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1 INTRODUCTION 

Accidents to navigating vessels have the potential to 
result in loss of life, environmental pollution and 
economic losses. To better understand where and why 
these accidents occur, a significant body of literature 
that might be described as maritime risk analysis has 
developed, particularly within the last decade [23]. 
These methods seek to apply quantitative methods to 
measure the likelihood or consequence of hazards 
such as collisions, groundings and allisions from 
occurring. These risks have an inherent spatial 
component and mapping where these risks are 
highest can help decision makers in both allocation of 
risk control measures and marine spatial planning. 

The multitude and variety of these methods is 
significant, with reviews undertaken by several 
authors [4, 21–23, 28]. A key challenge when 
comparing these methods is that each have their own 

assumptions and limitations that could introduce 
biases and therefore it would be unreasonable to 
assume that any one method works better than others 
in all situations. Whilst this makes evaluation between 
established models difficult, it also makes judgements 
on the suitability and validity of novel methods 
similarly challenging. 

One such novel approach is that of the use of 
machine learning (ML) techniques for maritime risk 
assessment. ML might be described as a subset of 
artificial intelligence whereby algorithms improve 
through experience rather than being explicitly 
programmed. These models can be supervised, 
whereby the model is constructed on data containing 
both input and outputs, or unsupervised, whereby 
structure is sought on unlabelled data. Few have 
sought to apply ML to ship navigation [9, 36] and 
even fewer have attempted to use these methods to 
assess navigation safety [5, 19]. Whilst some have 
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argued that such methods have numerous advantages 
over traditional risk assessment techniques [15], such 
benefits have not been demonstrated within the 
maritime domain.  

A possible solution to this challenge is through a 
systematic evaluation of different methods within a 
common framework, using set criteria against which 
each method can be judged. In [28], a comparison is 
made between 20 models against standardised 
criteria, but without implementing these techniques, 
evaluation is more challenging, particularly where the 
models are proprietary.  

This paper sets out to develop such a framework 
by comparing 10 different maritime risk analysis 
methods and identifying suitable criteria that could be 
used for an evaluation. We make a number of 
contributions; firstly, we conduct a systematic and 
applied evaluation of a selection of the most widely 
researched maritime risk models, in order to highlight 
their methodological strengths and weaknesses. 
Secondly, we introduce four ML techniques and how 
they could be utilised for predicting the likelihood of 
accidents, with some high-level implementations and 
a discussion of opportunities for greater application of 
these techniques. Thirdly, we propose a list of criteria 
through which these methods can be directly 
compared, proposing further work for a multi-criteria 
evaluation of maritime risk models. Whilst the 
evaluation requires further work, we make a number 
of observations on the different techniques to provide 
initial feedback on the capability of ML for maritime 
risk assessment. 

1.1 Case Study 

To achieve these aims, we utilise a case study of the 
waterway between Washington State (United States), 
Vancouver Island (Canada) and British Columbia 
(Canada). This waterway is known as the Puget 
Sound or Salish Sea, and extends from the Pacific 
Ocean, through the Strait of Juan de Fuca, before 
heading north through the San Juan Islands towards 
Vancouver, or south through Admiralty Inlet towards 
Seattle (Figure 1). This area is notable for several 
reasons. Firstly, it has a significant volume of traffic, 
of all types, including cargo and tanker traffic bound 
for various ports and terminals, significant 
recreational and fishing fleets, and major ferry routes. 
Secondly, traffic within the area is managed by Traffic 
Separation Schemes (TSS), pilotage districts, escort 
towage and a cooperative VTS between the United 
States and Canada. Thirdly, the area has been 
extensively studied in other maritime risk studies, 
most notably Vessel Traffic Risk Assessment (VTRA) 
[39]. 

Vessel traffic data from the Automatic 
Identification System (AIS) was obtained from the 
MarineCadastre for June 2018 covering the waterway. 
AIS is an automatic ship reporting system that 
transmits dynamic (positional, speed and course) and 
static (ship type and size) information that can be 
collected to produce high spatial-temporal resolution 
datasets. Furthermore, incident data was available 
from the US and Canadian Coastguards for the years 
2002-2014. 

 

Figure 1. Study Area with TSS overlaid. 

2 CONVENTIONAL METHODS 

Six broad conventional maritime risk analysis 
methods were identified from the literature and are 
discussed below. 

2.1 Risk Matrices and Expert Judgement 

At an operational level, most decisions on maritime 
safety are made using risk matrices. Such an approach 
is also recommended for the screening stage of the 
Formal Safety Assessment [18]. A list of hazards are 
identified and a group of experts or stakeholders 
score the likelihood and consequence against set 
criteria to produce a risk score. Within the study area, 
we might score three hazards as Table 1, noting that 
the navigational complexity of the waterway is such 
that groundings are more likely, but would have 
lower consequences than collisions.  

Table 1. Simple hazard table with 5x5 Matrix _______________________________________________ 
ID  Hazard   Likelihood  Consequence  Risk 
       (1-5)    (1-5)     (1-25) _______________________________________________ 
1  Collision  3     3      9 
2  Grounding  4     2      8 
3  Allision   3     2      6 _______________________________________________ 
 

Such a method enables the inclusion of non-
modelled issues [2] and may be suitable in situations 
where there is little quantitative data. However, such 
an approach has received significant criticism 
regarding the limitations and bias of expert prediction 
[37, 38] or the inherent properties of the matrices [17]. 
Further, only a single score is provided per hazard 
and therefore does not reflect the distribution of risk 
across the study area. As such, it is a highly simplistic 
method of risk assessment, but a useful means of risk 
evaluation [28]. 
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2.2 Incident Rates and Analysis 

By comparing the number of accidents against some 
unit of exposure (such as time or distance), the 
relative risk of incidents between locations and 
situations can be compared [3]. Figure 2 compares the 
number of accidents against the number of hours of 
exposure at 1nm resolution in the study area. A key 
challenge is the relative sparsity of accident data that 
prevents high-resolution output with most locations 
having zero incidents, which might be incorrectly 
interpreted as zero risk. Other criticisms include the 
under-reporting of accidents [14] and the assumed 
static relationship between accidents and traffic [30]. 
One method to overcome this is to calculate an 
accident rate and use the statistical relationship 
between accidents and traffic to estimate the accident 
rate (Figure 2). Whilst this increases coverage of the 
risk map, it loses the influence of spatial factors that 
might elevate risk in certain locations, becoming 
highly sensitive to traffic volume. 

 

 

Figure 2. Calculated Incident Rates (top) and estimated 
incident rate (bottom). 

2.3 Weighted Overlay Analysis 

A further method to include the influence of other 
spatial factors is through a weighted overlay model. 
This approach can be summarised that risk is the 
product of the scores of likelihood factors (L) and 
their weightings (w) with the scores of consequence 
factors (C) and their respective weightings. 

 

NL NC
L C
i i i i

i i

Risk w L w C=   (1) 

In Figure 3, grounding risk is estimated using a set 
of scoring criteria and weightings for traffic volume, 
proximity to shore, proximity to traffic lanes and 
ports. Higher risk areas are shown to the east with 
more complex navigation around the San Juan islands 
than in the middle of the Strait. Whilst such an 
approach enables inclusion of other risk factors and 
the production of high spatial resolution risk maps, 
the choice of weightings and factors are to some 
extent arbitrary, subjective and lacking in treatment of 
uncertainties. 

 

Figure 3. Weighted Overlay Analysis. 

2.4 Geometric Method 

A geometric method is one that aggregates vessel 
traffic into routes, with known distributions and 
frequencies, before performing mathematical 
functions to calculate accident candidates. Whilst 
variations exist [22, 27] the work of [29] has been 
particularly influential and has been adopted by 
IALA’s IWRAP Risk Modelling Tool [8]. An IWRAP 
model was developed for the study area with the 
traffic legs representing the major routes and the 
shoreline inputted as a grounding hazard. From this, 
the risk of collision and grounding can be calculated 
by vessel type and location (Figure 4). 

 

Figure 4. IWRAP Model Results. 

Geometric methods have been widely discussed in 
the literature and have attracted numerous criticisms. 
Firstly, aggregation undermines the individual 
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behaviours of vessels, particularly where vessel 
transits are non-linear, such as in a pilot boarding 
area. Secondly, movements are averaged over 24 
hours and don’t reflect variations in risk throughout 
the day, such as where tidal heights dictate channel 
access, or recreational and fishing activities are 
diurnal. Furthermore, where the data collection is 
limited to short periods of time or conducted in 
quieter places, establishing representative traffic 
distributions may not be possible [24]. Fourthly, the 
method omits some hazard types such as drifting 
vessel collisions [1]. Fifthly, the choice of legs and 
other input parameters is subjective and depending 
on the expertise of the analyst [28]. Sixthly, the results 
are highly sensitive to the causation probability [27] 
which might be chosen with little evidential basis. 
Finally, some have questioned the underlying 
assumption that risk is directly related to traffic flow 
[25, 30]. 

2.5 Domain Analysis 

Ship domain models construct a region of safe water 
that a master wants to keep clear of other vessels or 
fixed objects [12], and by measuring the frequency 
and types of encounters between those vessel 
domains, an indicative measure of collision risk is 
provided [6]. Whilst a multitude of domain designs 
have been proposed [35], we implement the model 
proposed by [40] that is dynamic given vessel size and 
speed. Figure 5 shows the frequency of domain 
encounters across the study area, with the majority 
clustered in the key ports and harbours of Victoria, 
Port Angeles and Anacortes, rather than in the Straits 
to the west.  

 

Figure 5. Domain Analysis Encounters. 

Whilst the inclusion of a temporal dimension 
within domain models overcome some limitations of 
static methods, they have also received criticism. 
Some have questioned both the reliability and validity 
of such methods [11] and also the statistical 
relationship between encounters and collision 
frequency [31]. Furthermore, the interactions between 
vessels have been shown to vary by many other 
factors such as waterway geometry [16] that are not 
captured in existing domain models. Finally, domain 
models are often limited to one-vs-one collision 
situations, omitting the influence of other nearby 
vessels on developing collision situations [6]. 

2.6 Bayesian Networks 

Bayesian Networks are a technique for graphically 
representing a joint probability distribution of a 
selected set of variables and many have argued that 
they are well suited to maritime risk analysis [13, 41]. 
In particular, they enable the inclusion of expert 
judgment, a far greater number of conditions that 
cannot be easily quantified and can be employed in 
situations where there is little historical data, such as 
autonomous vessels or Arctic shipping. Furthermore, 
the impact of risk controls can be tested by interfering 
with specific elements within the model [26]. Finally, 
uncertainties can be reflected within the model. Figure 
6 shows a highly simplified Bayesian Network for 
predicting grounding risk, compared to others 
proposed in the literature [26]. 

 

Figure 6. Simplified Bayesian Network. 

Bayesian Networks are not without their criticisms 
[16, 41]. Firstly, the lack of data makes determining 
priors challenging. Secondly, the reliance on expert 
judgment might introduce biases [37, 38] and limits 
the frequency and scope of such assessments, given 
the time commitments necessary on experts and 
stakeholders. 

2.7 Summary of Conventional Methods 

The six methods described above are broad but 
encapsulate a significant portion of the academic and 
industry techniques used for maritime risk 
assessment. In general, the different methods 
consistently identify higher risk to the east of the 
study area in the constrained and busy waters of the 
San Juan Islands. Whilst we have provided a high-
level introduction to each method and identified some 
key criticisms in each case, conventional methods of 
maritime risk assessment have more fundamental 
challenges. At a workshop of EMSA [7], it was noted 
that existing methods used by risk assessment projects 
had a high cost, used proprietary models of 
consultants, were time-consuming and often failed to 
communicate their uncertainties. Given these 
criticisms, it may be that alternative methods may be 
more suitable for maritime risk assessment. 

3 MACHINE LEARNING METHODS 

ML consists of numerous approaches and 
applications, and here we discuss how three broad 
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categories could be applied to maritime risk 
assessment: namely supervised ML, unsupervised ML 
and deep learning techniques.  

3.1 Supervised Machine Learning 

Predicting whether an accident will occur in a certain 
location or time extent can be framed as a form of 
supervised ML. We seek the function y=f(x) that 
describes the relationship between a response variable 
y, in this case accident occurrence, with a set of 
explanatory factors x, such as traffic volume, depth or 
ship size as vectors in the form (x1,x2,…,xn). In order to 
learn this relationship, a dataset is split into a training 
dataset, through which the model is developed, and 
then tested on a set-aside dataset. The accuracy of 
such models can be gauged through numerous 
metrics, such as classification accuracy (correct 
predictions to incorrect predictions) or prediction 
value error in the case of regression. 

Within the literature, there are relatively few 
applications of ML for maritime risk assessment [5, 
19]. Where these methods have been used, it is more 
common for the training dataset to consist of a static 
list of vessels [19] or port state control inspection 
outcomes [33]. In such a context, a model is developed 
that seeks to predict whether a vessel has an accident 
given the characteristics of the vessel, such as age, flag 
state or type. However, there is much greater scope to 
advance these methods for spatial or real-time 
maritime risk assessment using vessel traffic data and 
spatial-temporal risk factors. 

 

Figure 7. Maritime risk ML framework. 

Figure 7 shows a framework through which such 
methods could be applied to predict vessel traffic risk. 
In stage 1, AIS, incident and other exploratory 
datasets are combined as input features and labels. In 
stage 2, the dataset is either labelled as positive or 
negative (accident occurred or didn’t occur) as a 

classification problem, or the accident frequency is 
calculated as a regression problem by aggregating the 
datasets. In stage 3, the data is split into a training and 
testing dataset, with the ML model developed on the 
former and tested on the latter, before the trained 
model is deployed as a risk analysis tool. 

In this example, the Random Forest ML algorithm 
is used which is an ensemble of decision trees using 
subsets of the training data, with the final prediction 
the average prediction of the individual trees. In the 
first case, the study area was subdivided into grid 
cells and the traffic volume and depth of water in each 
cell used as input features and the number of 
groundings used as the label. The dataset is split into 
a training and testing dataset with the ratio of 80% to 
20%, which once trained, achieved an R2 of 0.58 and a 
Mean Squared Error of 0.004 on the testing set. Figure 
8 shows the results, highlighting the waters around 
the San Juan Islands to the east, where traffic is 
concentrated into small and shallow channels, 
locations where most grounding have historically 
occurred.  

Secondly, the same framework is applied but the 
individual vessel traffic positions and historical 
groundings are used as the positive and negative 
classes respectively. By using features such as vessel 
size (length and draught), depth of water, distance 
from shore and vessel traffic density, the probability 
of ship accident can be predicted. In this case, an 
accuracy of 98.8% is achieved on the test dataset, with 
15 of the 26 groundings and 427,054 of 432,154 non-
groundings correctly predicted. This indicates a high 
recall (0.58) but a low precision (0.003), suggesting the 
model can differentiate groundings, but at the 
expense of a number of false positives. Figure 9 shows 
the predicted transit risk for an Aframax tanker 
approaching Anacortes, with the risk of grounding 
being predicted to increase as it passes through the 
Guemes Channel. 

 

Figure 8: Area Grounding probability using Random Forest. 

In this work, only a limited number of features are 
utilised but there is scope to improve the predictive 
capability through inclusion of weather, waterway 
geometry, ship characteristics and a plethora of other 
risk factors. However, the results show good 
potential; firstly, the results exceed the predictive 
power that depth or traffic volume alone could have 
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achieved. Secondly, in Figure 8, the model is able to 
predict accident risk in locations where no accidents 
have occurred, automatically and at far higher 
resolution than through human input. Thirdly, in 
Figure 9, even without local historical accident data, 
the model has learnt to distinguish the factors 
associated with other ship groundings and made a 
prediction for each individual vessel position.  

 

Figure 9. Transit Grounding probability using Random 
Forest. 

3.2 Unsupervised Methods 

In contrast to supervised methods, unsupervised 
methods seek to identify undetected patterns in 
unlabelled data, in this case identifying anomalies or 
clusters amongst a dataset. By learning the “normal” 
behaviour of vessels, abnormal transits might be 
interpreted as at risk. A significant body of work has 
developed for navigation anomaly detection [33]. 

Figure 10 shows the results of DBSCAN (a Density 
Based Clustering algorithm) used to detect positional 
anomalies (using latitude and longitude of vessel 
traffic) and behavioural anomalies (using the course 
and speed). Unlike K-Means, DBSCAN does not 
require the user to specify the number of clusters, will 
identify irregular clusters and will automatically 
identify outliers. Firstly, positional anomalies are 
shown, clustering the westbound and eastbound 
lanes, but highlighting vessels that deviate from those 
lanes as anomalous. Secondly, vessel behaviour is 
clustered, highlighting vessels which are transiting 
abnormally fast or slow, or making unconventional 
course changes. It is notable that in both cases, the 
vessels crossing the separation zone between the two 
traffic lanes are identified as anomalous.  

In this example, and common with much of the 
literature on anomaly detection, is the degree to 
which an anomalous transit is inherently riskier. For 
example, either transiting slower or departing the 
traffic lane could be a response to a developing 
hazardous situation, and therefore would be safer 
than a “normal transit”. Unsupervised clustering can 
be expanded to measure risk response of vessels 
specifically to a hazard, such as the actions taken to 
avoid the paths of hurricanes [32].  

 

Figure 10. DBSCAN Anomaly detection. 

3.3 Opportunities in Deep Learning: CNNs and RNNs 

Convolutional Neural Networks (CNNs) are a type of 
deep learning neural network that has achieved 
prominence in image-based feature extraction or 
classification, including within the maritime domain 
specifically as a means for autonomous vessel 
navigation [20]. Unlike conventional neural networks, 
CNNs can capture the spatial and temporal 
dependencies of the dataset. CNNs consist of three 
types of layers: convolutional layers use learnable 
filters that move across the width and height of the 
input layer to extract high level features. Multiple 
convolutions may be used to extract successively 
more intricate representations of features. The pooling 
layer then reduces the convolution layer through 
downsampling such as extracting the maximum or 
average value. Finally, a regular neural network fully 
connected layer takes the flattened output of the 
previous layers and applies weights to learn the 
output labels. 

A key advantage of CNNs are the ability to 
consider the relationships among neighbouring 
spatial datasets, an ability which conventional 
methods omit. However, limitations include the 
requirement for far greater computational resources, 
complexity in defining the model architecture and 
requirement for significant volumes of training data. 
Notably, the complex structure of CNNs makes them 
liable to overfitting with limited training data. As a 
result, the application of CNNs in maritime risk 
assessment is relatively unexplored compared to other 
disciplines. One example is the study by [42] who 
trained a CNN on qualitatively assessed traffic 
pictures to predict the risk of an accident on unseen 
traffic situations. 

Recurrent Neural Networks (RNNs) are a class of 
neural networks with loops which allow previous 
outputs to be used as inputs, making them especially 
useful in timeseries data and the fields of natural 
language processing. Long Short-Term Memory 
networks (LSTMs address the long-term dependency 
problems of RNNs, enabling better retention of 
information over long periods through the use of 
gates. Most commonly within the maritime domain, 
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these methods are used for predicting the future path 
of a vessel based on its past behaviour (see for 
example [10]). By combining other features and more 
complex architectures, applications could be diverse, 
such as early warning of groundings using route 
prediction [34]. This makes them particularly useful 
for dynamic and real-time assessments. However, 
RNNs further increase the complexity, data 
requirements and technical expertise required to 
implement such methods and as a result their 
application is limited. 

4 CONCLUSIONS AND PROPOSED CRITERIA 

In this paper, a review of six dominant conventional 
methods for maritime risk assessment are provided 
and four ML methods are introduced. Some have 
proposed that ML methods have inherent advantages 
over conventional methods as they make no 
assumptions between dependent and exploratory 
variables [19], particularly relevant given that 
maritime accident causation is a highly complex issue 
with numerous interacting factors [42]. Furthermore, 
such techniques are better able to leverage multi-
dimensional datasets [19], particularly through the 
combination of vessel traffic, accident and other 
datasets, which is being seen as an important 
emerging area of research [21]. Others have noted 
how automated risk methods can provide greater 
decision-support tools to waterway managers [5], 
which would not be possible with conventional 
methods which are laborious to set-up [7]. In this 
paper, a high-level implementation of several of these 
techniques is presented, demonstrating the potential 
strengths of their application. 

Table 2: Proposed Criteria. _______________________________________________ 
ID Criteria    Description _______________________________________________ 
1 Competency   Whether the method can be  
 Req.     implemented by non-technical or  
       technical personnel. 
2 Adoption Level How widespread this method is within  
       industry/academia. 
3 Computational  To what extent specialist software or  
 Req.     hardware is required to calculate the  
       results. 
4 Transparency  Whether the model is black-box or has  
       clear inputs, methods and outputs. 
5 Data Req.   Volume and types of data required as  
       inputs into the model. 
6 Subjectivity  Relative ratio of expert/qualitative and  
       quantitative inputs. 
7 Spatial     The spatial scale or resolution of study,  
 Representation regional to localised outputs. 
8 Uncertainty  Degree to which uncertainty are  
       identified or treated in the model. 
9 Suitability for  How suitable the methods are for  
 Strategic    spatial risk modelling – risk between  
 Assessment  areas. 
10 Suitability for  How suitable the methods are for real- 
 Dynamic    time risk modelling – risk between ship  
 Assessment  transits. _______________________________________________ 
 

Work to develop ML methods is ongoing by many 
authors, but in order to demonstrate whether such 
techniques are more advantageous than existing 
techniques requires criteria against which to compare 
model properties. In [28], a summary matrix of model 

properties is introduced including applicability, 
resource requirements, skill requirements and 
whether it is quantitative or qualitative. We propose 
that other criteria should be included in any 
evaluation of risk models, and as such propose Table 
2. It is notable that we have not included criteria that 
represent the validity or accuracy of the model results, 
given that different models will inevitably provide 
differences in risk scores [11].  

For example, if we compare a risk matrix and a 
CNN, we can see that given the former can be done by 
hand or in excel, it requires significantly less technical 
skill, computational power or input data. 
Furthermore, risk matrices are more widely adopted 
and if expert input is properly recorded, more 
transparent than a neural network. However, a CNN 
being largely data-driven can achieve far higher 
resolution outputs that might make it more suitable 
for performing strategic assessments. 

It is proposed that through implementing each of 
the aforementioned techniques within a defined study 
area and scoring the models against the criteria 
presented in Table 2, the proposed benefits of ML 
techniques over conventional methods could be 
identified, and further work is being undertaken to 
realise this. 
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