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ABSTRACT Human visual Attention modelling is a persistent interdisciplinary research challenge, gaining
new interest in recent years mainly due to the latest developments in deep learning. That is particularly
evident in saliency benchmarks. Novel deep learning-based visual saliency models show promising results
in capturing high-level (top-down) human visual attention processes. Therefore, they strongly differ from
the earlier approaches, mainly characterised by low-level (bottom-up) visual features. These developments
account for innate human selectivity mechanisms that are reliant on both high- and low-level factors.
Moreover, the two factors interact with each other. Motivated by the importance of these interactions, in this
project, we tackle visual saliency modelling holistically, examining if we could consider both high- and
low-level features that govern human attention. Specifically, we propose a novel method SAtSal (Self-
Attention Saliency). SAtSal leverages both high and low-level features using a multilevel merging of skip
connections during the decoding stage. Consequently, we incorporate convolutional self-attention modules
on skip connection from the encoder to the decoder network to properly integrate the valuable signals from
multilevel spatial features. Thus, the self-attention modules learn to filter out the latent representation of
the salient regions from the other irrelevant information in an embedded and joint manner with the main
encoder-decoder model backbone. Finally, we evaluate SAtSal against various existing solutions to validate
our approach, using the well-known standard saliency benchmark MIT300. To further examine SAtSal’s
robustness on other image types, we also evaluate it on the Le-Meur saliency painting benchmark.

INDEX TERMS Eye movements, low and high vision, saliency prediction, self-attention, visual attention.

I. INTRODUCTION
Visual attention consists of perceptual and cognitive mecha-
nisms that empower humans to rapidly select and interpret
the most interesting parts of a complex visual scene. For
human information processing, selective mechanisms asso-
ciated with attention work as a ‘‘data prepossessing bot-
tleneck’’. Often, the selective mechanisms are a result of
so-called bottom-up processes, in which the viewer is guided
by perceptual signals and analyses the surroundings with no
conscious intentions [8], [74]. However, cognitively-driven
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top-down mechanisms are equally important in the way
humans direct their attention to selected elements, whether
they are visual, auditory, olfactory or otherwise [22].

In addition to top-down vs bottom-up dichotomy, visual
attention literature distinguishes overt from covert attention.
Covert attention enacts when the eyes are not moving because
focusing on a specific fixation point (one might intentionally
pay attention to the peripheral information without mov-
ing the eyes). On the other side, overt attention relies on
eye movements shifting from a location to another of a
given visual scene; foveal processing enables capturing high
levels of detail from objects of interest while suppressing
the context information into a low-resolution, low-colour
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processing mode [52], [70]. The scene is constantly anal-
ysed through rapid eye movements, i.e., saccades, by which
visual attention processes scan rapidly new objects of interest.
Such mechanisms help humans prioritise and filter stimuli
from the early visual processing stages to later stages where
higher-level cognitive processing can occur. The human abil-
ity to detect saliency of objects enables efficient scene scan-
ning, and as such, it is one of the fundamental attention
mechanisms [51].

Therefore, a visual attention-related modelling is known
as saliency prediction [50]. Saliency prediction deals with
detecting the most attention-grabbing regions of a given
visual scene from a bottom-up perceptual perspective. For
a given input, be it an image or a video sequence, saliency
prediction algorithms encode each pixel of the visual scene
with an intensity value [0,255] or [0,1], indicating the proba-
bility of the pixel to be salient [60]. The corresponding map
returned by saliency algorithms is known as a saliency map.
The dominant understanding in the field is that the higher
the saliency value, the more likely observers’ eye movements
will be drawn to that area in the image or video frame,
assuming that there are no top-down cognitive or task-driven
bias. Saliencymaps are usually visualized as blobs distributed
around the regions that naturally stand out (or pop out) of
the visual scene. Therefore, saliency maps are typically rep-
resented as density maps (or heat-map) of probabilities. The
accuracy of a predicted saliency of a given scene is measured
against the recorded eye movements on the same scene. That
relies on the understanding of close relationships between eye
movements and visual attention [62]. Examining statistics on
different levels of visual saliency enables an in-depth under-
standing of the processes that govern human attention and,
by extension, human behaviour. Due to its broad relevance,
predicting human eye movement patterns and visual saliency
has an impressive range of applications in computer vision
and related fields such as image compression [37], image
captioning [24], image retrieval [33], image re-targeting [63],
quality assessment of multimedia content (i.e. image [3],
[19], [20], stereo [64], 3D meshes [1], etc.), remote
sensing [32], watermarking [36], map viewing [5], [53],
indoor localization [31], perception [15], image enhancement
[13], [21], healthcare [40] among many others.

Saliency prediction links to the pioneering work by Treis-
man and Gelade [74] on the feature integration theory.
According to Treisman and Gelade [74], early visual fea-
tures are registered as viewers perceive a visual scene for,
then, being combined into a complete object-based perceptual
identification. The latter also introduces the so-called pre-
attentive and attentive stages, corresponding to bottom-up
and top-down information processing. Being able to separate
and organize the visual information hierarchically based on
its perceptual saliency and its importance paves the way
for mimicking human attention in mathematical models and
makes feature-based models eligible for predicting salient
regions from stimuli that are viewed freely (not task-driven).
In terms of algorithmic developments, the seminal work

by Koch and Ullman [50] establishes the basis of central
saliency and incorporates low-level information, and building
on this model, Itti et al. [42] proposed the first computational
model of saliency. From this point forward, many biologically
inspired computational architectures have been proposed,
such as the graph-based visual salience, or GBVS [38].
Several computer vision and image anaylsis methods focus
on the extraction of low-level and high-level features tomodel
and detect objects in images and videos [4], [12].

The ever-increasing success of machine learning and
deep learning approaches in vision-related computational
processing has allowed a critical development for saliency
prediction over the last few years. Convolutions Neural Net-
works (CNNs) reached out high accuracy rates in learning
complex semantic representations from large-scale image
recognition datasets [54]. Due to the advance of deep
learning techniques in mimicking human behaviour, recent
CNN-based saliency architectures reduced the gap between
human eye movements (typical baseline for saliency stud-
ies) and the performance of prediction models remark-
ably. Current CNN-based models focus on high-level
semantically-informative representations because low-level
features contain a high ratio of noise signals which are
not semantically helpful [30]. Another main drawback that
affects the reliance only on these deep hierarchical CNNs
representations is the problem of limited receptive field pro-
portional to the network depth layer. The consistency of
scene semantics has an effect on eye movements, i.e., the
eye tends to remain fixated longer on objects that are seman-
tically informative regarding a scene’s content [39], [73].
If a visual scene contains too many objects, representational
inconsistency of scene semantics increases, highly correlated
with human eye movement during free viewing. Given the
above, predicting object characteristics links to the accuracy
of the visual attention model. Despite the availability of
several ‘‘deep saliency models’’ (i.e., deep learning-based
saliency models), much of the knowledge in psychology
and neuroscience describing various aspects of human visual
attention has not been adequately tackled yet [10], [51].
In some tasks, even the traditional saliency models (those
proposed before deep-learning models) offer decent saliency
predictions, which can be superior to psychophysical evalua-
tions [51], possibly explained by the importance of the low-
level features in an image in detecting the early fixations [29].
Both high and low-level features may serve a purpose in
the way humans process visual information. Inspired by the
previous studies considering human attention as a multilevel
selection process [47], we integrate low and intermediate-
level feature mapping to leverage the discriminant part of
both low-level and deep semantic features to propose a new
saliency model. To implement and test the proposed model,
we incorporate convolutional Self-Attention modules on skip
connections from the encoder to the decoder architecture
opposite layers. As a result, the proposed model can effec-
tively predict visual saliency patterns from multilevel con-
textual scene representations and overcomes the limitation
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of narrow receptive fields by employing the ability of Self-
Attention to capture the context from an extended range of
sequence dependencies.

The main contributions of this publication are summarised
as follows:
• We develop a novel approach for visual saliency predic-
tion using both high and low-level factors in learning
multilevel features for producing static saliency maps.
In addition, a self-attention module has been incorpo-
rated on the encoder-decoder skip connections to boost
the global information in the deep layer and generate a
highly representative saliency distribution.

• We evaluate the effectiveness of our model on the estab-
lished MIT300 preserved benchmark and Le Meur [59]
paintings dataset. All comparisons demonstrate that the
proposed model is consistent, efficient, and superior to
or competitive with other state-of-the-art methods.

• We further test out the robustness of the proposed
approach in an ablation study on challenging scene sam-
ples that include both high and low-level features. The
results reveal that multilevel skip attentive connections
are effective and boost the performance of the backbone
encoder-decoder model.

The rest of the manuscript is organized as follows:
Section II introduces an overview of related saliency litera-
ture. Section III provides a detailed description of the pro-
posed approach. Section IV demonstrates the benchmarking
experiments and compares results to state-of-the-art methods.
Finally, conclusions and outlook are given in Section V.

II. RELATED WORK
Visual attentionmodelling has been a topic of interest to com-
puter vision for many decades, starting from the seminal work
by Koch et al. [50], which was then implemented by [42] as a
bottom-upmodel that predicts saliency usingmulti-scale low-
level features. On top of the previous efforts, the GBVS [38]
framework extracts image features to predict saliency using
graph theory-based formulas that define Markov chains over
different input maps. Zhang et al. [58] proposed a Bayesian
framework tackling bottom-up saliency as self-information
over linear visual features and the overall saliency as the
point-wise mutual information between features and target.
Around the same time, Bigdely-Shamlo et al. [65] proposed
a method to detect visual saliency relying on the Kalman
filter. Achanta et al. [2] extracted salient pixels in images
using features of colour and luminance in the Fourier domain.
Colour spaces and their role in saliency extraction were fur-
ther investigated later by several researchers, e.g., [14].

The approaches mentioned above focus on visual atten-
tion using low-level spatial features. Sun and Fisher [73]
introduced a hierarchical object and location-based visual
attention model using a grouping-based salience. They treat
complex visual tasks that depend on the current scene and
the observer’s goals, thus introducing a top-down cognitive
aspect to saliency prediction. Integrating another feature of
human cognitive processing, Jin-Gang and Gui-Song [43]

presented an object-based saliency detection with a paradigm
based on the Gestalt grouping cues. Kai-Yueh et al. [46]
method introduced a model that is reliant on the relationships
between saliency and ‘‘objectness’’, a concept in which a
scene element is ranked for its meaning.

Recently saliency modelling gained remarkable perfor-
mance by applying deep learning techniques which can learn
top-down representations. This was achieved due to the con-
struction of large scale eye movement datasets such as [7],
[41], [44], [45] and [16]. The eye movement datasets men-
tioned above were collected using free-viewing eye-tracking
sessions. The latter differs from task-driven scenarios where
the variability of tasks could result in an unbalanced speci-
ficity of eye movements toward visual features related to the
tasks. Among the deep learning approaches to saliency pre-
diction, Ensemble of Deep Networks (eDN),Vig et al. [75]
trained an early shallow CNN architecture that learns end-
to-end saliency by merging different layer feature maps.
The achieved performance did not mark an important
result leap, as shallow networks cannot learn high-level
features.

Lots of recent methods leveraged classification architec-
tures pre-trained on ImageNet dataset [26]. These architec-
tures have a superior ability at extracting the deep semantic
representations from images [28].

As the deep learning-based models started to populate the
scene, Oyama and Yamanaka [66] explored the influence
of classification accuracy of the models on saliency estima-
tion. The well-known DeepGaze1 by Kümmerer et al. [55]
reemploys an early light object recognition network to
explore the limits of deep learning in saliency prediction.
Kümmerer et al. later introduced a new network, namely
DeepGaze2 [57], based on the VGG [72] classification
network. Both DeepGaze1 and DeepGaze2 models use
fixed prior maps to regulate the possible biases in the
data. Pan et al. [68] compare two approaches for predicting
saliency in an end-to-end fashion. The first one is reliant
on a lightweight network whose parameters are learnt from
scratch. The second one is deeper and takes advantage
of a pre-trained image classification network. In contrast,
Cornia et al. [23] propose an architecture that extracts and
combines features from multiple levels, then use a learned
before tackling the bias of the dataset and introducing a new
custom pixel-based loss function. Huang et al. [41] use a
two-stream VGG network in their SALICON with different
input scales, in which both output streams feature maps are
concatenated to model the final saliency. DVA [76] learns
multi-level information from different layers with different
receptive field sizes, the decoders composed of a series of
deconvolution layers with upsampling operations, the result-
ing multi-level maps are fused to produce the final saliency
map. SalGAN [67] uses a deep convolution generative adver-
sarial neural (GAN) network. The model design architecture
contains a generator of saliency, and a discriminator network,
where the two compete in a min-max game between the gen-
erator and the discriminator to produce a saliency map, which
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FIGURE 1. Network architecture of SATSal.

FIGURE 2. The design of extended convolution self-attention module.

is qualitatively indistinguishable from the ground truth based
on eye movement recordings. Liu and Han [61] propose a
deep spatial contextual long-term recurrent convolutional net-
work that learns local features on each image location in par-
allel via fine-tuning a pre-trained CNN model. Afterwards,
the model simultaneously learns to incorporate global scene
context to predict saliency. Cornia et al. [25] introduce a set
of prior maps generated by a Gaussian function, the use of
a neural attention mechanism and convLSTM (convolutional

LSTM) layers on feature maps to refine the predicted saliency
maps iteratively. Most recently, [48] proposed SALYPATH,
an architecture to simultaneously predict saliency and associ-
ated scan-path, using a combined loss function that uses pixel
level and distribution functions and a Noise Sensitivity Score
(NSS) [69] metric.

Table 1 provides a summary overview of the most promi-
nent methods mentioned above in terms of their major con-
tributions to predict saliency on natural images.
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TABLE 1. An overview of previous state the art methods.

III. PROPOSED MODEL
In light of the prior work, this section describes the architec-
ture of the proposed model, as illustrated in Figure 1. It con-
sists of a VGG-Encoder network and the Decoder-network
composed of five deconvolution blocks interspersed with an
extended Self-Attention module (ECSA). ECSA takes the
previous block decoded hidden-vector and the opposite layer
in Encoder features as input using a skip connection; the
ECSA output is fed into the next Decoder block to produce
a saliency map at the final stage. The motivation behind the
proposed model are explained below:
• CNNs can only process features in a local neigh-
bourhood, thus making it inefficient to model long-
range, multilevel dependencies across spatial regions.
Instead, incorporating self-attention modules connect-
ing multilevel Encoder and Decoder networks yield
robust predictions. Therefore, fine details at every posi-
tion are properly considered with others in distant por-
tions of low-level attention from early layers. That also
helps to overcome the limited receptive field issue in
learning object-based correlation from deep semantic
representations.

• Most recent studies consider the high-level features as
they focus on solving the complex top-down attention
problem, meanwhile underestimating the importance of
capturing global and local low-level attention. Mul-
tilevel skip connections help in leveraging the deep
semantic representations from the last decoder layers
and simple, attractive structural features from the first
encoder layers, which enhance the modelling of bet-
ter, more representative saliency distributions than those
examining only high-level features.

A. EXTENDED CONVOLUTIONAL SELF-ATTENTION
The so-called integrated attention mechanism has recently
shown important improvements in the performance of var-
ious downstream computer vision tasks [18], [27], [48].
Unlike the absolute attention mechanisms, the mechanism
mentioned above learns in a fully adaptive, joint, and task-
oriented manner, which allows the network to prioritise and
associate weights to feature vectors. The self-attention or
intra-attention calculates the response at a position in a
vector by attending all positions within the same vector.
In greater detail, the self-attention module draws the rela-
tionship between distant features, incorporating the module
at multilevel connections on the Encoder-Decoder network

layers. The latter prompts the model to generalise better static
visual attentive cues at low and high levels, boosting the
representation capability of the full network. The prediction
performance of this design generalises well across various
static saliency datasets fig 1.
The main goal of self-attention is to determine a new set of

vector values representing global vector features dependency.
Thus, Self-attention reveals the set of values to pay more
attention to the interaction of input vector features. In simpler
words, for a given vector, we need to extract query, key
and value vectors from it, simulating the selection process
applied in system retrieval. The latter measures attention by
calculating a similarity between a query and best related key
features using a score function. The output scores go through
the normalisation step to have the sum of probability values
to one. The final value vector is a weighted combination of
the previous value vectors based on the normalised score
result. The overall architecture of the proposed extended self-
attention is described in figure 2.

In equation 1, the hidden, encoded features of the ith VGG
encoder block are given as a function of the input image
X ∈ R256×128×3,

Hi = f0−i(X ) ∈ Rhi×wi×c, (1)

where f0−i is the ith VGG encoder block, hi and wi are
the down-sampled input height and width after the ith max-
pooling operation, except for i = 5 which denotes the last
encoder outputH5 = Z0, here the max-pooling is not applied.
We denote the decoded variable after the ith block by Zi. Each
of the ECSAmodules is placed just before each decoder block
and takes as input both of Zi and H5−i, and transform the
intermediate features H5−i into three variables Q, K and V,
unlike [77] that incorporate just one layer of 1*1 convolution
without activation function, we extend our implementation
by a shallow series of activated CNNs interspersed with
down-sampling and upsampling operation, the ECASmodule
architecture slightly differ corresponding to the ith positional
block, because we are extracting an attention vector from
the Encoder layer position and inject it into the Decoder
which mean that the two vector spaces are not similar, so that
a deep transformation need to be applied, of course taking
into consideration the computation efficiency of the whole
architecture. The resulted couple feature spaces (Query, Key)
∈ RC̄×N from Q(Hi) and K(Hi) respectively, simplifying the
dimension of Hi ∈ RC×N , where N = hi × wi representing
the number of feature location,and C̄ the number of output
channel from both of Q and K stream which is equal to
the C/8. The attention map resulted after normalizing the
output of dot product between Query vectors and key vectors
using a Softmax function, where S represent the similarity
between Query and key feature spaces:

Slj = Query[l]T .Key[j] (2)

Aj,l =
exp(Slj)∑N
j=1 exp(Slj)

, (3)
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The attention map A∈ RN×N shows the likelihood that
a particular positional feature in l t h location appears in the
jth location inN feature locations, (j,l)∈ RN , the Value feature
space is further enhanced by multiplying it to the attention
map:

Valueenhanced = Value.A (4)

The dimension of the context vector, which is the enhanced
value feature space, is equal to Zi dimensions, moreover we
scaled the context by a learnable parameter γ in order to learn
how much the decoder network should relay on the context
from the the encoder features at each stage. Finally, we add it
to the decoded variable Zi

out = γ × Valueenhanced + Zi (5)

Furthermore, our approach offers flexibility in that it has
no restriction regarding receptive field dimensions, using
the capability of self attention in capturing distant features,
i.e., the system theoretically can work with any width and
height input image.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) LOSS FUNCTION AND TRAINING STAGE
The whole model, including the encoder-decoder and
the ECSA modules, was trained using the loss function
noted as L. The L loss function is defined as a com-
bination between the Kullback-Leibler Divergence(KLD),
the Normalized Scanpath Saliency (NSS), and the Binary
Cross-Entropy (BCE). Each term (KLD, NSS, BCE) covers
a particular aspect for learning the best set of weights [11].
Specifically, KLD evaluates the mutual distribution between
the predicted output and the ground truth, BCE is used for
binary classification of each CNN output vector indepen-
dently, and NSS [69] provides a saliencymetric that measures
the mean saliency value at ground-truth fixation locations.
We detail each approach and their contribution to L loss
function in our model below. Our assumption behind using
a combination of metrics as an objective function, back to
optimize the loss toward the weights that lead to the best
results in capturing more accurate representative saliency
distributions.

Let the predicted map Y ∈
[
0, 1]256×192, the fixation

map F ∈ {0, 1}256×256, and the ground truth saliency Ŷ ∈[
0, 1]256×192.

L = 0.7× LKLD(Y , Ŷ )+ LBCE(Y , Ŷ )− 0.3× LNSS(Y , P̂)

(6)

BCE is mainly designed for calculating the distance
between two normalized distributions in the interval [0, 1].
In probabilistic terms, BCE measures the accuracy of the
modeled probability distribution of saliency for a given input
image pixel.

BCE(Y , Ŷ )=−1/m
m∑
i=1

Yi log(Ŷi)+(1−Yi) log(1−Ŷi) (7)

LKLD has been widely used for training saliency models
as it often used as one of the metrics in different benchmarks.
It is chosen as a weighted main loss in our work.

LKLD(Y , Ŷ ) =
∑
i

Ŷi log

(
ε +

Ŷi
ε + Yi

)
. (8)

LNSS is adopted from the standard NSS metric, which is a
similaritymetric. Their negatives are used forminimization in
order to optimise the model weight in the right direction, the
goal from adding the LNSS loss is to maximise the similarity
metric results:

LNSS(Y , P̂) = −
1
N

∑
i

Ȳi × P̂i, (9)

where Ȳi = (Yi − µ(Yi))/σ (Yi). and N = refer to the sum of
fixations.

2) IMPLEMENTATION DETAILS
We implemented our model in PyTorch and trained the
model on the MIT1003 dataset, using 900 images for training
and 103 images for validation. We initialised the encoder
with the pre-trained VGG [72], and both the decoder and the
attention modules were randomly initialised using the Xavier
method [35]. We used the Adam optimiser [49] to train the
model.We opted in for a learning rate of 10−4 and a scheduler
step with a dividing factor of 2 every 20 epochs. During the
first ten epochs, the ECSA parameter γ was set to zero to
focus on learning themain task. At the same time, the decoder
layers gradually froze, starting from the bottom to the top and
progressively increasing the complexity. After the first ten
epochs, the whole model was trained end-to-end, including
all parameters.

3) COMPUTATIONAL LOAD
The embedded self-attention modules are trained in an end-
to-end manner with the encoder-decoder backbone model.
The entire training procedure takes about 5 hours on Google
Colab environment with a single NVIDIA Tesla T4 GPU and
a 2.0GHz Intel(R) Xeon(R) CPU. Since our model does not
need any pre or post-processing steps, it takes only about
0.0106 s to process an image of size 256 × 192.

B. EXPERIMENTAL RESULTS
In this section, we evaluate our model on the MIT300
benchmark dataset [56], which is one of the most well-
known benchmarks for saliency models. The dataset con-
sists of 300 natural images; the corresponding saliency maps
are preserved privately for a fair comparison. We also used
the newly published Le Meur [59] Paintings dataset, which
offers a different, more specialised stimuli space as the paint-
ings differ in many ways from natural scenes. Testing our
approach on multiple types of stimuli helps us study our
model’s performances on different datasets. We also want to
demonstrate the effectiveness of the extended self-attention
module in capturing the global representations on another
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type of space, in which inherently different cues would attract
the viewers’ gaze compared to natural scenes. Le Meur’s
dataset consists of 150 painting images related to five differ-
ent art periods and their respective saliency maps. We used
the entire dataset for testing.

1) COMPETITORS
We compare our model with a representative set of stat-of-
the-art models, namely, SALICON [41], DeepGaze1 [55],
SAMCornia [25], and ML Net [23]. We selected these mod-
els due to their ability to address visual attention on different
stimuli domains, e.g., indoor, outdoor, painting. For the sake
of generality on low-level attention, we further compare our
model with some previous static attention models and frame-
works, i.e., Itti & Koch model [42], and the GBVS [38].

2) METRICS
We conducted comparisons of our model’s results against the
selected competitors using six saliency metrics, which are
divided into two categories:
• Distribution-based metrics: These metrics allow com-
paring the predicted saliency map to the ground-truth
distribution from eye movement recordings. We used
three of them, namely, (KLD) Kullback-Leibler Diver-
gence, Similarity Metric (SIM), Linear Correlation
Coefficient (CC).

• Location-based metrics: These metrics compute some
statistics of fixation locations, such as Normalized Scan-
path Saliency (NSS), Area under Curve (AUC) and
its derivative AUC-Judd (AUC-J), and shuffled AUC
(s-AUC).

Reference articles [6], [17] provide more detailed descrip-
tions of all the metrics used in our experiments.

3) PERFORMANCE
We calculated the results on the MIT300 dataset by sending
the output prediction to the active benchmark service. At the
same time, we tested our method over Le Meur’s dataset
using the same protocol described in their work workLe-
Meur. Table 2 shows our results on the MIT300 benchmark.
As Table 2 demonstrates, our model scored the highest among
the comparative models on both CC and SIM metrics for
this dataset while achieving a very close second place for the
AUC and scoring competitive results for the NSS and KLD.
Next, we made the same comparisons for the second dataset
(Le Meur paintings dataset). The outcomes from this com-
parison are shown in Table 3. As Table 3 demonstrates, our
model achieves the highest score with the KLD metric and
close second place with the SIM and CC for the painting data
set, and it remains competitive for the remaining metrics.

Figures 3 and 4 illustrate the qualitative results (i.e., the
visual outputs) of our model against the ‘‘ground truth’’
(i.e., the eye movement data) and other state-of-the-art mod-
els. In these two figures (Fig 3 and 4), we can see the stimuli
overlain with predictions and ground truth saliency maps for
the MIT300 and Le Meur dataset. It is immediately clear that

TABLE 2. Comparative performance of different saliency models on
MIT300 benchmark.

TABLE 3. Comparative performance of different saliency models on
Le Meur paintings dataset.

our model can capture both the global and the local attention
patterns, demonstrating an important generalisation capa-
bility for different image (i.e., scene content) distributions.
The continuity between the most intensive salient regions
to the effect of the self-attention in extracting the global
context of the scene captures the most salient objects. It also
provides intuition on how our attention could be swapped
from one object to another. Thus, it would be beneficial
for the case of scan path prediction. Figures 5 shows the
effectiveness of our model to predict salient regions on syn-
thetic images characterised with low-level features stand-
ing out of the visual stimulus e.g., shape, contrast, colour,
orientation.

Based on these findings, SAtSal (our proposed model) per-
forms superior to and competitive with previous state-of-the-
art models. For the sake of fair comparisons, we used some
standard metrics accounting for the effectiveness of saliency
detection in static images. Thus, overall results demonstrate
that the method is robust over multiple datasets.

C. ABLATION STUDY
This section provides a detailed evaluation of the proposed
approach from several aspects through an ablation study
to verify the effectiveness of the proposed multilevel Self-
Attention modules and examine the influence of different
training protocols. We conducted the ablation study on two
subsets, one that contains natural images from (MIT1003
by [45]), and another that has explicitly low-level features
from (CAT2000 by [7]). We consider this protocol to study
the effect of multilevel self-attention modules on natural
images using different settings. We first tackled images that
contain both bottom-up and top-down attention stimuli. The
same patterns exist in the distribution of images fromLeMeur
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FIGURE 3. Visualisation of the results: Saliency maps for the samples from MIT1003 cross validation-set.

FIGURE 4. Visualisation of the results: Saliency maps for the samples from Le Meur dataset.

and MIT300 test sets. Therefore, to further examine the
robustness regarding only the bottom-up cues, we conduct
the same test protocol on a specific category of images

containing only low-level features with no semantic mean-
ing. Also, we are restricted in this ablation test protocol to
exclude models trained on the same data distribution to avoid
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FIGURE 5. Visualisation of the results: Saliency maps for the images with low-level features.

training-test overlap. Below we detail the outcomes from the
two ablation studies.

1) EFFECTIVENESS OF MULTILEVEL SELF-ATTENTION
MODULES ON NATURAL IMAGES
First, we study the effect of multilevel self-attention mod-
ules (ECSA modules) by disabling the main components
in the following three settings. Note that for each setting,
we have used the same training protocol as the original model
and tested the model on 100 images from the MIT1003
dataset [45]. The results are summarized in Table 3.
• Setting 1: We remove the last skip connection and
the associated self-attention module (ECSA module)
to evaluate the importance of the low-level features
carried through this connection. We could remark a
slight drop in performance regarding overall metrics
(e.g., metric: value before ablation→ value after abla-
tion: AUC-J: 0.9207→ 0.9162, NSS: 3.2400→ 3.0933,
CC: 0.8651→ 0.8435).

• Setting 2: We remove the mid-level skip connections
and the associated self-attention modules (ECSA mod-
ules) on these connections. We observe a significant
drop in performance even about Setting 1, demonstrating
the importance of mid-level skip connections in mod-
elling a better saliency distribution.

• Setting 3: We remove the high level skip connection
and the associated self-attention module (ECSA mod-
ule), resulting in a remarkable shot in performance
(e.g., AUC-J: 0.9207→ 0.9144, NSS: 3.2400→ 2.9854,
KLD: 0.3.975→ 0.0.4765), clearly demonstrating the
importance of self-attention in capturing long-range of
spatial dependencies and enhancing the high-level rep-
resentation with an enlarged receptive field.

The significant drop in Settings 2 and 3 compared to
Setting 1 is caused by the nature of the testing dataset,
which portrays images representing objects with high

TABLE 4. Results of the ablation study on 100 images from MIT1003.

TABLE 5. Results of ablation study on low-level patterns from CAT2000.

semantic meaning. Even though it is relatively subtle, the
drop in performance with Setting 1 indicates the importance
of the low-level features, which would be even more pro-
nounced in other stimuli.

2) EFFECTIVENESS OF MULTILEVEL SELF-ATTENTION
MODULES ON LOW-LEVEL IMAGE FEATURES
Since one of the strong points of our model is to inte-
grate the low-level feature detection into deep learning-based
saliency prediction in combination with mid and high-level
features, we conducted an additional ablation study with a
focus on low-level features. We repeated the ablation study
on 100 images from the CAT2000 [7] using the same settings
as in the previous section. Images from CAT2000 contain
patterns prepared for perceptual psychology studies, with
low-level features, including geometrical elements, pop-out,
conjunction, search asymmetry, textures, etc. We present the
results from this study in Table 4.
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We select just the distribution-based metrics on this part
of the study because we are interested in testing the model’s
accuracy in revealing one region of interest from the other
non-attractive low-level features. Other fixations on this kind
of scene located far from the areas of interest can be consid-
ered outliers that do not represent the bottom-up saliency of
the scene.

With the CAT2000 dataset, we see a minor improvement
(e.g., CC: 0.9448→ 0.9470) in Setting 3 compared to the pro-
posed approach. We believe this may be due to the nature of
the scenes in CAT2000, as they do not contain much semantic
meaning. Thus there is no need to calculate the attention
for high-level deep representations. However, the drop in
performance is quite evident in Settings 1 and 2 compared to
the results obtained from SATSAL. The learned information
from low-level features on the multilevel skip self-attention
modules are essential for modelling better saliency and could
boost the performance on a given general scene.

V. DISCUSSION AND CONCLUSION
In this paper, we were set out to build, implement and test
a new architecture for visual attention modelling, specifi-
cally, for saliency prediction. Unlike most previous meth-
ods, we designed our approach to predict saliency from a
more ‘‘holistic’’ perspective, accounting for both bottom-up
(low level) and town-down (high level) features in a scene.
Our model has shown great flexibility (thus, early signs of
generalisability) in predicting visual saliency over datasets
containing images with inherently different visual character-
istics, precisely, natural scenes, paintings, as well as highly
simplified perceptual psychology stimuli. SATSal’s saliency
scores are either superior or competitive against the state-of-
the-art models based on multiple metrics.

We introduced an extended CNN self-attention module,
using skip connection on multiple levels to model the rep-
resentation of low and high-level features equally to cap-
ture local and global factors that attract human attention.
Our approach enables local features to model human visual
attention after filtering them out of the noise and merging
themwith deeper global representations. The stepsmentioned
above finally allow global and local visual information to
generate more accurate predictions than models focusing
only on low-level or high-level features. Specifically, the
main contribution of our work is a new architecture that
can capture relations between separated spatial dependencies
from multiple hierarchical levels. Furthermore, the steps,
as mentioned earlier, improved the accuracy of the extracted
saliency maps because it takes all stimulus features into
account.

We evaluated our model on a well-known benchmark and
a newly proposed dataset, attaining competitive results with
a representative set of state-of-the-art models. Although the
model is trained on a small set of data, both quantitative
and qualitative outcomes demonstrate the effectiveness and
robustness of our model and its capability to generalise
against different data distributions. Furthermore, SATSal’s

performance provides evidence on the importance of taking
multiple level features into account in improving saliency pre-
diction. As a future extension, we intend to address the tem-
poral dimension to predict fixations and their duration. To do
that, we aim to employ the capability of self-attention in cap-
turing the temporal dimensionwhile exploiting the contextual
and semantic characteristics of the stimuli. This work also
opens questions about the interpretability of deep saliency
models, the features responsible for improving saliency pre-
diction, the reason behind the accuracy rates from one distri-
bution to another covering different cues. Finally, we consider
bottom-up and deep semantic cues contributions in qualita-
tive and quantitative results.
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