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Abstract

Cultural and geographical properties of the environment have been shown to deeply influence
cognition and mental health1–6. While living near green spaces has been found to be strongly
beneficial7–11, urban residence has been associated with a higher risk of some psychiatric disor-
ders12–14 (although see15). However, how the environment one grew up in impacts later cognitive
abilities remains poorly understood. Here, we used a cognitive task embedded in a video game16

to measure non-verbal spatial navigation ability in 397,162 people from 38 countries across the
world. Overall, we found that people who grew up outside cities are better at navigation. More
specifically, people were better at navigating in environments topologically similar to where they
grew up. Growing up in cities with low Street Network Entropy (e.g. Chicago) led to better
results at video game levels with a regular layout, while growing up outside cities or in cities with
higher Street Network Entropy (e.g. Prague) led to better results at more entropic video game
levels. This evidences the impact of the environment on human cognition on a global scale, and
highlights the importance of urban design on human cognition and brain function.

Introduction

Cognitive abilities, including spatial navigation, have been shown to correlate with specific
genotypes17. However, research on brain plasticity supports the notion that experience shapes
brain structure as well as function2,3. In particular, cultural and geographical properties of the
environment have been shown to deeply influence cognition and mental health4,6. In rodents,
exploring complex environments has a positive impact on hippocampal neurogenesis and cogni-
tion1,5. In humans, spatial navigation activates the hippocampus18, and continuous navigation
of a large complex city environment increases posterior hippocampal volume19. However, how
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the environment one grew up in impacts later cognitive abilities remains poorly understood for
two reasons. First, human environments are manifold and much harder to characterize than
a rodent’s cage. Second, collecting cognitive data of large samples from populations living in
different environments is very costly20. To overcome these limitations, we measured non-verbal
spatial navigation ability in 3.9 million people across all countries and examined a subset of this
data (397,162 people, in 38 countries). We used a cognitive task embedded in a video game, that
is predictive of real-world navigation skill16,21,22. While the task has been described previously16,
we now report new data not previously published. We focused on spatial navigation due to its
universal requirement across cultures, and parallels to rodent studies23,24. We quantified the
complexity of participants’ environments with OSMnx, a tool giving access to the street network
topology of cities anywhere in the world25. We found that, on average, people who reported
having grown up in cities have worse navigation skills than those who reported growing up outside
cities, even when controlling for age, gender, and level of education. This difference between city
and non-city people varied across countries, being – for instance – more than 6 times larger in the
USA than in Romania. To investigate these variations we computed the average Street Network
Entropy (SNE) of the biggest cities of 38 countries; grid-like cities (e.g. Chicago) have a small
SNE, while more organic cities (e.g. Prague) have a higher one. We found that growing up in
cities with low SNE led to better performance at video game levels with a regular layout, while
growing up outside cities or in cities with higher SNE led to better performance at more entropic
video game levels. This confirms the impact of the environment on human cognition on a global
scale, and highlights the importance of urban design on human cognition and brain function.

Results and discussion

We used the Sea Hero Quest database, which contains the spatial navigation behaviour of 3.9
million participants measured with a mobile video game, ’Sea Hero Quest’ (SHQ)16,22. SHQ
involves navigating a boat in search of sea creatures (Figure 1). Performance of SHQ has been
shown to be predictive of real-world navigation ability21. It has also allowed to differentiate
high-risk preclinical Alzheimer’s disease cases from low-risk participants26. Here, we focused
on the wayfinding task16, where players are initially presented with a map indicating the start
location and the location of several checkpoints to find in a set order. To provide a reliable
estimate of spatial navigation ability, we examined the data only from participants who had
completed a minimum of eleven levels of the game, and who entered all their demographics (see
Methods). This resulted in 397,162 participants from 38 countries included in our analysis, (see
Supplementary Table 1 and Extended Data Fig. 1). Among them, 212,143 males (mean age:
37.81 ± 13.59 years old) and 185,173 females (mean age: 38.67 ± 14.92 years old).

To quantify spatial ability, we defined the ”wayfinding performance” metric (WF ), which
captures how efficient participants were in completing the wayfinding levels, while correcting for
video-gaming skills (see Methods). We performed the same analysis for path integration levels,
see Supplementary Methods and Extended Data Fig. 2. It yielded similar results. A multivariate
linear regression was calculated to predict wayfinding performance based on age, gender, education
and environment. Age has the strongest effect (F1,397157 = 61389, p < 0.001, η2 = 0.127, Hedge’s
g = 0.98, 95% CI = [0.97, 0.99]), followed by gender (F1,397157 = 20665, p < 0.001, η2 = 0.043,
Hedge’s g = 0.44, 95% CI = [0.43, 0.45]), education (F1,397157 = 1476.9, p < 0.001, η2 = 0.003,
Hedge’s g = 0.13, 95% CI = [0.13, 0.14]), and environment (F1,397157 = 1628.8, p < 0.001,
η2 = 0.003, Hedge’s g = 0.09, 95% CI = [0.09, 0.10]). The Hedge’s g of age is computed between
participants under 25 years old (N=88,101) and above 55 years old (N=59,982). Figures 1g-h
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a - Sea Hero Quest (SHQ) Screenshots c - SHQ Trajectory heatmap 42

b - Examples of trajectory heatmaps 1
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e - SHQ Trajectory heatmap 68

d - Examples of SHQ trajectories f - Examples of SHQ trajectories
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Figure 1. |Wayfinding task - a Screenshots from the game Sea Hero Quest (SHQ). See also
Supplementary Video 1. b Nine examples of trajectory heatmaps out of the 75 SHQ levels. c - e
Heatmaps of the trajectories of all participants in level 42 (n = 171,887 participants) and level 68
(n = 40,251 participants) of SHQ.The black triangle represents the starting position, and the
circled numbers represent the ordered checkpoints the participants must reach. d - f Examples
of trajectories in level 42 and 68 of SHQ. g - h - Association between Environment and SHQ
Wayfinding Performance stratified by age, gender, and education. The SHQ Wayfinding
Performance is computed from the trajectory length and has been averaged within 5-years
windows. See Extended Data Fig. 7 for a breakdown of the environment classes. The error bars
represent the standard errors and the center values correspond to the means.
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a - Environment effect across countries

b - Environment effect across cities

Figure 2. | Street Network Entropy (SNE) and environment effect in 38 countries -
a - Differences across countries. We fit a linear mixed model for wayfinding performance, with
fixed effects for age, gender and education, and random environment slopes clustered by country
(n = 397,162 participants). We plot the environment effect sizes (country slopes) for each
country, with positive values indicating an advantage for participants raised outside cities. See
Extended Data Fig. 1c for a world map. Error bars correspond to standard errors. b - Left: Two
examples cities with low (Chicago, USA) and high (Prague, Czech Republic) SNE. See also
Extended Data Fig. 5. Distribution of the street bearings across 36 bins of 10 degrees. Right:
Average SNE as a function of the environment effect size (random environment slope) in each
country. Positive values indicate an advantage of participants raised outside cities compared to
their urban compatriots. Average SNE is the weighted average over the 10 most populated cities
of the country, weighted by their population. Squares and circles correspond to the low-SNE and
high SNE country groups, determined with k-means.
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Figure 3. | Comparison of Street Network Entropy (SNE) to other measures of city
complexity measures - a - b We simulated 1000 routes in each of the 380 included cities.
Four example representative routes in two contrasting cites high/low SNE are displayed. c We
derived five key variables from each route: Number of above 50 degree turns, Number of unique
streets, Deviation from regular 90 degree turns at each turn, Overall deviation from the target
and Number of transitions in the partitions in street network structure. The spider plot shows
the route variables for these 4 routes, for full visualisation of the average of the 1000 routes in
the 380 included cities, see Extended Data Fig. 8. We also explored a range of other
graph-theoretic measures commonly considered for spatial analysis of cities. d Absolute
correlation coefficient between all the metrics and the environment effect size. SNE is by far the
metric most correlated to the environment effect size.
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Figure 4. | Participants are accurate at navigating more entropic game levels when
they grew up in more entropic environments - a The entropy of the Sea Hero Quest
(SHQ) levels is computed from the bearing distribution (rose plot), shown for 2 example levels. b
Least square regression lines of the environment effect size on game level entropy for the
High-SNE and low-SNE country groups (see mini-maps and Figure 2b). We included the players
that played all the SHQ wayfinding levels (n = 10,626 participants). Positive values indicate an
advantage of participants raised outside cities. Low-SNE environment slopes are negative for low
entropy SHQ levels, suggesting that in less entropic SHQ levels, people who grew up in less
entropic cities perform better than their compatriots who grew up outside cities. c Normalized
trajectory length as a function of the level length. Trajectory lengths have been z-scored for each
level. The level length is estimated by the median length over all the players. d For each level,
the effect size of the environment on the normalized trajectory length as a function of the level
length median. Positive Hedge’s g corresponds to longer trajectories (i.e. worse wayfinding
performance) for city participants. e - Screenshots from City Hero Quest (CHQ), a city-themed
version of SHQ. Map and image show 1 of the 5 levels tested. f - Association between
Environment and trajectory lengths in SHQ and CHQ (n = 599 participants). The center values
correspond to the means. In all panels error bars correspond to 95% confidence intervals.

6



represent the effect of the environment on WF stratified by age, gender, and education. We
replicate previous studies showing that wayfinding performance decreases with age27,28, males
perform better than females29, and performance increases with the level of education30,31. Here we
now report that participants raised outside cities are more accurate navigators than city-dwellers.
Having a tertiary level of education while having grown up in a city is roughly equivalent to
having a secondary level of education while having grown up outside cities in terms of wayfinding
performance. The sample sizes for each demographic and country are available Supplementary
Table 1. Given the magnitude of the dataset, most effects are likely to always be ‘significant
below the 0.001 threshold’. In the following, we will focus on effect sizes as they are independent
of sample size. We computed Hedge’s g between the city and not-city groups. To marginalize the
effect of age, we computed Hedge’s g within 5-years windows. Averaged over all age groups, g
= 0.13, 95%CI=[0.12, 0.14], positive values corresponding to an advantage for participants who
grew up outside cities. As shown in Extended Data Fig. 3, Hedge’s g remained stable across age.
This stability is interesting as one could have hypothesized that the influence of the environment
one grew up in could fade with age. This stability is consistent with the literature on the timing
of enriched environment exposure in mice, showing that an early enriched environment exposure
could provide a “reserve”-like advantage which supports an enduring preservation of spatial
capabilities in older age32.

To quantify how spatial ability and environment are associated across countries, we fit a Lin-
ear Mixed Model (LMM) for wayfinding performance, with fixed effects for age, gender and
education, and a random effect for country, with random slopes for environment clustered by
country: WFperf ∼ age+gender+education+(1+environment/country). Figure 2a represents
the environment slopes for each country, positive values indicate an advantage for participants
raised outside cities, see Extended Data Fig. 1c for a world map. In terms of Hedge’s g, this
spectrum ranges from Romania (g = -0.03, 95%CI=[-0.10, 0.04])) to the United States (g = 0.19,
95%CI=[0.17, 0.21]). Extended Data Fig. 4 illustrates this difference in effect size across age in
different countries. For instance, while the effect size is close to being null in Germany, growing
up in cities in the USA cost the equivalent of aging five years in terms of spatial ability.

To explain the variations in the association between environment and spatial ability across
countries, we hypothesized that countries with lower effect sizes contain cities with more complex
layouts, which places greater demands on navigation, honing the skill of those growing up in
them. The impact of city topology on human spatial ability has previously been theorized in the
urban design literature33,34, but the empirical studies on street networks suffer from limitations,
mostly due to data availability, gathering, and processing constraints35,36, although see37. To
overcome these limitations, we coupled our global dataset with the OSMnx toolbox, which
provides the street network layout for anywhere in the world via OpenStreetMap25,38. Street
network complexity is a manifold concept, and many metrics have been proposed to quantify
it. Shannon’s information entropy39 is arguably the simplest and the most general measure
of network complexity, from neural to spatial networks40–43. The entropy of a variable can
be interpreted as the average level of uncertainty inherent in its possible outcomes. Here, we
computed the Shannon entropy of the city’s street orientations’ distribution. The smaller the
entropy, the less complex - i.e. the more ordered - the city street network, see examples in Figure
2b and in Extended Data Fig. 5. Since SHQ participants only reported their home country, and
not finer-grained regional information, we computed the Street Network Entropy (SNE), defined
as the average of the entropy of the ten biggest cities of each country in terms of population,
weighted by the city population (Supplementary Table 2). Thus, we had one SNE value per
country. Figure 2b represents the SNE of countries as a function of their environment slope from
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the above mixed model. The majority of the countries have a similar SNE, corresponding to the
typical organic street pattern of old city cores (e.g. France, Romania, Spain, but also Thailand
or India). However some other countries have distinctly smaller SNE, corresponding to the
orthogonal grid, a very common planned street pattern (e.g. the United States, Argentina). The
bivariate correlation between country SNE and their environment slope is significant (Pearson’s
r(36) = −0.60, p < 0.001, 95%CI =[-0.78 -0.30]). This validates our hypothesis: the lower the
SNE (i.e. the simpler the street network), the worse the spatial ability of the people who grew
up in cities compared to their compatriots raised outside cities. This effect remained when we
control for Gross Domestic Product (GDP) per capita (linear regression predicting environment
slopes, GDP per capita t(35)=4.02, p < 0.001, SNE t(35)=-5.86, p < 0.001), see Methods. We
did not find a correlation between GDP per capita and SNE (r(36)=0.14, p=0.40), see Extended
Data Fig. 6a.
While SNE captures the spatial organisation of a city, metrics based on the graph theoretic
network measure topological properties of the cities, which could also play a role in shaping
navigation skill. Across our 380 cities we measured the betweenness, closeness and degree
centrality, average circuity, average neighborhood degree, clustering coefficient and average street
length (see Methods)43,44. After applying Bonferroni correction for multiple comparisons, we
found that only circuity (network distance/Euclidean distance) was significantly correlated with
SNE (r(36)=0.47, p = 0.02), which is coherent with43. This indicates that less regular city layouts
are associated with paths across them that require more deviation around obstacles, see Figure 3.
What are the mechanisms by which exposure to high SNE would lead to better navigation
ability? We surmised that navigating cities with irregular street layouts would require increased
demands on: 1) Keeping track of the goal direction due to greater varying street angles; 2)
Spatial/prospective memory for street names and upcoming turns due the human tendency to
minimise the streets/turns in an irregular laid out city45,46; 3) More hierarchical planning across
neighbourhood, due to larger number of neighborhoods that might occur in irregular cities. Such
demands would likely enhance the capacity of neural systems underlying orientation, prospective
memory and planning abilities19,47. To empirically determine whether the specific variables we
propose are linked to SNE, we employed agent-based modeling to simulate 1000 routes through
each of the 380 cities to quantify: number of turns, number of streets, deviation from a 90 degree
turns, overall deviation from the target and number of crossed partitions in street network (see
Methods and Figure 3). After applying Bonferroni correction for multiple comparisons, we found
that turns and the deviation from the goal were not significantly higher in high-SNE cities, indi-
cating that these may not be key factors in enhancing navigation skill. Rather we found that SNE
was significantly correlated with deviation from 90 degree turns (r(36)=0.77, p < 0.001), number
of streets (r(36)=0.57, p < 0.001), and number of partitions crossed (r(36)=0.48, p = 0.007).
Thus, it appears that having to accommodate turns that deviate from 90 degrees and to navigate
more streets and neighborhoods are key to enhancing navigation skill. We incorporated all
network and route measures into a linear model to predict the environment effect size, and failed
to find a significant equation (F(10,25)=1.44, p = 0.21). On the other hand, when using SNE
only as a predictor, a significant equation was found (F(1,36)=20.1, p < 0.001), see Methods.
This implies that it is the combination of navigational challenges that high SNE cities provide
that is important for enhancing the inhabitants navigational skill.

We tested the symmetrical effect: do different SHQ level topologies interact with the effect
of participant’s home environment? Here our hypothesis was that people growing up in en-
vironments with more complex topologies might perform better at more elaborate, entropic
SHQ levels. Conversely, people growing up in regular cities might perform better at regular
SHQ levels. We used k-means to split the countries into two SNE groups, revealing a low-SNE

8



group and high-SNE group, see Figure 2b. We defined the SHQ level entropy as we did for the
cities, with the orientations’ distribution computed from the level’s simplified Voronoi map (see
Figure 4a and Methods for details). In order to include in our analysis as many level topologies
as possible, we ran the following analysis on a subset of included participants who completed
all SHQ levels (75 levels, 9,439 participants). We fit two LMMs for wayfinding performance:
one with the participants from low-SNE countries (N=2021), the other with the participants
from high-SNE countries (N=7418). Both models had fixed effects for age, gender and edu-
cation, and a random effect for level, with random slopes for environment clustered by level:
WFperf ∼ age+ gender+ education+ (1 + environment/level). We included all the wayfinding
levels (N=42). Figure 4b represents for each level its entropy as a function of the environment
slope slow computed from participants in the low-SNE countries, and shigh computed from the
high-SNE countries. Positive values correspond to an advantage of participants growing up outside
cities. We observed that the only negative environment slopes correspond to low-SNE participants
in less entropic levels, suggesting that people used to less entropic environments perform better
in less entropic SHQ levels. The correlation coefficient was higher between the entropy of the
levels and the low-SNE environment slopes (Pearson’s correlation rlow = 0.57, p < 0.001) than
between the entropy of the levels and the high-SNE environment slopes (Pearson’s correlation
rhigh = 0.44, p = 0.003). This correlation slope difference did not reach statistical significance
(Fisher’s z = 0.77, p = 0.22, 95% CI for rhigh − rlow = [−0.46, 0.20]).
People living in city centres typically travel shorter distances than people living in suburbs or in
more rural environments, resulting from the denser arrangement of local activity locations48,49.
Thus, we hypothesized that city participants will have better wayfinding performance at SHQ
levels requiring shorter trajectories. To test this hypothesis, we normalized the participants’
trajectory lengths at each level (M = 0, SD = 1) and plotted them against the corresponding
game level length median, taken over all the participants. Figure 4c shows that the performance
(inversely related to the normalized trajectory lengths) of city participants decreases with the
game level length median, while it increases for non-city participants. Figure 4d shows a positive
correlation between the effect size (Hedge’s g) of the environment on normalized trajectory
length and the level length median (Pearson’s r = 0.50, p < 0.001). We computed a multiple
linear regression with the environment effect size as the response variable, the level entropy and
trajectory length median as the predictors. We found that both entropy (F1,39 = 5.20, p = 0.02,
η2 = 0.12) and median trajectory length (F1,39 = 13.71, p < 0.001, η2 = 0.26) are significant
predictors of the environment effect size.

While our virtual levels varied entropy from open waters to narrow inlets (see Supplemen-
tary Video 1), the SHQ navigation task was simulated in rural settings (rivers and ocean terrain)
and may potentially favor participants who reported growing up outside cities. To test this
hypothesis and directly replicate the environment effect with an independent sample, we designed
a city-themed version of SHQ called City Hero Quest (CHQ) and tested participants with it
alongside SHQ. In CHQ, the players performed the same task as in SHQ, but driving a car in
city streets, see Figure 4e and Supplementary Video 2. We collected data from new participants
on 5 SHQ levels and 5 CHQ levels matched for entropy and difficulty in order to test whether
our SHQ results transfer to a city context, see Extended Data Fig. 6b-d. 599 participants were
recruited in the United States via the crowdsourcing platform Prolific. We chose to collect data
from the US as it was the most represented country in the Prolific participant pool, and a country
with a high environment effect size in the initial SHQ dataset. Sample size justification and
full description of this new task are available in the Supplementary Methods. The same data
analysis pipeline was applied to Sea Hero Quest and City Hero Quest data. As shown in Figure
4f, the effect size of the environment on the normalized trajectory length is similar with SHQ
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data (Hedge’s g = 0.27, 95%CI=[0.06, 0.47]) and CHQ data (Hedge’s g = 0.34, 95%CI=[0.14,
0.54]), positive values indicating an advantage (i.e. shorter trajectories) for participants who
grew up in non-city environments. The difference between the CHQ and SHQ environment effect
was not significant (see Supplementary Information, CHQ Data Analysis section). This is also
consistent with the effect size we found in the initial SHQ dataset when considering participants
in the US on the same levels (Hedge’s g=0.30, 95%CI=[0.18, 0.42]). Because participants also
provided their current environment (city/non-city), we were able to show that the effect of the
current environment on CHQ or SHQ performance did not reach significance (see Supplementary
Information). This suggests that the childhood period is key to predicting future spatial ability.

Conclusions

Exploring population-level cognitive performance in 38 countries, we reveal that people are better
at navigating in environments topologically similar to where they grew up. We show that this
association is independent of age, gender, video games skill and education. Participants who grew
up in less entropic cities show better performance at less entropic game levels, while participants
who grew up in more entropic cities are better at navigating more complex game levels. Similarly,
participants who grew up in cities generally perform better in game levels in smaller spaces than
they do in game levels in larger spaces, while participants who grew up outside cities are better
in larger game levels than in game levels in smaller spaces. These results support the idea that
humans develop navigation strategies aligned with the type of environment they are exposed to,
which become sub-optimal in other environments (see Supplementary Discussion). It indicates
that the environment one grew up in is associated with cognitive ability, and that this association
is stable across the life-span. Future research will need to explore how these differences emerge
during childhood through adolescence, where abrupt changes in ability can occur50.
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Main Text Figure legends

Figure 1. | Wayfinding task - a Screenshots from the game Sea Hero Quest (SHQ). See also
Supplementary Video 1. b Nine examples of trajectory heatmaps out of the 75 SHQ levels. c
- e Heatmaps of the trajectories of all participants in level 42 (n = 171,887 participants) and
level 68 (n = 40,251 participants) of SHQ.The black triangle represents the starting position,
and the circled numbers represent the ordered checkpoints the participants must reach. d - f
Examples of trajectories in level 42 and 68 of SHQ. g - h - Association between Environment and
SHQ Wayfinding Performance stratified by age, gender, and education. The SHQ Wayfinding
Performance is computed from the trajectory length and has been averaged within 5-years
windows. See Extended Data Fig. 7 for a breakdown of the environment classes. The error bars
represent the standard errors and the center values correspond to the means.
Figure 2. | Street Network Entropy (SNE) and environment effect in 38 countries -
a - Differences across countries. We fit a linear mixed model for wayfinding performance, with
fixed effects for age, gender and education, and random environment slopes clustered by country
(n = 397,162 participants). We plot the environment effect sizes (country slopes) for each country,
with positive values indicating an advantage for participants raised outside cities. See Extended
Data Fig. 1c for a world map. Error bars correspond to standard errors. b - Left: Two examples
cities with low (Chicago, USA) and high (Prague, Czech Republic) SNE. See also Extended
Data Fig. 5. Distribution of the street bearings across 36 bins of 10 degrees. Right: Average
SNE as a function of the environment effect size (random environment slope) in each country.
Positive values indicate an advantage of participants raised outside cities compared to their urban
compatriots. Average SNE is the weighted average over the 10 most populated cities of the
country, weighted by their population. Squares and circles correspond to the low-SNE and high
SNE country groups, determined with k-means.
Figure 3. | Comparison of Street Network Entropy (SNE) to other measures of city
complexity measures - a - b We simulated 1000 routes in each of the 380 included cities.
Four example representative routes in two contrasting cites high/low SNE are displayed. c We
derived five key variables from each route: Number of above 50 degree turns, Number of unique
streets, Deviation from regular 90 degree turns at each turn, Overall deviation from the target
and Number of transitions in the partitions in street network structure. The spider plot shows
the route variables for these 4 routes, for full visualisation of the average of the 1000 routes in the
380 included cities, see Extended Data Fig. 8. We also explored a range of other graph-theoretic
measures commonly considered for spatial analysis of cities. d Absolute correlation coefficient
between all the metrics and the environment effect size. SNE is by far the metric most correlated
to the environment effect size.
Figure 4. | Participants are accurate at navigating more entropic game levels when
they grew up in more entropic environments - a The entropy of the Sea Hero Quest (SHQ)
levels is computed from the bearing distribution (rose plot), shown for 2 example levels. b Least
square regression lines of the environment effect size on game level entropy for the High-SNE and
low-SNE country groups (see mini-maps and Figure 2b). We included the players that played

13



all the SHQ wayfinding levels (n = 10,626 participants). Positive values indicate an advantage
of participants raised outside cities. Low-SNE environment slopes are negative for low entropy
SHQ levels, suggesting that in less entropic SHQ levels, people who grew up in less entropic cities
perform better than their compatriots who grew up outside cities. c Normalized trajectory length
as a function of the level length. Trajectory lengths have been z-scored for each level. The level
length is estimated by the median length over all the players. d For each level, the effect size of
the environment on the normalized trajectory length as a function of the level length median.
Positive Hedge’s g corresponds to longer trajectories (i.e. worse wayfinding performance) for city
participants. e - Screenshots from City Hero Quest (CHQ), a city-themed version of SHQ. Map
and image show 1 of the 5 levels tested. f - Association between Environment and trajectory
lengths in SHQ and CHQ (n = 599 participants). The center values correspond to the means. In
all panels error bars correspond to 95% confidence intervals.

Methods

Data

The design and the data collection process of Sea Hero Quest have been thoroughly described
in16.
Video game - In this study we focused on the wayfinding task. At the beginning of each
wayfinding level, participants were shown locations (checkpoints) to visit on a map. The map
disappeared, and they had to navigate a boat through a virtual environment to find the different
checkpoints. Checkpoints were generally not encountered in the order of passage, but rather have
to be navigated to by returning form one checkpoint to another (Figure 1). Participants were
encouraged to collect as many ‘stars’ as possible across the levels: the faster the more stars were
obtained. The first two levels were tutorial levels to familiarise the participant with the game
commands.
Participants - A total of 3,881,449 participants played at least one level of the game. 60.8% of
the participants provided basic demographics (age, gender, home country) and 27.6% provided
more detailed demographics (home environment, level of education, see Methods). To provide
a reliable estimate of spatial navigation ability, we examined the data only from participants
who had completed a minimum of eleven levels of the game (including the first 4 wayfinding
levels: levels 6, 7, 8 and 11) and who entered all their demographics. We removed participants
above 70 years old because we previously showed a strong selection bias in this group causing
their performance to be substantially higher than would be expected in unselected participants of
the same age16. We also removed participants from countries with fewer than 500 players, or
with education or environment levels more than 10-fold imbalanced. This resulted in 397,162
participants from 38 countries included in our analysis, (see Supplementary Table 1 and Extended
Data Fig. 1).
Demographic information - Participants were made aware of the purpose of the game
within the opening screen. Demographics were provided by consenting participants in two steps.
First, their age, gender and home country were asked. Then, after having played a few levels,
participants were invited to provide further information such as their level of education and the
type of environment they grew up. They were asked whether they were willing to share their
data with us and were guided to where they can opt out. The opt out was always available in the
settings. Among the included participants there were 212,143 males (mean age: 37.81 ± 13.59
years old) and 185,173 females (mean age: 38.67 ± 14.92 years old). The levels (N = sample size)
of education were: university (N=166,714), college (N=111,463), high-school (N=107,849), and
no formal (N=11,290). We merged the university with the college levels due to their ambiguous
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meaning in some countries, and the high-school with the no formal level due to the relative low
sample size of the latter. Hence, in our analysis the education variable had two levels: secondary
and lower (N=119,139) and tertiary (N=278,177). The levels of home environment were: city
(N=109,111), suburbs (N=131,738), mixed (N=80,266), rural (N=76,047). We merged the mixed,
suburb and rural levels together to facilitate the interpretation of the effect of growing-up in city
(N=109,111) and non-city (N=288,051) environments. City environments are distinguished from
other settings due to the higher propensity for active, self-propelled travel (e.g. walking, cycling),
relative to passive, car - or public transport-based travel51, resulting from the denser arrangement
of local activity locations. We furthermore anticipate that where participants have stated growing
up in a city environment that there is a definitive and salient personal association with a city
underlying this selection, whereas in other cases (e.g. suburban, mixed) this association is less
clear, and better described as non-city. Both factors are common across international settings.
Indeed, the observed clear difference between the city group and the other three groups, but little
dissociation between the other three groups supports this approach, see Extended Data Fig. 7.
To further validate this city / non-city dichotomy, we asked the participants to the City Hero
Quest follow-up experiment the street they lived on in their home environment, and computed the
entropy of the street network (SNE) in a spatial window around it (see Supplementary Methods).
We then compared the SNE of people who reported having grown up in a city (N=114), suburb
(N=326), rural (N=84) or mixed (N=75) environment. As shown in Extended Data Fig. 9, the
SNE in cities was significantly lower than the SNE in the other environments. We ran a one-way
ANOVA with the reported home environment as independent variable and the SNE as dependent
variable and found a significant effect of home environment (F(1,3)=25.72, p<0.001). Post-hoc
pairwise t-test Bonferroni-corrected for multiple comparisons showed that the SNE of a city
environment was significantly lower than the SNE of all the other environments (all p<0.001). We
found no significant difference in the SNE of mixed vs rural (p=1), suburbs vs. mixed (p=0.20),
and a small difference in the SNE of suburbs vs. rural (p=0.02).
For the analysis on the game level entropy, we included the participants that played all the Sea
Hero Quest wayfinding levels (N = 10,626). There were 5,219 males (age: 41.89± 15.95 years
old), 5,407 females (age: 41.98± 16.32 years old), 7,429 with tertiary education, and 3,604 grew
up in cities.
Behavioural data - We collected the trajectory of each participant across each level. The
coordinates of participants’ trajectories were sampled at Fs = 2 Hz.
The geospatial analysis has been carried out with Python (2 and 3), while the other analyses
have been done with Matlab (R2018a).

Metrics

Geospatial analysis

We focused on the quantification of the structural complexity of larger cities instead of the
complexity of areas outside cities. This is because city streets can be more strictly compared with
one another. On the opposite, areas outside cities can be heterogeneous both within and between
countries, which makes the country-level averaging of their parameters problematic.
Street Network Entropy - We used the OSMnx Python toolbox (v.1.1.2) to download the
street network topology of cities from OpenStreetMap (OSM)25. For each included city we
created a street network graph from OSM data within a 1000× 1000 square meter box around
the city geographical center. The use of a bounding box in the city centre is interesting as it is
reflective of the wider city structure, and avoids issues related to classifications of regions, and
administrative boundaries. This definition also has stronger persistence over time (considering
city growth during the theoretical period of our analysis)52. To define the city geographical
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centers, we used the (latitude, longitude) coordinates provided by OpenStreetMaps. Then, we
computed a 36-bin edge bearings distribution (1 bin every 10 degrees), taking one value per street
segment. We initially took twice as many bins as desired, then merged them in pairs to prevent
bin-edge effects around common values like 0 and 90 degrees. We also moved the last bin to the
front, so e.g. 0.01 degree and 359.99 degrees were binned together. We calculated the Shannon
entropy of the city’s orientations’ distribution.

H = −
36∑
i=1

P (oi)log(P (oi)) (1)

where i indexes the bins, and P(oi) represents the proportion of orientations that fall in the
ith bin43. For each of the 38 countries included in our analysis, we defined the average Street
Network Entropy (SNE) as

SNE =
1∑
i αi

10∑
i=1

αiHi (2)

where (Hi)i∈[1..10] are the Shannon entropies of the 10 biggest cities in terms of population, and

αi is the population of the ith city (see Supplementary Table 1).
Since OSM mapping relies on the contributions from volunteers, we considered that this could
introduce a bias, some countries being more densely mapped than others. So we compared these
SNE values to the ones based on the city centers (latitude, longitude) coordinates provided by
Google Maps (GM). We computed SNE value both from the drivable public streets network
(’drive’) and from the all non-private streets and paths network (’all’). The ’drive’ network is
a more reliable and consistent source of long-term street network data, given that it represents
the major established roads in each city. The ’all’ network, by additionally covering pathways
and pedestrian zones, is more susceptible to between-country variation in volunteer mapping
practices and recent planning initiatives. We found little variations, see Extended Data Fig. 10c.
We also varied the size of the street network box around the city centers. If the bounding box
were too big it could go beyond the city boundaries (especially for smaller cities), but if too small
it might not be representative of the whole city. We computed SNEs for 500× 500, 1000× 1000,
2000× 2000 and 5000× 5000 square meter boxes. Again, our results remained stable across the
different sizes, see Extended Data Fig. 10c.
Graph-theoretic metrics -
Graph based measures are calculated on the ’primal’ representation of the road network for each
study area, where junctions are represented by nodes and roads as edges. This representation is
typical in the calculation of road network-based graph metrics. The metrics selected were chosen
on the basis of their widespread use in describing street networks, and full description of their
implementation can be found in25.

Circuity - This measures the of the sum length of all edges divided by the sum of Euclidean
distances between nodes. Thus it captures the extent of deviation required from the most
direct route when moving between two points on a network53.

Mean Cluster Coefficient - This measure records the ratio of number of connections with
neighbours over the total of number of possible connections, taken as a mean for all nodes.
As such, it captures the degree close to which there is high interconnectivity between nodes
in a network54.

Mean Closeness Centrality - Closeness represents how close a node is to all other nodes
within a network. It has been demonstrated to align closely with locations of activities55
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and correlated with activity in the anterior hippocampus when navigating56. The mean
value for all nodes is taken.

Mean Betweenness Centrality - Betweenness centrality measures the extent to which a
node features on shortest paths between all node pairs. Again, we use the mean value
for the network, which indicates the extent to which flows of people may be spread or
concentrated across the network40.

Mean Degree Centrality - This measure records the fraction of nodes that each node is
connected to, taken as a mean for all nodes in the network. This measure reflects the extent
of connectivity between nodes on a network57, is suitable for analysis interconnectivity in
small areas and correlated with posterior hippocampal activity during navigation56.

Mean Neighbor Degree - This measures for each node the mean degree of all neighboring
nodes, and reflects the degree of local node connectivity.

Mean Street length - This measures the mean length of street segments, and thus is an
indicator of block length. This provides a measure of the density of the street network.

Route-based metrics from agent-based simulations -
All routes were calculated based on a ’dual’ representation of the road network, whereby road
segments are modelled as vertices and costs between vertices (e.g. distance, angular change)
modelled as network edges. The Djikstra algorithm was used for identifying the optimal paths,
with road length used as the optimisation measure. For each city, 1000 routes were generated for
two randomly selected origin and destination nodes (i.e. road segment centre points). For each
path, the following measures were extracted.

Unique streets - Sum of the unique street names provided by Open Street Map encountered
along the route.

Partitions crossed - Sum of unique partitions encountered during the route. The road network
was partitioned using the Louvain community detection algorithm on the dual graph, setting
edge cost as angular change. These partitions have been used a proxy for deriving perceived
neighborhood boundaries58, and have demonstrated consistency with well-known regions,
such as Soho and Mayfair in London, see Extended Data Fig. 5.

Snapped angular change - Angular deviations are calculated as the angle of incidence be-
tween two adjacent road segments, based on the connecting straight-line segments on each
road polyline. The sum of absolute angular change between two consecutive road segments
along a route from zero or 90 degrees (whichever is closer). We examined this novel measure
because past work has shown that spatial memory for target locations is better after 90
degree or 180 rotations than other angular changes59. Memory for the angle of turns is
biased towards right angles60. This suggests that it is easier to develop precise memories
for low-SNE cities than for high-SNE cities. High-SNE cities would then require more
training/learning, thus training navigation abilities.

Turns - Sum of turns between two consecutive segments surpassing 50 degrees in either direction,
with more turns indicative of higher perceived cognitive distance61. We computed the same
metric with 60 degrees, the results remained stable.

Angular deviation from target - The sum of the angular deviation from the destination,
recorded at each road segment. Specifically this is recorded as the sum of differences
between the angular change between two consecutive segments and the angular direction

17



of the target from the first segment. During navigation angular deviation from the target
positively correlates with activity in the posterior parietal lobe62–64. The posterior parietal
lobe is a core part of the brain regions needed for effective navigation of familiar places47.

Video game analysis

Wayfinding performance - As in16, we computed the trajectory length in pixels, defined as
the sum of the Euclidean distance between the points of the trajectory. To control for familiarity
with technology, we normalised the trajectory lengths by dividing them by the sum of their values
at the first two levels. The first two levels only reflected video gaming skill (motor dexterity with
the game controls) as no sense of direction was required to complete them. We defined an overall
wayfinding performance metric corrected for video gaming skill (WF ) as the 1st component
of a Principal Component Analysis across the normalized trajectory lengths of the first four
wayfinding levels (levels 6, 7, 8 and 11, 60.5% of variance explained). This metric being based
on the trajectory length, it varies as the opposite of the performance: the longer the trajectory
length, the worse the performance. We took the additive inverse of the metric and added an
offset, so that WF = 0 corresponds to the worst performances. Pearson’s correlation coefficient
between WF and the sum of the trajectory lengths of the first two levels (video gaming skills) is
weak: r = 0.10, p < 0.001, bootstrapped 95%CI = [0.09, 0.10]. The implementation of WF is
available in the code presented in the Code Availability section.
Game Level Entropy - We calculated the Shannon entropy of the Sea Hero Quest level’s
orientations’ distribution similarly as for the cities. To create the equivalent of ”streets” in the
levels of the game, we computed the Voronoi regions from the game level’s layout, and took their
edges. The Voronoi region boundaries are considered equivalent to road centre lines in the city
context. We then used the Douglas-Peucker algorithm to simplify the line made of the connected
segments65, see Figure 4a. For all game levels, we used a maximum offset tolerance between the
original and the simplified line of three pixels. The entropy of the orientation distribution of the
Game Level’s segments was then computed with equation 1.

Statistical analysis

Further details are available in the Supplementary Information.
Linear Mixed Model computation - The parameters of the linear mixed models have been
estimated with the maximum likelihood method (ML), and the covariance matrix of the random
effects have been estimated with the Cholesky parameterization.
Low-SNE and High-SNE country clustering - We partitioned the 38 countries into two
clusters based on their SNE with the k-means algorithm. We used the squared Euclidean distance
metric. We ran the algorithm 1000 times and the arrangement never changed. The first group
(low-SNE) comprised Australia, Canada, South Africa, Saudi Arabia, the United Arab Emirates,
the United States of America and Argentina, with mean SNE = 2.69, SD = 0.18. The second
group (High-SNE) comprised all the other countries, with mean SNE = 3.30, SD = 0.13.
Hedge’s g - Hedge’s g between group 1 and group 2 is defined as

g =
(m1 −m2)

s∗pooled

with mi the mean of group i, and s∗pooled the pooled and weighted standard deviation:

s∗pooled =

√
(n1 − 1)s21 + (n2 − 1)s22)

n1 + n2 − 2
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with ni the sample size of group i, and si the standard deviation of group i.
The 95% confidence intervals displayed in this manuscript are exact analytical confidence intervals
based on iterative determination of noncentrality parameters of noncentral t or F distributions.
For more details, see66.
Confidence Intervals (CI) for Pearson’s correlation coefficient - To estimate the uncer-
tainty around Pearson’s correlation coefficient, we computed its percentile bootstrapped 95%
CI. At each iteration, we resampled pairs of observations with replacement and computed their
correlation values. We iterated this process 1000 times. We then sorted the correlation values
and took the 2.5 and 97.5 percentiles obtained to yield a 95% CI. We illustrated this process for
the correlation between Street Network Entropy and Environment effect size in Extended Data
Fig. 10.
Linear regression predicting environment effect sizes (country slopes) based on SNE
and GDP per capita - A multiple regression was calculated to predict the environment slopes
based on SNE and GDP per capita. A significant equation was found (F(2,35)=22.40, p < 0.001)
with a R2 = 0.56: environment slopes = 0.28 + 8.5 × 10−7(GDP) - 0.09(SNE). Both SNE
(t(35)=-5.86, p < 0.001) and GDP per capita (t(35)=4.01, p < 0.001) were significant predictors
of environment slopes.
Modeling the environment effect with SNE vs all the other metrics - Two linear
regressions were calculated to predict the environment slopes based on
1- SNE only (model ’SNE only’): Env-slope ∼ SNE
We found a significant equation (F(1,36)=20.1, p < 0.001), Adjusted R-Squared = 0.341, BIC =
-142.11.
2- All the other metrics (model ’other metrics’): Env-slope ∼ unique-streets + turns + partition-
crossed +dev-from-90-turns + dev-from-targets + street-length + neighbor-degree + circuity +
clustering-coefficient + closeness-centrality + betweenness-centrality + degree-centrality.
We did not find a significant equation (F(10,25)=1.44, p = 0.21), adjusted R-Squared = 0.125,
BIC = -105.18.

Data Availability

A dataset with the preprocessed trajectory lengths and demographic information is available at
https://osf.io/7nqw6/?view_only=6af022f2a7064d4d8a7e586913a1f157

Due to its considerable size (∼ 1 To), the dataset with the full trajectories is available on a
dedicated server: https://shqdata.z6.web.core.windows.net/. We also set up a portal where
researchers can invite a targeted group of participants to play Sea Hero Quest and generate
data about their spatial navigation capabilities. Those invited to play the game will be sent
a unique participant key, generated by the Sea Hero Quest system according to the criteria
and requirements of a specific project. https://seaheroquest.alzheimersresearchuk.org/

Access to the portal will be granted for non commercial purposes. Future publications based on
this dataset should add ”Sea Hero Quest Project” as co-author.

Code Availability

The Python and Matlab (R2018a) code allowing to reproduce the presented analyses is available
along the preprocessed trajectory lengths and demographic information at https://osf.io/

7nqw6/?view_only=6af022f2a7064d4d8a7e586913a1f157.
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Extended Data Figure legends

Extended Data Fig. 1. | Color-coded world maps. a - Sample size. b - Proportion of
city participants. c - Environment effect size computed from a Linear Mixed Model predicting
Wayfinding Performance, with fixed effects for age, gender and education, and random envi-
ronment slopes clustered by country. The environment effect sizes are the environment slopes
clustered by country, identical to the values in Figure 2a.
Extended Data Fig. 2. | Association between age, home environment, country, and
Path Integration Performance. a - Path Integration Performance as a function of age for
male and female participants who grew up in city and non-city environments. Path Integration
Performance is averaged within 5-year windows, center values correspond to the means. b - Dif-
ference of the effect of growing up outside cities on Path Integration Performance across countries.
We fit a logistic mixed model for Path Integration Performance, with fixed effects for age, gender
and education, and random environment slopes clustered by country, see Supplementary Methods.
Positive values indicate an advantage for participants raised outside cities. c - Street Network
Entropy (SNE) as a function of the environment effect size (random environment slope) in each
country, as in Figure 2b, see Supplementary Methods. All error bars correspond to standard
errors, n = 182,122 participants.
Extended Data Fig. 3. | Environment effect size across age, gender (top) and level
of education (bottom). Effect size is quantified with Hedge’s g, within 5-year windows. Posi-
tive values correspond to an advantage for participants who grew-up outside cities. Error bars
correspond to 95% confidence intervals and the center values correspond to the means.
Extended Data Fig. 4. |Wayfinding Performance in city and non-city environments

20

https://www.openstreetmap.org/copyright


across age, in each country. Wayfinding Performance is averaged within 10-year windows.
Error bars correspond to standard errors and center values correspond to the means. Note that
these values correspond to raw Wayfinding Performance, i.e. they have not been corrected for
age, gender or education. Note: VietNam and Albania y axis lower bound is 0 to allow display
of data points, instead of 0.5 for the rest of the countries. Altogether, we included n = 397,162
participants.
Extended Data Fig. 5. | Examples of city street networks - a - The road networks of
New York City (USA, right) and London (UK, left) have been partitioned using the Louvain
community detection algorithm on the dual graph, setting edge cost as angular change. The
road networks within a 3x3 km2 box around the city centres are represented. b - Street network
of the 10 biggest cities in terms of population in Argentina and in Romania. We used OSMnx
to gather the “drive” Open Street Map network within 1000× 1000 m2 boxes around each city
centre. The reasons behind these differences are mostly historical. In South America, grid city
design is characteristic of Hispanic American colonization, while disorganized street networks
correspond to the typical organic street pattern of old European city cores.
Extended Data Fig. 6. | a - Gross Domestic Product (GDP) per capita as a function of
Street Network Entropy. b - Screenshot from Sea Hero Quest (SHQ, left) and City Hero Quest
(CHQ, right). c - Subset of SHQ levels used in the second experiment run on Prolific. d - CHQ
levels used in the second experiment.
Extended Data Fig. 7. | Association between age, home environment, country, and
Wayfinding Performance. a - Wayfinding Performance as a function of age for participants
who grew up in city, suburb, mixed and rural environments. Data points correspond to the
wayfinding performance averaged within 5-year windows. b - Difference in the effect of growing
up outside cities on wayfinding performance across countries. We fit a linear mixed model for
wayfinding performance, with fixed effects for age, gender and education, and random environment
slopes clustered by country, as in Figure 2a. Suburbs, Mixed and Rural environment slopes
are represented, with City environment as baseline. Positive values correspond to an advantage
compared to growing up in cities. Countries are ranked according to their suburb slope. The
slopes of the different non-city environments are highly correlated: Pearson’s r(suburb, mixed)
= 0.97, p < 0.001, r(suburb, rural) = 0.72, p < 0.001, r(mixed, rural) = 0.53, p < 0.001. The
country ranking is very similar to the one with only 2 classes (city / non-city): Spearman’s
r(non-city, suburb) = 0.85, p < 0.001, r(non-city, mixed) = 0.73, p < 0.001, r(non-city, rural)
= 0.94, p < 0.001. P-values are from a t-test testing the hypothesis of no correlation against
the alternative hypothesis of a nonzero correlation. c - Pairwise differences between random
environment slopes shown in panel b, averaged over countries. We show that the average difference
in effect size between the city environment and the other 3 environments (city-rural, city-mixed,
city-suburb) are around 10 times larger than the difference between the ‘non-city’ environments
(rural-mixed, mixed-surburb, rural-suburb). This supports the approach to cluster together rural,
mixed and suburb environments. All error bars correspond to standard errors, n = 397,162
participants.
Extended Data Fig. 8. | Environment effect size and city complexity measures in
high-SNE and low-SNE countries - In each of the 380 included cities we computed a range of
metrics to quantify different aspects of its complexity. We then took an average of these metrics
weighted by the city population to have one value per country. We normalized these values by
dividing them by their maximum. Network-based metrics - On top of the Street Network
Entropy used in this study, we computed other graph-theoretic measures commonly considered
for spatial analysis of cities: average street length, circuity, neighborhood degree, clustering
coefficient, closeness centrality, betweenness centrality, and degree centrality. Route-based
metrics - we simulated 1000 routes in each city, and quantified five key variables derived from
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each route: number of unique streets, number of transitions in the partitions in street network
structure, deviation from regular 90 degree turns at each turn, overall deviation from the target
and number of turns above 50 degrees. Individual data points correspond to countries (n=38). In
the boxplots, the horizontal bar represents the sample median, the hinges represent the first and
third quartiles, and the whiskers extend from the hinges to the largest/lowest value no further
than ±1.5 * IQR from the hinge (where IQR is the inter-quartile range).
Extended Data Fig. 9. | Street Network Entropy across reported home environ-
ments. SNE computed at the home addresses of the 599 participants to the follow-up experiment
City Hero Quest as a function of the reported type of home environment. The size of the square
boxes used to compute the SNE were adjusted for the average street density within each reported
environment (see Supplementary Methods). Error bars correspond to standard errors and center
values correspond to the means.
Extended Data Fig. 10. | Estimation of the robustness of the Pearson’s correlation
between Street Network Entropy (SNE) and environment effect size. Bootstrapped
correlation coefficients computed from 1000 resampling with replacement. a - Histogram of the
computed correlation coefficients. We obtained r = -0.60, 95% CI = [-0.78 -0.30]. b - Regression
lines for each sample. c - Pearson’s correlation between environment effect size and different SNE
calculations. The SNE set in bold is the one used in this manuscript. OSM = OpenStreetMaps,
GM = Google Maps. P-values are from a t-test testing the hypothesis of no correlation against
the alternative hypothesis of a nonzero correlation.

Supplementary Video legends

Supplementary Video 1 | Examples of navigation in two Sea Hero Quest levels: level 27 (left)
and level 58 (right).
Supplementary Video 2 | Example of navigation in one City Hero Quest level.

References

51. Montello, D. R. A conceptual model of the cognitive processing of environmental distance
information in International Conference on Spatial Information Theory (2009), 1–17.

52. Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. & Batty, M. On the problem of
boundaries and scaling for urban street networks. Journal of the Royal Society Interface 12
(2015).

53. Giacomin, D. J. & Levinson, D. M. Road network circuity in metropolitan areas. Environment
and Planning B: Planning and Design 42, 1040–1053 (2015).

54. Jiang, B. & Claramunt, C. Topological analysis of urban street networks. Environment and
Planning B: Planning and design 31, 151–162 (2004).

55. Porta, S. et al. Street centrality and densities of retail and services in Bologna, Italy.
Environment and Planning B: Planning and design 36, 450–465 (2009).

56. Javadi, A.-H. et al. Hippocampal and prefrontal processing of network topology to simulate
the future. Nature Communications 8, 1–11 (2017).

57. Jiang, B. & Claramunt, C. A structural approach to the model generalization of an urban
street network. GeoInformatica 8, 157–171 (2004).

58. Filomena, G., Verstegen, J. A. & Manley, E. A computational approach to ‘The Image of
the City’. Cities 89, 14–25 (2019).

22



59. Mou, W., McNamara, T. P., Valiquette, C. M. & Rump, B. Allocentric and egocentric
updating of spatial memories. Journal of experimental psychology: Learning, Memory, and
Cognition 30, 142 (2004).

60. Tversky, B. Distortions in memory for maps. Cognitive Psychology 13, 407–433 (1981).

61. Sadalla, E. K. & Magel, S. G. The perception of traversed distance. Environment and
Behavior 12, 65–79 (1980).

62. Spiers, H. J. & Maguire, E. A. A navigational guidance system in the human brain. Hip-
pocampus 17, 618–626 (2007).

63. Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and Euclidean
distances to goals during navigation. Current Biology 24, 1331–1340 (2014).

64. Spiers, H. J. & Barry, C. Neural systems supporting navigation. Current Opinion in Behav-
ioral Sciences 1, 47–55 (2015).

65. Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: the international
journal for geographic information and geovisualization 10, 112–122 (1973).

66. Hentschke, H. & Stüttgen, M. C. Computation of measures of effect size for neuroscience
data sets. European Journal of Neuroscience 34, 1887–1894 (2011).

23


