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Abstract—Yoga can be seen as a set of fitness exercises
involving various body postures. Most of the available pose and
action recognition datasets are comprised of easy-to-moderate
body pose orientations and do not offer much challenge to
the learning algorithms in terms of the complexity of pose. In
order to observe action recognition from a different perspective,
we introduce YogaTube, a new large-scale video benchmark
dataset for yoga action recognition. YogaTube aims at covering
a wide range of complex yoga postures, which consist of 5484
videos belonging to a taxonomy of 82 classes of yoga asanas.
Also, a three-stream architecture has been designed for yoga
asanas pose recognition using two modules, feature extraction,
and classification. Feature extraction comprises three parallel
components. First, pose is estimated using the part affinity fields
model to extract meaningful cues from the practitioner. Second,
optical flow is used to extract temporal features. Third, raw RGB
videos are used for extracting the spatiotemporal features. Finally
in the classification module, pose, optical flow, and RGB streams
are fused to get the final results of the yoga asanas. To the best
of our knowledge, this is the first attempt to establish a video
benchmark yoga recognition dataset. The code and dataset will
be released soon.

Index Terms—Action recognition, Yoga, Multi-stream fusion,
Deep Learning

INTRODUCTION

Human action recognition is a well-motivated problem
in the field of computer vision since the 1980s [1]. It is
primarily a classification problem aiming towards determining
what activity a human is performing in an image or video,
which involves feature extraction from the image or video
and classification in the most probable class. In the last few
decades, the performance of computer vision algorithms has
seen tremendous improvement in terms of complex human
action recognition. This can be partly attributed to the intro-
duction of more and more complex human action datasets
on which these algorithms are evaluated. With the growth
of online media, the amount of video and image databases
are tremendously increasing on web platforms like YouTube,
Bing, Flicker, etc. The computer vision community has made
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Fig. 1. The proposed architecture utilizes the RGB, pose, and optical flow
cues to calculate the practitioner’s asanas. To calculate high level features,
raw RGB videos along with calculated optical flows and pose keypoints are
inputted to the I3D and CNN+LSTM networks, respectively.

use of these and many works exploited the indefinite source
of available data on the web to build large human activity
datasets comprising a variety of actions, thus enhancing the
application scope of recognition algorithms.

Over the years, researchers have proposed various algo-
rithms to analyze human actions. Despite several efforts of
building large-scale datasets, not many datasets deal with com-
plex human actions/poses. Heilbron et al. [2] proposed a video
dataset comprising human activities of daily living. Their
dataset introduces a large number of categories and a large
number of samples per category, collected from YouTube. The
manual annotations are handled through crowd-sourcing. Also,
the Sports-1M [3] dataset has 487 sports-related categories,
annotated by an automatic tagging algorithm. Furthermore, the
automatic collection process introduces an undisclosed amount
of label noise. Andriluka et al. proposed MPII dataset [4] that
contains approximately 25,000 images of over 40,000 people.
Each image is extracted from a YouTube video. The dataset
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Fig. 2. Complexity of Yoga Postures.

Fig. 3. An example of cow pose as a sequence of atomic poses

covers 410 specific categories of human activity and 20 general
categories. Also, UCF-101 [5] and HMDB-51 [6] datasets
have been proposed for video action recognition. Though the
aforementioned large-scale datasets have introduced activity
diversity, they do not present enough challenges to the recog-
nition algorithms in terms of individual action complexity and
thus limiting its application scope. In this work, we propose
a novel dataset for complex yoga action recognition ( Fig. 1).

Yoga actions are a complex set of motions at various scales
packed into a single asana. They consist of multiple poses
that vary non-uniformly across space and time. For example,
the asana Surya namaskar has 12 poses with varying body
movements [7]. Though [8] comprises complex body postures,
their work focuses on static images only. A typical yoga
exercise is a combination of atomic poses where the sequence
is important and that’s why the temporal information plays
a major role. For example, the yoga asana named cow pose
is composed of many sub-postures where the sequence of
postures is very significant while performing it (as shown
in Fig. 3). Such information can not be retrieved using only
static images. Such activities are best described with temporal
information taken into consideration. That indicates the need
for a video dataset based on yoga because these challenges
can not be resolved using only the image-based dataset.

As of now, there is no video dataset covering large pose
variations in Yoga. Therefore, in this work, we attempt to
build an extensive video dataset comprising yoga postures of
varying pose complexities to enhance the application scope

of the recognition algorithms. This new dataset attempts to
fill the gap in the following aspects. 1) We attempt to fill
the existing gap in complex human activity recognition by
introducing complex pose orientations accompanied by pose
diversity (a large number of classes and complex body ori-
entations) in our dataset. 2) We also attempt to imitate real-
world scenarios by introducing interclass similarity, occlusion,
and multi-viewpoints per class. 3) Also, we try to include
all the variations of each class (intraclass variability). For
example, the same yoga exercise can be performed with
slight variations as shown in Fig. 2. Our dataset consists
of inter-asana similarity and intra-asana variability to ensure
the complexity of the dataset. Some of the asanas are very
complex to perform and having a lot of occlusion due to
their own body twisting making the recognition challenging.
The videos are downloaded from YouTube and have diverse
backgrounds as shown in the Fig. 2. The videos are trimmed
based on the start and end of the asanas. The resolution of the
videos differs adding proper complexity in the dataset for the
recognition.

This paper strives to recognize yoga asanas from videos. In
this approach, we utilize the static and dynamic information
of the action recognition. Static information is calculated
using a pose estimation network followed by a spatiotemporal
network consisting of convolutional neural networks (CNN)
and long short-term memory (LSTM) networks. The dynamic
information has been calculated using the RGB and optical
flow streams, which are inputted to the I3D network to
compute the spatiotemporal features. Finally, three streams are
passed to the fully connected layers and fused to get the final
classification score as shown in Fig. 4.

In particular, the major contributions of this paper are
highlighted as follows. We propose a novel large-scale dataset
for yoga action recognition in videos named YogaTube. The
dataset contains 5,484 videos for 82 classes of yoga asanas
with a total duration of 41 hours. The dataset comprises



complex actions of yoga asana which makes it challenging.We
introduce a model for yoga asanas recognition utilizing three
input modalities passing through a three-stream network, i.e.
pose, RGB video, and optical flow. Human joint keypoints
and optical flow vectors are precomputed and all three inputs,
i.e., keypoints, RGB video, and optical flow vectors are
passed to individual streams. The features obtained from three
streams are fused using different fusion methods and results
are presented.

The remainder of the paper is organized as follows. Sec-
tion presents the literature review of the yoga asanas recog-
nition. Section presents the architecture of the proposed
network. Section describes the YogaTube dataset along with
the data collection procedure, cleaning, and statistics. Sec-
tion presents the experimental setup, implementation details,
model evaluation, and discussion and comparison. Finally,
Section presents the concluding remarks and future works.

BACKGROUND

This section presents recent action recognition datasets,
methods, and yoga asanas recognition-related works.
Action recognition datasets: Spurred by the growth of online
media, HMDB51 [6] and UCF101 [5] datasets contain 7,000
and 13,320 videos, respectively, for video action recognition.
A large-scale video action recognition dataset Sports1M [3],
consisting of one million YouTube videos spread into 487
sports classes, was proposed in 2014. Caba et al. proposed
ActivityNet [2] in 2015, which consists of 27,801 videos for
203 classes. It comprises three tasks, i.e. trimmed activity
classification, untrimmed video activity classification, and hu-
man activity detection. YouTube8M [9], which was introduced
in 2016, is the largest video dataset at present consisting of
8 million YouTube videos spread into 3,862 action classes.
The Kinetics [10]–[12] datasets are one of the most widely
used datasets for video action recognition. It consists of Kinet-
ics400 [10], Kinetics600 [11], and Kinetics700 [12] datasets
proposed in 2017, 2018, and 2019, respectively. AVA [13]
is a large-scale spatiotemporal dataset consisting of 57,600
videos (385,446 samples) for 80 classes. 20BN-Something-
Something V1 and V2 [14] datasets consist of 108,499 and
220,847 videos for 174 classes and were introduced in 2017.
The videos consist of people performing daily actions and
interacting with common objects. Following a similar trend,
new datasets proposed for video action recognition include
HACS Clips [15], HVU [16], AViD [17], FineGym [18], and
HAA500 [19]. However, these datasets do not include complex
postures such as yoga.
Action recognition using CNN architectures: With the
availability of large-scale datasets, video action recognition has
seen tremendous growth in recent years using deep learning.
DeepVideo [3] is among the earliest architectures to apply
deep CNN in video. There are two trends in video action
recognition, i.e. two-stream CNNs, and 3D-CNNs. The first
trend utilizes two streams for spatial and temporal feature
extraction. This trend started from the Two Stream Networks
et al. [20], followed by many others like TDD [21], TSN [22],

Fusion [23], TRN [24], etc. TSN [22] samples video clips from
evenly divided segments. To capture information along with
temporal dimension, TRN [24] and TSM [25] utilize a shift
module by replacing average pooling with an interpretable
relational module. However, due to the utilization of 2D CNNs
in two-stream networks, they do not capture the temporal
dynamics. The second trend uses 3D convolutional kernels
to jointly model the spatial and temporal semantics such as
C3D [26], I3D [27], S3D [28], R3D [29], Non-Local [30],
SlowFast [31], etc.
Yoga asanas recognition: Yoga is an ancient Indian exercise
comprising body postures of various complexities. In the field
of human activity recognition, yoga pose recognition is an
emerging task for applications like self- and virtual-training
systems [7], [32]. Works like [33], [34] proposed camera-
based yoga recognition systems. The dataset of [33] had videos
for 6 asanas, recorded with an RGB webcam, whereas [34]
used Kinect to capture depth maps for the recognition of 12
yoga poses. However, their datasets contain relatively simple
human poses and do not offer much challenge to the learning
algorithms. Gochoo et al. [35] proposed an IoT-based privacy-
preserving yoga posture recognition system by employing
low-resolution infrared-sensors-based network for 26 yoga
postures. In terms of body orientation, their dataset had only
4 complex poses (standing separate leg head to knee, camel,
forward fold, and bow), while others were relatively simple.
Hence, in this work, we aim to establish a large-scale video
dataset for complex yoga postures that can be challenging
enough to be used as a test-bed for human pose recognition
algorithms.

YOGATUBE ARCHITECTURE

Inputs to the network

We rely on three input cues: raw RGB frames, optical flow,
and human joint keypoints where each of them is provided as
Spatio-temporal inputs.
Body pose keypoints: Estimation of human pose plays a vital
role in obtaining a detailed understanding of people in videos.
Pose estimation encodes the orientation of a person in space
as a sequence of localized anatomical keypoints. It provides
explicit information modeling spatial and temporal dynamics
in a much lower-dimensional space as compared to raw videos.
This can be useful for higher-level tasks like human action
recognition [36].

We use body joint keypoints as one of the inputs in order
to recognize the pose. We use a bottom-up pose estimation
module based on Part Affinity Fields (PAFs) - OpenPose for
extracting pose information from videos [37]. In this module, a
multi-stage convolutional neural network is used for predicting
and then, refining 2D confidence maps localizing various body
parts. In addition, 2D vector fields are used for each limb
to encode the degree of association for each part pair. These
are subsequently combined via greedy bipartite matching to
assemble complete poses.

Due to the complicated orientation of the human body in
many yoga asanas, reliable pose estimation can be difficult
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Fig. 4. Broad outline of the YogaTube architecture. We collect keypoint estimates from OpenPose for a sequence of frames and pass them to a LSTM-based
model. Optical flow computed over a sequence of grayscale frames is normalized and passed to an inflated 3D CNN. Similarly, raw RGB frames are passed
as input to another finetuned inflated 3D CNN. Finally, the output for all the streams are fused to obtain the final prediction.

Fig. 5. Visualizations of skeleton pose annotations and optical flow represen-
tations.

to obtain. With multiple viewpoints, limbs can get occluded
in a large number of ways that can not be modeled in a
robust fashion using 2D pose estimation. These limitations
hint towards the need for incorporating other modalities for
yoga pose recognition.
RGB videos: The problems related to explicitly encoding
information about the subject suggest that using an implicit
representation in the form of RGB videos may help. They can
provide rich appearance information and fine contextual cues
to the system.

While fine appearance information about textures and other
visual cues may be useful for tasks like image recognition,
these features do not yield useful information for discerning
between different yoga asanas. For example, the clothes worn
by the subject or the appearance of the background are largely
irrelevant for recognizing the yoga asana being performed and
can act as a source of large intra-class variability. This can
make action recognition challenging.
Optical flow: Optical flow is defined as the distribution of
apparent velocities of movement of brightness pattern in an
image [38]. It provides a representation that accurately encodes
motion information and is independent of finer appearance

features which can be useful for action recognition. Along with
appearance features which can be decoded using RGB videos,
optical flow can enhance temporal changes in the video. Fig. 5
highlights how optical flow can be used for effectively dealing
with the problem of background clutter by eliminating static
visual features so that the system can focus on the spatio-
temporal dynamics relevant to the task.

For YogaTube, we estimate dense TV -L1 optical flow using
a method given by Zach et al. in [39]. It builds on the
variational formulation first proposed by Horn and Schunck
in [38]. Total variation regularization and an L1 data penalty
term are used to improve robustness with respect to changes
in illumination, occlusion, and noise.

Feature extraction
As mentioned above, we use three types of inputs in this

work. We use a three-stream network to utilize these inputs
for an accurate yoga pose classification paradigm.
Pose network: For the Pose stream, we use a simple neural
network that takes in an ordered set of 25 skeleton pose
keypoints corresponding to a single person for a sequence of
45 frames. The network consists of three successive blocks
of 1D convolutional layers and max pooling. This is followed
by global average pooling before an LSTM with 100 units.
Finally, a series of dense layers are applied before making
predictions.
Inflated 3D CNN: In [27], Carreira et al. present inflated
3D (I3D) CNN for video-based action recognition that aims
to build upon existing approaches in order to redefine their
capability.The key idea behind the proposed approach is that
2D CNNs used for image classification can be converted into
3D networks by inflating their filters and introducing a new
temporal dimension. It allows utilization of popular 2D-CNNs
which work well in large-scale image datasets, in the area of
video classification, and other tasks related to videos using 3D-
CNN. The resulting 3D convolutional networks are very deep,



but have an exceedingly large number of parameters, making
them difficult to train. The idea of the ”boring-video” fixed
point can be used to bootstrap weights for the 3D network
from its pre-trained ImageNet counterpart, thus providing a
valuable parameter initialization before training.

For YogaTube, we start with inflated 3D CNNs based on
Inception-v1. We use two different networks for optical flow
and RGB videos with the same network architecture. Pre-
trained weights based on the ImageNet and Kinetics datasets
are used to initialize the parameters for these models. Transfer
learning is utilized to train RGB and Flow models for yoga
action recognition. Since pre-trained models on action recog-
nition are used, we only train the last Inception block while
keeping other layers frozen in order to prevent over-fitting.
Out of 12,378,594 parameters, we train 2,867,522, while the
weights for the bulk of the layers are kept frozen.

Classification module

We get a classification score from each of the three streams
individually and use four different techniques for fusion.
Average fusion combines the logits of all the streams using
mean pooling. Max fusion combines the logits of all the
streams using max pooling. Weighted Average fusion allows
us to control how the logits from each stream are weighed. In
fusion with FC layer, we concatenate the logits from all the
streams and train a small neural network to derive the final
prediction using this vector as input. The network learns per-
class weights for logits from each stream, allowing us to weigh
the predictions from each stream in a fine-grained manner -
separately for each class.

BUILDING YOGATUBE

Yoga asanas consist of many complex and diverse postures
that a human body can perform. It is very complex to capture
these asanas from a single point of view. The complexity
further increases with changes in the video resolution and
occlusion. A dataset dedicated to yoga poses can be utilized
as a baseline in the area of yoga pose monitoring, tutoring,
etc. which is an inspiration behind creating this dataset.
Video collection: We begin the data collection by defining
our tasks. These must satisfy four criteria: they must entail
one person performing an asana correctly; the practitioner is
properly visible while doing the asana; the duration of the
video must not be more than one hour, and the camera is
not moving abruptly so that we can assure the continuous
tracking of the person. Using search queries in both English
and Sanskrit, we downloaded videos for all 82 classes in the
best quality available from YouTube.
Complexity: Many of the asanas consist of such a complex
posture that the body parts are not even properly visible due
to self-occlusion. This makes it more challenging for the
recognition algorithms as the full-body can not be properly
tracked. The dataset contains all the possible viewpoints such
as back and forth, left and right, and from different angles of
practitioners from the camera.

TABLE I
RESULTS ON THE YOGATUBE DATASET USING DIFFERENT STREAMS.

Sr. Model Name Precision Recall F1-Score Accuracy

1 Pose Stream 83.99% 81.12% 81.02% 83.45%
2 RGB Stream 83.98% 81.37% 81.65% 83.45%
3 Optical Flow Stream 82.22% 77.36% 77.29% 80.03%

Cleaning the dataset: After downloading the long compila-
tion videos from YouTube, we delineated them to separate
unrelated actions. For this, each video was validated by at
least two human observers to ensure consistency. This ensures
the asanas being practiced correctly in a proper sequence.
However, while annotating the data, there is no distinction
made between the asanas being performed indoor or outdoor.
The dataset involves videos recorded in various complex real-
world environments such as gardens, yoga centers, beaches,
etc. We deliberately consider these types of videos to enhance
the generalization-ability of the system. In this process, a video
is trimmed from the point where asana is being started till the
end of the asana. Each asana contains a specific sequence,
which starts with the practitioner being at the neutral position
followed by performing the specific asana and then ending
it by coming to the neutral position again. The transition of
the asanas is also considered to ensure the practicality of the
system and the sequential nature of the asanas are maintained
in the dataset.
Dataset statistics: The proposed dataset consists of 82 distinct
yoga asanas. The dataset contains a varying number of videos
in each class, which is ranging from 50 (minimum) to 130
(maximum). On average, there are 75 videos per class. The
total number of videos is 5,484. The dataset comprises a
total of 41 hours of trimmed videos. To the best of our
knowledge, to date, this is the largest and perhaps most diverse
dataset for yoga action recognition using videos. We plan to
release the dataset, along with the pre-computed optical flow
and pose features. We believe that this dataset will facilitate
the development and evaluation of models to recognize yoga
actions.

Fig. 6 shows the sample distributions among all the classes.
We split the YogaTube dataset into 4,000 and 1,484 video
samples for training and testing, respectively. The average
length of the videos is 27 seconds. The total number of frames
in the dataset is 4,352,916.

EXPERIMENTAL RESULTS

In this section, we present the implementation details of our
proposed approach and evaluate its performance on the Yo-
gaTube, after giving a concise description of our experimental
setup.

Experimental setup

All experiments were performed on an HP Z420 Worksta-
tion having a single NVIDIA TITAN Xp GPU along with
26 GB RAM and an Intel Xeon E5-1620 CPU clocked at
3.60 GHz. All models were implemented and trained using
TensorFlow [40]. A consistent 80:10:10 split of the YogaTube



Fig. 6. Dataset statistics of the YogaTube dataset.

TABLE II
RESULTS ON FUSION OF STREAMS USING DIFFERENT METHODS.

Sr. Fusion method Precision Recall F1-Score Accuracy

1 Average Fusion (RGB + Flow) 88.18% 85.41% 85.60% 87.20%
Average Fusion (RGB + Pose) 86.70% 83.65% 83.79% 85.66%
Average Fusion (Flow + Pose) 86.13% 82.82% 82.96% 84.81%
Average Fusion (RGB + Flow + Pose) 86.95% 83.87% 84.03% 85.84%

2 Max Fusion (RGB + Flow) 83.99% 81.37% 81.65% 83.45%
Max Fusion (RGB + Pose) 85.64% 82.13% 82.41% 84.30%
Max Fusion (Flow + Pose) 85.71% 82.17% 82.42% 84.30%
Max Fusion (RGB + Flow + Pose) 85.64% 82.13% 82.41% 84.30%

3 Weighted Average Fusion (RGB + Flow) 88.18% 85.42% 85.61% 87.20%
Weighted Average Fusion (RGB + Pose) 86.70% 83.66% 83.80% 85.67%
Weighted Average Fusion (Flow + Pose) 86.14% 82.82% 82.96% 84.81%
Weighted Average Fusion (RGB + Flow + Pose) 86.95% 83.87% 84.03% 85.84%

4 Fusion with FC Layer (RGB + Flow + Pose) 91.85% 90.44% 91.14% 90.96%

dataset was used for training, validation, and evaluation across
all three streams.

Implementation details
Pre-processing: For the RGB and Flow streams, since we use
ImageNet and Kinetics pre-trained weights for initializing our
models, the same pre-processing pipeline itecarreira2017quo
is used in this work. First, the video is re-sampled to a
uniform frame rate of 25 frames per second. The smaller
dimension out of width and height is resized to 256 pixels,
maintaining aspect ratio. For the Flow stream, TV -L1 optical
flow is computed between adjacent frames after conversion to
grayscale, following which the flow values are truncated to
the range [−20, 20]. For both - RGB and Flow streams, the
pixel values are normalized to the range [−1, 1]. The frames
are cropped spatially and temporally to obtain a uniformly
shaped set of 64 224 × 224 frames, with 2 and 3 channels
respectively, for Flow and RGB modalities.
Data augmentation: Considering the large parameter space
for the I3D architecture and the modest size of our dataset, data
augmentation is of critical importance to obtain a model with
good generalization. To this end, we apply random spatial and

temporal cropping and horizontal flipping on training videos.
To maintain a stable evaluation measure across all experi-
ments, these transformations are not applied to validation and
test sets.
Model training: For the RGB and Flow streams, categorical
cross-entropy was used as the loss function in conjunction with
the Adam optimizer [41] with a learning rate scheduler.

Consecutive sequences of 64 adjacent frames are passed to
the model. Videos having fewer than 64 frames are looped,
while for longer videos, a sliding window is used to se-
quentially cover frames across the entire duration. The logits
for each sequence obtained from a single video are then
aggregated by average-pooling to derive the final prediction
for the complete video.

Model evaluation
In order to develop a better understanding of the impact

of different modules on the performance of our model and
the effectiveness of different modalities, the performance of
the Pose, RGB, and Flow streams on testing data is presented
in TABLE I. The results of experiments with various fusion
techniques are also provided in TABLE II.



While the Pose and RGB streams produce a similar accuracy
of 83.45% each, the Flow stream produces a lower accuracy
of 80.03%. This indicates that the elimination of visual cues in
the optical flow representation might be detrimental to recogni-
tion. However, fusing the Flow stream with any combination of
the other streams was found to lead to improved classification
performance in all cases - indicating that the information that
it captures, complements and aids activity recognition. In case
of average fusion, adding the pose stream was found to have
a detrimental impact on model performance. This may be
attributed to noise introduced by erroneous pose estimation
- which is particularly difficult for the complex yoga poses
present in our dataset. Average fusion was found to outperform
max fusion for all combinations. Finally, fusion with FC layer
produced the best results, indicating that each modality cap-
tures complementary information and fine-grained weighing
of predictions from each stream helps us to incorporate this
information into our predictions in an effective manner.

SUMMARY AND FUTURE WORK

This paper provides a new benchmark dataset for yoga
action recognition named as YogaTube. We propose a novel
three-stream model for yoga action recognition along with
different fusion techniques for classification. The code and
YogaTube dataset will be made publicly available to support
future research in this area. We hope this dataset will prove to
be a testbed for developing novel video representation learning
algorithms.
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