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Abstract: Numerous experiments in the past decades recurrently showed that a transposed-letter
pseudoword (e.g., JUGDE) is much more wordlike than a replacement-letter control (e.g., JUPTE).
Critically, there is an ongoing debate as to whether this effect arises at a perceptual level (e.g.,
perceptual uncertainty at assigning letter position of an array of visual objects) or at an abstract
language-specific level (e.g., via a level of “open bigrams” between the letter and word levels).
Here, we designed an experiment to test the limits of perceptual accounts of letter position coding.
The stimuli in a lexical decision task were presented either with a homogeneous letter intensity
or with a graded gray intensity, which indicated an unambiguous letter order. The pseudowords
were either transposed-letter pseudowords or replaced-letter pseudowords (e.g., jugde vs. jupte).
The results showed much longer response times and substantially more errors in the transposed-
letter pseudowords than in the replacement-letter pseudowords, regardless of visual format. These
findings favor the idea that language-specific orthographic element factors play an essential role
when encoding letter position during word recognition.

Keywords: word recognition; letter position coding; perceptual factors; lexical decision; ortho-
graphic processing

1. Introduction

An experimental phenomenon that revolutionized the front-end of models of visual
word recognition is the transposed-letter effect. The transposed-letter effect is defined as
the difference in performance (i.e., response times and errors rates) between the transposed-
letter and replaced-letter pseudowords (e.g., JUGDE is more wordlike than its control
JUPTE) [1–3]. The transposed-letter effect is used to rule out the fixed slot coding scheme
of the influential interactive activation model [4] and is the driving force behind many
visual word recognition models, with more flexible input coding schemes for the letter
position. Some of these models (e.g., overlap model [5]) stress the perceptual uncertainty
due to the limitations of the visual system, when coding the letter position (e.g., the letters
G and D in JUGDE would also activate the nearby positions, thus creating a percept of the
word JUDGE)—note that these models have their roots in more general models of visual
attention [6]. In contrast, other models (e.g., open bigram models) focus on a language-
specific, orthographic component, based on an “open bigram” level between the letter and
word layers [7,8])—not that JUGDE would share all its open bigrams with JUDGE [JU, JD,
JG, JE, UD, UG; UE, DE, GE], except for JD/DG.

Despite dozens of experiments on the transposed-letter effects (for review [9]), there
is still no consensus on whether the perceptual or the orthographic accounts provide a
better interpretation of the findings. Some findings appear to favor perceptual accounts—
transposed-letter effects are minimal in a non-visual tactile modality like braille [10]—
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keeping in mind that orthographic processing with braille words and printed words is
quite similar [11]. In contrast, other findings appear to favor the orthographic account—
transposed-letter effects are greater for letter strings than for strings of different types
of objects (e.g., numbers, symbols, [12,13]), presumably because of orthographic-specific
processing.

One direct way to test the explanatory power of perceptual accounts of letter position
coding is by manipulating visuoperceptual elements. This was the strategy followed
by Marcet et al. [14] in a series of lexical decision experiments (i.e., deciding whether
the presented item is a word or not). The idea was that highlighting the critical letters
or presenting the letters serially would make them easily noticeable and thus reduce the
perceptual uncertainty regarding the encoding of letter position. On a similar vein, previous
research showed that the encoding letter identity (i.e., another component of orthographic
processing) could be modulated by the visuoperceptual elements. For instance, in lexical
decision, Grainger et al. [15] found that the neighborhood frequency effect (i.e., the slower
identification for SPICE than for SAUCE due to the higher frequency neighbor SPACE) was
greatly reduced when participants fixated on the disambiguating letter (i.e., I in SPICE).

Returning to the issue of the letter position coding, if the transposed-letter effect was
drastically reduced with a visuoperceptual manipulation, this would favor perceptual
explanations of letter position coding over orthographic accounts. Alternatively, if the
transposed-letter effect is immune to a visuoperceptual manipulation, this would pose great
difficulties on the perceptual explanations of letter position coding and it would definitely
favor the orthographic accounts. To test these accounts, in Marcet et al.’s [14] second
experiment, the items could be presented either with the critical transposed/replaced
letters highlighted or not (e.g., CHOLOCATE; CHOLOCATE). Marcet et al. [14] found a
reduction in the magnitude of the transposed-letter effect, relative to the standard format.
The transposed-letter effect was still quite large for the highlighted pseudowords (109 ms
in the latency data; more than 14.6% in the error data). In their third experiment, the
letters were presented serially, one at a time—each letter was presented for 200 ms in
this corresponding relative position. The idea was that, using this serial procedure, the
letters in the string could not be processed in parallel, thus it would resemble braille
reading. While the transposed-letter effect in the serial format was smaller than in the
standard “immediate” format, the size of the effect in the serial presentation was quite large
(75 ms in the latency data; more than 27.9% in the error data). Following Massol et al. [12],
Marcet et al. [14] concluded that the transposed-letter effect had both a perceptual locus
(common to all visual objects) and an orthographic locus (specific to letter strings).

In the present paper, we employed a novel perceptual manipulation to test the limits
of the perceptual accounts of letter transposition effects. The idea was to combine a
visuoperceptual element (namely, visual intensity) with the letter order. Specifically, each
letter of an item had progressively more intensity (i.e., grading gray manipulation; see
left panel of Figure 1). For the homogeneous format, we chose a constant intermediate
intensity of the letters (see top panel of Figure 1).
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Figure 1. An instance of a graded gray format (left) and a homogeneous format (right) for the
transposed-letter pseudoword jugde.

The idea of the manipulation was that the grayscale might work as feature that
facilitated letter position coding; in the example from Figure 1, the g is not only to the left of
d but is also lighter. Clearly, if participants encode the letter ordering information coming
from the increasing intensity of the letters while reading words, one would expect a smaller
transposed-letter effect than in the control, homogeneous condition. The rationale was that,
when processing a letter string, this grading gray manipulation might help better establish
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the locational gradient that underlay the letter position coding (see Figure 2 in [8] for an
example). Thus, at an empirical level, we explored the robustness of the transposed-letter
effect to a visuospatial manipulation; and at a theoretical level, the present experiment
tested whether the transposed-letter effect diminished relatively to a homogeneous gray
format, as a perceptual account would predict. Alternatively, an orthographic account
would posit that the transposed-letter effect would be independent of the format.
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Besides its theoretical implications for visual word recognition models, our visuop-
erceptual manipulation of the letter order might (if successful) be useful to help with
reading in individuals with letter position dyslexia. This is a deficit that affects how readers
encode letter position within words [16]. If the gray grading manipulation diminishes the
transposed-letter effect, one might use this manipulation in text reading, for individuals
with letter position dyslexia. Thus, the gray grading manipulation could complement,
at the level of letter position coding, the dyslexia-friendly typefaces that are currently
available for the level of letter identity coding [17].

2. Materials and Methods
2.1. Participants

The participants were 36 DePaul University undergraduate students (mean age = 20.2
years old; range: 18–26), all native speakers of English. They had normal (corrected) vision
and signed a consent form before the experiment. None of the participants reported having
reading problems.

2.2. Materials

We employed the set of 120 transposed-letter pseudowords (e.g., jugde; baseword:
judge) and replacement-letter pseudowords (e.g., jupte) from [1]. All stimuli were 5 letters
in length. The mean baseword frequency was 15.6 per million words (range: 0.1–97.3) and
the mean orthographic Levenshtein distance OLD20 (i.e., a measure of orthographic den-
sity) was 1.7 (range: 1.3–2.4) in Balota et al.’s [18] English Lexicon Project. A set of 120 words
of similar length as that of the pseudowords was used for the purposes of lexical decision
(mean word frequency = 91.2 per million [range: 9.1–269.4]; mean OLD20 = 1.7 [range:
1.1–2.4]). The entire list of items (words, transposed-letter pseudowords, replacement-letter
pseudowords) is presented in Appendix A. To create the images for the grading gray and
the homogeneous stimuli, we wrote a routine in R—the code was presented in Appendix B.
We created four experimental lists composed of 240 trials, to counterbalance the stimuli
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across all four conditions, following a Latin Square design. For instance, List 1 would
present the transposed-letter pseudoword jugde in grading gray; List 2 would present the
transposed-letter pseudoword jugde in homogenous format in List 2; List 3 would present
the replacement-letter pseudoword jupte in grading gray; and List 4 would present the
replacement-letter pseudoword jupte in a homogeneous format. Each list was composed
of 120 words, 60 transposed-letter pseudowords (30 in grading gray format; 30 in homoge-
neous format), and 60 replacement-letter pseudowords (30 in grading gray format; 30 in
homogeneous format).

2.3. Procedure

Testing took place in a quiet room. We employed DMDX [19] with Windows-based
computers to present the stimuli and collect the responses. On each trial, a 500-ms fixation
point (“+”) preceded the stimulus item’s presentation. The item was on the screen until
response—or when a 2000-ms deadline passed. Participants had to decide whether the
stimulus was a word in English or not, by pressing the “yes” key or the “no” key. The
instructions stressed both speed and accuracy (i.e., “be as fast as possible but trying to keep
low the number of errors”). A practice list composed of 16 trials (8 words, 4 transposed-
letter pseudowords, 4 replacement-letter pseudowords) preceded by 240 experimental
trials. There were short breaks every 80 trials. The session lasted approximately 15 min.

3. Results

For the analyses of the response time (RT) data, we excluded the error responses
(12.9% for pseudowords; 7.4% for words) and the latencies that were shorter than 250 ms
(less than 0.1%). As the deadline for a response was set to 2000 ms, correct RTs could not
be longer than the said deadline. Figure 2 presents the averages per condition (with the
bars representing the standard errors) for each of the pseudoword stimuli conditions.

To analyze the pseudoword data, we conducted frequentist and Bayesian ANOVAs in
JASP 0.14.1 [20] on the participants’ means per condition with Type of Pseudoword (Letter
Transposition, Letter Replacement) and Format (Graded, Homogeneous) as fixed Factors.
Importantly, the Bayesian ANOVAs allowed us to measure the likelihood of the null vs.
alternative hypotheses, given the data. For instance, a BF10 value of 5 would be interpreted
as the alternative hypothesis being 10 times more likely than the null hypothesis, with
these dataset (e.g., BF10 > 3 would be interpreted as “substantial evidence” in favor of
the alternative hypothesis—note that BF10 values less than 1 reflect evidence toward the
null hypothesis. To analyze the word data, the only fixed factor was Format (Graded,
Homogeneous). Of note, we present ANOVAs rather than linear mixed-effects models for
simplicity—needless to say, the analyses using these models produced the same pattern
of findings.

3.1. Word Data

Lexical decision times were longer for the graded gray words than for the homoge-
neous words (657 vs. 639 ms), F(1.36) = 8,27, MSE = 689.3, p = 0.007, BF10 = 6.74. Error rates
were only slightly higher for the graded gray than for the homogeneous words (7.7 vs.
7.0%), F(1.36) = 2.31, MSE = 3.28, p = 0.14, BF10 = 0.62.

3.2. Nonword Data

Lexical decision times were substantially longer for the transposed-letter pseudowords
than for the replacement-letter pseudowords (see Figure 2), F(1.36) = 102.54, MSE = 2120.7,
p < 0.001, BF10 = 8.67 × 1011. Neither the main effect of format nor the interaction between
the two factors approached significance (both Fs < 1; format: BF10 = 0.296; interaction:
BF10 = 0.282).

We found a greater percentage of errors for the transposed-letter pseudowords than for
the replacement-letter pseudowords (see Figure 2), F(1.36) = 35.35, MSE = 76.32, p < 0.001,
BF10 = 2.21 × 109. The effect of format barely reached the significance level, F(1.36) = 4.51,
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MSE = 18.62, p = 0.041, BF10 = 0.44, and, more importantly, there were no signs of an
interaction between the two factors, F < 1, BF10 = 0.24.

4. Discussion

The main aim of the present experiment was to test whether a visuoperceptual manip-
ulation that was perfectly correlated to letter order (a graded gray manipulation) could
help encode letter position—serving as an additional letter order cue—as compared to a
homogeneous gray condition (see Figure 1). The rationale behind this manipulation was
that the letter position and letter identity could be thought as perceptual features to be
bound, and hence binding errors are possible. By adding an extra perceptual cue—the gray
tone, we hypothesized that the transposed letter effect could be attenuated. The results
do not show such attenuation. First, the visuoperceptual manipulation had a harmful
impact on the word stimuli (i.e., faster responding in the homogeneous than in the graded
gray format). Second, and more importantly, we found no signs of a modulation of the
transposed-letter effect for pseudowords as a function of visual format. Indeed, the Bayes
Factors revealed that the data were most consistent when there was a lack of interaction
between the two variables.

The present experiment represents yet another demonstration of the difficulty of
drastically reducing the transposed-letter effect using a visuoperceptual manipulation. As
stated in the Introduction, Marcet et al. [14] found a slight decrement in the transposed-
letter effect when the critical letters were highlighted (e.g., CHOLOCATE) relative to
the standard format—note, however, that the transposed-letter effect for the highlighted
pseudowords was still quite large. Here, by using a visuoperceptual manipulation that
offered precise information of letter order (i.e., the initial letters were in a less pronounced
intensity than the final letters; see Figure 1), we found no signs of better encoding of letter
position for the pseudoword stimuli—further, this was accompanied by some processing
cost for the word stimuli.

Our findings have three clear-cut implications. At a theoretical level, they favor the
view that a critical component of letter position coding occurs at an abstract level [12,14].
Thus, we believe that letter position encoding might be better conceptualized as implying
several processing stages—from an early more perceptual process (presumably via per-
ceptual noise shared with other visual objects) to a later orthographically-specific process.
There are currently hybrid models that take elements from both perceptual and ortho-
graphic accounts [21]. At a methodological level, a potential avenue of the grading gray
manipulation would be to test how it might interact with the serial position function of
letter positions in target-in-string tasks, where the letter string is presented for a limited
time (less than 100 ms) and participants have to indicate the identity of one of the letters—
note that for a homogenous format, previous research has typically showed a W-shaped
function in accuracy (see [13,22]). Finally, at a more practical level, the similar performance
for the transposed-letter pseudowords like JUGDE and JUDGE in skilled adult readers
suggests that the grading gray perceptual manipulation might not help reading in individ-
uals with letter position dyslexia. Indeed, the word data indicate that our visuoperceptual
manipulation might impair word processing with no apparent benefit.
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Appendix A

List of stimuli in the experiment
Words: boost; solve; kings; slave; porch; risen; stock; brave; loath; rally; steer; brief;

likes; habit; drums; sides; pride; exile; marks; sword; swept; third; lyric; brass; ponds; paint;
graph; sixty; glass; smash; brick; tails; bound; slots; medal; alien; sorry; faith; glare; angle;
crook; cover; crisp; ankle; arrow; purse; means; haste; debts; kneel; barge; flash; bills; heard;
taxes; agree; hosts; prone; merit; views; fence; shape; signs; inner; basic; squad; think; blink;
bears; spent; shade; flags; field; slope; rules; great; light; apart; craft; lunch; hairy; count;
crawl; store; flock; terms; slice; reply; agent; drama; woman; pound; ivory; spoon; sharp;
begin; asked; raise; scare; thing; grant; front; crowd; scene; parks; union; smart; state; enter;
apple; shame; ranks; stink; guess; limit; water; track; loose; young; stage.

Pseudowords (TL-pseudowords, RL-pseudowords): loewr, loanr; golve, gatve; spary,
sposy; tlels, tfols; selet, satet; celrk, cohrk; mienr, miosr; scraf, scnef; laeks, laots; cuoch,
caech; rievr, rianr; sener, sacer; colck, catck; maigc, maoyc; cluod, clead; trian, troen; jials,
jeols; friut, freot; cions, cuens; ruond, reand; nedes, netas; hevay, henoy; pliot, pfeot; gievn,
giosn; paerl, puorl; banrs, bascs; baord, buerd; sutdy, sehdy; sitck, sofck; faecs, faons;
muont, maent; hlils, hfels; macrh, masnh; fanit, faset; faatl, faefl; cerek, cusek; forwn,
fenwn; anrgy, anspy; toewr, tounr; abvoe, abnue; mokns, motcs; ruogh, reagh; bahte, bakfe;
piont, peant; whloe, whtae; litfs, likls; tihef, tefef; sheos, shuas; botls, bokfs; haeds, houds;
skrit, sknot; culry, cufny; palnt, pofnt; awkae, awfoe; bilbe, bitde; shvae, shnoe; sehep,
sofep; tihgt, titpt; ocaen, ocoun; muisc, muonc; idaes, idous; soebr, soafr; shrot, shnet;
snogs, scegs; jugde, jupte; waogn, waujn; meatl, meokl; vaule, vaote; gilrs, gifcs; setms,
sohms; palys, pokys; raost, reust; paech, puoch; sohot, sekot; chlid, chfod; roibn, roodn;
taech, toich; maojr, maegr; tiegr, tiopr; loevs, loons; borom, bunom; coarl, counl; lagre,
lapne; emtpy, emljy; ealry, eatny; mabye, mafge; notrh, nodnh; oinon, oecon; kinfe, kosfe;
chiar, choer; leomn, leasn; roayl, roepl; spaek, spuok; maets, mouts; braed, bruod; sipce,
sagce; patns, palcs; fiary, foery; riigd, riopd; selep, sofep; uhser, ufner; paepr, paogr; huose,
hease; balck, botck; neevr, neanr; teteh, telah; claen, cloun; flaes, fluos; caeml, caorl; fruad,
froed; baocn, bausn; golbe, gutbe; slels, sfols; crary, cnory; pokla, pofta; nusre, nunce; felsh,
fofsh; croks, cneks; unlce, untce; satly, safky.

Appendix B

Fuction to create the grading gray and homogenous stimuli.
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col.lab=0, col.main=0,fg=0) 
  nchars <- nchar(string) 
  ramp <- colorRamp(c(col1, col2)) 
  coldiff <- rgb( ramp(seq(0, 1, length = nchars)), max = 255) 
  for(i in 1:nchars){ 
   letter <- substr(string,i,i) 
   text(i,1,family=“Courier”, letter, cex=5.5, pos=2, col = coldiff[i] ) 
  } 
dev.off() 
} 
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