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Abstract: Through this study, we developed and validated a system for energy expenditure calcula-
tion, which only requires low-cost inertial sensors and open source R software. Five healthy subjects
ran at ten different speeds while their kinematic variables were recorded on the thigh and wrist.
Two ActiGraph wireless inertial sensors and a low-cost Bluetooth-based inertial sensor (Lis2DH12),
assembled by SensorID, were used. Ten energy expenditure equations were automatically calculated
in a developed open source R software (our own creation). A correlation analysis was used to
compare the results of the energy expenditure equations. A high interclass correlation coefficient of
estimated energy expenditure on the thigh and wrist was observed with an Actigraph and Sensor ID
accelerometer; the corrected Freedson equation showed the highest values, and the Santos-Lozano
vector magnitude equation and Sasaki equation demonstrated the lowest one. Energy expenditure
was compared between the wrist and thigh and showed low correlation values. Despite the positive
results obtained, it was necessary to design specific equations for the estimation of energy expenditure
measured with inertial sensors on the thigh. The use of the same formula equation in two different
placements did not report a positive interclass correlation coefficient.

Keywords: inertial sensors; energy expenditure; open source R; validation; walk; run; equations;
assessment
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1. Introduction

The estimation of energy expenditure (EE) is fundamental to determine the level
of physical activity of a person. The current society we live in has eminently sedentary
behaviour, which can produce serious problems, and along with other unhealthy lifestyle
habits, means a change in lifestyle is necessary [1,2]. Likewise, the use of behaviour
modification techniques alone can produce an increase in physical activity [3]. Use of these,
in conjunction with physical activity monitors and suggests an increase in physical activity.
Despite the possible technical difficulties that may exist during the process, a motivation to
be physically active is increased through self-monitoring and goal setting, among others [4].
It is, therefore, necessary to design valid systems for the estimation of EE that are accessible
and reliable.

Energy expenditure is the most popular way to assess physical activity carried out
by the subject throughout the day, as well as to record the prolonged periods of inactivity
(sleeping or seated) [5]. In general, this consumption is recorded in the metabolic equiva-
lents (METs) unit. METs is a direct adaptation of “mass-specific energy costs, computed by
taking the energy costs (VO2 mL·kg−1·min−1) and dividing them by 3.5 mL·kg−1·min−1”,
according to the Compendium of Physical Activities [6]. In other words, an indirect
calorimetry can be used as an estimation instrument to determine the energy expenditure
of different activities. However, the formula mentioned above cannot be applied directly to
all subjects because it does not consider individual variables, such as age, weight, height,
or gender. Thus, correction factors should be used [7].

Physical activities are categorised based on their intensity and consumption of EE.
In this research, the categories are established as followings: <1.5 METs light intensity,
<3 METs moderate intensity, <6 METs vigorous intensity, >6 METs very vigorous inten-
sity [8]. Nowadays, equipped with low-cost inertial sensors, wearable devices (e.g., activity
monitors) have become powerful [9], and they are capable of recording physical activi-
ties and estimating them by METs in a real-time manner. However, detailed procedure
information is still missing in published studies, for using these low-cost devices. For
example, the following details are still unclear to others: accelerometer brand, placement,
duration of measurement, data processing, and interpretation [10], which makes it difficult
to reproduce similar results. In addition, most of the manufacturers choose to design their
own systems, especially for calculating calories consumed or energy expenditure, and there
are no fair comparisons between these low-cost devices [11]. In other words, the reliability
of wearable devices for measuring fitness-related indicators has been analysed, but the esti-
mation accuracy of energy consumption is still inadequate [12]. Besides, machine learning
systems have been used to calculate energy expenditure. However, it is not reproducible in
daily life as the high predictive precision of the models is calibrated under strict laboratory
conditions [13]. Therefore, it is necessary to apply nonlinear models to obtain a reliable and
easier EE estimation for daily practise [14,15].

Previous studies showed the measurement of energy consumption in different devices
(Apple Watch 2, Samsung Gear S3, Jawbone Up3, Fitbit Surge, Huawei Talk Band B3, and
Xiaomi Mi Band 2) was inadequate, and their mean absolute percentage errors reached
0.44. This shows the low reliability of devices, such as the Fitbit or the Jawbone, to estimate
energy expenditure [16]. In addition, measurement accuracies varied between subjects
individually, from 0.10 to 0.50, depending on the activity performed [8]. Previous studies
have also demonstrated the existence of significant differences in energy expenditure or
physical activity when climbing or descending stairs and even walking at low speeds when
comparing specific devices designed for this purpose [17]. In this sense, the estimation
of energy expenditure with smartwatches or similar devices in comparison with a gold
standard (gas analysis data from indirect calorimetry or oxygen volume consumption)
have also shown significant differences. These differences are smaller when the outcome
variable heart rate is taken as a reference [18]. Likewise, specific device designs based on
inertial sensors for energy expenditure estimation compared to gas analysis can obtain
better results than those obtained by a conventional smartwatch or an activity-specific
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smartwatch [19]. Despite the improvement in the results based on specific systems, there
are still differences in the estimation of energy expenditure that could be reduced.

Two of the most used inertial sensors for estimating energy expenditure are Acti-
Graph [20] and Genea [21], which are regarded as the gold standard when compared to new
devices appearing in the market [22–24]. However, these devices have enclosed software
and signatures with multiple modes for energy expenditure calculation, which remains
unclear how these devices calculate the calory consumption using inertial sensors [25].
Meanwhile, their high purchasing cost is not affordable for many clinical applications,
such as physical activity promotion, breaking sedentary behaviour, and technical use for
weight loss [26]. Therefore, this study aims to develop an open source system for the
calculation of energy expenditure, which is based on low-cost inertial sensors Lis2DH12
(STMicroelectronics, Gienbra, Suiza) and ActiGraph GT9X Link (ActiGraph LLC, Pensacola,
FL, USA).

2. Materials and Methods
2.1. Design

An analytical cross-sectional study using three inertial measurement units (IMU) or
sensors used to record physical activities was conducted to design an open source R-code
for estimating energy expenditure. Five healthy adults were recruited to perform twice a
set of ten physical activities. The informed consent was approved accordingly.

Three IMUs per participant were used for the present study—two Actigraph GT9X
Links [27] and one SensorID [28]—following two configurations. First configuration: each
participant was equipped with an Actigraph with a band and a SensorID in the wrist
with a double tape band and another Actigraph sensor placed on the thigh with a band.
Second configuration: each participant was equipped with an Actigraph with a band and a
SensorID on the thigh with a double tape band and another Actigraph sensor placed in the
wrist with a band.

A set of ten physical activities on a treadmill were conducted in each configuration.
The set of activities were walk or running at 10 different speeds: 1.4 km/h, 2.9 km/h,
4.3 km/h, 5 km/h, 6 km/h, 6.5 km/h, 7 km/h, 8 km/h, 9 km/h and 10 km/h, respectively.
Participants performed each physical activity on the treadmill for 3 min, and no data was
recorded in the first one minute (to ignore some unstable activity pattern); the next two
minutes were recorded.

2.2. Devices

The ActiGraph GT9X Link [27] sensor is equipped with its own software and it was
designed to estimate EE. It can be programmed to measure each activity, which makes
it possible to be automatically activated for recording accelerometer data in a specific
period. The sampling frequency of the device is 30–100 Hz with a dynamic range of
measure ±8 g, and its data storage is 4 GB [27]. In the present study, it was configured
from the manufacturer’s software to extract the RAWdata format from the accelerometer
(x-, y-, z-axes). This sensor is widely used for the estimation of physical activities [10].

The IMU sensor of the SensorID uses the Lis2DH12 [29] chipset model and Bluetooth
5.0 for wireless connection, and the accelerometers of activities can only be recorded in a
real-time manner. The device has a measuring range of ±16 g and a range of sampling
frequency 1–1620 Hz. Additionally, the x-, y-, and z-axes data from the accelerometer
were obtained.

The sampling rate of both ActiGraph sensors and the IMU sensor from SensorID was
30Hz in all experiments. Each participant completed the sets of physical activities.

2.3. R-Code Development

An R-Code was developed in order to estimate EE based on x-, y-, z-axes data obtained
from the sensors. The average activity count value (counts per minute) of each activity
for EE computation is calculated through the sum of activity count values (counts per
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second) divided by two (each activity lasts two minutes). For Crouter et al.’s equation [30],
the average activity count value (counts per 10 s) is calculated by the sum of activity
count values (counts per second) divided by 12 (2 min is equal to 12 multiply 10 s). The
VM is calculated by the square root of the square of the three axes of data. For Santos-
Lozano et al.’s equations [20], we choose the equations designed for all age groups. All the
programming codes designed for reading the accelerometer data, EE computation and EE
correction are written in R language by two of our researchers (J.M.-M. and L.W.) (available
code: https://doi.org/10.6084/m9.figshare.12080730; accessed on 30 April 2021), and a
public library called “activityCounts” is used to calculate the activity counts (counts per
second) [31].

2.4. Data Analysis

In our experiments, five participants wearing three sensors completed two config-
urations of a set of ten physical activities, and each activity lasted two minutes. There-
fore, we have 300 records of activity data (5 participants × 3 sensors × 2 configuration
× 10 activities) and 600 min of data in total. To obtain a more precise estimation of EE,
descriptive and anthropometric variables of the sample were obtained (age, body mass,
height, and gender). The estimation of EE by equations usually does not concern the
individual variations, such as age and body mass, which leads to an inaccurate predicted
energy cost of activities within a specific individual [6]. We further corrected the EE values
by considering the variation of each participant (Table 1).

Table 1. Equations applied to calculate energy expenditure.

Freedson et al. 1998 [32] EE = 1.439008 + 7.95e−4 × ACVT

Crouter et al. 2010 [30] Walking/Running EE =
2.294275× exp

(
8.4679e−5)× AC′VT

Santos-Lozano et al. VT 2013 [20] Adults EE = 3.4002 + 5.3e−4 × ACVT −
5.564e−2 × BM + 1.2789× Gender

Santos-Lozano et al. VM 2013 [20] Adults EE = 2.8323 + 5.4e−4 × ACVM −
5.912e−2 × BM + 1.4410× Gender

Sasaki et al. 2011 [33] EE = 8.63e−4 × ACVM + 0.668876

Correction_METs

Female
HBequation =

655.0955 + 1.8496× Height× 100 +
9.5634× BM− 4.6756× Age

Male
HBequation =

66.4730 + 5.0033× Height× 100 +
13.7516× BM− 6.7550× Age

Corrected
Corrected_EE =

other methods (METs)×
3.5

HBequation×( 1000
1440×5×BM )

VT: vertical axis; VM: vector of magnitude;
ACVT : activity counts on vertical axis, counts per min;
AC′VT : activity counts on vertical axis, counts per 10 s; This is a special ACVT for Crouter et al.
2010;
ACVM: activity counts on vector of magnitude (three axes), counts per min;
BM: body mass (kg);
Height: cm;
Age: year;
Gender: 1 : female, 2: male.

After the data collection, a data cleaning procedure proceeded. The incorrect activity
data due to initialization errors and device malfunction were removed during this proce-
dure. We removed four invalid monitor data (removed t2221, t221, t2130, and t3127), which

https://doi.org/10.6084/m9.figshare.12080730
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finally led to 296 valid recorded activities. To select the appropriate predictions of EE, we
reviewed up-to-date EE estimation methods using accelerometer data for adults in order
to best match the physical activities conducted in this work. After the literature review,
five different equations were chosen for calculating EE (in METs) which were Freedson
et al. [32], Crouter et al. [30], Santos-Lozano et al. [20], the equations of the vertical axis
(VT), and vector magnitude (VM) and Sasaki et al. [33]. The equations used in the present
studies were validated in the right hip [20,30,32,33].

2.5. Statistical Analysis

To assess the reliability of the EE estimation between the two devices, intraclass corre-
lation analysis elements (ICC) were performed: alpha mixed pattern of two factors. The
statistical analysis employs the covariances among the items. A high intraclass correlation
coefficient (ICC) close to 1 indicates high similarity between values from the same group.
ICC is a reliability index that reflects both degrees of correlation and agreement between
measurements [34].

3. Results

An interclass correlation analysis was performed to compare the calculated EE, which
was based on the accelerometer data obtained by the two inertial sensors: SensorID
(Lis2DH12) and ActiGraph. Ten different equations were applied to calculate the EE
for different speeds of activities like walking and running. In six out of ten equations in our
experiments, no significant differences were observed in the comparisons of EE estimated
with the inertial sensors in the same placements (see Tables 2 and 3).

The average correlation index between the standardised elements of energy consump-
tion on the wrist was 0.946 (Table 2). The speeds obtained for the best interclass correlation
index (ICC) on the wrist were 2.9 km/h and 4.3 km/h. The speed of 6 km/h was the one
that obtained the lowest standardised interelement correlation index on the wrist. The
calculation of the corrected EE of Freedson et al. 1998 [32] and Santos-Lozano et al. VT
2013 [20] obtained the best correlation rates between inertial sensors. The EE equations of
Sasaki et al. 2011 [33] and corrected Santos-Lozano et al. VT 2013 [35] obtained the lowest
correlation rates in our system, ICC:0.111, and ICC:0.306, respectively (see Table 2).

The ICC for the EE calculated on the thigh is shown in Table 3. The average ICC for
the standardised elements of different speeds was 0.935. The speeds that offered the best
rates were 2.9 km/h and 4.3 km/h. The corrected EE equations of Crouter et al. 2010 [30]
and Freedson et al. 1998 [32] (0.982 and 0.979, respectively) were the best correlation results
when placing the inertial sensor (SensorID) on the thigh. The lowest correlation rates
among elements were those obtained by the corrected equations of Santos-Lozano et al.
VM 2013 [20] (ICC:0.022) and Sasaki et al. 2011 [24] (ICC:0.044). The speed with the lowest
correlation index among standardised elements on the thigh position was 7 km/h (see
Table 3). Significant differences observed in the EE comparison were the wrist and thigh
with the ActiGraph sensor (see Table 4 for details).
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Table 2. ICC results for energy expenditure computed from two inertial sensors (ActiGraph and Sensor ID) on the wrist.

Speed

Crombach’s
Standard-

ised
Items

Energy Expenditure Calculation System

Freedson
et al. 1998

[32]
Crouter et al.

2010 [30]
Santos-

Lozano et al.
VT 2013 [20]

Santos-
Lozano et al.

VM 2013
[20]

Sasaki et al.
2011 [33]

Corrected
Freedson
et al. 1998

[32]

Corrected
Crouter et al.

2010 [30]

Corrected
Santos-

Lozano et al.
VT 2013 [20]

Corrected
Santos-

Lozano et al.
VM 2013

[20]

Corrected
Sasaki et al.

2011 [33]

1.4 km/h 0.918 0.997 0.723 0.997 0.928 −0.331 0.997 0.651 0.997 0.904 0.457
2.9 km/h 0.992 0.992 0.941 0.994 0.928 0.979 0.993 0.800 0.994 0.958 0.926
4.3km/h 0.982 0.935 0.835 0.951 0.957 0.929 0.932 0.932 0.950 0.957 0.929
5 km/h 0.957 0.956 0.956 0.983 0.915 0.744 0.985 0.991 0.983 0.899 0.875
6 km/h 0.850 0.951 0.958 0.946 0.518 −0.005 0.957 0.968 0.956 0.110 −0.310
6.5 km/h 0.943 0.957 0.944 0.961 0.146 0.010 0.957 0.948 0.963 −0.119 −0.019
7 km/h 0.955 0.941 0.931 0.936 −0.359 −0.157 0.962 0.949 0.960 −0.357 −0.015
8 km/h 0.961 0.865 0.879 0.846 −0.151 0.015 0.871 0.861 0.841 −0.138 0.177
9 km/h 0.940 0.989 0.989 0.989 −0.613 −0.709 0.991 0.991 0.989 −0.301 0.032
10 km/h 0.961 0.865 0.819 0.858 −0.366 −0.361 0.959 0.897 0.933 0.148 0.225
MEAN 0.946 0.945 0.898 0.946 0.391 0.111 0.960 0.899 0.957 0.306 0.328

Table 3. ICC results for energy expenditure computed from two inertial sensors (ActiGraph and Sensor ID) on the thigh.

Speed

Crombach’s
Standard-

ised
Items

Energy Expenditure Calculation System

Freedson
et al. 1998

[32]

Crouter et al.
2010 [30]

Santos-
Lozano et al.
VT 2013 [20]

Santos-
Lozano et al.

VM 2013
[20]

Sasaki et al.
2011 [33]

Corrected
Freedson
et al. 1998

[32]

Corrected
Crouter et al.

2010 [30]

Corrected
Santos-

Lozano et al.
VT 2013 [20]

Corrected
Santos-

Lozano et al.
VM 2013

[20]

Corrected
Sasaki et al.

2011 [33]

1.4 km/h 0.887 0.990 0.987 0.997 0.804 −0.689 0.982 0.999 0.995 −0.007 −0.260
2.9 km/h 0.993 0.989 0.993 0.994 0.915 0.879 0.989 0.994 0.994 0.913 0.881
4.3 km/h 0.993 0.994 0.995 0.993 0.721 0.541 0.995 0.996 0.994 0.726 0.608
5 km/h 0.974 0.986 0.990 0.981 0.195 −0.176 0.989 0.991 0.987 −0.035 −0.279
6 km/h 0.953 0.950 0.955 0.949 −0.198 −0.361 0.968 0.968 0.964 −0.607 −0.544
6.5 km/h 0.954 0.996 0.996 0.989 −0.327 −0.441 0.989 0.987 0.984 −0.702 −0.555
7 km/h 0.716 0.916 0.930 0.897 0.139 −0.071 0.952 0.953 0.947 −0.763 −0.660
8km/h 0.939 0.973 0.979 0.968 0.288 0.297 0.982 0.984 0.981 −0.138 0.139
9 km/h 0.966 0.955 0.962 0.947 0.756 0.921 0.965 0.965 0.960 0.642 0.781
10 km/h 0.979 0.967 0.977 0.961 0.630 0.654 0.978 0.983 0.976 0.194 0.330
MEAN 0.935 0.972 0.976 0.968 0.392 0.155 0.979 0.982 0.978 0.022 0.044
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Table 4. ICC results for energy expenditure computed from the ActiGraph sensor on two placements (thigh and wrist).

Speed

Crombach’s
Standard-

ized
Items

Energy Expenditure Calculation System

Freedson
et al. 1998

[32]

Crouter et al.
2010 [30]

Santos-
Lozano et al.
VT 2013 [20]

Santos-
Lozano et al.

VM 2013
[20]

Sasaki et al.
2011 [33]

Corrected
Freedson
et al. 1998

[32]

Corrected
Crouter et al.

2010 [30]

Corrected
Santos-

Lozano et al.
VT 2013 [20]

Corrected
Santos-

Lozano et al.
VM 2013

[20]

Corrected
Sasaki et al.

2011 [33]

1.4 km/h 0.853 −0.352 −0.760 0.331 0.802 0.437 −0.468 −0.675 0.051 0.673 0.455
2.9 km/h 0.961 −0.143 −0.057 0.259 0.819 0.749 0.042 0.098 0.245 0.822 0.771
4.3 km/h 0.944 −0.237 −0.064 0.076 0.785 0.649 −0.107 0.230 0.066 0.690 0.654
5 km/h 0.948 −0.018 −0.022 0.185 0.529 0.473 0.173 0.272 0.284 0.549 0.632
6 km/h 0.946 0.050 0.068 0.187 0.404 0.484 0.194 0.232 0.275 0.612 0.710
6.5 km/h 0.755 −0.368 −0.420 −0.037 0.053 0.344 −0.212 −0.217 −00.30 0.257 0.521
7 km/h 0.923 −0.293 −0.296 −0.232 0.819 0.843 −0.330 −0.292 −0.332 0.709 0.796
8 km/h 0.957 0.243 0.227 0.144 0.508 0.542 0.501 0.368 0.447 0.279 0.419
9 km/h 0.929 0.034 0.056 −0.119 −0.073 −0.008 0.339 0.230 0.280 −0.257 −0.099
10 km/h 0.922 0.243 0.251 0.198 −0.585 −0.533 0.384 0.321 0.315 −0.583 −0.496
MEAN 0.921 −0.084 −0.102 0.099 0.406 0.398 0.052 0.057 0.133 0.375 0.436
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4. Discussion

The ICC of six EE equations (ten in total) shows similar results when applied to the
accelerometer data from two different inertial sensors. Therefore, both sensors are valid for
the EE estimation. The processing and analysis of the data in R software proved to be an
automated and efficient calculation method. Based on the results obtained, the reliability
of low-cost sensors (Lis2DH12) is well recognised when compared to a high-performance
sensor (like ActiGraph).

The results of the interclass correlation interval on the wrist (Table 2) and thigh (Table 3)
were consistent at most of the activity speeds, but it was slightly better on the wrist. The
estimation of EE at a low-speed (2.3 km/h and 4.3 km/h) had a higher interelement
correlation index than higher speeds (9 km/h and 10 km/h). The results suggested that
it is not possible to use the same energy expenditure equation for the wrist and thigh
(Table 4). To avoid the possible underestimation and reflect reliable energy expenditure
calculation, we corrected the EE equations by considering the individual variables, such
as gender, body mass index and age, for all participants in our experiments (Corrected
METs—Compendium of Physical Activities).

Before interpreting the results of this study, the following aspects should be considered.
The results in relation to ICC and the estimation of EE should be taken with caution because
of two factors. The estimated results of energy expenditure applying the different equations
were not compared with a VO2 indirect calorimetry system due to the lack of necessary
equipment; VO2 systems for data collection are expensive and therefore difficult to use
in daily life for the calculation of energy expenditure, making it necessary to identify
alternative systems [36]. The sample size of this study was five participants, which is
small. However, each participant walked on the treadmill twice at all selected speeds. This
involves a large amount of data. Hence, the established sample size defines a confidence
level of 80% and a margin error of 20%.

In the present study, we used EE equations and their corresponding corrected versions.
For example, we named the corrected version of “Freedson et al. 1998” as the “corrected
Freedson et al. 1998” [32]. Freedson et al.’s equation obtained the best correlation on the
wrist with and without correction among five different EE equations. However, on the thigh,
the best equation with and without correction was Crouter et al. 2010 [30]. It is important
to consider the usage of differential equations and their reliability in any system designed
for estimating energy expenditure [9,10,35]. Moreover, standard EE systems should still be
used when the energy cost of physical activities is computed for population sets [6,7].

Previous studies have analysed EE based on equations considering VM, body weight
and the heart rate reserve of individuals in two different allocations. No significant dif-
ferences were observed in the variables weight, dead height or body mass index among
the participants in the present study. As shown in Table 1, gender and body mass index
are considered in the Crouter et al. [30] and Santos-Lozano et al. [20] equations. In all the
corrected equations, age is considered, in addition to the aforementioned variables. An
earlier study [25] shows that a significantly improved accuracy of estimated EE is observed
when the Freedson et al. equation considers individual variables, such as vector magnitude
and body weight. However, we did not notice such a significant difference in ICC in our
experiments between the traditional Freedon et al. equation and the corrected equation
(adapted to vector magnitude and body weight). In contrast, the results of the Freedson
et al. equation from the wrist and thigh showed a strong ICC (wrist: 0.945; thigh: 0.972).
Results of greater consistency were obtained when the corrected version of the EE equation
was applied (ICC wrist: 0.960; thigh: 0.979). Moreover, the energy expenditure data esti-
mated by an inertial sensor and an EE equation should still be taken with caution, as the
predicted EE could be significantly underestimated compared to the actual EE in different
population groups. Any underestimation could increase along with the increasing intensity
of the activities; multiple-stage analysis regression models revealed that age and weight
were related to actual EE in both the older and younger groups [37]. Meanwhile, similar
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studies have shown that the corrected formula translated to a better energy expenditure
prediction by adding a heart rate reserve [38,39].

The heart rate parameters with a wrist accelerometer improved energy expenditure
estimation significantly [18,40]. Related studies have compared two inertial sensors on
EE estimations using the same equations as in our study [41]. They demonstrated that
outpatient activities (walking on 3.2 km/h, 4.2 km/h, 6.0 km/h, and jogging at 8.4 km/h)
have the best agreement between the Active Style Pro sensor and ActiGraph, including
any four EE equations used in the ActiGraph software. In our study, these four same
equations and speeds of similar gait were also used, and we observed positive correlations
when measuring with two different inertial sensors (see Tables 2 and 3). The inertial
sensors placed on the hip are more likely to calculate accurate EE when participants are
doing physical activities that involve mobility of the lower limbs (e.g., household, stairs,
walking, and running) and the upper limbs (e.g., laundry, window washing, dusting, dishes
and sweeping) [38,42]. However, a better overall prediction of EE is obtained when the
inertial sensors are placed on the wrist in our study [42]. However, Slade et al. have
used systems based on two inertial sensors (shank and thigh) for the estimation of energy
expenditure, which produces a big improvement. Even using a single sensor on the thigh
can significantly reduce error in the estimation of energy expenditure obtained by the
smartwatch [19].

Besides, we also observed that the results obtained from the wrist and thigh cannot be
compared fairly due to the interclass relation coefficient’s weakness (see Table 4). Similar
to this, recent studies have demonstrated the need to design specific energy expenditure
equations when measured on the thigh [43]. In this sense, according to the results obtained
in the present study, the Lis2DH12 sensor compared with the ActiGraph showed a high
ICC in the calculation of energy expenditure used in both the thigh and the wrist in six of
the equations used (Tables 3 and 4). In this regard, it is important to consider the evolution
of the inertial sensor itself, which is improving in technology and increasing in recording
accuracy. For this reason, it is difficult to compare the use of two inertial sensors for the
estimation of energy expenditure if they are not the same and if there is no third reliable
measurement for the estimation of energy expenditure.

The proposed EE calculation system is developed in an open source R software, which
is under a general public license [44], and this licence guarantees the freedom for all users to
share and change it. In addition, the advantages of our system are that we only need a CSV
file as input, which records the raw accelerometer data (including the time, accelerometer
x-axis, accelerometer y-axis, accelerometer z-axis, and the vector of magnitude), and the
calculation is a numerical computation which needs low computing resources. Thus, the
system is suitable for low-cost or high-cost inertial sensors, and it can be easily further
implemented in smart devices, and is independent of specific software. The users can
modify the provided EE equations or add new EE equations freely.

The results obtained in this study demonstrate the feasibility of using different equa-
tions to estimate energy expenditure in an open source system. This system could be used
by any manufacturer able to implement it in their devices and allow the development
of third-party applications based on these systems. Devices, such as the Jawbone Up3
(Jowbone, San Francisco, CA, USA) and Fitbit Surge (Fitbit, San Francisco, CA, USA),
showed positive correlations greater than 0.8 when using step counting or accelerometer
steps; however, energy expenditure was underestimated compared to indirect and direct
calorimetry [16]. Furthermore, there is no doubt that a system based on biomechanical
analysis is more reliable for the estimation of energy expenditure, with an error under
13%, which is very far from the 44% obtained by the smartwatch [19]. However, the use
of such a system on a daily basis could be a limitation for the end-user to carry multiple
recording devices instead of just one. In this way, a machine learning system could also be
used to estimate the EE; using nonlinear models based on dynamic recognition allows for
a better functioning of these systems [13]. These systems can increase the accuracy of EE
recognition by up to 7% [45]. However, it is necessary to first validate the sensor data [46].
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Our future research will apply specific energy expenditure equations to the thigh,
for example, recent EE equations designed for daily living, sports activities and machine
learning systems. This would produce a more precise system of energy expenditure
calculation for a greater number of activities. This would be essential to compare the
energy expenditure obtained by equations with the VO2 via indirect calorimetry [19,47].
The applications of the proposed method can be related to any EE estimation for physical
activities, such as physical activity promotion for walking/running, clinical applications,
like sedentary behaviour change for health care, and technical use for losing weight. We
noticed that the proposed EE calculation system is capable of running automat, and only
requires low-cost inertial sensors and limited computational resources, thus we could
develop a completely autonomous software that is easily implanted into smart devices
with inertial sensors on the market.

The present study has some limitations. For example, this study cannot determine
which one of the two inertial sensors (Lis2DH12 or ActiGraph) or which one of the equations
is better for the EE estimation because an indirect calorimeter or doubly labelled water
method was not used as a validation site. The present study has a limited sample of
participants, which could produce a type 2 error: hypotheses null not rejected. However, ten
different speeds have been tested, and two positions and ten different energy expenditure
calculation formulas generated an extensive database. The present study did not use the
heart rate reserve; however, we used two allocations for the sensors. These placements are
more comfortable and easier to record physical activities. In addition, this study shows that
low-cost accelerometers can be used to design a new computational EE calculation system,
which is written in open source R software for energy expenditure research. Furthermore,
this system could replace standard measurements, such as the ActiGraph software.

5. Conclusions

In our study, two inertial sensors (SensorID and ActiGraph) were used to calculate the
EE for different speeds of physical activities, such as walking and running, and the way
we estimated EE was by using an automated system written in open source R software.
The conclusion of this study is that not all formulas for EE estimations provide the same
reliability when using different inertial sensors. However, we noticed that similar energy
expenditure results were produced by the EE equations of Freedson et al., Crouter et al.,
Santos-Lozano et al., and their corrected versions, which indicates that they can be used
by two different inertial sensors. Based on the results obtained, equations like Freedson
et al. and Crouter et al. should not be used on the wrist and thigh at the same time as they
show negative correlations in our experiments. The proposed EE calculation system can
be easily further improved to be a more precise system for a wide range of applications,
such as physical activity promotion and daily behaviour change. Moreover, its nature of
open source software, automation and low requirements of computation resources makes
it suitable to be implanted into smart devices with inertial sensors.
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