expensive treatments to

separate broken pieces. The objective of this thesis is to pro-

pose a novel MPM solver for robustly and intuitively animating

scenarios containing fractures. We are inspired by Peridynamics

(PD) which is oriented toward deformations with discontinuities.

This study exploits the PD within the MPM scheme to mitigate

the difficulties inherent in handling fractures.

First, we propose an integral-based MPM by adopting a PD inte-

gral energy density function to the MPM weak form and following

the standard MPM discretization scheme. Novel elastic, plastic,

viscoelastic and fracture models encoding PD bond concepts are

designed as constitutive models. The integral-based MPM out-

weighs the differential-based MPM in both accuracy and stability.

To efficiently model myriad fragments with a MPM solver (es-

pecially in high speed impact scenarios), our second contribution



is to formulate a rigorous coupling governing equation which inte-

grates the state-based PD within the MPM scheme (Superposition-

based MPM) that features an automatic fractures modelling scheme.

In SPB-MPM, PD evolves as a result of failure evolution in criti-

cal regions while the MPM derives entire problem domain. Giving

a low-overhead PD computation to the MPM, this method allows

for simulating a breadth of fracture effects, including ductile and

brittle fractures.

The prominent features at high strain rate in high velocity impact

are unattainable through general constitutive models. Our third

contribution is to introduce a shock wave effects model and a

metallic plastic model which are designed to capture the intricate

and characteristic impact behaviours. We simulate a number of

representative impact scenarios, including organic fruits, metallic

materials and multi-material deformable objects, demonstrating

the efficacy of our models.
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Chapter 1

Introduction

1.1 Motivation

When a piece of cloth on the drying line flutters in the breeze, it presents

unique wrinkles and bending features. A bullet shot at a fresh watermelon

causes chunky melon rind to be peeled into the air and its juicy pink flesh to

explode while mist sprays under the high impact forces. Falling containers

are devastated after colliding with the ground and are left with irreversibly

wrinkled bodies. After a wall is smashed by a metal bullet, the resulting

myriad debris from the impact region propagates with the smashed bullet.

The desire for graphical methods to intuitively animate deformable objects

with physical properties has grown hand in hand with the advances made

in computer graphics. However, simulation of photo-realistic resolution, es-

pecially of elastoplastic materials, is one of the most crucial and challenging

topics due to the presence of severe shape changes and fracture fragments.

Impact scenario, containing intricate topological structures and myriad

fragments with branching cracks, is a notoriously complex phenomenon to

model. In particular, in high velocity impacts, object fragments encom-

pass a wide spectrum of spatial scales, ranging from the immense number

of particle-level debris formed by point clouds, to the broken chunks with

irregular shapes. To model these phenomena requires one graphic method to

be capable of stably managing severe deformed typologies, intuitively han-

dling crack propagation and accurately detecting collision among numerous

1



fragments. Researchers take on a variety of approaches to model large defor-

mation with fractures, these differing on the choice of discretization of the

governing equations.

Eulerian methods are among those successful physically-based approaches

in handling elastic solids undergoing large deformation (Levin et al. 2011).

Through discretising space instead of object itself, Eulerian methods are

free from mesh-distortion and naturally have a collision detection strategy

but needs additional efforts to track the interface. Conversely, Lagrangian

methods, through describing simulations with degrees-of-freedom (DOFs)

that move with deformed objects, is able to explicitly track a object’s de-

formed configuration in the spatial domain. Meshless Lagrangian methods,

using particle representation, such as, Smoothed Particle Hydrodynamics

(SPH) (Becker et al. 2009) and Position Based Dynamics (PBD) (Müller

et al. 2007), show success in handling incompressible fluid and various de-

formable solid materials without the need of special mesh treatments while

Lagrangian methods require collision detection mechanism to accurately han-

dle interactions. Above approaches generally excel at some phenomena but

would stumble(if not fail) at others.

Material Point Method (MPM), proposed as the generalisation of the

Particle-In-Cell and Fluid Implicit Particle Method (FLIP) (Brackbill and

Ruppel 1986) to solid mechanics, has been shown to be a strong hybrid

Eulerian-Lagrangian method for simulating various materials (Sulsky et al.

1995). Stomakhin et al. (2013) first introduced the MPM to computer graph-

ics for simulating snow. The MPM uses particles to track Lagrangian quan-

tities and a background grid to accurately evaluate derivatives for computing

forces. With the particle-grid transfer procedure, it has a natural ability to

support arbitrarily large topological changes and a built-in collision detec-

tion mechanism. This method has been successfully applied in a diverse set

of real life scenes including flowing granular media (Stomakhin et al. 2013,

Klár et al. 2016), organic isotropic and anisotropic materials (Wolper et al.

2020). The MPM has also demonstrated its success in traditional mechanical

applications. This is showcased by various simulations of scenarios involving

impacts (Wallstedt and Guilkey 2007), blast induced fragmentation (Hu and
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Chen 2006), high explosives with multiple hardening strategies (Ma et al.

2009a) and multi-scale problems (Ma et al. 2009b). The MPM shows great

potential in modelling versatile materials. However, due to that the MPM

involves the partial derivatives of particle displacement in stress formulation,

one well-known issue of the traditional MPM is underlying numerical instabil-

ity brought by animating discontinuous particle distribution. This formula-

tion precludes the MPM for studies involving fractures. Wolper et al. (2019)

initialised the Lagrangian particles with a phase field description which is

capable to model crack propagation within a continuum body. This method

shows promise for fractures producible by the MPM with some augmenta-

tions.

Standing in contrast to above methods involving partial differential equa-

tions in which spatial derivatives are not well defined at discontinuities, PD

discretizes the momentum conservation equation using an integral formula-

tion of particle displacement (Silling 2000, Silling et al. 2007, Silling 2010).

So that the PD governing equations remains valid at discontinuities, and

material damage (accumulated by micro-scale broken bonds) can be repre-

sented as part of constitutive models. PD is favourable to handle material

discontinuities, including fracture initiation and propagation with arbitrary

paths with deformable objects in computational physics community (Silling

2018). Computer graphics methods has also exploited to simulate fractures

from Peridynamics perspective (He et al. 2017, Xu et al. 2018). PD is not

without its drawbacks. It inherits the shortcomings of meshless Lagrangian

methods, including incapable of handling intrinsic collision detection and re-

quiring special treatments for boundary issues. Moreover, under extreme

topology deformation, particles are distributed extremely different from ini-

tial configuration so that the bond connection becomes invalid, in which cases

the fractures cannot be modelled properly.

This study is initially motivated by current needs towards photo-realistic

fracture simulation in game and film industry. With the observation of im-

pact scenarios which present chunky broken pieces with stable shapes and

expanding debris clouds, the physics solver is required to be capable of elim-

inating existing numerical instability issues of modelling discontinuities and
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capturing compelling fractures in a physically plausible manner. Our target is

to tackle the difficulties of the state-of-art approaches in modelling fractures,

especially in impact scenarios. More specifically, we aim to integrate PD as

a powerful technique of handling arbitrary fractures to MPM and design a

robust MPM solver. Our empirical model is based on phenomenological ob-

servations and examined by the theory devised by engineering applications.

Our works have been kept efficient, allowing us to capture sufficient geometric

detail with tractable computation time.

1.2 Main Challenge

Although related technologies of modelling elastoplastic deformation have

been well studied in general computer graphic field, each with varying degrees

of success, it is infeasible to directly use them to model fractures of impact

scenarios by the fact that unpredictable fractures complicate the simulation.

We summary main challenges in the state-of-art algorithms as follows:

Figure 1.1: Car crash effects in game Wreckfest.

1. Fig. 1.1 is an example of rich destruction effects in a car racing game,

containing a wide number of fragments and debris cloud. While so-
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phisticated graphical methods have been exploited in recent years, it

appears that the demand of an enhanced method with more details,

larger scenes and more needs for artistic control definitely brings huge

computational burden.

2. Physics-based animation has matured, and today there is a wealth of

graphical methods solving simulation problems, such as fluid and solid

deformation. Most researches focus on exploring general life scenes,

in which the movement of deformable object is within normal velocity

range. Conversely, objects moving at high speed can generate intri-

cate behaviours in a short time period because the consequent impact

force usually has a greater effect than a smaller force applied over a

proportionally longer time period. Moreover, the rapid impact gener-

ates shock waves. Existing methods which are designed for low-speed

deformation cannot model such characteristic features.

3. The MPM stands as a powerful method for robustly simulating severe

topological changes. This ability makes the MPM become a promising

method to animate objects with extreme large deformation. However,

the existing MPM adopts derivative-based stress formulation which

leads to numerical instabilities representing the discontinuities. The

well-known issue precludes the simulation where fractures appear in

configuration, including branching cracks and propagating crack fronts.

Existing MPM does need special treatments (i.e. multiple grid dupli-

cation (Wretborn et al. 2017)) for separating fragments, which is te-

dious and challenging to implement in impact scenarios. Most impor-

tantly, the MPM does not have a proper model for handling topological

changes at large strain rate if a high-speed impactor is applied. All of

above issues needs to be overcame for animating complex fracture sce-

narios.
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1.3 Aims and Objectives

This thesis aims at investigating a novel method capable of intuitively an-

imating fractures in impact scenarios. The MPM has showcased rich ex-

perience for simulating versatile materials while struggles to derive the dis-

continuities. Our focus is to alleviate the instability issues of the MPM in

discontinuous particle distribution. Peridynamics, first proposed by Silling

et al. (2007) as an nonlocal reformulation of classical solid mechanics using

spatial integral governing equations instead of partial differential equations,

demonstrates great potential in generating various fracture behaviours (He

et al. 2017). In PD, unstructured particles are influenced directly by the ma-

terial points located in their vicinity, leading to an accurate and easy imple-

mentation in simulating manifold crack dynamics. However, contrary to the

MPM, PD brings computational cost when simulates an unbroken deformed

object because each PD particle needs run iterations over its neighbourhood

particles at each timestep. Our main inspiration is to integrate the strong

ability of the PD in handling micro-scale fracture as an extension to the cur-

rent MPM solver. Based on our aims, we identify our research questions and

objectives as follows:

• How to alleviate the numerical failures created by the discon-

tinuities in the MPM? The MPM uses the derivation of particle

displacement to obtain stress tensor in the weak form. For discon-

tinuous particle distribution, numerical errors may occur during the

partial derivation computation throughout the simulation, leading to

underlying instability issues.

• How to efficiently modelling numerous debris created by im-

pact forces? Integrating the PD to the MPM obviously is a feasi-

ble solution to address instability issues of the traditional MPM while

brings overhead computation to the entire MPM framework. In specific,

looping the PD neighbourhood of each PD particle adds computational

cost. To simulate impact scenarios containing myriad fragments and
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numerous debris, superposing PD bond structures over the entire prob-

lem domain is inefficient. The challenge is to how to efficiently couple

the PD and the MPM in a physically plausible manner.

• How to describe the prominent features in high velocity im-

pact scenarios? The impact of a high speed impactor present ripples

across the object, producing debris cloud behind the impact area and

sometimes leading to varied material properties. Most hyperelastic

constitutive models in computer graphics are designed for deformable

objects in general scenarios which means deformation is set at low ve-

locity strain rate and are not suitable to describe compelling effects at

high strain rate. It is particularly difficult to propose a sophisticated

model to capture above characteristic behaviours with visual realism

and high efficacy.

Motivated by aforementioned challenges, this thesis aims to achieve three

major objectives:

• Our first objective is to explore novel strategies of integrating the PD to

the MPM solver. This coupling operation will enable us to better utilise

the MPM to achieve stable deformed topology and intuitive fractures

animation. This objective is achieved in Chapter 5.

• Our second objective is to improve the integration and seek for an

efficient coupling scheme for intricate impact scenarios. Our main task

is to obviate the difficulties of animating numerous fracturing fragments

and unpredictable crack propagation in the MPM. This objective is

achieved in Chapter 6.

• Our third objective is to propose constitutive models for modelling high

speed impact scenarios. The prominent extreme volumetric explosion

at large strain rate and shockwave transition within the objects need

be considered. This objective is achieved in Chapter 7.
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1.4 Contribution

The main contribution of this thesis is to incorporate the PD’s strong ability

of treating discontinuities in the MPM scheme. We achieve this idea in two

different ways in terms of varied requirements in different applications. The

detailed contributions in each chapter are summarised as follows:

• Our first contribution is to incorporate the integral-based force com-

putation of PD to the MPM weak formulation, leading to an integral-

based MPM, which outweighs the differential-based MPM in both ac-

curacy and stability. We develop a simple yield function based on de-

viatoric flow theory to animate plasticity and an linearized PD theory

to model viscoelastic materials within the augmented MPM solver. We

provide an attractive method for producing a variety of elastoplastic

materials and fracture with visual realism and high stability.

• For an efficient solution in impact scenes, our second contribution is

to formulate a rigorous coupling governing equation which superposes

the state-based PD over critical areas in MPM problem domain, result-

ing in a coupled solver: Superposition-based MPM (SPB-MPM). It is

designed to efficiently capture shattered debris and severe topological

changes in impact simulations. The SPB-MPM evolves PD region as a

result of failure evolution. The PD is used as a natural choice of han-

dling material fractures while MPM derives the entire configuration.

Giving a low-overhead PD computation to current MPM scheme, we

are allowed to simulate a breadth of fractures with the notable ability

of arbitrarily large topological changes.

• Our third contribution is to propose a shock wave effects model and

a metallic plastic model to describe the prominent features of high

velocity impact, which are unattainable through common constitutive

models. To demonstrate the volumetric response in shock-compressed

solids, we adopt a simplified Mie-Grüenisen EOS as a hydropressure

term in the constitutive model. To model metal behaviours under

high strain rate, we introduce the Johnson-Cook strain and strain-rate
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hardening scheme. Our models have been tested by simulating organic

fruits, chocolate and other elastoplastic solids behaviours under impact

condition. The results present intricate and characteristic features of

high velocity impact scenarios.
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1.6 Outline of Thesis

This thesis is organised as follows:

• Chapter 2 reviews the state-of-the-art approaches for both Eulerian

and Lagrangian dynamics methods. Following the overview of exist-

ing approaches, we briefly introduce Mass Spring Method, FEM and

PIC/FLIP to help with understanding our methods.
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• Chapter 3 discusses the deformation theory, two common constitutive

models (Fixed Corotated model and Neo-Hookean model), elucidates

the basic data flow of the MPM transfer procedures, and summarises

two time integration methods.

• Chapter 4 introduces general concepts in current PD research, contain-

ing basic definitions in the bond-based PD, the state-based PD and

failure laws.

• Chapter 5 proposes an integral-based MPM, which adds bonds for each

material point and adopts an integral energy density function in the

weak form.

• Chapter 6 introduces a coupling MPM scheme: SPB-MPM, which

places the PD as local regions over particular parts of the MPM domain

as an extension to handle fracture surfaces and crack routes.

• Chapter 7 presents a shock wave model and a metallic plastic model

for simulation volumetric effects and metal hardening effects in high

velocity scenarios.

• Chapter 8 concludes the paper and discuss the possible solutions to

improving the current study.
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Chapter 2

Literature Review

The MPM solver uses a Eulerian grid as the scratchpad and Lagrangian par-

ticles to carry physical quantities to simulate continuum configuration. This

chapter starts with reviews of the state-of-art approaches in Eulerian, La-

grangian, hybrid Eulerian-Lagrangian view for simulating elastoplastic ma-

terials and brief introduction of several classic methods that will prove help-

ful in understanding the underlying mathematical framework of our works.

With the growing needs of fracture effects in industry, our main concern

is to extend current continuum mechanic theories with the ability of arbi-

trarily handling discontinuous particle distribution. Therefore, based on the

basic insight into current dynamic methods, we also present an overview of

material fracture approaches.

2.1 Eulerian View

In continuum mechanics, the deformation is usually represented with material

space Ω0 and deformed space Ωt under deformation map x = φ(X, t) where

x and X are world and material coordinates respectively. The deformation

map (also known as flow map) φ(·, t) : Ω0 → Ωt for Ω0,Ωt ⊂ Rd, where d =

2 or 3 is the dimension of the simulated problem (or domain).

The introduction of Ω0 and Ωt brings with it two sets of coordinate sys-

tems, one for each frame of reference. In practice, these two are often taken

to be identical, but when choosing one or another, the physical interpretation
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changes. By representing a quantity as a function of the initial configuration

q(X, t), we describe how the state of the particles change during the sim-

ulation. This is known as the Lagrangian view, or material description.

Instead, by using the current configuration q(x, t) the change refers to fixed

points in space which is a 3D Euclidean space where the laws of physics ap-

ply, and it is referred to as the Eulerian view or spatial description. The

difference of above two description is shown in Fig. 2.1.

Figure 2.1: Difference between the Lagrangian and the Eulerian view. The
Xp coordinate refers to the red particle, and moves in space (i.e. its world
space coordinates x, y, z will change over time). The x coordinate is a world
space coordinate, and is fixed in time.

Eulerian perspective well suites to some problems due to that it discretizes

space instead of the object itself. For example, in graphical and biomechani-

cal applications, the primary requirement is usually not the behaviour of the

material (i.e. ”will the material fail?”) but how objects interact with each

other in the physical world. The interaction usually is to deal with contact

and other constraints, and the large deformations following these constraints.

Through handling the dynamic fields, such as velocity field in the discretized

space, Eulerian approaches can well accommodate these requirements.

One of its popular application is fluid simulation. Foster and Metaxas

(1996) developed the first grid-based fully 3D water simulator in graphics
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for realistically animating liquid phenomena. This work utilises the Navier-

Stokes equations which couple momentum and mass conservation to com-

pletely describe fluid motion. Later, Carlson et al. (2002) augmented the

Navier-Stokes equations with incompressible viscous properties and free sur-

faces and treated solid and nearly-solid materials as very high viscosity flu-

ids to describe melting and solidification phenomena in a Eulerian manner.

Goktekin et al. (2004) is built upon prior Eulerian methods for animating

incompressible fluids with free surfaces by including additional elastic terms

for elastic forces. These terms can be readily computed on rectilinear grids

using a staggered discretization scheme, and the use of a Eulerian formulation

easily accommodates modelling large flows. The main motivation for using

Eulerian approaches in fluids simulation is that the regular grid simplifies

the computation of spatial derivatives.

Figure 2.2: Eulerian solid simulation with contact (Levin et al. 2011)

For the elastoplastic solids, the constitutive equations are history depen-

dent so material points must be followed. This is difficult to implement in a

Eulerian scheme. The important difference between elastoplastic solids mod-

elling and fluids simulation is that modelling fluids only requires physical

quantities stored on the grid while solids simulations need reconstruct the

material coordinates as the reference configuration. Even though, some re-

searchers has addressed the problems and applied Eulerian methods to solids

deformation for some particular problems through adapting techniques from

computational fluid dynamics. The advantages of using Eulerian modelling

solids are: 1) the nodes of the Eulerian mesh can be precisely collocated with

the constraints. Levin et al. (2011) derived inequality constrained quadratic

program, velocity level contact constraints and contact constraints on the
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grid. This greatly reduces one algorithm’s complexity as the same data

structure is utilised for all stages of the simulation and the need to choose

the resolution of the contact grid is removed. In such cases, constraints

handling is arguably much more important than accurate representation of

material behaviour. 2) Eulerian techniques are robust to large scale defor-

mations because the mesh resolution is tied to the output in physical space

rather than the rest shape of the material. Eulerian approaches have also

been explored in mechanics field to study impact problems during which one

or both participating objects are severely deformed. Benson (1995) adopted

a Eulerian formulation as a feasible solution for contact and impact problems

involving penetration and fracture. Tran and Udaykumar (2004) handled se-

vere material deformation in a Eulerian setting on a fixed Cartesian mesh,

in which well-developed high-accuracy shock capturing schemes are easily

applied to compute nonlinear wave-propagation phenomena.

The reason for choosing one view or another depends on the problem of

interest. For example, most fluids simulations use the Eulerian view partly

due to the fact that it allows for arbitrarily large deformations. This is

because the underlying mesh does not deform during the simulation. The

Eulerian discretization is not without its drawbacks. In general, compared

to a Lagrangian approach, Eulerian methods are free from mesh-distortion

but additional efforts have to be made to track the interface. The mesh may

be only partially covered by material. It is necessary to keep track of this

coverage, and deal with it in the numerical methods. In terms of computing

cost, the Eulerian method is faster than the Lagrangian method (Zhang and

Chen 2007). Conversely, Lagrangian method gives detailed information of

individual particles that can be crucial in many applications.

2.2 Lagrangian View

Terzopoulos and Fleischer (1988) pioneered the physically-based simulation

of deformable solids in computer graphics, in which the simulation consists

of DOFs that move with the deformed object, explicitly tracking an object’s

updated configuration in the spatial domain. This is a typical Lagrangian
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approach. Methods of this type are usually distinguished by their selected

topology definition: mesh-based methods or meshless methods. Finite ele-

ment method (FEM) is among the first mesh-based methods to model solid

deformation (O’brien and Hodgins 1999, O’brien et al. 2002). It still has

imposed itself as currently one of the most powerful tool that enables highly

efficient modelling and simulation of structures characterised by complex ge-

ometry and exposed to arbitrary boundary and initial conditions. DOFs in

the FEM are stored on a volumetric mesh (on the vertices). Later, to reduce

the required number of DOFs, Boundary element methods (BEM) gained

some interests of the research (Hahn and Wojtan 2015). The BEM stores

DOFs on a surface mesh and the boundary integral form of the governing

equations is used instead of volumetric partial differential equations. These

mesh-based methods well suites some simple applications, such as flowing

garment, but stumbles at complex ones. Because they suffer from mesh

distortion and element entanglement which usually require computationally

intensive treatments.

Conversely, meshless methods showed success for large topology change

of solids early on using particle representation (Pauly et al. 2005), such as

Mass Spring Method with spring forces governed by Hooke’s law (Liu et al.

2013), Peridynamics (PD) (Silling et al. 2007) which is similar to the Mass

Spring System while with particular properties, Smoothed Particle Hydro-

dynamics (SPH) (Monaghan 1992) which samples the continuum fluid con-

figuration as particles and Discrete Element Method (DEM) (Cundall and

Strack 1979) which is closely related to molecular dynamics with a defined

length of simulation. These point-based representation offers great simplicity

in representing topological changes and discontinuities. Despite significant

advances and the advent of more sophisticated techniques, these simple ap-

proach remains popular in animation (Levine et al. 2014), real-time muscle

deformation (Nedel and Thalmann 1998) and robotic surgery (Kawamura

et al. 2008). Some of above methods have been successfully embedded in

computer graphics and computational mechanics open source code, such as

Peridigm (Littlewood 2015) and Taichi (Hu 2020). In the following content,

we will give a brief introduction of the Mass Spring Method and the FEM
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to help with understanding the PD (further details in Chapter 4) and the

mathematical framework of the MPM (in Chapter 3).

2.2.1 Mass Spring System

Mass Spring Method provides a simple practical method for modelling a wide

variety of objects, including garment, hair and rigid bodies. In this method,

continuum material is discretized as a collection of N points with positions

xi , for i = 1, 2, ..., N , interconnected by a set of linear springs with stiffness

ck and natural lengths lk, for k = 1, 2, ...,M , where M is the number of entire

springs. One simple expression of total potential energy φ(xi) in Mass Spring

System at any time is:

φ(xi) =
∑
k

1

2
ck(|xi − xj| − lk)2 (2.1)

where |xi − xj| is the length of deformed spring k that interconnects point i

situated at xi and point j situated at xj. Given the potential energy φ(xi),

internal forces can be derived as fi = −∂φ(xi)
∂xi

. The Mass Spring System

simplifies the energy calculation based on bonds while can not easily adapted

with constitutive models in continuum solids theory.

2.2.2 Finite Element Method

The MPM uses the same weak formulation as in the FEM while these two

methods choose different way to describe the the material domain Ω0. Specif-

ically, FEM subdivides simulation objects into smaller, simpler parts (finite

elements) to solve the partial-differential equation in Eq. 2.2. The MPM de-

scribes Ω0 using a set of material points. In this section we briefly introduce a

classical FEM (O’brien and Hodgins 1999, Hughes 2012, Chitalu et al. 2020)

and focus on how the FEM discretizes Eq. 2.2.

∇ · σ + b(x, t) = ρa (2.2)

where ρ is mass density, b is the body force, σ is the Cauchy stress and a is

acceleration. ∇ denotes the divergence operator. The Cauchy stress σ is a
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function of displacement fields u(x), x ⊂ Ωt. In the FEM, the weak form of

above governing equation involves multiplying the differential equation by a

test function, integrating by parts, and applying boundary conditions. Both

the unknown variable and the test function are approximated by functions

in a finite-dimensional function space as linear combinations of some basis

shape functions. The function u(x) is then obtained from the vector using

relevant interpolation functions known as shape functions. The choice of

shape functions depends on the discretization of Ω0 into elements, and results

in a system of algebraic equations through the weak form. We refer readers

to Hughes (2012) for detailed weak formulation integration.

Assuming each element is a linear tetrahedron e specified by 4 nodes (ver-

tices) and the displacements at its nodes are ue, the interpolated displacement

at x ∈ e is

u(x) =
4∑
i=1

Ni(x)uie (2.3)

where Ni is the shape function of node i which has displacement uie. Strain

and stress are constant in e:

εe(x) = Beue; σe(x) = Deεe(x) (2.4)

where Be is the discretized gradient matrix which contains the partial deriva-

tives of the shape functions and De is the elasticity matrix which encodes

material properties. With the stress tensor, updating FEM elements comes

naturally.

For deformed objects with severe mesh distortion, the FEM needs peri-

odical remeshing steps and remapping of state variables, making it infeasible

to model arbitrarily large material deformations. Some researchers intro-

duced extra treatments to alleviate above challenges, such as remeshing al-

gorithms (Molinari 2002) and element enrichment (Koschier et al. 2017), as

shown in Fig. 2.3.
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Figure 2.3: FEM mesh-based structures and post-remeshing step (Bargteil
et al. 2007).

2.3 Hybrid Eulerian-Lagrangian View

Existing approaches generally excel at some phenomena but would stum-

ble (if not fail) at others. The primary strength of the Eulerian grid-based

methods is the simplicity of the discretization and solution of intrinsic col-

lision detection. Unfortunately, grid-based methods have difficulties with

the advection part of the equations (Zhu and Bridson 2005). Lagrangian

particle methods are considered suitable for modelling topological changes,

however, the inherent loss of connectivity information would cause undesir-

able numerical fracture (Zhu et al. 2017) and surface reconstruction causes

problems. Moreover, Lagrangian meshless methods suffer from extra treat-

ments in handling interactions, especially for numerous granular materials.

Grids and particles have complementary strengths and weaknesses. Many

researchers in graphics have experimented with hybrid Eulerian grids and

Lagrangian particle methods to obtain both robust computation and ease

implementation. They use particles for basic geometry representation and

for advection, and auxiliary grids to compute all the spatial interactions (i.e.

boundary conditions, incompressibility, and friction forces). Harlow (1962)

proposed the Particle-In-Cell (PIC) which updates pressure and viscosity on

a Eulerian grid while advection is completed with Lagrangian particles for
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Figure 2.4: The basic dataflow and features of several simulation techniques:
PIC, FLIP, APIC. The APIC outweights the PIC and the FLIP both in
stability and non-dissipation (Jiang et al. 2015).

fluid simulation. This method has been introduced to computer graphics

by Zhu and Bridson (2005) for simulating sand as an incompressible fluid

technique. The PIC suffered from excessive numerical dissipation, which

was cured later by the Fluid-Implicit-Particle (FLIP) method (Brackbill and

Ruppel 1986). Jiang et al. (2015) have observed that the dissipation in the

original PIC results from a loss of information when transferring between

grid and particle. They augmented each particle with a locally affine, rather

than locally constant, to prevent loss of information. The PIC is stable but

removes some details during transfer. Then the FLIP was designed to cure

this issue but is more noisy and at times, unstable. The APIC only stably

removes the dissipation of PIC, but also allows for exact conservation of an-

gular momentum across the transfers between particles and grid. We depict

the basic dataflow and main differences between the PIC, FLIP and APIC

in Fig. 2.4. Zhu and Yang (2010) animated sand surface flow layer using

a standard Discrete Element Method (DEM) and represented the motion

of immobile particles beneath the surface by 2D height field columns which

is similar to a MAC grid. Sulsky et al. (1995) extended the compressible

FLIP to a Eulerian-Lagrangian elastoplastic modelling method, leading to

the Material Point Method (MPM) (Sulsky et al. 1995), which has been used

to model solids at the level of individual grains amongst other things. The
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hybrid methods avoid the computation of each physical granular object and

are appropriate scalable.

In the following section, we introduce a general framework of the PIC and

explain how basic data flows between particles and the grid.

2.3.1 Particle In Cell and FLIP

PIC is an early approach to simulate compressible flow that handled advec-

tion with particles. At each time step, the fluid variables at a grid point are

initialised as a weighted average of nearby particle values, and then update

on the grid with the non-advection part of the governing equations. The new

particle values are interpolated from the updated grid values, and finally the

particles move according to the grid velocity field.

The major problem with the PIC is the excessive numerical diffusion

caused by repeatedly averaging and interpolating the fluid variables. Later,

the FLIP was proposed to alleviate this problem. The crucial change was to

make the particles the fundamental representation of the fluid, and use the

auxiliary grid simply to advect particles according to the change computed

on the grid. The main difference has been shown in Fig. 2.5.

Figure 2.5: Fluid simulation by FLIP (left) and PIC (right). FLIP preserves
small-scale velocities which are smoothed away by PIC (Zhu and Bridson
2005).

The PIC routine stores mass mp, position xnp , and velocity vnp at time

n. mp does not change with time to ensure mass conservation during whole
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simulation. We outline the transfer scheme of the PIC/FLIP and highlight

the augmentation from FLIP in Algorithm 1.

Algorithm 1 PIC/FLIP

1: Initialise particle xnp and vnp
2: for each time step do
3: for grid node i=1,2,. . . ,N do
4: Compute a weighted average of the nearby particle velocities on

the grid
5: Apply forces to the velocities in a grid based update by solving

the governing equations
6: For PIC: Interpolate the grid velocity back to the particles
7: For FLIP: Interpolate the grid velocity increment back to each

particle.
8: end for
9: Restrict vnp under CFL condition and with boundaries constraints

10: Update particle position
11: end for

2.4 Fractures

For over thirty years, graphics research has grappled with the unique diffi-

culties associated with simulating material fracture. With Terzopoulos and

Fleischer’s seminal work on the FEM to model cloth tearing and plastic ma-

terial (Terzopoulos and Fleischer 1988), researchers started to explore more

possibilities of the FEM to simulate notoriously difficult fracture problems.

The FEM directly approximates the equations of continuum mechanics, and

later has been adapted to achieve fracture through deforming and cutting

element meshes individually under different fracture criteria. Use cases in-

clude O’Brien’s augmented FEM for brittle phenomenon (O’brien and Hod-

gins 1999), ductile fracture by analysing stress tensors (O’brien et al. 2002),

Müller’s real-time linear elastic FEM model utilising a warped stiffness ap-

proach (Müller and Gross 2004) and Bao’s fully rigid fracture model with

an endowed tetrahedron mesh to provide stress maps (Bao et al. 2007).
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These FEMs, however, face difficulties in handling geometric changes and ill-

conditioned basis functions arising from the topological discontinuities which

are usually caused by plasticity or crack propagation. Numerous approaches

have been explored to address these problems. One solution is to remesh

elements near topological discontinuities or the predicted crack tips with

novel shape functions, leading to Extended-FEM (XFEM). Fig. 2.6 shows

the procedures of how XFEM handles cracks on geometric level. Remeshing

methods include the dynamic local meshing algorithm (Wicke et al. 2010),

large viscoplasticity remesh strategy (Bargteil et al. 2007), discrete gradient

descent flow method for refining and coarsening crack surfaces (Chen et al.

2014) and decoupling fracture surfaces from a deformation mesh to generate

high quality crack performance (Chitalu et al. 2020). Another research direc-

tion is to combine the FEM with particle-based dynamics methods which of-

fer great simplicity especially for scenes containing amorphous phenomenon,

such as debris clouds caused by impacts and explosions. Zhang et al. (2006)

converted failed FEM elements to mass-based particles as part of failure

structures, and then used molecular dynamics to model discrete particles.

Figure 2.6: Illustrative summary of the different stages of XFEM processing
crack propagation (Chitalu et al. 2020).

Compared to FEMs, meshless fracture approaches are powerful in rep-

resenting most of crack patterns and debris due to the nature of non-mesh
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connectivity. Meshless methods avoid the complex remeshing and cutting

procedures. Smoothed particle hydrodynamics (SPH) has been used to in a

Lagrangian framework for simulating fragmentation of cased explosives (Ran-

dles and Libersky 1996, Johnson et al. 1996). Another early work in meshless

fracture simulation is Element-Free Galerkin (EFG) (Belytschko et al. 1995,

Lu et al. 1995) which requires node-visibility algorithms. Researchers also

explored the possibilities of the MPM to allow explicit cracks. A novel MPM

with crack techniques (CRAMP) was then produced to track cracks with mul-

tiple velocity fields at special nodes near fracturing geometry (Nairn 2003).

Recently, PD with an integral equation was introduced by Silling as a promis-

ing fracture method (Silling and Lehoucq 2010). In this method, cracks nu-

cleate, grow, branch, merge, and arrest when and where it is energetically

favourable for particles to do so. The state-based PD as an augmented ver-

sion was developed to convert a constitutive model from the conventional

theory of solid mechanics directly within the PD (Silling et al. 2007). De-

spite the promise, the added computational cost originating from looping PD

bond structures often undermines its salient features, especially in the case

of material non-linearity in three dimensions (Sun and Fish 2019). Also, the

PD needs external collision detection mechanism to sidestep the challenges

inherit from the particle based nature.

Most recently, some hybrid approaches appear to reduce computational

burden through coupling of the intuitive PD with the stable FEM. In these

methods, the solution domain is partitioned into PD, FEM, and some transi-

tion regions through a morphing strategy to complete communication be-

tween whole problem domain and local regions. Force-blending (Seleson

et al. 2013), constitutive parameter morphing (Lubineau et al. 2012), and

different sub-region coupling by means of interface elements (Liu and Hong

2012) are all examples of the typical morphing strategies. But these afore-

mentioned methods are lack of both superior accuracy and computational

efficiency due to extra treatment of blending area and boundary conditions.

The superposition-based coupling PD and FEM was brought to the field

through using of a rigorous governing equation to derive PD and FEM

over one mesh (Sun and Fish 2019, Sun et al. 2019) without comprehensive
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parameters- or force-blending treatment. Though the superposition coupling

method is still new, it has shown some success within the engineering com-

munity at predicting crack initiation and propagation. We explore more

possibilities of this superposition-based coupling strategy within computer

graphics in this work. The aim is to achieve fractures with high visual fi-

delity and accurate computation.
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Chapter 3

Material Point Method

MPM was designed as a generalisation of the PIC/FLIP solvers to computa-

tional solids (Sulsky et al. 1995), and first introduced to computer graphics

by Stomakhin et al. (2013). It is a hybrid method, and as such combines a

Eulerian grid with Lagrangian particles.

First, a continuous material is discretized into a set of particles. The

particles store all information that will be carried on through the simulation

such as position, velocity and other necessary properties related to the con-

stitutive model. A grid is used in the background to perform calculations,

more specifically to solve the equations of motion. Particles are rasterized to

the grid by a weighting function. During this process, some attributes are

transferred to the grid nodes. The momentum term updated on the grid is

then transferred back to the particles, and finally the particles are advected.

Afterwards, the grid is reinitialised to match the deformed configuration at

a new simulation step.

MPM has been applied to a broad range of physical phenomena, such

as snow (Stomakhin et al. 2013), sand (Klár et al. 2016), foam (Ram et al.

2015), knit (Jiang et al. 2017) and organic isotropic and anisotropic materi-

als (Wolper et al. 2019 2020). Notably, the traditional MPM fails to model

sharp separation of material points and cannot represent discontinuous ve-

locities (Hu et al. 2018). Hu et al. (2018) proposed to replace the shape

functions by a Galerkin-style Moving Least Squares (MLS) function in the

stress divergence term, leading to a different force computation scheme that
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does not require for evaluating the gradients of nodal shape functions while

capable of providing almost identical visual results. Now the traditional

MPM and the MLS-MPM both are popular methods and show great success

in computer graphics with different applications.

This chapter will go into greater detail regarding the transfer procedures

described above, elucidate the difference between above two MPMs and out-

line data flow of MPM.

3.1 Governing Equations

The MPM adopts the material space Ω0 and the deformed space Ωt with

deformation map x = φ(X, t) in continuum mechanics theory. x and X are

world and material coordinates respectively. It relies on the continuum ap-

proximation, avoiding the need to model every material point, and adopts

the standard conservation equations for mass and momentum that will de-

termine the motion of the material as in Eq. 3.1 and Eq. 3.2 (Stomakhin

et al. 2013).

dρ

dt
+ ρ∇ · v = 0 (3.1)

ρa = ∇ · σ + ρb (3.2)

where ρ is density, t is time, v is velocity, a is acceleration, σ is the Cauchy

stress, b is the body force. σ in implementation is determined by strain tensor

and constitutive models. We will discuss the strain-stress relation in various

constitutive models in terms of different materials in Chapter 3.3.

3.2 Method Outline

The basic idea behind the MPM is to use material points to track mass and

momentum, and a regular Eulerian grid to help with evaluation of stress-

based force and intrinsic collision detection. Similar to the PIC, particle p is

initialised with position xp, velocity vp, massmp, deformation gradient Fp and
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affine matrix Cp (only in the MLS-MPM). Grid node i carries grid velocity

vi, grid mass mi and internal forces fi. We use subscripts p, q for particle

quantities and i, j, k for grid node quantities. The Lagrangian treatment of

these quantities simplifies the discretization of the dρ
dt

term in Eq. 3.1. The

interpolation functions over the grid are used to discretize the ∇ · σ term

using a weak form.

We present the standard MPM transfer pipeline (Stomakhin et al. 2013)

and some augmentations in MLS-MPM (Hu et al. 2018) to elucidate the

basic update procedures in one time step. The illustration of the interplay

between the grid and particles is shown in Fig. 3.1. Superscript n, n+ 1 are

for quantities at discrete time tn and tn+1 where ∆t = tn+1 − tn.

Figure 3.1: An overview of the MPM. The top and the bottom rows are
steps that operate on particles while the middle depicts grid-based opera-
tions (Stomakhin et al. 2013).

1. Particles to grid. Mass is transferred to grid nodes using mi =∑
p ωipmp. Momentum is transferred to the grid using the traditional

MPM: mvni =
∑

p ωipmpv
n
p , or MLS-MPM (Hu et al. 2018): mvni =∑

p ωipmp(v
n
p + Cn

p (xni − xnp ), where Cp is the affine matrix of particle

xp. wip is dyadic products of one-dimensional quadratic B-spline inter-

polation weight between particle p and node i, where dx = 1
∆x
|xp − xi|
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(Jiang 2015).

N(dx) =


1
2
(3

2
− dx)2 0 ≤ dx ≤ 1

2
3
4
− (dx− 1)2 1

2
≤ dx ≤ 1

2
1
2
(dx− 1

2
)2 1 ≤ dx ≤ 3

2

0 otherwise

(3.3)

2. Grid update. The internal force fni of grid node is computed by

the traditional MPM as: fni = −
∑

p V
n
p σ

n
p∇ωnip and the MLS-MPM :

fni = −
∑

p ωipV
0
pM

−1
p

∂ψ
∂F

(F n
p )(F n

p )T (xni − xnp ), where M−1
p = 4/∆x2 for

a quadratic particle-grid kernel and ψ(F n
p ) is potential energy density

function. ∆x is the length of one cubic grid cell. Update grid velocity

vi use explicit time integration or implicit time integration method (see

in Chapter 3.4).

3. Grid to particles. Update particle velocities using vn+1
p = (1 −

α)vn+1
PICp +αvn+1

FLIPp. The PIC part is vn+1
PICp =

∑
i ωipv

n+1
i and the FLIP

part is vn+1
FLIPp = vnp +

∑
i ωip(v

n+1
i − vni ). α = 0.95 is adopted for

snow simulation in Stomakhin et al. (2013). The position is updated:

xn+1
p = xnp + ∆tvn+1

p .

4. Particles strain update. The traditional MPM updates the particle

deformation gradient F n+1
p as: F n+1

p = (I + ∆t∇vn+1
p )F n

p . The MLS-

MPM first exports the affine matrix as: Cn+1
p =

∑
i ωipM

−1
p vn+1

i (xni −
xnp )T , and then updates F n+1

p : F n+1
p = (I + ∆tCn+1

p )F n
p .

3.3 Constitutive Models

Constitutive models encompass ways of describing material responses to dif-

ferent mechanical and/or thermal loading conditions. Specifically, they use

strain measurement and yields stress to describe the material response. Plas-

ticity is also accounted in constitutive models. Stomakhin et al. (2013) intro-

duced a multiplicative plasticity decomposition theory, in which the particle

deformation gradient Fp can be decomposed into elastic part FEp and plastic

part FPp by Fp = FEpFPp. This theory treats plasticity as a post-process to
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restrict the deformation within a critical threshold, which has been proved

plausible for modelling snow and silly rubber (Fang et al. 2019). It has been

adopted by many MPM studies to handle general deformable plasticity. In

this section, we first explain two elastic constitutive models, and then intro-

duce the multiplicative plasticity decomposition theory in Stomakhin et al.

(2013).

3.3.1 Fixed Corotated Model

An ideally elastic material means that the constitutive relationship is totally

dependent on the current state of deformation, in which constitutive models

can be derived from an energy density function ψ.

Given a potential energy density function ψ and a discretization of a

continuum, one can usually write out the total potential energy function

φ = ΣpV
0
p ψ(Fp) of the material and use it to derive forces. Continuum

mechanics prefer to define energy density functions from deformation fields.

In the MPM, ψ is determined from the particle deformation gradient Fp. The

initial statement would result in:

σp =
1

Jp

∂ψ(Fp)

∂Fp
Fp

T (3.4)

where Jp = det(Fp). The Cauchy stress σp captures the strain-stress rela-

tionship, and supplements the conservation equations Eq. 3.1 and Eq. 3.2

with the additional information needed to obtain the acceleration. There

are several alternative measures of stress tensor defined to represent differ-

ent material configurations. As shown in Table. 3.1, they are equivalent to

each other with proper transformation. In our work, we adopt the Cauchy

stress which is the most commonly used measure of stress. In the Table. 3.1,

we adopt F as the deformation gradient from the continuum solid theory.

With all definitions in hand, the last exploration of constitutive models is

the energy density function ψ(Fp).

Stomakhin et al. (2012) has developed a Fixed Corotated model which is a

robust energy density function and keeps valid under inverted configurations.
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Table 3.1: Representation and measurements of different stress tensors.

Stress tensor Symbol Area normal Force Relations

Cauchy σ spatial spatial

First Piola-Kirchoff P material spatial P = JσF−T

Second Piola-Kirchoff S material material S = JF−1σF−T

Figure 3.2: Animating snowplow by the Fixed Corotated model (Stomakhin
et al. 2013).

This model has been successfully simulating practical snow dynamics, as

shown in Fig. 3.2. The Fixed Corotated energy density is written as:

ψCorotated = µ|F −R|2F +
λ

2
(J − 1)2 (3.5)

where R comes from the polar decomposition of F = RS, and its purpose is

to remove the contribution of rigid body rotations from the potential energy.

J = det(F ). Lamé parameters µ and λ are material properties that can be

varied to get different material characteristics. They are commonly expressed

in Young’s modulus E and Poisson’s ratio ν (Salençon 2012), which relate
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to µ and λ by

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
(3.6)

In Eq. 3.5, the Frobenius norm | · |2F is used. For a matrix A with entries

aij, it is defined as below:

|A|2F =

√∑
i

∑
j

|aij|2 (3.7)

The first item µ|F − R|2F on the right side of Eq. 3.5 represents the

deviatoric portion of the energy density function relating to shape distortion

that does not cause change in volume. The second term λ
2
(J − 1)2 depicts

the volume dilatation of the material.

3.3.2 Neo-Hookean Model

The Neo-Hookean model is proposed as a suitable model for describing large

deformation of materials that has no intrinsic directional dependence (Smith

et al. 2018), such as biological tissues (i.e. muscle and belly of a virtual

human as shown in Fig. 3.3). The Neo-Hookean model has several variants.

We implement a common Neo-Hookean energy density formulation in Bonet

and Wood (1997):

ψNeo =
µ

2
(IC − 3)− µ log J +

λ

2
(log J)2 (3.8)

where IC = tr(F T
p Fp) is the first right Cauchy-Green invariant. Based on the

hypothesis (Xu et al. 2015), we decompose the right side of above equation

into: ψNeo,length = µ
2
(IC−3) and ψNeo,volume = −µ log J+ λ

2
(log J)2 . This de-

composition can converge to the analyses of the deviatoric-volumetric energy

decomposition in the last section.

When ψNeo,length is unconstrained, this energy achieves its minimum when

a deformation unit (element or particle) has collapsed to zero volume, i.e.,

when IC = 0(ψNeo,length = −3). With the hard constraint Jp = 1 is imposed,

the energy term is instead minimised at the volume preserving configuration

that is the closest to the stretch space origin. ψNeo,length is well behaved under
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Figure 3.3: Virtual human deformation simulated by a Neo-Hookean model
(Xu et al. 2015).

inversion. The energy relative to a zero-volume configuration is always well

defined irrespective of a unit’s current state.

ψNeo,volume is volume-preserving penalty term. However, it presents nu-

merical problems by growing without bound under compression, i.e., as

J → 0 and becoming undefined at J = 0. This can never happen in the

real world. However, numerical simulations generally do not prevent such

nonphysical deformations (Jiang 2015). This problematic term has been

modified by the Fixed Corotated elastic model as λ
2
(J − 1)2.

3.3.3 Plasticity

Some researchers used a specially designed finite-strain multiplicative plas-

ticity law employing the Drucker-Prager plasticity model (Drucker and

Prager 1952) to model snow (Stomakhin et al. 2013), in which only elastic

deformation gradient FEp contributes to the stress. Before the plasticity de-

composition, one factorisation of Fp is required: singular value decomposition

(SVD), which is written by:

Fp = UpΣpV
T
p ,Σp =


σ0 0 0

0 σ1 0

0 0 σ2

 (3.9)

where Up and V T
p are complex unitary matrix encoding rotation information.

The diagonal entries Σp are known as the singular values of Fp. The plasticity

is processed at the Particles strain update step. The updation of plasticity

can be divided into three steps:
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1) We assume that initially all changes get attributed to the elastic part

of the deformation gradient as: F̂ n+1
Ep = (I + ∆t∇vn+1

p )F n
Ep and ˆF n+1

Pp = F n
Pp.

2) Compute the SVD of elastic deformation gradient: F̂ n+1
Ep = UpΣ̂pV

T
p

and clamp the singular values to the permitted range Σp = clamp(Σ̂p, [1 −
θc, 1 + θs]). θc and θs are critical compression and critical stretching param-

eters respectively.

3) Reconstruct updated elastic and plastic components of the deformation

gradient: F n+1
Ep = UpΣpV

T
p and F n+1

Pp = VpΣ
−1
p UT

p F
n+1
p .

Figure 3.4: Animating smashed bears with elastic materials and elastoplastic
materials. The middle and right pictures demonstrate varying settings of
critical parameters.

Note that θc and θs represent the abilities of resisting compression and

stretching respectively. When all plasticity steps vanish, the simulation de-

rives ideally elastic deformation. Fig. 3.4 shows varying θc, θs settings and

demonstrates their impact on the simulation. The Drucker-Prager plastic-

ity model has been commonly used in versatile applications. We also have

adopted this plastic model in our later studies.

3.4 Time Integration

At the step Grid update, we think of the elastoplastic response as defined

from the material positions of the Eulerian grid nodes x̂i = xi+∆tvi, where xi

is the position of grid node i, then x̂i would be the deformed location of that

grid node given the current velocity vi of the node. However, in the MPM, the

grid nodes do not actually being transformed by their velocity because only

the updated nodal velocity needs be transferred back to particles. There are
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two ways to update the grid velocity after obtaining internal force fi: explicit

time integration and implicit time integration.

3.4.1 Explicit Method

Explicit time integration updates the nodal velocity vn+1
i from all states at

time n:

vn+1
i = vni + ∆tfni (3.10)

The explicit integration solves the velocity update straightforwardly, how-

ever, it requires impractically small timestep to keep the numerical error in

result bounded. For example, in order to simulate thin shells, the timestep

should be sufficient small in order to detect subtle interactions. In particu-

lar, the explicit operates with a time step restricted by the usual Courant-

Friedrichs-Lewy (CFL) condition that no particles are allowed to travel more

than one portion of grid cell in each time step (De Moura and Kubrusly 2013)

to avoid incorrect results.

3.4.2 Implicit Method

The implicit formulation follows the Eq. 3.10 with using fn+1
i instead. Evolv-

ing grid velocities vn+1
i implicitly in time remains stable for large time steps (Sul-

sky and Kaul 2004) while requires an extra computation and is hard to imple-

ment compared to the explicit methods. Stomakhin et al. (2013), Hu et al.

(2018) adopted a matrix-free Krylov implicit method which avoids recon-

structing a sparse matrix in each time step and minimises the computational

costs. The momentum equation in Eq. 3.11 is an implicit equation for the

velocity, as presented. Different β decides the method of handling time in-

tegration: β = 0 for explicit integration, β = 0.5 for trapezoidal integration,

and β = 1 for backward Euler implicit integration. We refer to Stomakhin

et al. (2013) for further details.

vn+1
i = vni +

∆t

mi

((1− β)fni + βfn+1
i ) ≈ vni +

∆t

mi

(β∆tΣj
∂fni
∂x̂j

vn+1
i ) (3.11)
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Before evolving Eq. 3.11 with implicit description, we firstly introduce

the Hessian of the potential with respect to x̂. The action of this Hessian on

an arbitrary increment δu can be expressed as:

δfi = −
∑
j

∂2φ

∂x̂i∂x̂j
(x̂)δuj = −

∑
p

V 0
p Ap

(
F n
Ep

)T ∇wnip (3.12)

where Ap contains the second derivatives of potential energy density function

ψ(FEp) with respect to the (elastic) deformation gradient FEp.

Ap =
∂2ψ

∂FEp∂FEp

(
FEp, F

n
Pp

)
:

(∑
j

δuj
(
∇wnjp

)T
F n
Ep

)
(3.13)

In practice, it corresponds to a grid-to-particle gather step (for computing

Ap) and a particle-to-grid scatter step (for accumulating δfi).

Now we have all descriptions needed to evolve Eq. 3.11. With the notation
∂2φn

∂x̂i∂x̂j
= −∂fni

∂x̂j
, Eq. 3.11 leads to a (mass) symmetric system and becomes:

v?i =
∑
j

(
Iδij + β∆t2m−1

i

∂2φn

∂x̂i∂x̂j

)
vn+1
j

= vn+1
i +

β∆t

mi

∑
j

∂2φn

∂x̂i∂x̂j

(
∆tvn+1

j

)
= vn+1

i − β∆t

mi

δfi

(3.14)

where v?i = vni + ∆tm−1
i fni is an explicit description of grid node velocity.

With Eq. 3.12 and differentiation of constitutive models, we are able to solve

the updated nodal velocities vn+1
i through Eq. 3.14. Detailed differentiation

could be found in the accompanying technical report (Stomakhin et al. 2013).

3.5 Simulation Result

We first implemented the traditional MPM with various plasticity settings,

as shown in Fig. 3.4. The pure elastic bears can restore original shapes after

being smashed on the ground while the plastic bears end up with fractures.

The larger critical compression and stretching parameters leads to stiffer
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Figure 3.5: Comparison demonstration of the MPM and the MLS-MPM.

Figure 3.6: Falling elastic toy.

broken effects. Then we compare the traditional MPM with the MLS-MPM

using a 2D demo in Fig. 3.5 with same settings (µ = 6× 103, λ = 4× 103).

Both methods are capable of handling fractures with plasticity model but the

traditional MPM introduces a lot of visually unappealing damaged debris

around crack surfaces. Finally, we demonstrate the efficacy of the MLS-

MPM with two 3D animation in Fig. 3.6 and Fig. 3.7. Note that µ = 3×103,

λ = 1 × 103 for the elastic toy and µ = 6 × 103, λ = 4 × 103, θc = 0.025,

θs = 0.0075 for the castle.
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Figure 3.7: Collapsed castle made of granular materials.

3.6 Summary

This chapter goes through detailed transfer procedures of MPM with high-

lighting differences between the traditional MPM and the MLS-MPM. We

introduce two hyperelastic constitutive models and the multiplicative plastic-

ity model with accompanying experiments. We also give a brief description

of explicit integration and implicit time integration for updating grid nodes’

velocity. We present several 2D and 3D examples to demonstrate the features

of the MPM in handling versatile materials.
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Chapter 4

Peridynamics

Peridynamics (PD) is an nonlocal extension of continuum mechanics (Silling

et al. 2007, Silling and Lehoucq 2010, Silling et al. 2017). PD discretizes

a continuum object into unstructured particles. One PD particle is influ-

enced directly by other particles located in its vicinity using virtual bonds.

Deriving the bonds leads to an accurate and easy implementation in simulat-

ing manifold crack dynamics. In contrast to the classical continuum theory,

the balance of linear momentum is formulated as an integral equation that

remains valid in the presence of material discontinuities such as cracks.

Figure 4.1: An overview of PD. The left depicts the initial configuration
and the right side is the deformed configuration at time tn.

Fig. 4.1 is an illustration of the PD discretization with particles. In PD,

a material point xp interacts directly with all neighbouring material points

xq within a finite distance δ, termed the horizon Hp. Each particle has a

38



volume term Vp. PD defines that a virtual bond X connects the point xp to

one of its neighbour xq. To avoid ambiguity, we use Y to represent bond X

in deformed configuration at time t, as shown in the middle of Fig. 4.1. Each

bond has a status spq indicating active (connected) or broken (disconnection).

This status is encoded in a weighting function. More details will be given in

following sections.

PD simulates objects by collecting all interaction forces with neighbour-

hood particles and creating damages by breaking bonds over a critical range.

It seems analogous to other meshless methods based on classical theory, and

the difference lies in the choice of particles’ vicinity. SPH (Liu and Liu 2010)

is defined as a local continuum model in which the state of a particle is

influenced by only particles in its immediate vicinity. Conversely, PD only

interacts with the neighbouring particles defined at the beginning stage in

simulation, thus referred as an nonlocal theory. As the radius of the PD hori-

zon Hp becomes infinitely large, PD theory becomes the continuous version

of the molecular dynamics model. As the radius becomes smaller, it becomes

the continuum mechanics model.

The discretized PD balance of linear momentum at time t for the point

xp in the body B is given by:

ρa =
∑
Hp

{T [xq, t] 〈xq − xp〉 − T [xp, t] 〈xp − xq〉}Vq + b (4.1)

where ρ is mass density, a denotes acceleration, b is the body force. T [xq, t] 〈xq − xp〉
and T [xp, t] 〈xp − xq〉 present a pair of force densities exerted on the particles

xp and xq, respectively. The angle brackets representation 〈·〉 is defined by

Silling et al. (2017) as a function inside the horizon Hp, which they called

as a state. Notably, the force density may not act along the direction of

the bond xq − xp or xp − xq. The formulation of the force density function

generally fall into two main categories (Mitchell 2011): bond-based material

models and state-based material models. This is decided by if the PD force

density function can encode constitutive laws of materials. We will further

explain how these two models work in following content.
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4.1 Bond-based Peridynamics

Bond-based material models are constitutive laws in which the pairwise force

acting between material points xp and xq is purely a function of their rela-

tive displacements (Silling 2000). The pairwise force always acts along the

direction of the bond connecting xp and xq. The bond-based PD loops each

neighbouring particle and summarises all paired forces. It has the advantages

of being computationally inexpensive and robust, making it a good choice for

simulations involving pervasive material failure. Levine et al. (2014) proved

that the bond-based PD is simple to implement, trivially parallelised, and

well-suited to animating brittle fracture, as shown in Fig. 4.2.

Figure 4.2: Vase undergoing fractures is animated by the bond-based
PD (Levine et al. 2014)

The bond-based PD can be treated as spring-mass systems because that

the interaction forces between material points are assumed to be equal in

magnitude and opposite to each other. The particular differences are: 1) one

mass spring nodes interact with adjacent nodes based on a mesh topology

while one PD particle interacts with all particles within a given particular

distance δ. 2) PD defines a simple strain metric for the bond between xp and

xq which the spring mass system does not (Levine et al. 2014):

εpq =
‖Y −X‖ −X

X
=
‖Y −X‖

X
− 1 (4.2)

The bond force is:

tpq = −Kεpq
Y

‖Y ‖
, K =

18K

πl4
(4.3)
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where K is the bulk modulus. Here tpq is the bond force acted on the de-

formed bond Y. When the force state T [xp, t] 〈xq − xp〉 in Eq. 4.1 is replaced

by the bond force tpq, Eq. 4.1 becomes a standard bond-based PD momentum

equation.

Notably, the straightforward calculation of bond forces significantly sim-

plifies the computation while introduces several limitations including con-

straints on material constants, incapable of capturing incompressibility for

plastic deformations, etc. Moreover, it can not produce many interesting

elastic material behaviours, especially the Poisson effect. In order to over-

come these limitations, Silling et al. (2007) developed an advanced version

of the bond-based PD named as state-based PD. In the state-based PD, the

interaction forces do not need to be equal in magnitude and opposite to each

other.

4.2 State-based Peridynamics

A state can be viewed as one status of the local region around one PD par-

ticle, which is decided by all connected neighbourhood particles instead of

one single bond. For example, the force state T [xp, t] 〈xq − xp〉 is a function

of the deformation of all the material points in Hp and Hq, and possibly

other variables as well (Silling et al. 2007). The state-based PD is a more

general case of the bond-based PD, permitting a general representation of

the continuum mechanics using the stress-strain relation directly, for exam-

ple, isotropic and anisotropic material models in Fig. 4.3. It adopts several

bond concepts: the initial bond X, the deformed bond Y and the relative

displacement vector is U = Y −X.

Designed for the purpose of adapting classical material constitutive mod-

els for use with PD, the state-based PD starts with the evaluation of approx-

imation deformation gradient Fp of particle p:

Fp = [ΣHpω(X)Y ⊗XVq] ·K−1
p (4.4)

where Kp is a symmetric shape tensor:

Kp = ΣHpω(X)X ⊗XVq (4.5)
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Figure 4.3: Isotropic and anisotropic brittle fractures in glasses animated
by a state-base PD solver (Chen et al. 2018)

where ω(X) is chosen as an influence function for the bond X that is mono-

tonically decreasing with respect to the distance between two particles and

affected by bond breakage condition (more details in Chapter 4.3).

Similar to the continuum theories, the state-based PD formulates a strain

tensor εp:

εp =
1

2
[ΣHpω(X)[(U ⊗X +X ⊗ U)Vq] ·K−1

p (4.6)

With the strain tensor εp and the deformation gradient Fp, we are able

to apply most constitutive models and obtain stress tensor, for example, the

Fixed Corotated model in Eq. 3.5. Here we adopt the Cauchy stress tensor

σp for simplicity. Then the force state can be expressed in terms of the σp

as an intermediate step in integration rather than a formulation of partial

derivatives.

T [xp, t
n] < xq − xp >= ω(X)det(Fp) · (Fp)−1 · σp ·K−1

p ·X (4.7)

where det(Fp) is the determination of Fp.

The state-based PD model is able to convert the states to tensorial quan-

tities (e.g. convert deformation gradient state to the force vector). With

states, any material that can be modelled within the standard theory of

continuum mechanics are able to be implemented through the state-based

PD formulation, and retain the advantages of the PD for fractures. Note
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that using the state-based PD may results in greater computational expense

compared to the bond-based PD.

4.3 Modelling Fracture by Failure Law

PD includes a natural mechanism for modelling fractures through breaking

bonds over a given bond failure law. For damaged material, each individual

unbroken bond is tested by the bond failure law to update the connection

status and won’t be accounted at the next simulation step if it is broken.

At the end of simulation, micro-scale broken bonds accumulate and form

visually visible cracks.

A critical stretch bond damage model (using a failure criterion) is com-

monly employed as the failure law to eliminate bonds (Silling and Askari

2005, Levine et al. 2014, Sun et al. 2019). The connection status spq of bond

between xp and xq can be simply assigned by this failure criterion. The break-

age criterion is reached when bond elongation exceeds a prescribed critical

value lmax, as described in Eq. 4.8.

spq =

{
0 |Y |−|X|

|X| > lmax

1 |Y |−|X|
|X| ≤ lmax

(4.8)

Researchers also employed complex criterions with the state-based PD

models for rich, artistically controllable fractures. Chen et al. (2018) com-

bined the bond length failure criterion with a damage parameter on particle-

level to offer artists brittle fractures. Foster et al. (2011) proposed a failure

criterion relating one bond’s critical energy density to energy release rate

in terms of different materials. Our novel bond breakage criterion designed

for different purpose of fracture schemes will be presented in Chapter 5 and

Chapter 6, respectively.

4.4 Method Outline

The state-based PD enriches available options of simulation techniques. Our

work is built upon the state-based PD for its ability of handling versatile
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elastoplastic materials and complex phenomena. The state-based PD solver,

executed by each particle xp , in parallel, carries out four tasks (in Fig. 4.4).

The detailed operations are presented in Algorithm 2.

Figure 4.4: An illustration of how the state-based PD derives unstructured
particles and produces fractures.

Algorithm 2 PD method

1: Initialise neighbourhood Hp using k-d tree
2: Initialise initial bond X and bond connection status spq
3: for each PD particle p do
4: for each active bond (with particle q) do
5: Obtain Y , U
6: Update bond status by criterion in Eq. 4.8
7: Compute Kp by Eq. 4.5, Fp by Eq. 4.4 and εp by Eq. 4.6
8: end for
9: end for

10: for each PD particle p do
11: for each active bond (with particle q) do
12: Compute the force state T [xp, t

n+1] < xq − xp > by Eq. 4.7
13: end for
14: Compute force density by Eq. 4.1
15: Update velocity vp and position xp
16: end for
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Figure 4.5: Tear the cloth by the state-based PD solver. We demonstrate
crack effects with varying critical fracture threshold lmax both at frame 176.

Figure 4.6: A multi-material objects is animated by the state-based PD
solver. Different stages of fractures are presented.

4.5 Simulation Results

We demonstrate the advantages of using the state-based PD by applying it to

several fracturing examples. First, we tear a piece of cloth in Fig. 4.5. Varying

critical fracture threshold lmax defined in Chapter 4.3 has been tested. The

cloth is easily to be teared with a small threshold. Fig. 4.6 shows that crack

propagation with multiple crack fronts in a multi material object is attainable
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by the state-based PD solver (yellow cores are stiffer than blue material). We

also test 3D models, such as Fig. 4.7. The jello toy is stretched by a fork and

fracturing at its joint. The state-based PD is capable of intuitively capturing

fractures and cracks without any special treatments as used in the MPM (e.g.

using the plasticity model to degrade stress tensor).

Figure 4.7: Stretch limbs of a jelly toy by the state-based PD.

4.6 Summary

This Chapter goes through the bond-based PD and the state-based PD meth-

ods. We also introduce a simple bond failure law that can be applied to most

PD models. We demonstrate this powerful techniques with several experi-

ments, showing the fracture initiation and propagation during the simulation.
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Chapter 5

Integral-based MPM For
Animating Elastoplastic
Material

5.1 Background

Physically-based modelling of elastoplastic material has been an active re-

search topic for many years in computer graphics, particularly for its ap-

pealing application in visual effects industry. Scenes involving elastoplastic

deformation are very common and varied, for example, clothes moving with

wind, rubber toys bouncing on the floor, flowing honey, or the broken plastic

board. In order to model such realistic behaviours under different circum-

stances, the robust simulation method needs to be capable of handling com-

plex topological changes and various contact responses, such as collision and

cohesion. To find the simulation method that can naturally model elasto-

plastic material along with complex topological changes is the current focus

of the field.

In the MPM, a continuum body is discretized into a set of particles, also

referred to as material points that are free to move on top of the background

Eulerian Cartesian grid (Moutsanidis et al. 2019). With the hybrid settings,

the MPM can naturally process deformed topologies and self-collisions. It

also has been proved to be especially suitable for animating materials that

undergo large deformations (Jiang et al. 2016, Hu et al. 2018). Despite its
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physical realism and geometrical convenience, the traditional MPM solver

has several disadvantages: 1) Due to the governing equation based on spa-

tial derivatives of displacements, the results are sensitive to the underlying

particle distribution (He et al. 2017). Moreover, it has difficulty in solv-

ing singularity along discontinuities. 2) To observe detailed interaction near

boundaries, MPM has to maintain a fine resolution grid which brings high

computational costs during information transfer back and forth between grid

and particles in the whole simulation domain. While researchers have ex-

tensively studied refining regions of particular interest by using an adaptive

grid (Gao et al. 2017), the ability to simulate detailed discontinuities dy-

namics, such as crack propagation, is still limited. 3) The MPM uses one

background grid thus requires particular treatments to separate fragments.

One approach is assigning each fragment with one grid and one velocity field

so that the fragment can be separated (Homel and Herbold 2017). When

numerous cracks are produced, the computation of transfer procedures on

multiple grids can be very expensive.

PD theory defines that a point in a continuum interacts directly with

other points separated from it within a finite distance. The advantage of

the peridynamics is that its way of treating the discontinuous parts, which

may appear in the continuum body as a result of large deformation, is ex-

actly the same as continuous part. The linear PD treats the deformation

more generally by processing the small deformation based on the referenced

configuration, which provides some possibilities to simulate some particular

materials with both solid and fluid properties, such as viscoelastic fluids.

However, the PD, with particle-based nature, needs additional efforts to de-

tect and handle physical collisions. Furthermore, PD originates from the solid

mechanics, focusing on mechanical experiments. Currently there are only a

few mature models and experiments in continuum mechanics being adopted

by researchers for animating elastoplastic material with PD (Xu et al. 2018).

This chapter is inspired by the following observations: 1) The MPM and

the PD both appear as particle-base methods. 2) For severe deformation, the

MPM is robust and accurate to handle topological changes while cannot sep-

arate crack surfaces by itself. 3) The PD is able to intuitively animate crack
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growth, branch without necessary remeshing strategies. We speculate that

adding each MPM material point with the PD bonds (in Fig. 5.1) may provide

some possibilities to obtain a stable MPM solver which well suits versatile

materials and intuitive fractures modelling. With the augmentation of the

Figure 5.1: An illustration of the augmented PD bonds in our integral-based
MPM.

PD bonds, the partial derivative based governing equation of the MPM can

be replaced by an integral equation. Specifically, the MPM computes internal

forces by integrating bonds deformations instead of the derivation computa-

tion of particle displacement, resulting in a novel integral-based MPM. This

work has been summarised into publications (Lyu et al. 2019 2020).

Constitutive models formulated by traditional particle deformation gra-

dient are not suitable for integral-based MPM. Motivated by the state-based

PD, this integral-based MPM scheme describes the elastic, plastic and vis-

coelastic models with bond concepts as the novel constitutive models. We

will go through the basic data flow and constitutive models in following con-

tent.
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5.2 Method Outline

This chapter adopts the governing equation in the Eq. 3.2. Weak form is

then obtained by multiplying the balance of momentum and integrating the

governing equation over initial volume. Each material point is assigned with

the PD bonds which connect the centre particle p with all adjacent particles

within a given distance by virtual bonds. For one particle p, we propose

an integral force density function F s(xp) which encodes constitutive models.

Then we reformulate the weak form as:

∫
Ω

ρaδupdΩ +

∫
Ω

ρF s(xp)δupdΩ =

∫
Ω

ρbpδupdΩ +

∫
Γτ

ρδupτpdΓ (5.1)

where Ω denotes the integrating region in the current configuration, ρ is den-

sity, a is acceleration, δup is the virtual displacement (infinitesimal feasible

changes where constraints remain satisfied). b is the body force, for example,

gravity. τp is the surface traction on part of the boundary Γτ . We will discuss

the details of the integral force density function F s(xp) in Chapter 5.3.

A thorough description of the MPM and the PD is given in Chapter 3

and Chapter 4 respectively, but we will sketch the main important notations

of these two methods here: the material domain at time tn is discretized

with particles at xnp . Each particle has volume Vp, mass mp, velocity vnp , and

deformation matrix Fp, Lamé parameters µp and λp, plastic yield parameters

ψp. In each time step, a new grid is generated. Grid node i is used to store

nodal parameters, such as position xi, mass mi, velocity vi, force fi. Each

material point is added with PD bonds structure: neighbourhood particle

xq, family Hp, initial bond X, deformed bond Y , bond force state T [xp, t
n] <

xq − xp > and the weighing function w(X).

Multiplying the traditional MPM shape function to terms in Eq. 5.1 ob-

tains the integral-based MPM transfer scheme. The procedures are same as

the traditional MPM while with different way of collecting the deformation

of particles. In the traditional MPM, the Grid update step computes in-

ternal forces fni = −
∑

p V
n
p σp∇ωnip on the grid. In the integral-based MPM,

50



the new formulation of the internal forces is:

fni =
∑
p

V n
p mpw

n
ipF

s(xp) (5.2)

We present the traditional MPM transfer procedures (see Stomakhin et al.

(2013) for details) to both elucidate the basic data flow as well as highlight

the augmentations that make up our integral-based MPM in Fig. 5.2.

Figure 5.2: An overview of the integral-based MPM. Our augmentations are
highlighted with colour purple.

The transfer procedures are depicted in Fig. 5.2: first, we transfer mass

and momentum from particles to grid. Second, we use the elastic, viscoelas-
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tic models to compute grid node internal force by Eq. 5.2 and update grid

velocity. We transfer grid velocity back to particles and advect particle po-

sitions. Then update the particle deformation gradients and process them

with return mapping rules for plasticity (see Chapter 5.3.2). The last step

is to test all unbroken bonds with the failure criterion and remove broken

bonds.

5.3 Constitutive Models

In contrast to the partial differential equations involving spatial derivatives of

particle displacements δup
δxp

in the traditional MPM, we describe the internal

force density function in Eq. 5.3 using an integral formulation of pairwise

bond forces. up is the displacement of particle p.

F s(xp) =

∫
Hp

[T [xp, t
n] < xq − xp > −T [xq, t

n] < xp − xq >]/ρdHp (5.3)

5.3.1 Elastic Models

We start with the Fixed Corotated energy density function (Stomakhin et al.

2012) (presented in Chapter 3.3.1) in Eq. 5.4. We sketch the energy density

function here:

ψCorotated = µ‖Fp −Rp‖2
Fp +

λ

2
(Jp − 1)2 (5.4)

where Rp is the rotation matrix and Jp = det(Fp). The energy density

function can be decomposed into two parts : deviatoric part µ‖Fp − Rp‖2
Fp

and isotropic part λ
2
(Jp − 1)2. Fp is based on the spatial derivatives of dis-

placement which brings underlying issues in computing singularity, such as

discontinuities. Silling et al. (2007) redefined the Fp using bond concepts in

the Eq. 4.4. Thus an average deformed bond is calculated as Y = FpX.

Following the continuum mechanics theory, the energy of each deformed

bond contains deviatoric and isotropic components:

ψ =
∑
Hp

w(X)(µEdev +
λ

2
Eiso) (5.5)
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where Edev = ( |Y ||X| − 1)2 describes an average deformed energy of particle p.

It removes the influence from different bond length and enable it to simulate

material with the same stiffness. Eiso = ( |Y ||X| − 1)2 represents single bond

energy which is similar to a mass spring system, referring to the volumetric

response.

(µEdev + λ
2
Eiso) is the total energy of bond X. Its bond force density

function T [xp, t
n] < xq − xp > can be obtained by derivating the entire bond

energy with respect to deformed bond Y :

T [xp, t
n] < xq−xp >=

2µw(X)

|X|2
(Y −|X|dirY )+

λw(X)

|X|2
(Y −|X|dirY ) (5.6)

where 2µw(X)
|X|2 (|Y | − |X|)dir(Y ) involves the average deformed bond Y , sim-

ilar to sheer effects. λw(X)
|X|2 (|Y | − |X|)dir(Y ) has the same direction as the

deformed bond Y . dir(Y ) represents the normalised direction of vector Y .

Substituting Eq. 5.6 and Eq. 5.3 into Eq. 5.2, the internal force of grid node

i is:

fni =
∑
p

V n
p mpw

n
ip[
∑
Hp

w(X)(T [xp, t
n] < xq−xp > −T [xq, t

n] < xp−xq >)Vq]

(5.7)

Notably, in Eq. 5.4, a rotation matrix Rp is required which is computed by

a singular value decomposition (SVD) of the deformation gradient Fp. With

our novel deformation gradient and energy density function, we naturally

avoids the necessary SVD. Furthermore, we do not use it for three reasons:

1) The current bond state Y is all we need for processing grid internal forces,

resulting in a faster local step. 2) The standard SVD implementations can

have a dramatic impact on performance (Chao et al. 2010). Although it is not

essential for performance to avoid the SVD, it is preferable not to implement

the SVD. 3) We simply define the plasticity on the bond concept which is

plausible and less complicated compare to the existing MPMs involving the

SVD.
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5.3.2 Plastic Models

Many methods, for example, Stomakhin et al. (2013), Zhu et al. (2015) took

out part of the elastic deformation gradient tensor that exceeds the yield

function and pushed it into the plastic deformation gradient calculation. We

define the plastic deformation ep on the bond, that means part of a bond’s

extension or compression could be plasticity. This part of extension does not

contribute to the forces.

Our plasticity model is based on the theory that the plastic model is

purely from deviatoric plastic flow (Chen et al. 2018). We assume |Y |−|X| ≈
|Y | − |X| when the deformation is smooth enough under small neighbour

horizon. Then the Eq. 5.6 becomes:

T [xp, t
n] < xq−xp >=

2µw(X)

|X|2
(|Y |− |X|)dir(Y )+

λw(X)

|X|2
(|Y |− |X|)dir(Y )

(5.8)

where an unified displacement term can be extracted as: e = (|Y |−|X|)/|X|.
Following the deviatoric plastic rule that plasticity exists in deviatoric defor-

mation component, the unified displacement can be decomposed into isotropic

and deviatoric parts: e = eiso+edev. Plastic deformation ep is then extracted

from edev. When the plasticity model is applied, Eq. 5.8 is developed into:

T [xp, t
n] < xq − xp > =

2µw(X)

|X|
(eiso + edev − ep)dir(Y )

+
λw(X)

|X|
(eiso + edev − ep)dir(Y )

(5.9)

We define the yield function as f(Edev):

f(Edev) =
(Edev)

2

2
− ψp, Edev =

w(X)

|X|
(2µ+ λ)(edev − ep) (5.10)

where ψp is a controllable plastic material parameter. We use f(Edev) to

judge if current configuration enters the plastic regime. If f(Edev) < 0, the

deformation of bond is still within the elastic domain. If f(Edev) > 0, part of

deformation occurred as plasticity. We project the deformation back to the
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yield surface and add plastic increment ∆ep to ep permanently in Eq. 5.11.

∆ep =
|X|
λ

[Edev −
√

2ψpsign(Edev)] (5.11)

This model is still valid for elasticity when ep varnishes in all above equa-

tions or ψp is set to extreme high. ψp offers the integral-based MPM with rich

artistic control capabilities. With appropriate plastic parameter, the plastic

model can be a user-controllable constitutive model for simulating elasticity

and elastoplasticity simultaneously in our integral-based MPM solver.

5.3.3 Linear Viscoelastic Models

Viscoelastic materials behave with elastic resistance to deformation similarly

to elastic objects, while presents complex non-Newtonian fluid characteris-

tics. During the simulation, they undergo extreme large deformations and

can not easily restore initial shapes, for example, flowing honey and whipped

cream, that are different from elastic solid materials. With these observa-

tions, researchers model the viscoelasticity either augmenting elastic models

or applying the materials with extreme plasticity. If the viscoelasticity is

augmented from an elastic model, one research direction is to continuously

augment the reference configuration by current deformed configuration. In

another word, the current deformed configuration is equilibrated.

Silling (2010) proposed an linearized peridynamics theory for adapting a

viscoelastic model with the state-based PD. This method superposes small

deformation on an existing large deformation in the configuration at last step.

The internal force density function takes the small deformation (small bond

extension) to update the response of viscoelastic material. The current de-

formed bonds are used as the reference configuration. With this prerequisite,

we modify the force density function in Eq. 5.8 by removing information from

initial configuration. Here we utilise the PD bond structures and investigate

large topological changes experienced by processing the small incremental

deformation based on the current large deformation field.

Let up be the small displacement field superposed on the current defor-

mation field. Linearizing the function T [xp, t
n] < xq − xp > near current
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deformation field leads to:

T [xp, t
n] < xq − xp >= T [xp, t

n−1] < xq − xp > +M [xp] · U [xp] (5.12)

where T [xp, t
n−1] < xq−xp > is the deformed bond force density at previous

step, U [xp] =
∑

Hp
w(X)(Y − X) is the bond displacement state. M [xp] =

∇T [xp, t
n] < xq − xp >, is the modulus state. It is the Fréchet derivative

of the force density function with respect to the bond Y
′

which is between

xp and one of its family particles xo (both xo and xq are in Hp). Y
′

may

not be Y . M [xp] replaces the strain in previous sections and represents

the deformation of material particles in the linearized constitutive models.

Detailed explanation can be found in Silling’s work (Silling 2010 2011).

With the linearized equation of the bond between particle xp and xq, the

internal force density function F s is rewritten as :

F s(xp) =

∫
Ω

∫
Ω

[T [xp, t
n−1] < xq − xp > +M [xp] · U [xp])−

(T [xq, t
n−1] < xp − xq > +M [xq] · U [xp])]/ρdHq

(5.13)

Based on the assumption of the equilibrated deformation in Silling (2010),

the reference configuration is equilibrated which indicates
∫
Hp

(T [xp, t
n−1] <

xq − xp > −T [xq, t
n−1] < xp − xq >)]/ρdHxp + b = 0.

The energy density function therefore is :

F s(xp) =

∫
Hp

∫
Hp

[M [xp] < xq − xp, xo − xp > (u(xo)− u(xp))]/ρdHpdHp

−
∫
Hp

∫
Hxq

[M [xq] < xp − xq, xm − xq > (u(xm)− u(xp))]/ρdHqdHp

(5.14)

where xq and xo are family particles of the point xp , xm is the family particle

of the point xq. This function not only involves the family particles of point

xp, but also the family particles of point xq. Thus the zone being influenced

is fundamentally double than the horizon defined before. Fig. 5.3 shows the

indirect interaction between xp and xm.

The linearization of the governing equation requires the current displace-

ment and the modulus state, which are irrelevant to the initial configuration.

56



Figure 5.3: Material point xp interacts with xm even though they are out-
side each other’s horizon because they are both within the horizon of an
intermediate point xq

It produces structureless material effects and is appropriate for colloidal ma-

terials, such as foam, cream and sponge. Furthermore, based on the PD, it

is feasible to model discontinuous distributions, such as bubbles in the foam

and dripping cream.

We adopt the viscoelastic model defined in Silling (2010), Silling et al.

(2007) to achieve the viscous effects. This is motivated by the integral fluid

constitutive model with one energy component. Then energy density function

for viscoelastic materials is defined as:

ψ =
λϑ2

2
+
µ

2

∑
Hp

w(|X|)(e− ϑ

3
)2Vp (5.15)

ϑ =
3

S

∑
Hp

w(|X|)|Y |eVp (5.16)

S =
∑
Hp

w(|X|)|Y |2Vp (5.17)

Where e is the bond extension, as defined in the last section. ϑ represents the

dilatation part of the bond extension. Thus the deviatoric part means the

bond extension subtracts an isotropic expansion in family horizon. It contains

57



not only shear, but also any deformation from the family particles other than

isotropic expansion. The viscoelastic force density function T [xp, t
n−1] <

xq − xp > is written as:

T [xp, t
n−1] < xq − xp >= (

3λ

S
− µ

3
)w(|X|)|Y |ϑS + µw(|X|)edir(Y ) (5.18)

For two neighbour particles in Hp, we define Y1 = xq − xp and Y2 = xo − xp
which are incorporated in the modulus state M [xp]. Thus M [xp] is written

as:

M [xp] = (
9λ

S2
− µ

S
)w(|Y1|)w(|Y2|)Y1 ⊗ Y2 + γ(Y1)∆(Y2 − Y1) (5.19)

γ(Y ) = λw(|Y |)(dir(Y )⊗ dir(Y )) (5.20)

where ∆ denotes the Dirac delta function in the simulation field. Substituting

Eq. 5.19 and Eq. 5.18 into Eq. 5.2, the transfer procedure of using MPM to

simulate viscoelastic material is completed.

5.4 Fractures and Failure Law

Modelling cracks is a well-known issue of the MPM (Liang et al. 2017).

To model discontinuous particle distribution, special treatments for creating

cracks and partitioning fracture fragments are needed. With the PD bonds,

the discontinuities is straightforward to simulate in this MPM framework. If

we simply remove over-deformed bonds like the strategy in Chapter 4.3, it

leads to numerous small fragments in the deformed area rather than several

crack lines after collision happens. We propose generating a crack cut by the

fracture plane based on the analyses of single point and global deformation

status in the gird cell.

First, considering that plasticity exists as permanent deformation, we first

remove the plastic deformation from the failure criterion:

l =
e− ep

|X|(1 + pinactive)
(5.21)

58



Figure 5.4: The information of one particle is transferred to neighbour 9 grid
cells (information saved on 16 grid nodes) in 2D dimension in the MPM.

where pinactive is the percentage of broken bonds in total bonds in one grid

cell.

We check each connected bond by comparing the l with the critical failure

threshold lthreshold. Then cluster all particles with broken bonds into several

groups based on their positions and normals. For each area, we find a central

point and the largest deformed bond. The next step is to use the central point

as the position and the direction of the largest deformed bond as the normal

to construct a fracture plane for each area. Any bond intersected by the

fracture plane will be removed. Accumulating all broken bonds forms in

crack lines. If one grid has too many broken bonds, the active bonds in this

grid cell are less likely to be removed. With the augmentation of pinactive,

this method offers an efficient strategy for artists to design fracture effects

with desired fragments numbers and size.

As the preceding description, crack details is limited to grid resolution in

the traditional MPM. In experiments, we transfer particle velocity to three

grid cells (illustrated in Fig. 5.4) in any direction to get stable, smooth results.

When two sides of crack line are within this range, they will share additional

fragment information through transfer. Therefore the use of one grid leads to

the effects that fragments hard to be separated. We alleviate this problem by

applying two-time integration methods: material points on the crack surface

are updated by its own bond forces; other material points which don’t have

any broken bonds (in the fragmented inner parts) are updated by grids as
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normal.

5.5 Simulation Results

Figure 5.5: Different bending effects are achievable through animating cloth
with varying material stiffness: µ = 2× 104, µ = 1.5× 105, µ = 1× 106.

Several examples demonstrate the efficacy of our integral-based MPM,

showing that this model is able to capture key features of elastic, plastic and

viscoelastic materials. In particular, the fracture model can be applied to any

above material. The implementation of our method is completed in Houdini

software by Houdini Development Kit (HDK) language, including the mate-

rial point discretization, physical-based solver, voronoi fracture generation,

surface reconstruction and rendering. In the implementation, we compile

above procedures using the HDK and generate several Houdini plugins. All

plugins can be combined to model any materials with or without fractures.

Table. 5.1 lists the modelling types, parameter settings and the performance

data for all examples presented in this chapter.

Implementation. In this work, we have used three types of modelling

geometries.

1. Mesh-based geometry: With given input surface, we construct mesh

as the surface and distribute several layers of particles underneath the

surface.
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Figure 5.6: Throwing a ball to the elastic and plastic board shows visibly
different results. In the first row, the elastic board restores its initial shape.
The second row shows that plastic board keeps deformed topology.

Figure 5.7: The collision between two identical rabbits with different mate-
rials. This example demonstrates the different deformation of elastic rabbits
(in the first row) and plastic rabbits (in the second row). Collision happens
in (a) and (c). The elastic rabbits are able to recover as in (b). The plastic
rabbits deforms permanently in (d).
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Figure 5.8: Simulation of a plastic
wall when collided by a sphere.

Figure 5.9: Stretch bars with dif-
ferent material parameters. From
left to right, bending stiffness µ
are: 0, 50, 500.

Table 5.1: Experiment Settings.
Type ∆x λ(MPa) µ(MPa) ψp lthreshold ∆t(ms)

Cloth Mesh 0.005 1×106 2×106, 1× 105, 1.5× 105 1×1025 1×1025 0.1

Elastic board Mesh 0.02 3×106 1.5×105 1×1025 1×1025 0.02

Plastic board Mesh 0.02 5×106 1.5×105 100 1×1025 0.0001

Elastic bunny Particle 0.01 1×105 1×105 1×1025 1×1025 0.1

Plastic bunny Particle 0.01 1×106 3×105 30 1×1025 0.01

Broken board Voronoi 0.005 1×106 5×104 500 0.05 0.001

Stretching bar Mesh 0.05 500 0,50,500 1×1025 1×1025 100

Honey Particle 0.05 500 100 0.0304 10

Cream pie Particle 0.04 5×103 500 0.035 10

2. Particle-based geometry: For specific examples, such as the viscous

elastic material, we represent initial objects by volume and scatter un-

structured particles within the volume, for simplicity.

3. Voronoi cell geometry: Houdini designs the voronoi cell particularly

for fractures or crack propagation. Each voronoi cell is an irregular

polygon. We treat its centre point as the material point. The bond

represents the connection between adjacent voronoi cells.

Note that ghost particles are added outside the object surface to guarantee

that each material point has a similar family density at the initial step.

Model validation. We demonstrate our method by several examples.

Fig. 5.5 shows the a piece of garment anchored by clothes pegs, with var-

ied bending parameters µ. It shows that realistic and fine wrinkles can be
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Figure 5.10: Linear peridynamics theory is used for modelling viscoelastic
fluids, such as honey.

achieved by tuning µ. Fig. 5.6 shows key difference between elasticity and

plasticity through shooting a ball to a elastic board and a plastic board.

The elastic board restores its shape after the collision while the plastic board

keeps the damage permanently. This method can handle objects with com-

plex typologies, as shown in Fig. 5.7. Fig. 5.8 shows ductile fractures mod-

elled by voronoi polygons. Fig. 5.9 demonstrates different material stiffness

leads to various bar deformation. Our linearized peridynamics model within

the MPM is able to represent the viscoelastic behaviours, which presents

large deformation similar to fluid while keeps the ability of elastic resistance.

Fig. 5.10 shows that honey flows from a glass bottle and drops on the floor.

Fig. 5.11 shows that when whipped cream is thrown to the wall, it flows like

dense fluid, whilst slightly retaining its original shape.

5.6 Summary

In this chapter, we add material points with PD bonds. With this augmen-

tation, we propose to incorporate the integral-based force computation of
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Figure 5.11: A pie of whipped cream is thrown to the wall to show the effects
of viscoelasticity.

the PD to the internal forces in the traditional MPM, which outweighs the

differential-based MPM in both accuracy and stability. Within this novel

MPM transfer scheme, we introduce the elastic, plastic and viscoelastic con-

stitutive models. Specifically, we adopt a simple yield function based on

deviatoric flow theory to animate plasticity. A failure law is incorporated to

produce fractures. This Chapter provides an attractive method for produc-

ing a variety of elastoplastic materials and fracture with visual realism and

high stability.
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Chapter 6

Superposition-based Material
Point Method (SPB-MPM)

6.1 Introduction

Whether it be crashed cars, exploded watermelons, or collapsed building

shot by bullets, high speed impact scenarios are ubiquitous in daily life and

a modern visual effects. Modelling these phenomena is notoriously difficult

due to the fact that objects moving at high speed can generate intricate

interactions in a short time period between surrounding materials, leading

to extreme devastation and a tremendous amount of debris acting like a

small, local explosion ahead of the impact area. Accurately capturing these

unpredictable fracturing fragments is necessarily important. But with the

increasing need of sophisticated fracture scenarios in visual effects industry,

the efficiency of a method handling numerous fragments has also been set as

another priority in the research.

With numerous state-of-art methods to handle large topological changes,

the focus of simulating fractures has centred on accommodating the discon-

tinuities. Some works rely on geometric decomposition instead of physical

definitions of cracks (Ne and Fiume 1999). Other physics-based methods

explore basis functions to account for discontinuities in materials, included

are the Extended Finite Element Method (XFEM) (Kaufmann et al. 2009)

and the Affine Particle In Cell method (APIC) (Jiang et al. 2015). The tra-

ditional MPM fails to model sharp separation of material points and cannot
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Figure 6.1: Stretched armadillo. We compare a stretched armadillo using the
MLS-MPM, the state-based PD and our SPB-MPM (both applied to pure
elastic materials). Compared to the PD, the SPB-MPM provides almost
identical visual results and consumes less computation time.

represent discontinuous velocities (Hu et al. 2018). When coupled with a

plasticity model, the MPM is able to separate a pile of snow (Stomakhin

et al. 2013), however, it still struggles to separate elastic continuum materi-

als and model complex fractures. Later, the Moving Least Squares Material

Point Method (MLS-MPM) adopted a Moving Least Squares shape function

in the MPM which leads to a APIC force formulation to overcome numerical

failures when handling discontinuities (Hu et al. 2018). A continuum damage

material point method (CD-MPM) was then proposed to treat cracks using a

continuum damage field and evolve the damage variables to track crack sur-

faces within the MPM scheme (Wolper et al. 2019). CD-MPM shows great

promise for simulating a breadth of fractures in organic materials while is

66



designed for general fracture cases, for example, stretched jello and smashed

cookies. Due to that the continuum phase field is evolved within the MPM

transfer scheme, it naturally inherits the limitation of using the grid, for ex-

ample, the crack details heavily depends on the grid resolution. Moreover, if

it is applied to the impact scenarios, a delicate balance is required between

the overhead computation brought by the continuum phase field and myriad

fractures on a sufficient large grid resolution. Instead placing a continuum

field over the entire grid, we seek for an efficient solution to handle particular

areas around fractures presented by the high velocity impact applications.

The PD theory (Silling et al. 2007) as an nonlocal reformulation of clas-

sical solid mechanics using spatial integral governing equations instead of

partial differential equations, demonstrates great potential in generating var-

ious fracture behaviours (He et al. 2017). Contrary to the MPM, the PD

brings computational cost when simulates an unbroken deformed object be-

cause each PD particle needs run iterations over its neighbourhood at every

step. Some researchers dived into the literature and came up some coupling

schemes through combining the PD with the FEM or other mesh-based meth-

ods. They usually use special treatments to handle the transition area, such

as force-blending (Seleson et al. 2013), constitutive parameter morphing (Lu-

bineau et al. 2012), and different sub-region coupling by means of interface

elements (Liu and Hong 2012), but both of these operations are lack of ac-

curacy and not physically plausible. The FEM-PD coupling scheme (Sun

and Fish 2019, Sun et al. 2019) places PD particles over some particular

FEM meshes to enrich crack details. These meshes with scattered PD par-

ticles are named as PD patches. This coupling method does not need the

computational-costly treatment of the transition region between the FEM

and the local strategy PD. Considering the MPM also adopts the same weak

formulation as in the FEM (Nguyen 2014), we are inspired to couple the

PD and the MPM, resulting in a Superposition-based MPM (SPB-MPM)

coupling method for two reasons: 1) both the MPM and the PD are particle-

based methods. It is feasible to transform some MPM material points to

PD patches. 2) The MPM Eulerian grid is placed below all particles. It can

be utilised to collect PD particle quantities and transfer them back to the
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MPM. Thus parameter morphing in the transition area is unnecessary in our

coupling method.

With the coupling scheme, our next concern is how to properly place

PD particles over particular MPM regions where fractures may appear. Sun

et al. (2019) initialised the PD patches around a pre-defined crack tip on the

FEM meshes. It is not a physically plausible approach to place PD particles

over a given area, especially not applicable in computer graphics due to the

fact that crack tips are always unpredictable. In this study, we relate the

generation of PD patches to the released energy theory. Specifically, we com-

pute released energy on the grid nodes in a Eulerian manner and generate

a PD patch when one grid cell reaches the critical released energy. That

means that crack possibly appear in this grid cell at the next simulation

step. We incorporate a Eigenerosion method (Pandolfi and Ortiz 2012) and

develop it within the MPM scheme. The Eigenerosion method has been used

to corrode broken elements in FEM through accumulating released energy

in adjacent structures. Similarly, we find ’corrode’ grid cells (here we name

them as Eigenerosion Enhanced grid cells) and prepare these grid cells with

PD patches. With the PD’s strong ability of handling discontinuities, we are

able to simulate arbitrary discontinuities (e.g. shattering debris clouds, duc-

tile fractures and brittle fractures). Giving a low-overhead PD computation

to the current MPM scheme, we are allowed to simulate a breadth of frac-

tures with the notable ability of arbitrarily large topological changes. In this

Chapter, we incorporate the state-based PD (Silling et al. 2007) to model the

same classical constitutive materials as in the MPM to ensure we simulate

the local and entire simulation domains with same material properties.

6.2 Methodology

As mentioned in the introduction, we seek a solution to embed the PD within

a MPM scheme for intuitively modelling large amounts of fragments with

manifold cracks while robustly and stably keeping damaged chunks during

the impact process. Superposition-based FEM-PD coupling method (Sun

et al. 2019) stands as an efficient and rigorous strategy for treating cracks by
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placing PD patches over parts of FEM mesh. It treats the FEM mesh as back-

ground and project PD information on it, thus transition regions between two

methods are avoidable. A PD patch evolves in the one FEM mesh element

which is approached by crack tip. The Superposition-based FEM-PD is able

to simulate FEM and PD in a computationally efficient manner. This cou-

pling method inspires us to investigate and develop a tailored approach for

efficiently modelling a large quantity of fragments within a continuum body.

We adopt the rigorous coupling governing equations while use the MPM dis-

cretization scheme, resulting in the Superposition-based MPM (SPB-MPM).

We illustrate the particle-mesh structure of the coupling FEM-PD and our

SPB-MPM in Fig 6.2.

Figure 6.2: An illustrated comparison of PD patch generation in FEM cou-
pling method and SPB-MPM coupling method (SPB-MPM).

We start to describe the SPB-MPM by defining two problem domains: a

MPM point domain over the entire body ΩMPM0
and a PD particles domain

ΩPD0
(ΩPD ⊂ ΩMPM) (as in Fig. 6.2). The superscript depicts the time t.

The deformation map x = Ψ(X, t) where x and X are world and material

coordinates respectively. MPM is used to derive the entire configuration.

After MPM updates the deformable object as ΩMPMt
, PD is brought to

evolve particles in ΩPDt .
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In the MPM, the simulation objects are discretized using quadrature par-

ticles as material points to carry Lagrangian physical quantities (mass mp,

volume Vp, velocity vp, position xp, deformation gradient Fp, affine matrix

Cp, internal energy ep for shockwave effects models) and a Cartesian grid as

a scratchpad to evaluate internal forces. The grid nodes carry grid velocity

vi, grid mass mi, internal forces fi and Grid release energy Gi. Eigenerosion

enhanced cells are defined with EEi = 1 for our coupling method. The PD

particles inherit unstructured MPM particle properties (mass mp, volume Vp,

velocity vp and position xp). PD also defines bond concepts between particle

xp and one of its neighbouring particle xq: initial bond X = x0
q − x0

p, de-

formed bond Y = xnq − xnp . Due to the PD non-local features, PD particles

are initialised with virtual bonds which are represented using: the Horizon

Hp containing a list of neighbourhood particles within a given radius δ and

the force state vector T [xp, t
n] < xq − xp >. As in the state-based PD (in

Chapter 4), T [xp] < xq−xp > represents the force state vector of particle xp

with the bond from xp to xq. After collecting all force vectors in the Horizon,

PD particles are updated using explicit time integration. We use subscript i,

j, k to denote grid node quantities and p, q to denote all particle quantities,

superscripts MPM and PD denote the MPM and the PD domain respec-

tively. And superscripts n and n + 1 represent simulation timestep n and

n+ 1. Most of the quantities have been explained in previous chapters. We

sketch important quantities in Table. 6.1.

Table 6.1: SPB-MPM quantities.

Material particles mp, vp, Vp, ep

Eulerian grid mi, xi, vi, fi, Gi, EEi

MPM (SPB-MPM) Cp, F
MPM
p , σMPM

p

PD (SPB-MPM) Hp, δ, F
PD
p , σPDp , T [xp, t

n] < xq − xp >
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6.2.1 Governing Equation

Our work adopts the rigorous FEM-PD coupling governing equations (Sun

et al. 2019) in Eq. 6.1.

ρa = ∇ · σ + b (6.1)

where ρ is mass density, b is the body force, σ is the Cauchy stress and a is

acceleration. The Cauchy stress σ is a function of displacement fields. The

definition of displacement field u in Eq. 6.2 is approximated by superimposing

displacements resulting from MPM configuration uMPM with PD patches

uPD, which is σ(uMPM + uPD) in ΩMPM and σ(uMPM) in ΩMPM \ ΩPD

(MPM domain subtracts PD domain).

u =

{
uMPM x ⊂ ΩMPM \ ΩPD

uMPM + uPD x ⊂ ΩPD
(6.2)

Through multiplying the differential governing equation by a test function

(here wMPM and wPD are the test functions of MPM domain of ΩMPM and

the PD domain ΩPD, respectively), the weak formulation of the coupling

governing equation is obtained in Eq. 6.3. The test function is chosen from

kinematically admissible displacements satisfying geometric constraints.∫
ΩPD

(wMPM + wPD) · (∇ · σ(uMPM + uPD) + b(x, t)− ρa)dx

+

∫
ΩMPM\ΩPD

wMPM · (∇ · σ(uMPM) + b(x, t)− ρa)dx = 0 (6.3)

As an non-local extension of the classical solid mechanics, the PD uses

different mechanism from the MPM. Considering the PD method does not

directly affect the dynamics in ΩMPM \ ΩPD, we are able to restate above

weak form in two equations with respect to different test functions: wMPM

and wPD, and carry our discussion about the MPM dynamics and the PD

dynamics separately. Appendix A gives full details of weak form separation.
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For MPM, the terms involving wMPM in Eq. (6.3) are:

−
∫

ΩPD
σ(uMPM + uPD) : ∇wMPMdx+

∫
ΩMPM

b(x, t) · wMPMdx

−
∫

ΩMPM\ΩPD
σ(u

MPM) : ∇wMPMdx =

∫
ΩMPM

ρa · wMPMdx (6.4)

If uPD = 0, the first and third terms on the left hand side are combined

to become −
∫

ΩMPM σ(uMPM) : ∇wMPMdx, and Eq. (6.4) degenerates to a

standard MPM weak form. The test function can typically be approximated

by functions in a finite-dimensional function space as linear combinations of

some basis shape functions. Here we adopt the MLS shape functions (Hu

et al. 2018) and follow the standard MPM to discretize the above weak

form. More details of MLS discretization process can be found in the MLS-

MPM (Hu et al. 2018) and the APIC (Jiang et al. 2015).

The rest of Eq. (6.3) involving the PD test function wPD is written in

Eq. (A.1). Eq. (A.1) - Eq. (A.6) in Appendix A complete the proof of trans-

forming the continuum weak form to integral PD equation. Here we highlight

the conclusion: the internal energy term in the PD domain can be further

rewritten from a continuum theory to an integral-based formulation:∫
ΩPD

σ(uMPM + uPD) : ∇wPDdx =

∫
ΩPD

T [uMPM + uPD, t]dY Pdx

= −
∫

ΩPD

∫
Hx

wPD · (T [xp, t] < xq − xp > −T [xq, t] < xp − xq >)dx (6.5)

Where T [xp, t
n] < xq − xp > is the bond force between PD particles xp

and xq at the timestep tn. The state-based PD uses an integral of bond forces

and avoids calculation of the spatial derivatives of particle displacement.

To summarise our work in this section, we evolve the coupling governing

equation into the coupling weak form. We split the weak form to two equilib-

rium equations as in Eq. 6.4 and Eq. 6.5 according to the MPM test function

and PD test function. They can be discretized into a standard MPM scheme

and a state-based PD integral formulation.
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6.2.2 State-based Peridynamics

The PD updates procedure has been explained in Chapter 4. We simply

introduce the core stages of the state-based PD for better understanding the

SPB-MPM. We loop each active family particle of xp and accumulate all

bond force pairs T [xp, t
n] < xq − xp > and T [xq, t

n] < xp − xq >:

ρaPDp = ΣHpω
PD(T [xp, t

n] < xq − xp > −T [xq, t
n] < xp − xq >)V 0

q (6.6)

where aPDp is acceleration of PD particle xp, V
0
q is the volume of particle xq,

initialised by the MPM. ωPD(X) is chosen as an influence function for bond

X that is monotonically decreasing with respect to the distance between

particles and affected by bond breakage condition (in Eq. 6.13). The state-

based PD model is able to convert the states to tensorial quantities and

permit a general representation of the continuum mechanics using the stress-

strain relation directly. Note that the forces acting on the PD particles are

not necessarily constrained to the direction of the bonds. It is designed to

match versatile constitutive models under the classical elasticity theory (He

et al. 2017, Chen et al. 2018).

Aiming to converge to the classic constitutive models, the state-based PD

introduces a symmetric shape tensor K(xp) = ΣHpω
PD(X)X ⊗ XV 0

q and a

PD deformation gradient tensor F PD
p = [ΣHpω

PD(X)Y ⊗XV 0
q ] ·K(xp)

−1.

The strain tensor εPDp is formulated as:

εPDp =
1

2
[ΣHpω

PD(X)[(U ⊗X +X ⊗ U)V 0
q ] ·K(xp)

−1 (6.7)

The stress tensor σPDp can be obtained from the strain tensor εPDp with

any given constitutive model. Note that we also propose a shock wave effects

model which can be incorporated with the SPB-MPM for high speed impact

deformation (in Chapter 7). The force vector is expressed in terms of the

Cauchy stress σPDp as an intermediate step in Eq. 6.8.

T [xp, t
n] < xq−xp >= ωPD(X)det(F PD

p ) · (F PD
p )−1 ·σPDp ·K(xp)

−1 ·X (6.8)
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where det(F PD
p ) is the determination of deformation gradient F PD

p . Substi-

tuting Eq. 6.8 into Eq. 6.6, we are able to update PD particles’ velocity and

position.

Notably, in this chapter, we adopt the classical Fixed Corotated model

and the Neo-Hookean hyperelastic model as the constitutive models of the

SPB-MPM. The SPB-MPM requires the local PD and the entire MPM do-

main derived by the same constitutive model.

6.2.3 Eigenerosion Enhanced Method

Eigenerosion has been proposed in Finite Element Analysis (FEA) to simu-

late fracture in mesh-representation applications (Pandolfi and Ortiz 2012).

It restricts the elements in a binary sense by comparing an energetic for-

mulation to energy release threshold: the elements can be either intact (in

this case material behaviour is elastic) or eroded (in this case elements have

no load bearing capacity). Stochino et al. (2017) separated the energetic

formulation into compression and degraded tension portion so that the ele-

ments along cracked regions can be separated after losing bearing capacities.

The resulting crack propagates within eroded elements with high energy. We

adopt the Eigenerosion, which is a variational formulation of Griffth fracture

theory (Pandolfi and Ortiz 2012). It approximates the Griffith theory using

an integral form of adjacent structure. The released energy at crack surfaces

is defined as: ∫
Γ

GpdX ≈ Gp
|Cε|
2ε

(6.9)

where Γ is crack surfaces, Gp is the energy release rate representing the energy

required to create a new fracture surface per a unit area of the material, Cε

is the ε’s neighbourhood field, and |Cε| denotes the volume of Cε.

We assume grid cells in the MPM can be virtually eroded (in reality, the

eroded grid cells are highlighted as PD patch) when its energy exceeds the

given critical released energy. Motivated by above studies, we choose the

Eulerian background grid to compute the released energy formulation.

The MPM grid nodes collect released energy through transferring the

particle Cauchy stress σMPM
p to grid nodes. Discretizing Eq. (6.9) forms a
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Eulerian description of particle released energy distribution in Eq. (6.10).

Gi =
l0
mi

∑
p

ωMPM
ip mpΦ(σ+

p ) (6.10)

where σ+ =
∑d

i=0 σini ⊗ ni, σi and ni are the ith eigenvalue and eigenvector

of the stress tensor σMPM
p respectively. Φ(σ+) = σ+ : σ+. ωMPM

ip is the

quadratic B-spline basis function representing interpolation weight between

particle p and MPM grid node i. The Eulerian description of the released

energy on the grid obviates the spurious energy carried on some material

particles.

A grid cell with high energy, potentially containing crack lines and crack

tips, are transferred into a PD patch (i.e. material particles within these

grid cells are transited into PD particles). As cracks propagate and branch,

they must be considered to be irreversible. In our study, the transition

of a particle from the MPM to the PD is monotonically. The grid cells

containing PD particles always have the highest released energy. Inspired

by Wolper et al. (2019), we simply introduce a history dependent variable,

EEp = max(EEp,Φ(σ+)), to replace Φ(σ+) in Eq. (6.10).

6.3 Method Outline

As discussed in Chapter 6.2.1, we apply the MLS shape function to dis-

cretize Eq. (6.4), leading Eq. (6.4) converge to a standard MLS-MPM transfer

scheme. SPB-MPM’s core augmentation of the standard MPM is adding PD

evolution within G2P step as a post process for efficiently animating cracks.

Here we describe the MLS-MPM transfer procedures (Hu et al. 2018) and

highlight our PD augmentation at the G2P step. n and n + 1 symbolise

quantities at timestep tn and tn+1, respectively. ∆t = tn+1 − tn.

6.3.1 Full Method

The data flow and relations of the main modules below are illustrated in

Fig. 6.3.
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Figure 6.3: SPB-MPM data flow illustration. We elucidate the data flow in
the MLS-MPM. Our augmentation is highlighted by red colour (Eigenerosion
on the grid) and orange colour (PD method).

Particles to grid(P2G) Mass and momentum are transferred to grid nodes

using the MLS-MPM (Hu et al. 2018, Jiang et al. 2015): mi =
∑

p ω
MPM
ip mp,

mvni =
∑

p ω
MPM
ip mp(v

n
p +Cn

p (xni −xnp ), where Cp is affine matrix of par-

ticle xp. Compute nodal released energy by Eq. (6.10).

Grid Update The internal force fni of grid node is computed using the

MLS-MPM Hu et al. (2018): fni = −
∑

p ω
MPM
ip V 0

pM
−1
p

∂ψ
∂F

(FMPMn

p )

(FMPMn

p )T (xni −xnp ), where M−1
p = 4/∆x2 for a quadratic particle-grid

kernel. Identify the Eigenerosion Enhanced cell (EEc) by the fracture

rule (Schmidt et al. 2009): if Gi ≥ Gp, then EEi = 1. Particles within

EEc are added into ΩPD.

Grid to particles(G2P) Update particle velocity: v̂n+1
p =

∑
i ω

MPM
ip vn+1

i .

Then compute PD particle forces, evaluate bond connection status,

and correct position using explicit time integration (details discussed

in Chapter 6.3.2).

Particles strain update Grid velocity vn+1
i needs to be transferred again

due to PD evolution which is vital to accurately compute the particle

velocity gradient: Cn+1
p =

∑
i ω

MPM
ip M−1

p vn+1
i (xni − xnp )T . The ma-

terial point deformation gradient is calculated as: FMPMn+1

p = (I +

∆tCn+1
p )FMPMn

p . Modify the deformation gradient if a plastic model

is applied.
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6.3.2 Peridynamics Evolution

At the step Grid to particles(G2P), after the MPM obtains the particle

velocity v̂n+1
p at time tn+1, PD is brought to correct particles’ velocity and

position by Eq. 6.6. Note that hat notation indicates an intermediate data,

it will be corrected to vn+1
p by the PD. Due to all PD forces are computed to

correct v̂n+1
p to vn+1

p , we use v̂p and vp and omit the time superscript. Algo-

rithm 3 describes the PD evolution in the SPB-MPM, including computing

bond forces and updating bond connecting status.

Algorithm 3 PD Evolution

1: Initialise neighbourhood Hp using k-d tree
2: Run MPM step until we have updated particle velocity v̂n+1

p

3: for each PD particle p do
4: for each active particle q do
5: X = x0

q − x0
p

6: Y = x̂n+1
q − x̂n+1

p

7: U = ûn+1
q − ûn+1

p

8: ωPD(X) = |X|
l0

9: K(xp)+ = ωPD(X)X ⊗XVq
10: F PD

p + = ωPD(X)Y ⊗X ·K(xp)Vq
11: εPp + = 1

2
ωPD(X)(U ⊗X +X ⊗ U) ·K(xp)Vq

12: end for
13: end for
14: for each PD particle p do
15: for each active particle q do
16: σPDp = p(Vq, eq)I + 2µ(F PD

p − pI )
17: T [xp, t

n+1] < xq−xp >= ωPD(X)det(F PD
p )·(F PD

p )−1 ·σPDp ·K(xp)·
X

18: T [xp, t
n+1]+ = T [xp, t

n+1] < xq − xp >
19: end for
20: end for
21: vn+1

p = v̂n+1
p + T [xp,tn+1]

mp
dt xn+1

p = x̂n+1
p + vn+1

p dt

22: for each PD particle p do
23: for each active particle q do
24: µ(X) = (T [xp, t

n+1] < xq − xp > −T [xq, t
n+1] < xp − xp >) · U

25: if µ(X) > µc then ωPD(X) = 0
26: end for
27: end for
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Figure 6.4: PD failure criterion. Stretching one leave away from a palm tree
(with different energy release rate Gp), illustrating the controllable fracture
effects with visualisation of PD particle broken bond percentage.

Various formulations of breakage criterion lead to rich, artistically con-

trollable fractures. The breakage criterion of PD could be simply reached

when bond elongation exceeds a prescribed critical value (Levine et al. 2014)

(introduced in Chapter 4.3) or combined with a damage level parameter of

PD particles to offer artists brittle fractures (Chen et al. 2018). Foster et al.

(2011) proposed a bond failure criterion relating the critical energy density

to the energy release rate. In this study, we adopt the energy-based failure

criterion (Sun et al. 2019) and form a bond energy formulation by combining

the bond force and particle’s relative displacement vector U = Y − X in

Eq. (6.11). Furthermore, our SPB-MPM model can combine with all above

failure laws (including the Eq. 4.8 in Chapter 4.3) with adjustable parameters

for controllable fracture effects.

W (|X|) = (T [xp, t
n] < xq − xp > −T [xq, t

n] < xp − xq >) · U (6.11)

where W (|X|) is the released energy of bond X.

The critical released energy of a bond is given by:

Wc =

{
3Gp
2tl0

3 in 2D
4Gp
πl0

4 in 3D
(6.12)

where t is the surface thickness. Varying material energy release rate leads

to different cracking effects, as shown in Fig. 6.4. The weight function of
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bond X is computed as a history-dependent influence function:

ω(|X|)PD =

{
0 W (|X|) > Wc
|X|
l0

W (|X|) ≤ Wc

(6.13)

Once a bond is broken, it will not be taken into account in the calculation

of the PD deformation gradient at the next simulation step. Through accu-

mulating all broken bonds, this method allows cracks to initiate, coalesce and

propagate within domain ΩPD without prescribed external crack routes.

6.4 Simulation

We present various fracture examples demonstrating the efficacy of the SPB-

MPM, showing our model is able to simulate brittle and ductile fracture

patterns with high visual fidelity. All examples were run on an Intel Core

E5-1650 CPU with 12 threads at 3.20 GHz. The material parameters and

grid settings are organised in Table 6.2. We implement all examples using

the Taichi programming language (Hu et al. 2018 2019) and complete surface

reconstruction and rendering as post-process by the SideFX Houdini.

6.4.1 Results

Figure 6.5: Stretched bars. We stretch bottom and top of a bar with different
grid size; we compare against the CD-MPM to show that modelling fractures
with the SPB-MPM is barely affected by grid settings.
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Figure 6.6: Throw a soccer ball to break the net. The ball is caught by the
net by the MPM and breaks through the net by the SPB-MPM.

Figure 6.7: Armadillo PD particle visualisation. (Left) an elastic material
simulated by the SPB-MPM. (Right) with the plastic model clamping the
deformation gradient Fp, damage appears at the weakest region (knees and
elbows). We visualise the percentage of active bonds for each PD particle.
Red represents a PD particle having lost all connected bonds. Blue represents
a PD particle fully connected with all family particles. Grey particles are pure
MPM material points.

6.4.2 Discussion

We present various fracture examples attainable through using the SPB-

MPM. We’d like to start with some 2D demos. In Fig. 6.4, we explore

fracture effects of material critical energy release rate Gp. It is difficult to

tear leaves from the palm tree with the largest energy release rate Gp. This

demonstrates that the SPB-MPM treats fracture in a physically plausible

manner. We carry out a comparison experiment between the CD-MPM and

the SPB-MPM in Fig. 6.5. The grid size ∆x varies from 0.0025 to 0.01.
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Figure 6.8: Falling chocolate bunnies. We throw chocolates to a porcelain
plate to demonstrate the efficacy of our model in handling brittle fractures.

Table 6.2: Material parameters and grid settings.
Example ∆x ∆t/timestep N ρ E ν Gp, Hp plastic model

Stretched bars 7× 10−3 5× 10−6 14K 1 1× 104 0.2 (1.2, 1.3, 1.5, 1.7, 3.0)× 108, 100 θc = 6× 10−1, θc = 4× 10−1

Armadillo 3× 10−3 1× 10−6 356K 1 8× 103 0.3 7× 109, 100

Chocolates 4× 10−3 5× 10−7 442K 1 5× 105 0.2 9× 108, 100 θc = 4× 10−2, θc = 5.5× 10−3

For all ∆x, the SPB-MPM obtains similar crack effects while the CD-MPM

only works well at fine grid resolution because the SPB-MPM defines the

fracture on the bond level and the CD-MPM is heavily dependent to the

background grid. This experiment demonstrates that our method is able

to achieve detailed crack surfaces without introducing large computation by

fine grid settings and further provides evidence for the SPB-MPM’s superior

ability.

The SPB-MPM is also capable of producing arresting fracture effects in

3D examples. In Fig. 6.1, we stretch the limbs of a jello armadillo and com-

pare the SPB-MPM against the MLS-MPM and the state-based PD. The

SPB-MPM obtains realistic fractures around joints (i.e. knees and elbows).

Conversely, the MLS-MPM does not present any fractures even under large

deformation. We present the same simulation in Fig. 6.7 with a visualisation

of PD particles’ active bond percentage. Fig.6.6 presents a net is broken

through by a soccer ball by the SPB-MPM (right) and the comparison un-

broken effects by the MPM (middle). Our method is also able to animate

brittle fractures. In Fig. 6.8, we throw several chocolates against a porce-

lain plate. The chocolates are broken into pieces with brittle fracturing after

bouncing on the plate several times. Furthermore, in our work, the energy

81



release rate used in the Eigenerosion should theoretically be the same as in

PD bond’s breakage criterion. However, we allow these two quantities to

be set individually allowing for more diverse artistic control of the fracture

patterns.

Introducing the PD brings extra computation over MPM scheme. More-

over, the PD evolution is heavily dependant on PD particles evolved in simu-

lation. We break a single simulation frame of SPB-MPM into its subroutines

in Fig. 6.9. This demo is performed in Fig. 6.6. Adding 14.4% computation

time by the PD to the existing MPM computation is an efficient augmenta-

tion to the current MPM framework.

Figure 6.9: We decompose the timing consumed by each step: P2G, Grid
Update, G2P(excluding PD Evolution), PD Evolution and Particles Strain
Update performed on a demo shown in Fig. 6.6. The PD Evolution is always
dependant on PD particle number in the simulation.

6.5 Conclusion

In this chapter, we present a novel MPM framework which superposes PD

patches on the MPM as a local solution for handling fractures, leading to

a hybrid MPM method: SPB-MPM. The SPB-MPM provides an intuitive

solution of handling fractures, where bonds are broken directly relating to

damage, offering physically plausible and stable topological deformations.

Several various fracture examples has been tested to demonstrate the effi-

cacy of the SPB-MPM, showing this method is able to simulate brittle and

ductile fracture patterns with high visual fidelity. Giving a low overhead
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computation over the current MPM scheme, the SPB-MPM is regarded as

an efficient strategy to address the shortcomings of the existing MPM in

simulating fractures.
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Chapter 7

Modelling Shockwave effects In
High Speed Impact Scenarios

7.1 Introduction

Shock wave is usually produced by impacts and explosions. It carries extreme

energy and can propagate through any elastic medium such as air, water, or

a solid substance. Zel’Dovich and Raizer (2002) and Zhang (2016) charac-

terised the shockwave as an abrupt, nearly discontinuous, violent change in

pressure, temperature, and density of the medium. Forces carrying shock

wave energy usually have greater effects than smaller forces applied over a

proportionally longer time period, thus the travel of shock waves leads to

devastative deformation and a tremendous amount of debris acting like a

small, local explosion ahead of the impact area.

In high speed scenarios, objects collided by a high speed impactor can

generate intricate interactions in a short time period between surrounding

materials. They present complex behaviours by the fact that objects are

left with broken pieces followed by large amount of debris. In addition, the

material properties can dramatically change during the sudden impact. In

this case, the strain-stress relation applied under low velocity scenarios, such

as Fixed Corotated elastic model for animation of snow dynamics (Stomakhin

et al. 2013), Saint Venant–Kirchhoff model for granular materials (Klár et al.

2016) and stable Neo-Hookean model for hyperelastic materials of virtual
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characters (Smith et al. 2018), are not able to describe above phenomena in

high speed impact.

Shockwave modelling has been recognised as a common physical phe-

nomenon in many applications of impact engineering, such as high explosive

detonation, high speed impact and large material expansion. There exist

many approaches in mechanics to model high velocity impacts in a way that

encodes shock waves and relative hardening effects in the material response at

high strain rate. Ma et al. (2009a) incorporated several Equations of State

(EOS) with an adaptive MPM to capture the volumetric response, strain

rate hardening effect and thermal softening effects in the application of high

explosive scenarios. Meshless methods with Lagrangian points also showed

success to model such behaviours with the growing versatility and popular-

ity of PD (Silling et al. 2017). In this work, the PD has been adapted to

a Eulerian form to simulate shock waves with a thermodynamic theory for

modelling bird strikes. Zhang et al. (2006) replaced the pressure term (cal-

culated by the Mie-Grüenisen Equation of State) by a hydrostatic pressure

in the constitutive model, demonstrating the shock wave effects in computer

graphics for modelling smashed fragile materials, for example, vases falling

on the floor.

Considering that in impact scenarios the debris cloud always appears with

broken pieces, we need our model to be capable of presenting key features

of shock wave impact while keeping stable shapes for the remaining bod-

ies as broken chunks (see in Fig. 7.2) ). Motivated by the decomposition

of stress tensor and strategy of incorporating an Equation of State into the

MPM Ma et al. (2009a), we introduce a strength model from thermodynam-

ics theory (Silling et al. 2017) and adapt it with the stable Neo-Hookean

model (Smith et al. 2018). This model relates the strain-stress relation to

the high pressure produced by the rapid impact while obviating the insta-

bility caused by extreme volume response. Additionally, to model general

metal behaviours under high velocity impact, we adopt a J2 plasticity model

presented (Zhang et al. 2013) with an associative flow rule to compute the

plastic strain increment for the Johnson-Cook model (Ma et al. 2009a). This

avoids the traditional, tedious iterations in stress projection and is capable
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of solving the plastic changes in an efficient, linear manner. Strain effects

and strain rate hardening effects are therefore considered in our model. Our

method is able to simulate the characteristic impact behaviours of organic

fruits, rigid bodies, and metal materials.

7.2 Constitutive Models

As described in Chapter 7.1, modelling shock wave effects in high speed

impact scenarios is notoriously challenging. We expect one method to be ca-

pable of robustly treating broken chunks while also capturing abrupt features

following rapid impacts. The stable Neo-Hookean model, designed as an non-

linear hyperelastic energy function, demonstrates great success for modelling

fleshy appearance of virtual characters (Smith et al. 2018). It exhibits supe-

rior volume preservation, and is robust to extreme kinematic rotations and

inversions. As such, we choose the stable Neo-Hookean as our basis model

and replace the pressure term with our shock wave pressure. In the follow-

ing, we first give a brief description of the stable Neo-Hookean model for

deformable objects, and then introduce our shock wave model.

7.2.1 Stable Neo-Hookean Model

We introduce a Neo-Hookean model in the preceding discussion in Chapter 3.

The stable Neo-Hookean model has been proposed as a stable version of

the classic Neo-Hookean model. It retains the rich, volumetric character

appearance of the classic Neo-Hookean model but does not need any filter

operations. This method starts from the comprehensive consideration about

four perspectives (inversion stability, reflection stability, rest stability and

meta-stability under degeneracy) and provides a stable hyperelastic energy

function. In this section, we start by examining how the stable Neo-Hookean

modified above four properties based on the Neo-Hookean model, and then

derive its energy function and stress tensor.

The Neo-Hookean model is: ΨNeo = µ
2
(IC − 3) − µ log Jp + λ

2
(log Jp)

2.

Based on the Valanis-Landel hypothesis (Xu et al. 2015), many hyperelastic

energies can be separated into length (1D), area (2D), and volume (3D)
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components. As such, ΨNeo,length = µ
2
(IC − 3) , ΨNeo,volume = −µ log Jp +

λ
2
(log Jp)

2.

Inversion stability The current version of ΨNeo,length is well behaved

under inversion. The volume term from ΨNeo,volume clearly presents numerical

difficulties when Jp < 0. Martin et al. (2011) migrated this issue by using

ΨNeo,volume = λ
2
(Jp − 1)2 which is bounded, well defined and invertible. The

stable Neo-Hookean adopted this augmentation to sidestep the need for any

inversion handling.

Rest stability Bonet and Wood (1997) mentioned that the hyperelastic

energy should vanish at identity in the solid mechanics literature. This theory

restricts ΨNeo,volume. In practice, the PK1 stress tensor resolves to zero. To

recover rest stability, the stable Neo-Hookean modifies ΨNeo,volume = λ
2
(Jp −

1)2 to shift the root from 1 to α as ΨNeo,volume = λ
2
(Jp − α)2, where α =

1 + µ
λ
− µλ

4
.

Meta-Stability under Degeneracy According to the Drucker stability

analysis (Bower 2009), the energy function needs be examined under degen-

eracy. It requires the method to remain valid when an element has been

crushed to a plane, line, or point. For the undesired numerical errors in

degenerating to both lines and points, the stable Neo-Hookean adds a regu-

larised origin barrier log(IC + 1) that inserts a peak of negative definiteness

in line cases while through adding constant 1 to smooth away the logarithmic

singularity.

Reflection stability The energy is well behaved regardless of the reflec-

tion convention used in the SVD.

With above observation, the final stable Neo-Hookean energy is:

ΨNeo =
µ

2
(IC − 3) +

λ

2
(Jp − α)2 − µ

2
log(IC + 1) (7.1)

The first Piola-Kirchhoff stress tensor is:

P = µ

(
1− 1

IC + 1

)
Fp + λ(Jp − α)

∂Jp
∂Fp

(7.2)

Notably, Smith et al. (2018) phrased the Fixed Corotated model as an lin-

earization of the Neo-Hookean energy and positioned the stable Neo-Hookean
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model on a spectrum of successive approximations to the Neo-Hookean en-

ergy. The generality analyses and the energy decomposition rules inspire us

to investigate a shock wave model within the volume portion of the stable

Neo-Hookean energy.

7.2.2 Shockwave Effects Model

The stress tensor arises from the energy density as: σ = 1
Jp

∂ψ
∂Fp

(Fp)Fp
T =

1
Jp

(∂ψD
∂Fp

(Fp) + ∂ψvolume
∂Fp

(Fp))Fp
T in the MLS-MPM, where ψ(F n

p ) is the chosen

energy density function, ψD and ψvolume are shearing and volumetric portion

of ψ(Fp), σ is the Cauchy stress tensor of particle p. We decompose the

stable Neo-Hookean model as ψD = µ
2
(IC − 3) − µ

2
log(IC + 1), ψvolume =

λ
2
(Jp−α)2. This decomposition is based on the linearization analysis in Smith

et al. (2018). The Cauchy stress tensor is thus obtained by transforming

the first Piola-Kirchoff stress using σ = J−1
p PF T

p and Eq. 7.2. Intuitively,

the Cauchy stress tensor can be regarded as the combination of shearing

changes (deviatoric stress portion) and volume changes (pressure portion):

σ = σD + σP .

To capture volumetric changes in objects following high speed impacts,

we replace the pressure term σP in the Cauchy stress tensor to a hydro-

static pressure term as σP = −p(V n
p , e

n
p )I from an EOS (further discussion

in Chapter 7.2.3) where I is an identity matrix and the pressure p(V n
p , e

n
p )

is a scalar quantity. V n
p denotes current particle volume and enp depicts the

current particle internal energy density.

The shock wave stress tensor can be fitted into both standard MPM and

our SPB-MPM. In SPB-MPM, a deformable object contains two domains:

ΩMPM and ΩPD. Intuitively two constitutive models are necessary for two

dynamic lines, however, we choose the above adaptive constitutive model

for both ΩMPM and ΩPD (the strain tensor is either from the deformation

gradient FMPM
p in the MPM or F PD

p in the state-based PD. then the stress

σMPM
p for MPM and σPDp can be obtained from our shock wave effects model).

We adopt one constitutive model for two dynamic lines for two reasons:

1) the two configurations (wPD ∈ ΩMPM) have the exact same material
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Figure 7.1: Sphere impactor (red) collides with 2D brittle wall (blue). The
debris cloud attainable through our shock wave modelling presents similar
effects in Watson and Steinhauser (2017).

properties. 2) the state-based PD is capable of using classical constitutive

material models. We just compute p(V n
p , e

n
p ) in the MPM once and reuse it

for the state-based PD. The internal energy density enp is formulated through

integrating the energy changes over time from the initial configuration with

e0
p for each material point p by:

Cpavg =
1

2
(Cp + CT

p )

∆enp = ∆tCpavg : σnp (7.3)

7.2.3 Mie-Grüenisen Equation of State

The Mie-Grüenisen EOS is used to describe material volumetric changes un-

der high pressure condition in a shock-compressed solid at a given temper-

ature (Lemons and Lund 1999). Silling et al. (2017) proposed a thermody-

namics form of PD which also adopts the Mie-Grüenisen EOS for modelling

fluid-like shock waves for metals in a Eulerian manner. This work offers

us a good opportunity to describe the volume response by determining the

pressure in impact condition.

In this paper, experiments are set under an isothermal condition which

is free of temperature changes. We adopt a simplified variation of the Mie-

Grüenisen model (Silling et al. 2017) (in Eq. (7.4)). We define a scalar
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Figure 7.2: A multi-material cube with a stiff shell is shot with an elastic
bullet. We show the different impact behaviours through comparing the
Fixed Corotated elastic model with the shockwave effects model handled by
our shockwave effects model (different bulk wave speed c0) are shown.

quantity ζp = ρp
ρ0p
− 1 =

V 0
p

V np
− 1 = 1

Jp
− 1 to depict relative particle density

changes, where Jp = det(FMPM
p ). The linear dependency between shockwave

velocity vs and particle velocity vp is defined as vs = c0+Svp. S is a constant,

usually set up as 1.1 and c0 is the bulk wave speed. Pressure p(V n
p , e

n
p ) is

updated by:

p(V n
p , e) =

{
ρ0c20ζp[1+(1− 1

2
γ)ζp]

[1+(S−1)ζp]2
+ γ(enp − e0

p) ζp ≥ 0

ρ0c
2
0ζp + γ(enp − e0

p) ζp < 0
(7.4)

where γ = 1.6 is the Mie-Grüenisen parameter. Fig. 7.2 visualises the influ-

ence of bulk wave speed c0 on impact behaviours in the second and third rows.
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Figure 7.3: Shoot a bullet to multiple walls. Different impact velocities create
different level of destruction.

7.3 Plasticity

Metals are traditionally produced not to easily exceed the yield strength in

any operational conditions. However, in high speed impact scenarios, such

as car crashes and metal boards being shot, modelling the behaviours of

metals need take plastic deformation and damage into account. Most plastic

models in the literature are only suitable in common life scenarios which

appears at low strain rate during deformation, such as the snow plasticity

model based on the decomposition of deformation gradient Stomakhin et al.

(2013), Drucker-Prager model for sand simulation (Klár et al. 2016), and

a temperature incorporated plasticity model for baking (Ding et al. 2019).

All these models formulate the yield criterion based on the stress tensor.

Conversely, the yield criterion of a metal at large strain rate is irrelevant to

the pressure term in stress tensor (Zhang et al. 2013, Wilson 2002). To obtain

metallic plastic deformation in a physically plausible manner, Zhang et al.
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Figure 7.4: J2 plasticity radial return mapping process with von-Mises yield
criterion. We visualise the predictor-corrector process by a radial return map-
ping method. After MPM updates particle strain at timestep tn+1, the pre-
dicted deviatoric stress tensor σn+1∗

ij violates the yield criterion. We project

it back to the yield surface as σn+1
ij with an associative flow rule (the plastic

strain increment vector rij is perpendicular to the yield surface).

(2013) concluded that a J2 flow rule with respect to the deviatoric portion of

stress tensor is necessary. In this case, the plastic increment is independent

to the volumetric portion of the stress tensor. With these considerations, we

adopt the J2 flow rule as the return mapping algorithm in our metal plastic

model.

In mechanics, researchers always design plasticity models based on true

experimental data in order to give an accurate and precise estimation for

plastic flow of the studied metal materials. Each type of metal material has

unique properties under given conditions. Our aim is to obtain controllable

visual effects of deformable objects in the computer graphics world rather

than the accurate mathematical calculations. Therefore, our model ignores

sophisticated examinations of material properties, and we instead concen-

trate on deriving an empirical model based on general phenomenological

observations. Even so, our plasticity model is based on theory and models

devised for engineering applications. We adopt a simplified Johnson-Cook

metal plasticity model with J2 plasticity flow rule in this section to accom-
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modate plastic deformation for metals in high speed impact scenarios. This

model allows us to remove plastic deformation from the deviatoric portion of

the stress tensor.

Notably, when apply this metallic model to SPB-MPM in which PD is

incorporated for discontinuities in some local regions, we process the plas-

ticity at the PartilceStrainUpdate step. We do not store plasticity for

bonds for the SPB-MPM for simplicity and ease of implementation, though

the Chapter 5 proves that the PD is able to process plasticity as part of bond

extension.

Figure 7.5: Johnson-Cook plasticity model with strain hardening exponent
n. We visualise the yield surface with different choices of strain hardening
exponent under the same strain rate. When n is set to 0, the yield criterion
becomes a von-Mises yield criterion (left).

7.3.1 Flow rule

The fundamental features of a plasticity model are the yield function and flow

rules. Contrasting to the common multiplicative plasticity rule which decom-

poses plastic deformation from the deformation gradient Fp (Stomakhin et al.

2013, Ding et al. 2019), we adopt an additive plasticity decomposition based

on the strain rate by ε̇ = ε̇e + ε̇p, where ε̇, ε̇e and ε̇p are strain rate, elastic

portion of strain rate and plastic portion of strain rate, respectively. The flow
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Figure 7.6: Falling containers. The breadth of metal collision behaviours at-
tainable with the Johnson-Cook plastic model is illustrated. We demonstrate
metallic deformation with various strain hardening exponents n correspond-
ing to Fig. 7.5.

Figure 7.7: We visualise the accumulated equivalent plastic strain of falling
containers for each particle in Fig. 7.6.

rule defines the relationship between the plastic strain increment and devia-

toric stress increment. We present the yield condition f(s, εp) = s−σy(εp) ≤ 0

as a function of equivalent stress s =
√

3J2 =
√

3
2
σMPM
D σMPM

D (proportional

to magnitude of second invariant of the deviatoric stress) and equivalent

plastic strain εp from the additive decomposition of strain tensor rate. Here

σMPM
D is the deviatoric portion of the stress tensor predicted by our shock

wave constitutive model (further details given in Chapter 7.3.2). σy(ε
p) is the

yield stress function with respect to εp. When a prediction gives f(s, εp) ≥ 0,

the predicted strain contains a plastic strain increment (∆εp ≥ 0) and a fol-

lowing projection is required to yield f(s, εp) to 0, otherwise the strain tensor

still stays within elastic regime. The J2 flow model is able to calculate the

plastic stress increment linearly by assuming that the corrected deviatoric
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stress is perpendicular to the yield surface (illustrated in Fig. 7.4). The

linearization of the yield condition is explained in Eq. (7.5) and the approx-

imation of the plastic strain increment is described in Eq. (7.6). The whole

process can be found in Appendix B.

f(s, εp) +
∂f(s, εp)

∂σij
∆σij +

∂f(s, εp)

∂εp
∆εp = 0 (7.5)

Here ∂f(s,εp)

∂σMPM
ij

= rij where rij is the direction of plastic flow, ∆σMPM
ij represents

the difference between predicted stress tensor and corrected stress tensor

since ∆σMPM
ij = σMPM

ij
∗ − σ∗ij and ∂f(s,εp)

∂εp
= −∂σy(εp)

∂εp
= −Ep where Ep is the

plastic modulus. When Ep is set to 0, the yield function becomes a von-Mises

yield criterion f(s) = s −K2 with a constant K. In this case, the material

presents a perfectly elastic-plastic response. Ep also can be a function of εp,

ε̇p and temperature for hardening and softening effects. The plastic strain

increments are updated at timestep tn+1 as:

∆εp =
s− σy(εp)
3µ+ Ep

(7.6)

where µ is the same shearing modulus of Lamé parameters. It should be

noted that all data flows are operated in the deviatoric portion of both elastic

and plastic strains. Volume changes do not contain plastic deformation in J2

flow rules as ∆εpdd = 0, where d is the problem dimension.

7.3.2 Johnson-Cook Model

Many materials exhibit a significant dependence of yield and flow phenom-

ena on the rate. Studies of metallic behaviours indicate that the yield stress

exhibits significant changes beyond a critical strain rate (Oxley 1963). In-

spired by Zhang et al. (2016), we adopt the Johnson-Cook model as the yield

stress. The Johnson-Cook model is a function of tensile flow stress, in ac-

cordance with strain hardening and strain-rate hardening scheme where the

two components are able to work separately. This relates yield stress with

plastic strain and plastic strain rate as in Eq. (7.7).

σy(ε
p, ε̇p) = (A+B(εp)n)(1 + Cln

ε̇p

ε̇0
) (7.7)
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where A is the yield stress at a reference temperature and strain rate, B and

C are material constants representing the coefficients of strain hardening and

strain rate hardening respectively. ε̇0 is a reference equivalent plastic strain

rate which we keep equal to 1.0 per second in all experiments to reduce

the exploration complexity of parameter tuning. n is the strain hardening

exponent. As claimed in Chapter 7.3.1, if we set n = 0, the yield function

becomes a von-Mises type yield criterion with Ep = 0, A = K2. Following

Zhang et al. (2016), as the Johnson-Cook yield stress is an nonlinear function

of εp, we compute yield stress derivatives with respect to εpeq by Taylor series

expansion and obtain:

Ep =
∂σy(ε

p, ε̇p)

∂εp
= Bn(εp)(n−1)(1 + Cln

ε̇p

ε̇0
) (7.8)

By integrating Eq. 7.8 to Eq. 7.6, we are able to update plastic strain

tensor, and the rest of the strain tensor is elastic strain tensor.

7.4 Simulation Results

We now present our methods with a breadth of materials to demonstrate

the efficacy of our constitutive models in comparison with other constitutive

models. Most of our experiments are set with a high speed impactor. All

examples were run on an Intel Core E5-1650 CPU with 12 threads at 3.20

GHz. The material parameters and grid settings are organised in Table 7.1.

We implement all demos using the Taichi programming language (Hu et al.

2018 2019) and complete surface reconstruction and rendering as post-process

by the SideFX Houdini.

7.4.1 Shock wave effects

We start the examinations of the shock wave effects model with some 2D

demos. Fig. 7.1 depicts a sphere striking a wall in 2D, producing a debris

cloud behind the wall and abrupt damage on the parts away from the im-

pacted area while the stable Neo-Hookean hyperelastic model just presents

general broken chunks. Our work shows the similar shattering patterns as in
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Table 7.1: Material parameters and grid settings of Shock Wave Effects
Model (Plasticity model: Drucker-Parger model (DP) and Johnson-Cook
model (JC)).

Example ∆x ∆t/timestep N ρ E ν Gp, Hp c0 plastic model

2D wall 2× 10−4 1.8× 10−6 39K 1 3× 105 0.2 2092 DP (θc = 5× 10−2,

θs = 1.5× 10−2)

Gelatin cube 5× 10−3 6× 10−6 106K 1 5× 102 0.2 2092

Multiple walls 2× 10−4 1.8× 10−6 39K 1 3× 105 0.2 2092 DP (θc = 5× 10−2,

θs = 1.5× 10−2)

Multi-material cube 7× 10−3 5× 10−6 47K 1 5× 104 0.2 1092, 2092 DP (θc = 4× 10−2,

θs = 1.5× 10−2)

Watermelon 2.5× 10−3 2× 10−7 535K 1 (4× 104, 0.3 7× 1010, 200 2092 DP (θc = 4× 10−2,

4× 103) θs = 6× 10−3)

Apple 2.5× 10−3 2× 10−8 188K 1 (3× 106, 0.2 3× 1015, 200 2092 DP (θc = 4× 10−2,

1× 106) θs = 6× 10−3)

Container 2.8× 10−3 1× 10−6 76K 1 5× 106 0.35 2092 JC(A = 1557, B = 625,

C = 1, n = 0, 0.5, 1)

Cars 2.8× 10−3 1× 10−6 340K 1 5× 105 0.2 2092 JC(A = 1557, B = 625,

C = 1, n = 0.5)

a hyper velocity impact research (Watson and Steinhauser 2017). The shock

wave effects model can also handle a wide range of impact speed. For exam-

ple, in Fig. 7.3, we shoot a bullet to break through several walls. With the

descending speed of the bullet, the impact creates different level of destruc-

tion. We further present key shockwave-impact features in Fig. 7.2 through

comparing the Fixed Corotated elastic model against our shockwave effects

model (with different bulk wave speed c0) simulating a multi-material object.

In the second and third rows, our model exhibits abrupt damage with shat-

tering particles when a sphere collides with the multi-material cubes. Also

notice the shock wave effects model with greater c0 carries greater energy

and produces more destructive damages. We visualise the wave transition

for showing the shockwave directly. We conduct an experiment in which a

metal bullet is shot at a piece of gelatin cube in Fig. 7.8. It achieves com-

patible visual effects as in a shooting experiments in Fig. 7.9. Compared to

the stable Neo-Hookean model, our model can better capture the clear path

caused by the bullet and the fluid-like bubble surface movement as a result

of the shockwave.

It is feasible to integrate the shock wave effects model to the SPB-MPM
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Figure 7.8: A metal bullet is shot at a piece of clear gelatin. The bullet
passes through the cuboid. Compared to the stable Neo-Hookean hyperelas-
tic model, our model is able to better capture the clear path with bubble
following behind due to the huge impact force.

fracture scheme. The intuitive exploration of a breadth of organic and elastic

material behaviours in impact scenes has been demonstrated in following

experiments. We shoot a bullet to a multi-material watermelon (we set the

rind as a stiff hyperelastic material) in Fig. 7.10 and an apple (the apple skin

is treated with a greater Youngs modulus E) in Fig. 7.11. The watermelon is

broken into pieces by impact forces, with juicy red flesh and seeds spraying

in the air. Similar to the watermelon, the apple exhibits organic fractures

and large amounts of juice droplets splashing from the damaged pulp with

high visual fidelity. Note that for the organic fruit, multi-material cubes in

Fig. 7.2 and walls, we adopt the finite-strain multiplicative plasticity law

employing the Drucker-Prager plasticity model (Stomakhin et al. 2013).

7.4.2 Plasticity

For metallic deformation under high velocity impact, we simulate metals with

our Johnson-Cook plastic scheme. Inspired by Ma et al. (2009a), the strain

hardening exponent n is usually chosen (0, 1) to depict metal’s ability to resist
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Figure 7.9: A reference picture in a shooting experiment that a bullet is fired
into clear ballistic gelatin (Channel 2015).

plastic deformation. In Fig. 7.6, we test containers with various choices of

n: 0, 0.5, 1. For n = 0.5 (middle) and n = 1 (right), the container behaves

like a stiffer material compared to the softer, more plastic result on the left

side. This is due to the strain increase during collision, resulting in a greater

yield stress in the yield criterion. For n = 1 the container exhibits the least

plastic deformation. We visualise the equivalent plastic strain of all particles

in Fig. 7.7. These plastic deformation distributions are consistent with our

visual effects. This can be seen in n = 0.5 by matching the wrinkle on the

side of the container in Fig. 7.6 to a blue wrinkle of high plastic deformation

in Fig. 7.7. We also demonstrate a common car crash scene in Fig. 7.12 to

further display the metallic deformation in impact scenario. In this case, the

rubber wheels are only simulated by the shock wave effects model. We do not

apply the SPB-MPM coupling framework to metal plasticity. Metal tearing

is caused by plasticity.

7.5 Conclusion

In this chapter, we propose a shock wave effects model and a metallic plastic

model to describe the prominent features of high velocity impact, which

are unattainable through general constitutive models. To demonstrate the

volumetric response in shock-compressed solids, we adopt the simplified Mie-

Grüenisen EOS as a hydropressure term to replace the pressure term in the

stable Neo-Hookean model. To model metallic behaviours at high strain
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Figure 7.10: A metal bullet is shot at a fresh watermelon. The impact
forces cause juicy pink flesh to explode and spray mist in the air, showcasing
intricate fractures and realistic dynamics.
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Figure 7.11: We shoot a bullet at an apple fixed on a tube, illustrating dy-
namic, organic fracture and debris spray using the shock wave effects model.

rate, we adopt the Johnson-Cook strain and strain-rate hardening scheme.

We showcase a wide variety of demos to illustrate the compelling features of

high velocity impact scenarios our model can reproduce, obtaining a breadth

of fracture effects of organic fruits, soft bodies and multi-material deformable

objects.

101



Figure 7.12: Car crash scene. The shock wave effects and the metal plastic
model have been applied to metallic materials.

102



Chapter 8

Conclusion and Future Work

In this chapter, we conclude the thesis by summarising our works. We also

discuss the possible future work directions to resolve current limitations.

8.1 Conclusion

The simulation of elastoplastic materials undergoing large deformation and

topology change is a popular topic in Computer Graphics, Mechanical Engi-

neering, and other fields. Modelling impact behaviours is one of their most

important applications. In this situation, how to cleverly represent material

geometry topological changes as well as stably animate fractures with arbi-

trary crack patterns remains a challenging problem. This thesis has reviewed

state of the art technologies from the perspective of Eulerian/Lagrangian

views, and have exploited two popular methods of the existing computer

graphics methods: Material Point Method and Peridynamics. This thesis

focuses on the development of novel hybrid simulation methods based on

MPM and PD to robustly and intuitively animate elastoplastic materials

with compelling fracture effects (e.g. brittle and ductile fractures). Each

method in this thesis independently solves an existing problem or proposes

a novel approach to certain simulation scenarios. Together, they contribute

to the unified goal of simulating elastoplastic materials as well as fracture

effects.
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The traditional MPM exhibits instability numerical failures around dis-

continuous particle distribution. To heal this problem, we propose an integral-

based MPM by adopting a PD integral energy density function to replace

the partial-derivative stress term in the weak form from the continuum me-

chanics theory. We discretize the weak form using the standard MPM shape

function with the exception that the term involved partial derivatives is aug-

mented by our integral force density function. This augmentation sidesteps

the special treatments of the standard MPM in handling the discontinuous

particle distribution. We design the integral energy density function with

elastic, plastic, viscoelastic and fracture models with PD formulation. Fi-

nally, a bond failure law is combined to remove particular PD bonds. The

integral-based MPM outweighs the differential-based MPM in stability. The

details of this work have been discussed in Chapter 5.

However, the integral-based MPM adds PD bonds for each material point

which is costly in computation. For example, one material point in unbroken

area also needs loop all family particles at each time step. Taking one step

further from the first method, we look for a novel PD-MPM combination

to focus on broken areas. Because handling myriad fragments produced by

impact forces, especially in high velocity impact scenarios, requires an effi-

cient strategy to handle numerous evolving cracks. Our second contribution

is to formulate a rigorous coupling governing equation which integrates the

state-based PD with the MPM (Superposition-based MPM). The PD evolves

as a result of failure evolution in the critical areas of the MPM domain. As

such, only few MPM particles in high released energy region are transformed

into PD particles. The SPB-MPM is able to robustly derive entire prob-

lem domain while retains the PD abilities of intuitively animating fractures.

Giving a low-overhead PD computation to the current MPM, this method

allows for simulating a breadth of fracture effects, including tracking branch-

ing and evolving crack fronts. The details of this work have been discussed

in Chapter 6.

Moreover, general constitutive models in continuum solid theory are not

able to produce the prominent features in high velocity impact scenarios.
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The characteristic behaviours appears under high strain rate and varying

environment conditions. The rapid impact usually introduces shock wave

transition within objects. Our third contribution is to introduce a shock

wave effects model and a metallic plastic model. The shock wave effects

model augments the stable Neo-Hookean model with a hydropressure term.

The metallic plastic model adopts the addictive plasticity theory and hard-

ening schemes. Above models are capable of demonstrating intricate and

characteristic impact behaviours in simulating organic fruits, other elasto-

plastic solids and metallic materials undergoing impact. The details of this

work have been discussed in Chapter 7.

8.2 Future Work

The research in this thesis laid a foundation for the future work of MPM in

modelling fractures and high velocity impacts, and opened up several new

directions.

Surface reconstruction. This paper obtains intricate fracture details

and arresting impact phenomenon with high visual fidelity. However, the

final effects are limited to the surface reconstruction strategy. Most of the

demonstrations in this thesis are particle-based. To export compelling effects

needs to reconstruct surface based on particles. This study does not thor-

oughly explore surface reconstruction algorithm. Instead, we adopt the VDB

volume reconstruction in SideFX Houdini which reconstructs volume based

on voxels and automatically builds a smooth surface. The VDB loses some

details on object surface and edge sharpness of fragments. Wang et al. (2019)

proposed a mesh-cutting strategy based on the MPM simulation data and

treated it a post process after the simulation. This method is noteworthy due

to that it allows for mesh-based object input and uses mesh cutting, sewing

approach to handle fractures on surface. It avoids the smoothness operation

of the VDB reconstruction. However, the generation of new meshes is cruel

in practical implementation. The mesh cutting and sewing is important in

visualising brittle fractures, which is necessary in the future work.
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Anisotropic fracture modelling. We provide computer graphics with

a J2 return mapping method that enables metallic materials to be deformed

with hardening effects. This linear mapping method, with an associative

flow rule, successfully avoids the tedious iterations in projecting stress ten-

sor back to the Johnson-Cook yield surface. However, the associative flow

rule assumes that the corrected stress tensor is perpendicular to the yield

surface which means this linear model is not suitable to anisotropic plas-

tic materials. The anisotropic plasticity has been solved by an inspiring

work (Wolper et al. 2019) with an non-associative flow rule. It is designed

with the continuum damage field. Our Eigenerosion scheme can be extended

to an anisotropic damage model when encoding fibre direction within the

energy term in of Eq. (6.10) as Φ(σ+) = Aσ+ : σ+A, where A is a matrix

encoding two normalised direction vectors (leading to a similar formulation

in the work (Wolper et al. 2020)). The studies in this research focuses on

isotropic materials with the superior PD method. Above reformulation of

the Φ(σ+) term in Eigenerosion method provides us an opportunity to model

anisotropic fractures with the outstanding features of the SPB-MPM, such

as brittle glasses.

Phenomena modelling. Simulations of high velocity impact was ini-

tially explored by researchers in mechanical field (Silling et al. 2017, Watson

and Steinhauser 2017). One of their research aims is to borrow the scientific

analyses for solving some necessarily important safety concerns in impact sce-

narios, such as impact of a bird on an aircraft structure and its ingestion by

a jet engine in aviation. These simulations are based on comprehensive data,

including specific material properties under given room temperature from

real life experiments. Furthermore, the researchers were able to examine the

computational results with accurate data extracted in real life experiments.

Our method currently focuses on exhibiting phenomena based on general ob-

servations, such as car crash. Thus we simplify the models and EOS from

the comprehensive mechanical field studies and introduce them to computer

graphics. As such, we do not thoroughly conduct numerical analysis for our

methods. However, we assuage this limitation by comparing the method

with some footage shots (as in Fig. 7.8 and Fig. 7.9). We concluded that
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our methods are able to obtain similar fracture effects. Future work direc-

tion is to explore our methods on more serious experiments (e.g. bird strike

and explosion behaviours). Strictly integrating material physical properties

to current methods enables us to expand the research in mechanical safety

topics and helps with examination our methods with experimental data.
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Appendix A

PD weak form

The updated Lagrangian time discretization of the weak form in Eq. (6.3)

leads to an integration form of different domain contributions (Jiang et al.

2016):∫
ΩPD

ρa · (wMPM + wPD)dx+

∫
ΩMPM\ΩPD

ρa · wMPMdx =

−
∫

ΩPD
σ(uMPM + uPD, t) : ∇wMPMdx+

∫
ΩPD

b(x, t)wPDdx

−
∫

ΩPD
σ(uMPM + uPD, t) : ∇wPDdx

−
∫

ΩMPM\PD
σ(uMPM) : ∇wMPMdx+

∫
ΩMPM

b(x, t)wMPMdx (A.1)

where variables are defined as in Equation (6.1)-(6.3) and
∫

ΩMPM b(x, t)w
MPMdx =∫

ΩMPM\PD b(x, t)w
MPMdx+

∫
ΩPD

b(x, t)wMPMdx.

After subtracting Equation (6.4), which contains the MPM related items

from above formulation, we obtain the weak form of the governing equation

related to the PD domain as:∫
ΩPD

ρ(x, t)a·(wPD)dx = −
∫

ΩPD
σ(uC+uP , tn) : ∇wPdx+

∫
ΩPD

b(x, t)·wPDdx

(A.2)

PD, when used to capture local fracture dynamics, is mainly driven by

local deformation state instead of its own body force (and acceleration) so we

drop body force (and acceleration) items here for simplicity. Following Sun

et al. (2019), we can express the remaining integration
∫

ΩPD
σ(uC + uP , tn) : ∇wPdx
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into the form of internal energy stored in PD bonds. Starting with a given

deformed bond state Y between a pair of PD particles xp and xq, we define

the PD deformation gradient F PD
p and PD force vector T PDi :

Fik =

∫
Hp

ωPD(X)YiXlKkldVq (A.3)

T PDi = ω(X)det(F )F−1
ij σijKklXl (A.4)

where ω(X) is a weight function for bond X. Following Sun et al. (2019), we

assume the internal energy increase on all the bonds in the family as they

deform from state p to q with a small change dY = wq − wp:∫
ΩPD

T PD · dY dx =

∫
ΩPD

∫
Hp

ω(X)det(F )F−1
ij σijKklXldYidVqdx

=

∫
ΩPD

(det(F )F−1
ij σij)(

∫
Hp

ω(X)dYiXlKkldVq)dx

=

∫
ΩPD

det(F )F−1
ij σijdFikdx = −

∫
ΩPD

σ(u) : ∇wPDdx (A.5)

This is a backwards proof. Then we seek to write the left side of above

equation in the form of classic PD integration. Then internal energy function

can also be expressed in Equation (A.6).∫
ΩPD

T PD · dY dx =

∫
ΩPD

∫
ΩPD

(wPDq − wPDp )T [xp, t
n] < xq − xp > dxpdxq

=

∫
ΩPD

∫
ΩPD

wPDq T [xp, t
n] < xq−xp > dxpdxq−

∫
ΩPD

∫
ΩPD

wPDp T [xp, t
n] < xq−xp > dxpdxq

=

∫
ΩPD

∫
ΩPD

wPDp T [xq, t
n] < xp−xq > dxpdxq−

∫
ΩPD

∫
ΩPD

wPDp T [xp, t
n] < xq−xp > dxpdxq

= −
∫

ΩPD

∫
Hp

wPDp (T [xp, t
n] < xq − xp > −T [xq, t

n] < xp − xq >)dVqdxp

(A.6)

where force vector T PD of point p is summation of all bond forces defined

on bond vector < xq − xp > with xq is a connected neighbor point of xp.

We can write T PD =
∫
Hp
T [xp, t

n] < xq − xp > dVq. Without lose generality,

T PD =
∫

ΩPD
T [xp, t

n] < xq − xp > dxq. Here Hp defines the neighbourhood.

In the above proof, we swap the dummy index q with p to get the final result.
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Appendix B

J2 Plasticity Flow Rule

With a fourth-order stiffness tensor of material properties Cijkl (in our work,

Cijkl = 2µ), µ is the shear modulus computed from Young’s Modulus Eand

possion ratio ν. We describe the plastic strain increment as ∆εp
n+1

ij . Below

is the return mapping algorithm.

σn+1
ij = σn+1∗

ij + ∆σij

∆σij = −Cijkl∆εp
n+1

ij (B.1)

where σn+1∗

ij is the predicted deviatoric stress tensor, σn+1
ij is the corrected

stress tensor on the yield surface in Fig. 7.4. With associative flow rule, the

plastic strain increment vector is normal to the yield surface so thus the

relation of plastic strain increment and equivalent plastic increment is:

∆εp
n+1

ij =

√
3

2
∆εp

n+1

nij (B.2)

The direction of plastic flow in associative flow rule can be obtained with

:

rij =
∂f(s, εp)

∂σij
=

3sij
2s

=

√
3

2
nij (B.3)

nij =

√
3

2

sij
s
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Substitutve the above equations to Eq. (7.5), we obtain:

f(s, εp) +
∂f(s, εp)

∂σij
∆σij +

∂f(s, εp)

∂εp
∆εp

n+1

= f(s, εp) +

√
3

2
nij(−2µ

√
3

2
∆εp

n+1

nij)− Ep∆εp
n+1

= f(s, εp) +

√
3

2
nij(−2µ

√
3

2
∆εp

n+1

nij)− Ep∆εp
n+1

= f(s, εp)− 3µ∆εp
n+1 − Ep∆εp

n+1

= 0 (B.4)

Then we update the equivalent plastic strain and yield stress as following:

∆εp
n+1

=
f(s, εp)

3µ+ Ep
(B.5)

εp
n+1

= εp
n

+ ∆εp
n+1

(B.6)

σn+1
y = σny + Ep∆εp

n+1

(B.7)

Finally, we project the deviatoric stress tensor back to yield surface by:

σn+1
ij =

σn+1
y

sn+1∗
σn+1∗

ij (B.8)

where sn+1∗ is equivalent stress in terms of predicted deviatoric stress

tensor σn+1∗

ij .
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L. J., 2005. Meshless animation of fracturing solids. ACM Transactions

on Graphics (TOG), 24 (3), 957–964.

Ram, D., Gast, T., Jiang, C., Schroeder, C., Stomakhin, A., Teran, J. and

Kavehpour, P., 2015. A material point method for viscoelastic fluids, foams

and sponges. Proceedings of the 14th ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, 157–163.

Randles, P. and Libersky, L. D., 1996. Smoothed particle hydrodynamics:

some recent improvements and applications. Computer methods in applied

mechanics and engineering , 139 (1-4), 375–408.
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